Chapter 9:

DEPENDENCE-DRIVEN LOOP MANIPULATION
9.1 DEPENDENCES

Flow Dependence (True Dependence)

S1 \(X = A + B \)
S2 \(C = X + 1 \)

Anti Dependence

S1 \(A = X + B \)
S2 \(X = C + D \)

Output Dependence

S1 \(X = A + B \)
S2 \(X = C + D \)
9.2 DEPENDENCE AND PARALLELIZATION (SPREADING)

\[S_1, S_2, S_3 \text{ can execute in parallel with } S_4, S_5, S_6 \]
\[S_8, S_9, S_{10}, S_{11} \]
C$OMP SECTIONS
C$OMP SECTION A
 S1
 S2
 S3
C$OMP SECTION B
 S4
 S5
 S6
C$OMP END SECTIONS
 S7
C$OMP SECTIONS
C$OMP SECTION
 S8
 S9
C$OMP SECTION
 S10
 S11
C$OMP END SECTIONS
9.3 RENAMING

(To remove memory-related dependences)

S1 \ A=X+B
S2 \ X=Y+1
S3 \ C=X+B
S4 \ X=Z+B
S5 \ D=X+1

Use renaming.

S1 \ A=X+B
S2 \ X1=Y+1
S3 \ C=X1+B
S4 \ X2=Z+B
S5 \ D=X2+1
9.4 DEPENDENCES IN LOOPS

DO I=1,N

S1 \quad A=B(I)+1
S2 \quad C(I)=A+2

END DO
9.5 DEPENDENCES IN LOOPS (Cont.)

DO I = 1, N
 S1 X(I+1) = B(I) + 1
 S1 A(I) = X(I)
END DO

DO I = 1, N
 S1 X(I) = B(I) + 1
 S1 A(I) = X(I+1) + 1
END DO
DO I=1,N
S1 \quad X(F(I)) = B(I)+1
S2 \quad A(I) = X(G(I))+2
END DO

We say that \[S_1 \quad \text{IFF } \exists I_1 \leq I_2 \]
\[\forall F (I_1) = G(I_2) \]
[ALSO \(I_1, I_2 \in [1,N] \)]

We say that \[S_1 \quad \text{IFF } \exists I_1 < I_2 \]
\[\forall F (I_2) = G(I_1) \]
9.7 **LOOP PARALLELIZATION AND VECTORIZATION**

- A loop whose dependence graph is cycle-free can be parallelized or vectorized. e.g.

```
DO I=1,N
   X(I)=B(I)+1
   A(I)=X(I)+1
END DO
```

```
X(1:N)=B(1:N)+1 PARALLEL DO I=1,N
A(1:N)=X(1:N)+1 X(I)=B(I)+1
   A(I)=X(I)+1
   END PARALLEL DO
```

- The reason is that if there are no cycles in the dependence graph, then there will be no races in the parallel loop.
Some program patterns occur frequently in programs. They can be replaced with a parallel algorithm. e.g.

\begin{verbatim}
DO I=1,N
 A(I)=A(I-1)+B(I)
END DO

A(1:N)=RECI(N(B(1:N),A(0),N))
\end{verbatim}

\begin{verbatim}
X=A(1)
DO I=2,N
 IF(X.GT.A(I))X=A(I)
END DO

X=MIN(A(1:N))
\end{verbatim}
9.9 LOOP DISTRIBUTION

- To insulate these patterns, we can decompose loops into several loops, one for each strongly-connected component (π-block) in the dependence graph.

```plaintext
DO I=1,N
S1:   A(I) - B(I) + C(I)
S2:   D(I) = D(I-1) + A(I)
S3:   IF (X.GT.A(I)) THEN
      X = A(I)
      ENDIF
END DO

DO I=1,N
   A(I) = B(I) + C(I)
END DO
DO I=1,N
   D(I) = D(I-1) + A(I)
END DO
DO I=1,N
   IF (X.GT.A(I) THEN
      X = A(I)
   END IF
END DO
```
9.10 LOOP INTERCHANGING

- The dependence information determines whether or not the loop headers can be interchanged.

- For example, the following loop headers can be interchanged

\[
\begin{align*}
\text{do } i=1,n \\
& \quad \text{do } j=1,n \\
& \quad \quad a(i,j) = a(i,j-1) + a(i-1,j) \\
& \quad \quad \text{end do} \\
& \text{end do}
\end{align*}
\]

- However, the headers in the following loop cannot be interchanged
do i=1,n
 do j=1,n
 a(i,j) = a(i,j-1) + a(i-1,j+1)
 end do
end do

\[\text{do i=1,n} \]
\[\text{ do j=1,n} \]
\[\quad \text{a}(i,j) = \text{a}(i,j-1) + \text{a}(i-1,j+1) \]
\[\text{ end do} \]
\[\text{end do} \]
9.11 DEPENDENCE REMOVAL

- Some cycles in the dependence graph can be eliminated by using elementary transformations.

Scalar Expansion:

\[
\begin{align*}
\text{DO} & \quad I=1,N \\
S1: & \quad A = B(I) + 1 \\
S2: & \quad C(I) = A + D(I) \\
\text{END DO} \\
\text{DO} & \quad I=1,N \\
S1: & \quad A1(I) = B(I) + 1 \\
S2: & \quad C(I) = A1(I) + D(I) \\
\text{END DO} \\
A & = A1(N)
\end{align*}
\]
9.12 Induction variable recognition

DO I=1,N
S1: J=J+2
S2: X(I)=X(I)+J
END DO

DO I=1,N
S1: J1=J+2*I
S2: X(I)=X(I)+J1
END DO

DO I=1,N
S1: J1(I)=J+2*I
S2: X(I)=X(I)+J1(I)
END DO
9.13 More about the DO to PARALLEL DO transformation

- When the dependence graph inside a DO loop has no cross-iteration dependences, it can be transformed into a PARALLEL DO.

Example 1:

\[
\begin{align*}
\text{do } i=1, n \\
t_S^1: & \quad a(i) = b(i) + c(i) \\
t_S^2: & \quad d(i) = x(i) + 1
\end{align*}
\]

Example 2:

\[
\begin{align*}
\text{do } i=1, n \\
t_S^1: & \quad a(i) = b(i) + c(i) \\
t_S^2: & \quad d(i) = x(i) + 1
\end{align*}
\]
Example 3:

\[
\begin{align*}
d & = 1, n \\
S_1 & : \quad b(i) = a(i) \\
S_2 & : \quad \text{do while } b(i)^2 - a(i) > \text{epsilon} \\
S_3 & : \quad b(i) = (b(i) + a(i)/b(i))/2.0 \\ & \quad \text{end do while} \\
\text{end do}
\end{align*}
\]
When there are cross iteration dependences, but no cycles, do loops can be *aligned* to be transformed into DOALLs.

Example 1:

```plaintext
do i=1,n
  S1: a(i) = b(i) + 1
  S2: c(i) = a(i-1)**2
end do
```

```
do i=0,n
  S1: if i>0 then a(i) = b(i) + 1
  S2: if i<n then c(i+1) = a(i)**2
end do
```

![Diagram of Example 1]
Sometimes we have to replicate to achieve alignment

Example 2:

\[
\begin{align*}
\text{do } &i=1,n \\
 a(i) &= b(i) + c(i) \\
 d(i) &= a(i) + a(i-1) \\
\text{end do}
\end{align*}
\]

\[
\downarrow
\]

\[
\begin{align*}
\text{do } &i=1,n \\
 a(i) &= b(i) + c(i) \\
 a1(i) &= b(i) + c(i) \\
 d(i) &= a1(i) + a(i-1) \\
\text{end do}
\end{align*}
\]

\[
\downarrow
\]

\[
\begin{align*}
\text{do } &i=0,n \\
 \quad \text{if } i>0 &\text{ then } a(i) = b(i) + c(i) \\
 \quad \text{if } i<n &\text{ then } a1(i+1) = b(i+1) + c(i+1) \\
 \quad d(i+1) &= a1(i+1) + a(i) \\
\text{end do}
\end{align*}
\]
• Need for replication could propagate.

Example 3:

\[
\begin{align*}
do i=1,n \\
c(i) &= 2 \times f(i) \\
a(i) &= c(i) + c(i-1) \\
d(i) &= a(i) + a(i-1) \\
\end{align*}
\]

\[
\downarrow
\]

\[
\begin{align*}
do i=1,n \\
c(i) &= 2 \times f(i) \\
c1(i) &= 2 \times f(i) \\
c2(i) &= 2 \times f(i) \\
a(i) &= c(i) + c1(i-1) \\
a1(i) &= c1(i) + c2(i-1) \\
d(i) &= a(i) + a1(i-1) \\
\end{align*}
\]

• The problem of finding the minimum amount of code replication sufficient to align a loop is NP-hard in the size of the input loop (Allen et al 1987)
To do alignment, we may need to do topological sort of the statements according to the partial order given by the dependence graph.

Example 4:

```
do i=1,n
    S1: a(i) = b(i) + c(i-1)
    S2: c(i) = d(i)
end do
```

Performing alignment without sorting first will clearly be incorrect in this case.
Another method for eliminating cross-iteration dependences is to perform loop distribution.

Example:

```plaintext
do i=1,n
    a(i) = b(i) + 1
    c(i) = a(i-1) + 2
end do

↓

do i=1,n
    a(i) = b(i) + 1
end do
do i=1,n
    c(i) = a(i-1) + 2
end do
```
9.14 Loop Coalescing for DOALL loops

- A perfectly nested DOALL loop such as

\[
\begin{align*}
&\text{doall } i=1,n1 \\
&\quad \text{doall } j=1,n2 \\
&\quad \quad \text{doall } k=1,n3 \\
&\quad \quad \ldots \\
&\quad \text{end doall} \\
&\text{end doall} \\
&\text{end doall}
\end{align*}
\]

could be trivially transformed into a singly-nested loop with a tuple of variables as index:

\[
\begin{align*}
&\text{doall } (i,j,k) = (1..n1).c.(1..n2).c.(1..n3) \\
&\quad \ldots \\
&\text{end doall}
\end{align*}
\]

This coalescing transformation is convenient for scheduling and could reduce the overhead involved in starting DOALL loops.