
Detecting Synchronization Defects in Multi-Threaded Object-Oriented Programs

Christoph von Praun

c© Christoph von Praun, 2004.

Diss. ETH No. 15524

Detecting Synchronization Defects in
Multi-Threaded Object-Oriented Programs

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OFTECHNOLOGY ZURICH

(ETH ZÜRICH)

for the degree of
Doctor of Technical Sciences

presented by
Christoph von Praun

Dipl.-Inf. TU-München
born January 20, 1972

citizen of Germany

accepted on the recommendation of
Prof. Dr. Thomas Gross, examiner

Prof. Dr. David Padua, co-examiner
Prof. Dr. Robert Sẗark, co-examiner

2004

ii

Abstract

This dissertation describes an efficient and automated approach to determine synchronization
defects in multi-threaded object-oriented programs. The approach is based on the key observa-
tion that object-oriented programs provide guarantees about data confinement and encapsulation
that can be leveraged by the design of a static analysis and a runtime checker. To be practical,
the techniques are demonstrated on the Java programming language.

The static analysis operates on an abstract model of threads and data, and simulates the ex-
ecution of a parallel program on these abstract domains. Thereby, precise information about
locking, thread activity, object access, and object escape is recorded in a context-sensitive man-
ner. This symbolic execution provides a general platform to assess properties of parallel pro-
grams. The focus of this dissertation is on the detection of three possible sources of errors: data
races, methods that may not execute atomically, and deadlock. The static analysis of object-
oriented languages is generally limited by the effects of aliasing and the resulting difficulty to
disambiguate dynamically allocated data and locks. While approximations of the static analysis
reduce the accuracy of the results, we have found the reports of potential synchronization de-
fects to be highly useful in practice: Overreporting may occur, however at a rate that is amenable
to manual inspection. True defects may be overlooked but such underreporting can be limited
to certain cases that we observed rarely in practice.

Two alternative software mechanisms are developed to assess concurrency and locking at
runtime: First, object race detection checks if access to shared objects follows a locking dis-
cipline. Second, object consistency guarantees that threads behave so that access to individual
objects is serializable and happens without harmful interference. Both mechanisms are imple-
mented as a sparse program instrumentation that is guided by the static analysis and optimized
with standard compiler techniques. The runtime overhead is very low (on average 44% for
object race checking and 25% for object consistency) and well spent in the light of the benefits.

The trend towards thread-level parallelism and multi-threaded computer systems make pre-
cise information about concurrency and synchronization indispensable for correct program
translation, optimization, and execution. The techniques presented in this dissertation are
promising steps towards providing this information and making the detection of synchronization
defects a default option for compilers and runtime systems of multi-threaded object-oriented
programs.

iii

Kurzfassung

Die vorliegende Arbeit beschreibt einen effizienten und automatisierten Ansatz zur Erkennung
von Synchronisationsfehlern in nebenläufigen objektorientierten Programmen. Der Ansatz
basiert auf der Beobachtung, dass objektorientierte Programme gewisse Garantienüber die Er-
reichbarkeit und Kapselung von Daten festlegen; solche Garantien können die Effizienz und
Genauigkeit von statischen und dynamischen Verfahren zur Erkennung von Synchronisations-
fehlern verbessern. Die in dieser Dissertation entwickelten Techniken werden an der Program-
miersprache Java beispielhaft vorgestellt und evaluiert.

Die statische Analyse basiert auf einem symbolischen, d.h. simulierten, Programmablauf
mit abstraktem Thread- und Datenmodell. Die Simulation registriert die Verwendung von
Locks, Objektzugriffe und die Erreichbarkeit von Objekten durch nebenläufige Threads. Die
Simulation ist kontext-sensitiv, d.h. bei der Analyse einzelner Methodenaufrufe wird der
Programm- und Datenkontext, in welchem eine Methode zur Ausführung gelangt, berück-
sichtigt. Die symbolische Programmausführung ist die Grundlage für weitere Analysen. Der
Schwerpunkt in der vorliegenden Arbeit liegt auf Analysen zur Erkennung von drei möglichen
Fehlerquellen: Data Races, Methoden deren Ausführung nicht atomar sein könnte und Dead-
lock. Die Analyse von objektorientierten Sprachen wird generell durch Aliasing und durch die
daraus resultierende Ungenauigkeit, dynamisch allozierte Objekte und Locks zu unterscheiden,
erschwert. Obgleich die notwendigen Abstraktions- und Näherungsverfahren die Präzision re-
duzieren, sind die Ergebnisse der statischen Erkennung von Synchronisationsfehlernäußerst
nützlich in der Praxis. Einige Warnungen haben keine Entsprechung in tatsächlichen Program-
mausf̈uhrungen (Overreporting); solche Warnungen sind typisch, sie tauchen jedoch nur in
relativ geringer Anzahl auf und können mit moderatem Aufwand vom Benutzer erkannt und
selektiert werden. Es ist andererseits möglich, dass die entwickelten Analyseverfahren keine
Warnung generieren für Programme, die tatsächlich Synchronisationsfehler aufweisen (Under-
reporting). Dieses Phänomen tritt jedoch nur in Situationen auf, die wir genau bestimmen
können, die aber nur selten in der Praxis vorkommen.

Neben den statischen Analysen werden zwei software-basierte Techniken vorgestellt,
welche Informationen̈uber aktuelle Locks und Nebenläufigkeit zur Laufzeit verf̈ugbar machen.
Der erste Mechanismus, genannt Object Race Detection,überpr̈uft, ob nebenl̈aufige Threads
beim Zugriff auf gemeinsame Objekte eine bestimmte Lockdisziplin einhalten. Der zweite
Mechanismus, genannt Object Consistency, garantiert, dass die Effekte von Objektzugriffen se-
rialisierbar sind und keine Interferenz von Threads auftaucht, die zu Inkonsistenz von Daten
führen k̈onnte. Beide Mechanismen sind in Form einer Programminstrumentierung imple-
mentiert, die durch die Ergebnisse der statischen Analyse gesteuert und mit gängigen Com-
pilertechniken optimiert wird; Ziel ist es m̈oglichst wenige Objektzugriffe zu instrumentieren.
Die Laufzeitkosten dieser Instrumentierungsvarianten sind sehr gering (im Mittel 44% bei Ob-

v

vi

ject Race Detection und 25% bei Object Consistency) und lohnenswert angesichts der Vorteile,
die die Erkennung von Synchronisationsfehlern mit sich bringt.

Der Trend zu Multithreading in Software und Hardware Systemen erfordert die
Verfügbarkeit von genauer Informationüber Nebenl̈aufigkeit und Synchronisation zur korrekten
Übersetzung, Optimierung und Ausführung eines Programms. Die Techniken, welche in dieser
Dissertation vorgestellt werden, sind erste Schritte zur Bereitstellung dieser Information und
zur Etablierung von Mechanismen zur Erkennung von Synchronisationsfehlern in Compiler-
und Laufzeitsystemen für objektorientierte nebenläufige Programme.

Acknowledgment

This dissertation would not have been possible without the tireless efforts of my advisor, Pro-
fessor Thomas Gross. He has taught me to work as an independent researcher and has been a
steady source of wise encouragement and support. He will be a great example throughout my
professional life and I would like to express my sincere thanks to him.

I am indebted to Professor David Padua and Professor Robert Stärk for their scrutinizing
comments that helped me to improve this dissertation. My sincere thanks also go to Professor
Gustavo Alonso who notably supported me as a graduate student at ETH Zurich.

I am extraordinarily grateful to all my friends and colleagues in the Computer Systems
Institute at ETH Zurich. This exceptional group of people created a collaborative environment
that is friendly, well-organized, and stimulating, allowing to focus on learning and research.
A number of colleagues and students, past and present, have helped to develop the compiler
infrastructure that is used in this dissertation. It is a great pleasure to thank them here for their
commitment.

vii

Contents

1 Introduction 1
1.1 Motivation. 1
1.2 Scope . 2
1.3 Thesis . 2
1.4 Outline . 3

2 Background 5
2.1 Terminology. 5
2.2 Data races. 5
2.3 Violations of atomicity . 12
2.4 Deadlock . 13
2.5 Trails to correct synchronization. 13

3 Static analysis 17
3.1 Preliminaries . 17
3.2 Abstract threads. 19
3.3 Reference analysis. 21
3.4 Symbolic execution. 31
3.5 Experience . 38
3.6 Discussion. 45

4 Static detection of data races 49
4.1 Object use graphs. 49
4.2 Building object use graphs. 52
4.3 Approximating happened-before. 60
4.4 Conflict detection. 66
4.5 Experience . 68
4.6 Extensions for weak memory models. 78
4.7 Discussion. 81

5 Static detection of atomicity violations 87
5.1 Method consistency. 87
5.2 Algorithm . 91
5.3 Experience . 94
5.4 Discussion. 98

ix

x CONTENTS

6 Static deadlock detection 105
6.1 Resource deadlock. .105
6.2 Algorithm .105
6.3 Experience .108
6.4 Discussion. .109

7 Dynamic checking 111
7.1 Object race detection. .111
7.2 Detecting violations of object consistency. 128
7.3 Method specialization. .138

8 Conclusions 145
8.1 Summary and contributions. .146
8.2 Trends and future work. .147

1
Introduction

1.1 Motivation

A common model for parallel programming ismulti-threading with shared memory: Multi-
threading is not only attractive for its potential to increase the performance of independent
computations, but is also used as a concept for structuring tasks within a software system.
Popular object-oriented programming languages like Java [53] and C] [38] have adopted multi-
threading as a language feature.

Problem. In these languages, parallelism is specified and controlled explicitly by the pro-
grammer, inviting new sources of programming errors, calledsynchronization defects. Such
errors are not known in sequential programming. In this dissertation, we consider three impor-
tant classes of synchronization defects:

1. A data race[92] is a situation where events from different threads execute without or-
dering and read and write the same data. Data races can lead to data inconsistency and
unintended nondeterminism.

2. A violation of atomicity[45] occurs if a sequence of shared data access of one thread is
interleaved with access to the same data from other threads.

3. A deadlock[28] situation occurs at runtime if threads use synchronization so that a cyclic
wait condition arises.

There are static and dynamic techniques for detecting particular classes of synchronization
defects. Static tools are challenged by the complexity of thread interaction and the dynamic
allocation of data and threads. Precise tools are typically very resource intensive. Tools with
an approximative detection strategy depend on program annotations and user input to grasp the
synchronization discipline and reduce the number of false reports. Purely dynamic tools can be
precise but their findings are limited to particular program execution. In addition, these tools
are confronted with a runtime overhead of typically a factor of 2 to 60; the overhead stems from
program instrumentation or monitoring facilities. Most promising are combinations of static
and dynamic techniques, e.g., a static analysis that guides and narrows the scope of a dynamic
checker.

Approach. We have developed a static analysis framework that can approximate dynamic
techniques for the detection of synchronization defects at compile-time. The framework is based

1

2 CHAPTER 1. INTRODUCTION

on a symbolic execution of an abstract model of threads and data, combining the availability
of high-level program information in a compiler with the versatility of a dynamic checker. The
framework is used to address the three classes of synchronization defects: data races, violations
of atomicity (at the method level), and deadlock.

Research questions. The proposed model for detecting synchronization defects in multi-
threaded object-oriented programs raises the following key questions:

• Are multi-threaded object-oriented programs with a variety of synchronization patterns,
indirect data access, polymorphism, and unstructured parallelism amenable to an efficient
static detection of synchronization defects?

• What is the precision of the static detection in terms of underreporting and overreporting?

• How many residual cases that cannot be resolved through static analysis occur at runtime?
How large is the runtime overhead if these cases are monitored by a dynamic checker?

1.2 Scope

The static analyses developed in this dissertation assume the availability of the whole program;
the presented algorithms are designed for a way-ahead compilation and link model. Our ap-
proach to synchronization fault detection has been developed with a certain application model
in mind:

• Parallelism is unstructured, i.e., concurrency among statements cannot be easily deter-
mined from the static structure of the program. Threads are modeled as objects and their
lifetime is mostly independent of the dynamic program scoping.

• Locks and monitors are the predominant synchronization mechanisms.

• Memory management is done automatically, e.g., through a garbage collector.

• Objects, not plain arrays, are the main abstraction for representing shared data.

• The language provides a clean object model so that objects are only accessed through
corresponding references; pointers cannot be forged and there is no pointer arithmetic.

Programs that do not follow this model can still be treated correctly, however conservatism
might deteriorate the precision of the analysis.

1.3 Thesis

• Structural properties of object-oriented programs, such as data encapsulation and object
confinement, offer new opportunities for the detection of synchronization defects.

1.4. OUTLINE 3

• Static analysis of multi-threaded object-oriented programs can be precise enough to de-
liver useful information about potential synchronization defects to the programmer and
to determine the absence of defects for large program parts.

• The execution overhead of the residual dynamic checking is typically low; certain guar-
antees about the absence of synchronization defects in a program execution and the com-
pliance of a program execution with a high-level memory model can be given.

1.4 Outline

The thesis is established as follows:

• We describe the design and implementation of a static analysis framework that enables
a heap context-sensitive symbolic execution of multi-threaded object-oriented programs.
The duration of the symbolic execution is demonstrated; optimizations are proposed and
implemented.

• The framework is used to implement static analyses for the detection of three impor-
tant classes of synchronization defects: (1) data races, (2) violations of atomicity at the
method level, and (3) deadlock. The analyses are inspired by known dynamic detection
procedures.

• The accuracy of the analyses is evaluated and compared with the runtime reality of bench-
mark programs that are representative for object-oriented applications and Internet ser-
vices. To be practical, we use the Java programming language and common Java bench-
mark programs as a base for our study.

• We present two alternative software mechanisms to determine concurrency and locking
at runtime: (1) Object race detection checks if shared object access follows a locking
discipline. (2) Object consistency, verifies if threads behave so that access to individual
objects happens in a serializable order.

• Both dynamic checkers are integrated with the static analysis and implemented as a sparse
program instrumentation. After a discussion of the theoretical and practical detection
capabilities of both systems, the runtime overhead is evaluated.

The dissertation is organized as follows:Chapter 2 defines the notion of synchronization de-
fects and summarizes issues around the detection of data races, violations of atomicity, and
deadlock. We present our model to address the problem of synchronization defects and detail
on the roles of programmers, compilers, and execution platform in this model.Chapter 3 dis-
cusses the static analysis framework. First, various data structures for the abstract representation
of programs and their data are introduced; we describe their construction and continue with the
algorithm of the symbolic execution.Chapters 4 to 6 describe the use of analysis framework
for implementing algorithms that detect three classes of synchronization defects: data races, vi-
olations of atomicity, and deadlock. For each technique, we evaluate the resource requirements
and the precision of the static analysis.Chapter 7 describes two program instrumentations and
runtime mechanisms that determine synchronization defects (object races) and memory con-
sistency at the level of objects (object consistency). We illustrate how the context-sensitive

4 CHAPTER 1. INTRODUCTION

information from the static analysis is used to realize code specializations; code specialization
is important to differentiate heap execution contexts at runtime which is the basis for the sparse
runtime checking. An evaluation of the accuracy and cost of the system are given.Chapter 8
addresses directions for future research and concludes this dissertation.

2
Background

The goal of this dissertation is to develop a compilation and execution model for parallel pro-
grams that allows to detect and reject programs that are afflicted with synchronization defects.
This chapter lays the foundations for our work and describes principal aspects of parallel pro-
grams. We define a formalism for describing parallel programs and program executions in Sec-
tion 2.1. Sections2.2 to 2.4 discuss different classes of error conditions and methods for their
detection. Related work is described in this chapter as far as it contributes to the foundations;
subsequent chapters discuss related work on individual aspects in more detail. Finally, common
methodical approaches to the development of parallel programs (Section2.5) are described.
These approaches are characterized by the roles and obligations of programmer, compiler, and
runtime system to determine the correctness of the synchronization.

2.1 Terminology

We adopt the terminology and notation from Choi et al. [25, 109]. A program executionis
defined as a sequencee0, . . . ,en of eventswhereei is defined as a tuple〈o, f , t,L,k〉:

• i is a unique id.

• o is the object instance (or class) that is being accessed.

• f is the field variable that is accessed inside the object.

• t is the thread accessing the object.

• L is the set of locks being held during the access.

• k is the kind of event(one of{READ,WRITE,LOCK,UNLOCK,START,JOIN}).

Events shall not only be used to model variable access, but also lock and unlock, as well as
thread start and join; for such events, the accessed field variablef is void.

2.2 Data races

A critical section is a statement sequence that should execute without interference of other
threads. The concept is useful to guarantee that access from different threads to the same data is

5

6 CHAPTER 2. BACKGROUND

ordered, avoiding inconsistency and data corruption.Racesare used to characterize situations
where the guarantee about non-interference of threads accessing shared data is violated. Netzer
and Miller [92] distinguishdata racesthat refer to unsynchronized access of shared data and
general racesthat are sources of nondeterminism in parallel programs in general. Our discus-
sion in this section focuses on data races, while Section2.3 discusses synchronization defects
related to general races.

Intuitive definition. An intuitive definition of a data race is that different threads access the
same data, at least one access is a write, and the access events are not ordered in the flow of the
execution.

Static detection. The set of data races that are possible by the nature of a program (i.e., all
possible executions) is calledfeasible data races[92]. In an ideal world, one would like to de-
fine and detect precisely the feasible data races based on a static program representation (static
detection). The multitude of patterns and mechanisms for data sharing and thread synchroniza-
tion make it however difficult to conceive such a data race definition that matches the intuitive
concept.

The following results from complexity and computability analysis show that a precise anal-
ysis of the synchronization structure in concurrent programs is computationally intractable or
even impossible: Taylor [117] shows that various synchronization-sensitive analyses (those that
consider only the possible interleavings and execution paths of a parallel program with rendez-
vous style synchronization) are NP-complete for programs without procedures and recursion.
Ramalingam [98] extends this result for programs with (recursive) procedures and shows that
any context-sensitive, synchronization-sensitive static analysis is undecidable.

Hence, practical static data race checkers provide an approximation and have the potential of
covering allfeasible data raceshowever at the risk of reporting incidents that do not correspond
to feasible program executions (overreporting, spurious data races); the reports of such a static
tool are calledapparent races[92]. Figure2.1 illustrates the conceptual relationship between
data races and the findings of a typical static detection mechanism; the extent of the boxes does
not reflect the multitude of incidents or reports.

Figure 2.1: Detection capabilities of static data race detection.

2.2. DATA RACES 7

According to [29, 44], an ideal static checker should have the following properties:

• Soundness.A sound checker reports an error if there is some error in the program (no
underreporting). Not all errors need to be reported according to this definition, e.g., a
race detection tool is still sound if it omits reports of races that are a consequence of
another race.

• Completeness.A checker that is complete reports only genuine errors, not spurious inci-
dents (nooverreporting).

Dynamic detection. Due to the difficulty of defining and analyzing data races based on a
program representation, common data race definitions and detection mechanism have focused
on program executions. Anactual data race[92] is the occurrence of a data race in a program
execution. Dynamic detectiondetermines actual data races. Current techniques of dynamic
data race detection are afflicted with two sources of inaccuracy:Underreportingmeans that
actual races are omitted in the reporting (omitted data race); overreportingmeans that there are
reports that do not correspond to real data races (spurious data race); Figure2.2 illustrates this
discrepancy between reported and actual respectively feasible data races.

Figure 2.2: Detection capabilities of dynamic data race detection.

We discuss three important variants of data race definitions (Sections2.2.1to 2.2.3) that are
relevant in this dissertation. The definitions differ in their approximation of ordering among ex-
ecution events and in the granularity of data that is subsumed by an access event. For each data
race definition, static and dynamic detection mechanisms are presented and assessed according
to theiraccuracyandruntime efficiency.

2.2.1 Happened-before data races

Definition. Lamport [73] defines an irreflexive partial ordering among events in a program
execution calledhappened-before, written→. Two eventsei , ej of a particular execution are
ordered, i.e.,ei → ej , if (1) they belong to the same thread and are ordered in the control flow
of this thread, or (2)ei andej belong to different threads and some inter-thread synchronization
(e.g., locking, thread start or join) forcedei to occur beforeej .

According to Netzer and Miller [92], two eventsei andej participate in a data race, if (1) the
events belong to different threads, (2) the events access the same variable, and (3) at least one

8 CHAPTER 2. BACKGROUND

Program 2.1: Execution interleaving with a happened-
before data race.

1 // Thread 1 // Thread 2
2
3 t2 = new Thread2();
4 t2.start();
5 // start
6 ... = x;
7 x = ...;
8 t2.join();
9 // waiting

10 y = ...;
11 // terminate
12 // Thread 2 joined
13 ... = y;

event corresponds to a write and (4) the events are not ordered according to the happened-before
relation. Ahappened-before data raceis thus defined as

happenedBeforeRace(ei ,ej) ⇔ (ei .t 6= ej .t)∧ (2.1)

(ei .o = ej .o)∧ (ei . f = ej . f)∧
(ei .a = WRITE∨ej .a = WRITE)∧
(ei 6→ ej)∧ (ej 6→ ei).

Example. There are two shared variables in the execution scenario in Program2.1, x andy.
The order of access tox is not determined by the program (i.e., not ordered by the happened-
before relation), there is a write (Thread 2), and hence there is a data race. The situation is
different for variabley which is written by Thread 1 and read by Thread 2 only after Thread 1
terminated.

Detection. There are basically two implementation alternatives for dynamic data race detec-
tion: Trace-based techniques record relevant events at runtime and determine data races during
an offline analysis of the execution trace [91]. Online techniques limit the amount of trace
data and verify condition2.1 at runtime [36, 82]. Due to the limited context for inferring the
happened-before relation (only a limited window of access events can be tracked by an online
checker), online techniques are usually less precise than trace-based systems; moreover, the
temporal ordering of access events is approximated through the occurrence of synchronization
events at runtime, which introduces scheduling dependence into the detector and might lead to
omitted reports [36]. An important approach to improve the accuracy of online checkers for pro-
grams with lock-based synchronization has been proposed in [36] and has led to the lock-based
definition of data races (see Section2.2.2).

Besides accuracy, the execution overhead of online checkers, which is typically a factor of
5 to 100 of the original execution, is a major concern. Mellor-Crummey [83] uses compile-time
information to avoid unnecessary checking of accesses to thread-local data in Fortran programs.
Christiaens and de Bosschere [27] have investigated object-oriented programs and avoid the
checking of accesses to objects that are reachable only from a single thread; in their system,
object reachability with respect to threads is determined dynamically. Compiler optimizations

2.2. DATA RACES 9

and runtime tuning improve the overhead of online happened-before data race checkers to a
factor of 2 to 20 [27].

2.2.2 Lock-based data races

The difficulty to infer the happened-before relation from a program execution has led to another
definition of data races that is not based on the temporal ordering of events but on alocking
policy [103]. The rationale behindunique-lock data racesis that accesses to shared mutable
variables that are consistently protected by a unique lock cannot be involved in a data race.

Definition. Let E(o, f) be the set of events that access fieldf on objecto. A unique-lock data
raceon the variableo. f is defined as

uniqueLockRace(o, f) ⇔ ∃ei ,ej ∈ E(o, f) : ei .t 6= ej .t ∧ (2.2)

∃ei ∈ E(o, f) : ei .a = WRITE∧
∩e∈E(o, f)e.L = /0.

This data race definition is suitable for programs that base their synchronization on locks
and monitors [63] which is common for object-oriented parallel programs.

Formula2.2 characterizes a conservative set of actual data races in a program execution:
A complete set of access events to the same variable that are not ordered through monitor-
style synchronization is identified; there could be overreporting because the events might be or-
dered through other means of synchronization. This definition is however not practical, because
several common and correct synchronization patterns violate the locking policy: initialization
without lock, shared read-only data, and read-write locks. Consequently, implementations that
check for unique lock data races extend the unique-lock data race definition and delay the check-
ing of the locking policy, until a variable is accessed by a second thread. This extension might
lead to underreporting because the thread scheduler could arrange the access events of different
threads such that the data race is hidden; the technique is however frequently applied in practice
because it has been demonstrated that the risk of underreporting is low and worthwhile in the
light of a significant reduction of spurious reports [103].

The implementation of the more practical locking policy associates alocksetandstatewith
each variable. The state specifies if the variable has been accessed by more than one thread
(shared) and whether the second thread performed a write; the lockset records the locks that
have been held during all access and is initialized as soon as a variable is accessed by more than
one thread. At every accesse, the lockset associated with variable is refined through intersection
with set of lockse.L held duringe. A report is generated if the lockset got empty, if the variable
is in the shared state, and a write has been seen since the variable has become shared.

Example. The execution scenario in Program2.2 accesses two shared variablesx andy in
different locking contexts: Access toy happens in the scope of a unique lock, hence the ac-
cess events are ordered. Access tox happens outside the scope of a lock, hencex is target
of a lock-based data race. This error would not be recognized according to definition of a

10 CHAPTER 2. BACKGROUND

Program 2.2: Execution with a data race that is reported by
a lock-based, but not by a happened-before based checker.

1 // Thread 1 // Thread 2
2
3 x++;
4 synchronized (lock) {
5 y++;
6 }
7 synchronized (lock) {
8 y++;
9 }

10 x++;

happened-before data race because the synchronization intervening the access events ofx would
be wrongly assumed to enforce ordering (in this interleaving). In the scenario of Program2.1,
the lock-based race definition would determine a data race on variabley because the access
statements are not executed under unique lock protection. The example scenarios indicate that
happened-before and lock-based data race detection have different capabilities. A detailed com-
parison is given by O’Callahan and Choi in [93].

Detection. The original implementation of a lock-based data race detection (Eraser) [103]
is based on a binary instrumentation of all memory access instructions that may target global
or heap memory; this instrumentation causes slow down by factor of 10 and 30. Subsequent
research has developed systems that exploit program analysis to reduce the amount of instru-
mentation and the runtime overhead. A significant improvement has been achieved by our early
work on object race detection [122] that used a simple escape analysis to reduce the program
instrumentation and caused a runtime overhead of 16% to 129%. A further improvement in
efficiency is achieved by Choi et. al. [25]; their system actually checks for a refined version of
unique-lock data races (common-lock data races [36]) and uses several static and dynamic tech-
niques to reduce the overhead of dynamic data race detection for typical Java programs below
50%. One importants part of the system is the static data race detection [26] that we discuss,
along with other static analyses for race detection, in Section4.7.3.

2.2.3 Object races

The data race definitions in previous sections defined the granularity of the detection as the
smallest memory-coherent unit or individual variable.Object (data) racescoarsen the granu-
larity of this view for object-oriented programs and define locations as objects. This is justified
because the fields of shared objects are typically accessed in the same locking context. The
coarsening of the memory granularity in the view of the checker enables runtime optimizations
that reduce the frequency of dynamic checks [122].

Definition. Let E(o) be the set of events that access some field on objecto. Object races are
defined as a variant of unique-lock data races:

2.2. DATA RACES 11

objectRace(o) ⇔ ∃ei ,ej ∈ E(o) : ei .t 6= ej .t ∧ (2.3)

∃ei ∈ E(o) : ei .a = WRITE∧
∩e∈E(o)e.L = /0.

Detection. We describe and evaluate the system for object race detection in detail in Section7.

2.2.4 Conclusion

The data race definitions in Formulae2.1, 2.2, and2.3 identify a conservative set of actual data
races in a program execution. The definitions are however not operational, i.e., some of the
predicates must be approximated from the observations in an execution trace. This can lead to
overreporting.

Practical mechanisms for data race detection use heuristics to assess the ordering among
accesses. The heuristics may err (even if this is uncommon) and introduce hence unsoundness:
Potential of underreporting is accepted in favor of a significant reduction of spurious reports
that would be given if a conservative approximation of access ordering was used.

Two important sources of inaccuracy of dynamic data race checkers are (1) their approxi-
mation of the temporal ordering relation (happened-before based checkers) and (2) the delayed
checking until some data is accessed by more than one thread (unique-lock and object race
checkers). Figure2.3 illustrates the detection capabilities of different techniques for dynamic
data race checking. None of the approaches covers all actual data races, and all approaches
have the potential of overreporting. The choice of data race definition and the design of the
dynamic checker should be adjusted to the synchronization mechanisms that are used in a pro-
gram. Generally, happened-before based techniques are preferable for programs with post-wait,
rendez-vous, or fork-join style synchronization; lock-based detectors are more appropriate for
programs with monitor style synchronization.

Figure 2.3: Detection capabilities of different approaches to dynamic race detection.

Static data race detection can provide a conservative approximation of feasible data races in
a program and is hence useful to narrow the scope of dynamic detection mechanisms.

The use of data races as acorrectness criterionfor programs or program executions [52, 3, 1]
is not attractive in practice due to the absence of a precise detection mechanism.

12 CHAPTER 2. BACKGROUND

Program 2.3: ClassAccount with non-atomicupdate method.
class Account {

int balance;

synchronized int read() {
return balance;

}

void update(int a) {
int tmp = read();
synchronized(this) {

balance = tmp + a;
}

}
}

2.3 Violations of atomicity

Synchronization is not only used to prevent data races at the level of individual variables but
also used to ensure non-interference for an access sequence. Access statements that ought to
execute atomically form acritical sectionthat can be understood as a ’macro-statement’ in the
view of a thread scheduler. Critical sections as a unit execute atomically but, like statements,
without order. Netzer and Miller refer to this phenomenon, which is the principal source of
non-determinism in concurrent programs, asgeneral race[92]. If critical sections are too fine-
grained, undesired interference on shared data can occur – although there is no data race.

Definition. A method isatomic if the effect of its execution is independent of the effects of
concurrent threads. In particular, shared data that is accessed by a threadt in the dynamic scope
of a methodm must not be updated by concurrent threads as long ast executesm.

Examples. Consider the example of a bank account in Program2.3: The shared variable
balance is accessed under common lock protection and hence there is no data race. The struc-
ture of locking specifies that the lock associated with theAccount instance protectseithera read
or a write of fieldbalance. Methodupdate applies this synchronization discipline, however
it performs a readanda write and hence cannot be atomic. A lost-update problem can occur if
multiple threads access anAccount instance and execute methodupdate, which is itself not a
critical section, concurrently.

Program2.4 shows the example of a data structure that has atomic methods but includes a
potential data race on variablesize. Programs2.3 and2.4 demonstrate that the properties of
race freedom and atomicity areincomparable[126].

Detection. We describe and evaluate a static technique for determining atomicity of methods
in Chapter5.

2.4. DEADLOCK 13

Program 2.4: ClassStack, which has atomic methods but allows a data race
on variabletop.
class Stack {

int top;
Object[] arr;

int size() {
return top;

}

synchronized void push(Object o) {
// assert (top < arr.length);
arr[top++] = o;

}

synchronized Object pop() {
// assert(top > 0);
return arr[--top];

}
}

2.4 Deadlock

Definition. A (resource) deadlocksituation occurs at runtime if threads use synchronization
so that a mutual wait condition arises [28]. Some deadlock definitions are more general and
consider any situation without progress, e.g., the awaiting of an external communication inter-
action, as deadlock. Our focus is on resource deadlock.

Detection. Dependencies among processes and resources can be modeled in a bipartitere-
source allocation graph[106]. Nodes correspond to processes and exclusive resources, edges
from processes to resources stand for a wait-for relation, and edges between resources and pro-
cesses represent current-use relations. The basic principle of dynamic deadlock detection is to
record and update such a graph at runtime. If the graph becomes cyclic, a deadlock is detected.
Variations of this simple algorithm have been developed for distributed systems where a unique
global view of the system in a resource allocation graph is difficult to determine and maintain
at runtime.

In Java, resource deadlock can occur through mutual dependencies among threads in the
usage of locks. Recent Java runtime environments [69] track the monitor ownership of threads
in a data structure that resembles the resource allocation graph and determine deadlock through
cycle detection.

We describe and evaluate a static technique to detect potential resource deadlock in Chap-
ter6.

2.5 Trails to correct synchronization

This section discusses different development approaches of concurrent software. First, we cat-
egorize the approaches and discuss their strategies to address the problem of synchronization

14 CHAPTER 2. BACKGROUND

defects. Second, we argue about the correctness criteria that are applicable to assess “correct
synchronization” in each approach. Third, we emphasize and discuss the approach that is pur-
sued in this dissertation.

Canonical approaches. Figure2.4 illustrates canonical approaches along their flexibility to
express synchronization patterns and their susceptibility to synchronization defects.

Figure 2.4: Canonical approaches to the development of parallel programs.

(A) In theprogrammer-centricapproach, the programmer is exposed to a variety of language
features that allow to explicitly control multi-threading and synchronization. The correct
application of these features is left to the programmer. While this approach offers the
widest flexibility in the design of concurrent systems, it has important shortcomings:
Compiler and runtime technology are mostly adopted from sequential environments such
that tools that assess concurrency and synchronization defects are not integrated in the
development process. The debugging of synchronization defects is mostly done with
conventional techniques. The programmer-centric approach is current practice for the
development of multi-threaded Java and C] applications today.

(B) Thecompiler and runtime controlledapproach offers the same flexibility for the program-
mer in the use of concurrency features as theprogrammer-centric approach. However,
the compiler and runtime system reason about the structure of parallelism and synchro-
nization, and determine potential synchronization defects.

For the example of data races, the assessment through the compiler can lead to three
situations: (1) The report of the compiler reflects an actual synchronization defect that
is corrected by the programmer. (2) The compiler issues a report that is identified as
benign by the programmer. The programmer communicates the synchronization intention
through an annotation to the compiler, which in turn relaxes its rules for checking in this
situation. (3) The compiler report is ignored by the programmer and a dynamic checker
determines the occurrence of synchronization defect at runtime.

(C) In the language-centricapproach, certain classes of synchronization defects (data races,
deadlock) are ruled out by the design of the type system. Examples are the programming
language Guava [9], and type extensions of Java like [41, 45] or [16]. These languages re-
quire that the programmer specifies the synchronization discipline explicitly through type
annotations and declaration modifiers. Some systems allow to infer a large number of an-
notations automatically (e.g., [42]), or provide appropriate defaults to match the common

2.5. TRAILS TO CORRECT SYNCHRONIZATION 15

case [16]. The language-centric approachis a promising and attractive direction to ad-
dress the problem of synchronization defects. However, these systems force the software
designer to use the synchronization models that can be type-checked, and some popular
and efficient, lock-free synchronization patterns are not accommodated.1 In addition, it is
unclear if the specific locking discipline that is imposed by the type system and requires,
e.g., lock protection for access to all potentially shared mutable data structures, is well
amenable to program optimization and high performance in concurrent software systems.
Hence it will be a while until language-centric approaches to concurrency control become
widely accepted.

(D) In the synthesizedapproach, the view of the programmer is confined to sequential pro-
gramming and parallelism is automatically synthesized through the compiler. Such auto-
parallelizing compilers employ dependence analysis, discover computations without data
interference that can be executed concurrently, and finally generate efficient parallel pro-
grams. Vectorization, e.g., has been successful along this procedure: Vectorizing com-
pilers typically focus on loops and exploit concurrent execution features of synchronous
processor architectures (SIMD). The transfer of auto-parallelization to asynchronous mul-
tiprocessors (MIMD) has however brought new challenges. Parallel execution is done
in separate threads, and current hardware and OS systems cause a critical overhead in
managing threads and shared data. The focus on loops is often not sufficient and com-
pilers are compelled to unveil new opportunities and larger scopes for parallel execution.
For object-oriented programs, dependence analysis is complicated through the use of dy-
namic data structures and the effects of aliasing. Hence speculative approaches have been
conceived that can be successful to improve the performance of programs where static
dependence analysis fails [94].

Thesynthesized approachto parallelism is conceptually appealing because synchroniza-
tion defects cannot occur by design. The challenges posed through modern processor
architectures and applications are however hard and manifold. Hence automated or spec-
ulative parallelization are often not as effective as techniques where parallelism is speci-
fied explicitly by the programmer. The scope of the dependence analysis and speculation
is usually limited to local program constructs, and hence automated parallelization is not
successful for programs where independent computational activities can be separated at
a high-level in the system design. Kennedy [47, Section 8.1.1] argues that “... it is now
widely believed that (auto-)parallelization, by itself, is not enough to solve the parallel
programming problem”.

Correct synchronization. We have presented three important classes of synchronization de-
fects (data races, violations of atomicity, and deadlock). Based on their definitions, we would
like to conclude with a notion of correctness for parallel programs that reflects the absence of
such synchronization defects.

For thesynthesizedapproach (D), the correctness criterion is to preserve the semantics of
the initial sequential program. The presence of data races or atomicity violations is an imple-
mentation aspect.

1Flanagan and Freund [41] use program annotations that allow to escape the type system in such cases.

16 CHAPTER 2. BACKGROUND

In the language-centricapproach (C), correctness criteria are explicitly stated by the pro-
grammer and verified by the type checker. Most type systems focus on specific synchronization
defects, and hence the scope of the check is limited, e.g., to the absence of data races and
deadlock.

For theprogrammer-centric(A) and thecompiler- and runtime controlled(B) approach, a
precise notion of correctness is difficult to achieve: First, there is no explicit definition of the
synchronization discipline [116] in a program, and the structure of synchronization is generally
difficult to determine from the program text. Current object-oriented programming languages
like Java and C], e.g., offer low-level features that allow for a large variety of inter-thread
synchronization mechanism; such mechanisms and their synchronization effect are not easily
recognized by a static analysis. Second, the given definitions do not allow to draw a clear line
between benign and harmful incidents: The different detection mechanisms of data races have
incomparable reporting capabilities that are neither sound nor complete. These aspects make
the three classes of synchronization defects a guideline rather than a correctness criterion.

Compiler and runtime controlled concurrency. This dissertation pursues the compiler and
runtime controlled approach to concurrency. The approach is founded on a cooperation of pro-
grammer, compiler, and runtime system; the roles and challenges of the individual participants
respectively constituents are discussed in the following:

• Theprogrammerspecifies parallelism and synchronization explicitly, and preferably fol-
lows certain synchronization patterns that are recognized by the compiler. In cases where
the compiler is unable to infer the intention of the programmer, the programmer can
provide annotations (e.g., type modifiers likefinal or volatile) to avoid unnecessary
conservatism in the downstream tool chain (compiler and runtime).

• The compileranalyzes the program and reports potential incidents for different classes
of synchronization defects. The challenges are to avoid underreporting, and at the same
time to minimize the number of false positives due to conservatism. Reports presented to
the user should be aggregated and concisely specify the class and source of the problem.

• The runtimesystem is responsible to check residual cases of potential faults that are not
resolved by the programmer. The challenge is to avoid underreporting while making the
checker efficient.

3
Static analysis

This chapter describes a general static analysis for multi-threaded object-oriented programs.
The analysis provides the platform for various algorithms that detect synchronization defects;
these algorithms are described in Chapters4 to 6.

3.1 Preliminaries

The purpose of the analysis is to determine statements that access potentially shared data. Ac-
cess is distinguished according to the target object, the accessed field, and the thread and locking
context.

Classification. The static analysis can be classified along the dimensions proposed by Ry-
der [102]:

• Flow sensitivity.The analysis isflow-insensitive, i.e., it does not account for the execution
order of individual statements inside a procedure. This model is simple and well suited
for the analysis of multi-threaded programs, where the interleaving of threads and the
execution order of statements is not known at compile-time.

• Context sensitivity.The analysis iscontext-sensitive, i.e., it distinguishes different calling
contexts. The notion of context isfunctional, i.e., the context is determined through the
state of the computation at a call site rather than the hierarchy of callers [129]; this means
that the analysis of a method is tailored to the data on which the method operates, the
thread executing the method, and the locking context.

• Program representation (i.e., calling structure).The analysis is done in several phases.
First, the calling structure of the program is approximated through a variable-type analysis
(VTA) [115]. This structure is used and refined in subsequent phases that determine an
abstract model for dynamically allocated data (heap shape graph) and perform a symbolic
program execution.

• Object representation.Object representations are created for each class in the program
and at each site that allocates an object instance. Sites are distinguished according to their
calling context.

• Field sensitivity.Fields are explicitly represented in the object reference model, hence the
analysis isfield-sensitive.

17

18 CHAPTER 3. STATIC ANALYSIS

• Reference representation.For each method and context in which a method executes,
individual reference variables are mapped to objects or groups of objects they refer to.

• Directionality. The reference analysis is unification-based, i.e., an assignmentx = y is
treated symmetrically and makes the reference sets of both variables equal [110].

Example. Program3.1shows a monitor-based Java implementation of the Dining Philosopher
problem [34]. This program is used to illustrate the static analysis.

Program 3.1: Dining Philosopher program.
class Table {

final boolean forks[];
final int numPhil;
int numSnacks;

Table(int num_phil, int num_snacks) {
numPhil = num_phil;
numSnacks = num_snacks;
forks = new boolean[num_phil];
for (int i = 0; i < num_phil; ++i)

forks[i] = true;
}

synchronized boolean getForks(int id) {
int id2 = (id + 1) % numPhil;
while(! (forks[id] && forks[id2]))

wait();
if (numSnacks > 0) {

numSnacks --;
forks[id] = forks[id2] = false;
return true;

} else {
notify();
return false;

}
}

synchronized void putForks(int id) {
int id2 = (id + 1) % numPhil;
forks[id] = forks[id2] = true;
notify();

}
}

class Philo extends Thread {
final int id;
final Table tab;
int snacksEaten;

Philo(int i, Table t) {
id = i;
tab = t;
snacksEaten = 0;

}

void run() {
while (tab.getForks(id)) {

3.2. ABSTRACT THREADS 19

long l = (int) (Math.random() * 50);
sleep(l);
snacksEaten++;
tab.putForks(id);

}
}

void report() {
System.out.println("Philo" + id + "ate" + snacksEaten + "snacks.");

}
}

class Main {
static void main(String args[]) {

int NUM_PHILS = 2;
int NUM_SNACKS = 200;
Table tab = new Table(NUM_PHILS, NUM_SNACKS);
Philo[] p = new Philo[NUM_PHILS];
for (int i=0; i < NUM_PHILS; ++i) { // start

p[i] = new Philo(i, tab);
p[i].start();

}
try {

for (int i=0; i < NUM_PHILS; ++i) { // join, report
p[i].join();
p[i].report();

}
} catch (InterruptedException e) {}

}
}

ClassTable models the shared resources that are protected through monitor-style synchroniza-
tion. ClassPhilo implements the activities of individual philosophers. ClassMain is the entry
point of the program; it instantiates the setting, forks and joins individualPhilo threads, and
finally reports the share that each philosopher obtained (field variablenumSnacks).

Outline. Subsequent sections describe the phases of the analysis in more detail:

1. The classes used in the program, the threads, and their call graphs are determined (Sec-
tion 3.2).

2. A model of the dynamic data in the program (heap shape graph), is computed (Sec-
tion 3.3).

3. A symbolic execution of threads on the abstract data domain registers access to potentially
shared objects in a context-sensitive manner (Section3.4).

3.2 Abstract threads

Threads are separate control flows in a parallel program execution. In Java programs, threads
correspond to the execution of themain method at program start and further dynamically cre-
ated control flows associated withThread objects. The static analysis usesabstract threadsto

20 CHAPTER 3. STATIC ANALYSIS

represent such potentially concurrent control flows. Three different kinds of abstract threads are
distinguished:

• The main thread represents the initial execution at program start. For Java, the entry
method of the main thread has the signaturevoid main(String[]). This abstract thread
has one instance at runtime, i.e., it isunique.

• Run threadsstand for control flows that start on objects that implement the interface
java.lang.Runnable, more precisely at the method with signaturevoid run(). Such
objects may have the typejava.lang.Thread or are associated with an object of that
type. The static analysis can determine run threads based on the allocation sites of thread
objects and possibly associated runnable objects.Run threads are characterized by the
class of the object that implements therun method.

The actual number of runtime instances of arun thread is usually difficult or impossible to
determine for a compiler. If a run thread has multiple or multiply executed allocation sites,
then multiple instances are assumed to execute concurrently, otherwise the run thread is
unique. An allocation site ismultiply executedif it is inside a loop or recursion or the
defining method is multiply executed. A method is multiply executed, if it is called inside
a loop, it has multiple call sites, one of its callers is multiply executed, or it is executed
by a non-unique thread.

• Init threadscorrespond to control flows that occur through the implicit invocation of
class initializers in Java. The invocation occurs at runtime if a class is first used (details
in [53, Section 12.4.1]). As the first use of class can often not be attributed to a particular
thread, we create a separate abstract thread for each class that has a static initializer. The
entry point of such an init thread is the class initialization method with signaturevoid

<clinit>().

The main and run threads are subsumed under the termuser threads. An abstract threadti is a
tuple〈k,m,C〉:

• i is a unique id.

• k is the kind of thread (one of{INIT ,MAIN ,RUN}).

• m is the multiplicity, i.e., a boolean value that specifies if the abstract thread isunique;
main and init threads are always unique.

• C is the set of defining classes; main and init threads have one defining class; run threads
that correspond to runnable objects for which the type cannot be uniquely determined can
have several defining classes. The entry method(s) of an abstract thread are determined
from the thread kind and the defining class(es).

Example. In the example of Program3.1, there are the following abstract threads:t1 =
〈MAIN , true,{Main}〉, t2 = 〈RUN, false,{Philo}〉, t3 = 〈INIT , true,{System}〉, and further
init threads corresponding to library classes that are omitted for brevity.

3.3. REFERENCE ANALYSIS 21

3.3 Reference analysis

The heap shape graph (HSG) represents a flow-insensitive model of global data and their ref-
erence relations, approximating object connectivity at all program points. Flow-insensitivity
makes the HSG suitable for the analysis of multi-threaded programs because the model is
independent of the flow and progress of individual threads, which is generally not known at
compile-time.

3.3.1 Definition

The HSG is a directed labeled graph. Each node represents a class, an individual instance, or
sets of instances. Edges correspond to field reference relations. Representatives are initially
created for all classes and augmented during the analysis at instance allocation sites in different
contexts.

The runtime values of reference variables are approximated throughalias sets, i.e., sets
of object representatives that are combined along the course of the unification-based analysis
(described in Section3.3.2). After the static analysis, alias sets express may-alias information:
if two variable may refer to the same instance at runtime, both variables refer to the same alias
set.

We refer to the set of runtime objects that are subsumed under an alias set asabstract object.
An abstract object oi is a tuple〈 f , p, t〉:

• i is a unique identifier; the identifier is only used to refer to abstract objects in this pre-
sentation; it has no meaning in the algorithms we describe.

• f is a map from fields to abstract objects that are directly reachable through those fields.

• p is a mask that denotes properties of the abstract object. Possible properties are

class(C) Expresses that this abstract object stands for a class.

global (G) Means the abstract object is reachable (through chains of field deref-
erences) from an abstract object that stands for a class or thread root.
Abstract objects that are global are candidates for concurrent access.

thread(R) Means that the abstract object has an associated abstract thread; such
objects constitute the initial context for the thread entry method (e.g.,
the object reachable through thethis-reference of arun method).

shared(S) The abstract object is potentially accessed by multiple runtime
threads.

escape(E) The abstract object may be accessible outside its allocating scope.

object-specific(O) The abstract object is created and accessed only in the scope of an-
other object called thehostingobject.

thread-specific(T) The abstract object is affiliated with a thread instance and only ac-
cessed during the construction of the thread or by the thread itself.

unique(U) The abstract object corresponds to a single runtime entity (class or
instance).

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

22 CHAPTER 3. STATIC ANALYSIS

• t is a mask denoting the abstract threads that create or access the abstract object.

The HSG is computed in several steps that are discussed in the following sections. Section3.3.2
describes the inter- and intra-procedural steps that set up the fundamental structure of the graph.
Several associated analyses (Sections3.3.4to 3.4.3) extend this information and compute prop-
erties of individual abstract objects.

Example. Figure3.1shows the HSG for Program3.1. The nodes are annotated with a unique
identifier (i), the properties (p), and a class name. The class name is for illustration purpose and
corresponds to the represented class (if the node stands for a class), or the class from which an
abstract object is instantiated (if the node stands for an instance; in this simple example, one
class can be specified for each instance). Array types are specified by an opening square bracket
[, followed by the element type (which may be a primitive type). Edges are annotated by the
field they model. Nodes 1 to 5 represent classes (C). All nodes in the HSG have the global (G)
property by definition (Section3.3.1).

Figure 3.1: HSG of the Dining Philosopher program.

The graph is simplified for the purpose of illustration: Several nodes that are only allocated
and accessed by init threads are not displayed; e.g., thejava.io.PrintStream object reach-
able through the fieldjava.lang.System::err is not accessed by user threads and hence
omitted.

3.3.2 Algorithm

The HSG is computed according to Ruf’s unification-based analysis [100]. This analysis is
compositionalbecause every method is analyzed independently andmethod summariesare used
to transfer the effects of the method to individual call sites. A method summary is generic with
respect to the caller context (parameters, return value, and thrown exception).

Alias sets are represented by a union-find data structure. Theunify() operation merges two
alias sets and combines their field maps. Alias sets that are reachable through common fields
are unified recursively. In addition, the properties are merged such that the resulting alias set
has a property if at least one of the original alias sets has the property (logical OR; not so for

Hugo
Highlight

Hugo
Highlight

3.3. REFERENCE ANALYSIS 23

unify(as1,as2)

/∗ check if union is necessary∗/
as1 = find(as1);
as2 = find(as2);
if (as1 = as2)

return; // nothing to do

/∗ perform union∗/
rep= union(as1,as2);

/∗ set properties of the representative∗/
rep.p = as1.p | as2.p;

/∗ recursive unification of the fields∗/
∀ field . (field, fas1) ∈ as1. f ∧ (field, fas2) ∈ as2. f :

frep= union(fas1, fas2);
rep. f .add(field, frep);

Figure 3.2: Methodunify for the recursive unification of alias setsas1 andas2. We assume that
alias sets are based on a union-find data structure that implements the methodsunion(u1,u2)
that mergesu1,u2 and returns the common representative, andfind(u) to determine the repre-
sentative ofu.

.

the propertiesthread-specificandobject-specificbut these properties are set after the HSG is
complete). Figure3.2 defines the recursive unification of alias sets. Note that the defintion of
unifydoes not describe the treatment of the unique identifieri; we use the identifier only to refer
to abstract objects in this presentation.

An intra-procedural analysis associates reference variables with alias sets and unifies alias
sets in a stepwise process along the statement sequence of a method. The inter-procedural
analysis handles the effects of method invocation.

Inter-procedural analysis

First, alias sets for classes and abstract threads are created. These alias sets are the roots of the
HSG. Further alias sets are connected to these roots as a result of a sequence of intra-procedural
steps. Nodes that are transitively reachable through these root nodes are classified asglobal.

The inter-procedural analysis processes each abstract thread individually and analyses the
methods in the call graph of each thread in the reverse order of their invocation (bottom up
traversal of the strongly connected components (SCCs)). The analysis computes one summary
per method.

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

24 CHAPTER 3. STATIC ANALYSIS

Intra-procedural analysis

Given a method, the goal of the intra-procedural analysis is to establish amethod summarythat
models the effects of the method execution independent of the calling context. A method sum-
mary captures aliasing that is created through method execution, including data that is shared
between the caller and the callee (i.e., parameters, return value, and thrown exceptions). In ad-
dition, the method summary records object allocations, read and write access. The summary of
a methodm is defined as a tuple of alias setsMS[m] = 〈〈 f0, . . . , fn〉,〈l0, . . . , lm〉, r,e,A,R,W,E〉:

• f0, . . . , fn are alias sets of formal parameters that hold reference values.

• l0, . . . , lm are alias sets of local variables that hold reference values.

• r is the alias set of the return value if methodm returns a reference value.

• e is the alias set of the exception value if methodm throws or conveys exceptions [53]; if
different exceptions are thrown by a method, they are combined to the same alias set in
the summary.

• A is the set of alias sets of objects that are allocated in the scope ofm.

• R is the set of alias sets of objects that are read in the scope ofm.

• W is the set of alias sets of objects that are written in the scope ofm.

• E is the set of alias sets of objects that escape from the scope of methodm.

The computation of the method summaries starts with the creation of alias sets for all formal
reference parametersf0, . . . , fn and local variables. Formal parameters are not aliased at this
point, and caller-side aliasing is taken into account when a method summary is instantiated at
a call site. The method summary is gradually built along a flow-insensitive traversal of the
method’s statements. We assume that the method is given in Singele Static Assignment form
(SSA), i.e.,φ-functions are used to select values at control-flow join points. Figure3.3 lists the
analysis rules; only statements that access objects or handle references need to be considered.

Assignment combines alias sets; field and array access creates field-reference relations (all
slots of an array are represented by the same conceptual field ’$’).

At a call site, polymorphism is resolved through type information computed by the variable-
type analysis (VTA, [115]) and each target method is treated separately. There are two cases:

1. Non-recursive target.

If a method summary for the callee has not yet been computed, then the analysis de-
scends eagerly to compute it (see inter-procedural analysis). FunctionMC (Figure3.3)
creates amethod contextfrom the existingmethod summary. Thereby, the alias sets of
the method summary are cloned and associated with the method context; global alias sets
are retained. The resulting method context is embedded into the method summary of the
caller by unifying the alias sets of formal and actual parameters, return value, and thrown
exceptions. The creation of a method context avoids the infiltration of call site specific
effects into the method summary and hence enables context sensitivity of the analysis.

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

3.3. REFERENCE ANALYSIS 25

Variables and domains Analysis state
m∈M methods CAS: C → O alias set lookup for classes
c∈ C classes AS: V → O alias set lookup for local vars
f ∈ F fields MC : M → B method context creation
v∈ V local variables HA :→ 2O alias sets for exception variables
o,e, r,h∈ O alias set in matching handlers of the
b∈ B method context currently analyzed method

Statement Action
v0 = v1 unify(AS(v0),AS(v1));
v = φ(v0, . . . ,vn) ∀i ∈ {0, . . . ,n} : unify(AS(v),AS(vi));

v = c. f unify(AS(v),CAS(c).f [f]);
c. f = v unify(AS(v),CAS(c).f [f]);

v0 = v1. f unify(AS(v0),AS(v1).f [f]);
v1. f = v0 unify(AS(v0),AS(v1).f [f]);

v = m(v0, . . . ,vn) let MC(m) = 〈〈 f ′0, . . . , f ′n〉,〈l ′0, . . . , l ′m〉, r ′,e′,A′,R′,W′,E′〉:
∀i ∈ {0, . . . ,n} : unify(AS(vi),AS(f ′i));
unify(AS(v),AS(r ′));
∀hi ∈ HA() : unify(hi ,AS(e′));

v = new c create new entry for allocation inAS(v);
return v unify(r,AS(v));
throw v ∀hi ∈ HA() : unify(hi ,AS(v));

unify(e,AS(v));
catch v unify(e,AS(v));

Figure 3.3: Transfer rules for creating method summaries.

2. Recursive target. In the recursive case, the method summary of the target method is
about to be computed. In this case, functionMC does not clone alias sets but returns the
(yet) incomplete method summary itself which is consequently embedded into the callee
(see non-recursive case). This procedure leads to a loss of context sensitivity inside a
recursion. Alternatively the method summary could be copied like in the non-recursive
case, and the inter-procedural analysis would iterate over all members of an SCC in the
call graph until a fixed point is reached. A more detailed discussion is given in [100].
The latter procedure can be more precise, but also increases the cost of the analysis. We
choose the first implementation alternative because it simplifies the handling of recursion
also in downstream analyses (Section3.4).

The flow of references to exception objects is considered atthrow andcatch statements that
unify the alias set of the handled referenceAS(v) with the exceptioneof the current method. At
method invocation sites, possible exceptionse′ thrown by the callee are matched with exceptions
eof the caller.

26 CHAPTER 3. STATIC ANALYSIS

Program 3.2: Detailedmain method of the Dining Philosopher program.
1 static void main(String args[]) { // f0
2 int NUM_PHILS = 2;
3 int NUM_SNACKS = 200;
4 Table tab; // l0
5 Philo[] p; // l1
6 int i;
7 Philo tmp; // l2
8
9 tab = new Table(NUM_PHILS, NUM_SNACKS);

10 p = new Philo[NUM_PHILS];
11
12 for (i=0; i < NUM_PHILS; ++i) {
13 tmp = new Philo(i, tab);
14 p[i] = tmp;
15 tmp.start();
16 }
17 try {
18 for (i=0; i < NUM_PHILS; ++i) {
19 tmp = p[i];
20 tmp.join();
21 tmp.report();
22 }
23 } catch (InterruptedException e) {} // l3
24 }

Example. Program3.2 illustrates the formal parameters and local variables that hold refer-
ence values in methodMain::main. Figure3.4 shows the corresponding method shape graph
with abstract objects that are reachable through formal parameters and local variables. The
method summary is ofmain is 〈〈 f0〉,〈l0, l1, l2, l3〉, r,e,A,R,W,E〉 with formal parameter〈100〉,
local variables〈8,101,7,102〉, no return value, and no checked exception. The ids of abstract
objects that are global (id< 100) correspond to those in the global HSG in Figure3.1; the ids of
abstract objects that are local to the execution scope of the method or vary with the caller context
have id≥ 100. The computation of the setsA, R, W, andE is discussed in the corresponding
example in Sections3.3.3and3.3.5.

Figure 3.4: Method summary forMain:main in the Dining Philosopher program.

Hugo
Highlight

Hugo
Highlight
why global, they are defined locally

Hugo
Highlight

3.3. REFERENCE ANALYSIS 27

3.3.3 Read, write, and allocation analysis

The purpose of the read, write, and allocation analysis is to record abstract objects that are read,
written, or allocated in the dynamic scope of a method. This information is collected along
the intra-procedural analysis and stored in the method summary. Figure3.5 specifies the rules
that updates read, write and allocation sets along the analysis. The integration of read, write
and allocation information into the method summaries allows to approximate the effects of a
method at a call site during the symbolic execution (Section3.4).

Variables and domains Analysis state
m∈M methods CAS: C → O alias set lookup for classes
c∈ C classes AS: V → O alias set lookup for local vars
f ∈ F fields MC : M → B method context creation
v∈ V local variables
o∈ O alias sets
b∈ B method context

Statement Action
v = c. f R= R∪{CAS(c)};
c. f = v W = W∪{CAS(c)};

v0 = v1. f R= R∪{AS(v1)};
v1. f = v0 W = W∪{AS(v1)};

v = m(v0, . . . ,vn) let MC(m) = 〈〈 f0, . . . , fn〉,〈l0, . . . , lm〉, r,e,A′,R′,W′,E′〉:
R= R∪R′;
W = W∪W′;
A = A∪A′;

v = new c A= A∪{AS(v)};

Figure 3.5: Transfer rules for the read, write and allocation analysis.R, W, andA refer to the
read, write, and allocation sets of the method being analyzed.

Example. For methodmain (Program3.2 and Figure3.4), the following sets are com-
puted: allocation setA = {o7,o8,o9,o10,o101,o102}, read setR = {o7,o101}, and write set
W = {o7,o8,o10,o101,o102}. The sets contain abstract objects that are allocated/read/writ-
ten in main itself or its callees. E.g., anjava.lang.InterruptedException (o102) may
be allocated and thrown by methodjava.lang.Thread::join, called in line 20 of Pro-
gram3.2. ThePhilo instance (o7), more precisely the fieldpriority it inherits from class
java.lang.Thread, is read in methodjava.lang.Thread::start, which is called in line
15; henceo7 ∈ R. Both methods,start andjoin, are not shown in Program3.2 but are are
part of the standard library. the read, write, allocate behavior of native methods is modeled
explicitly. Read and writes of final variables do not account.

Hugo
Highlight

Hugo
Highlight

28 CHAPTER 3. STATIC ANALYSIS

3.3.4 Shared analysis

The inter-procedural analysis processes each abstract thread separately and establishes method
contexts along the call graph of each thread. Whenever a method context is created, the abstract
thread is noted in the mask of all abstract objects that are read, written and allocated (Sec-
tion 3.3.3). This information is accumulated along the unification of alias sets such that finally
all global abstract objects have the complete set of accessing threads denoted in their abstract
thread maskt.

The complete HSG contains only nodes that areglobal, reflecting a conservative set of ob-
jects that are subject to shared access. The thread access information associated with abstract
objects can be used to narrow the set of potentially shared objects to those that indicate ac-
cess from a non-unique thread or multiple user threads; such abstract objects are marked with
propertyshared. The subtle consequences of omitting init threads from the consideration are
discussed in Section3.6.1. Subsequent synchronization analyses can focus on shared abstract
objects.

Example. Some abstract objects in the HSG in Figure3.1 are marked as shared: e.g., the
Philo object (o7), theTable object (o8), and its associated array (o10) are shared due to access
from the non-uniquePhilo and themain thread. The uniquemain thread is the only accessor of
theSystem class (o4) and its associatedjava.io.PrintStream object (o11), and hence these
abstract objects are not shared.

3.3.5 Escape analysis

A reference is said toescapefrom a methodm if the method stores the reference to a variable
such that the reference is available beyond the execution ofm. We use a simple escape analysis
that determines if local reference variables contain values that escape.

Escape information is determined separately for each method after the computation of the
method summary. At this moment, escape information is available for all callees. The analysis
is flow-insensitive and repeatedly iterates over the statements of a method and applies the trans-
fer rules in Figure3.6 until a fixed point is reached. There is a boolean flagescapefor each
local reference variable that records if the the value is made available in a variable that outlives
the incarnation of the method. Initially, allescapeflags are set tofalse. Finally, the escape
information of local variables is transferred and denoted as a property of the corresponding
alias sets, i.e.,E = {AS(v) : v.escape= true}. Now, the setE of escaping abstract objects is
initialized in the method summary.

Example. Several abstract objects in the method summary (Figure3.4) of main are escaping:
The Philo object escapes because it implements thejava.lang.Runnable interface and is
associated with a user thread; a reference to this object is naturally available in the context of
the thread it implements, which is different from its allocating thread. Subsequently, all objects
that are transitively reachable through thePhilo instance escape; the escape set ofmain’s
method summary isE = {o7,o8,o9,o10}. Thejava.lang.String array passed as parameter
(o100) and the array holding references to the thread objects (o101) do not escape.

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

3.3. REFERENCE ANALYSIS 29

Variables and domains Analysis state
m∈M methods ESC: O → bool escape flag for abstract objects
v∈ V local variables ARG: V → bool true, ifv is formal parameter
o∈ O alias sets MS: M → S method summary lookup
s∈ S method summary

Statement Action
v0 = v1 v0.escape≡ v1.escape;
v = φ(v0, . . . ,vn) ∀i ∈ {0, . . . ,n} : v.escape≡ vi .escape

v = c. f v.escape= true;
c. f = v

v0 = v1. f v0.escape= v0.escape∨v1.escape∨ARG(v1);
v1. f = v0

v = m(v0, . . . ,vn) let MS(m) = 〈〈 f0, . . . , fn〉,〈l0, . . . , lm〉, r,e,A′,R′,W′,E′〉:
∀i ∈ {0, . . . ,n} : vi .escape= vi .escape∨ESC(fi)
v.escape= true;

v = new c if (c is ajava.lang.Runnable)
v.escape= true;

return v v.escape= true;
throw v v.escape= true;

Figure 3.6: Transfer rules for the escape analysis. The equivalence-operator≡ is bidirectional
and transfers the escape property of any of its arguments to both arguments.

3.3.6 Object-specific analysis

A frequent pattern in object-oriented programs is to implement one object through other sub-
ordinate objects that are created, managed, and accessed only in the scope of the encapsulating
object. We say that the subordinate objects areobject-specificto the encapsulating object. This
notion of confinement allows the compiler to determine lock-protection in the static data race-
detection (Section4.4).

The goal of the object-specific analysis is to identify abstract objects that areobject-specific
and to relate them to their encapsulating abstract object. The analysis proceeds as follows: First,
the usage of references inside procedures is inspected and those reference variables respective
alias sets that are used such that their value is not confined to an encapsulating instance are
marked asobject-escaping(oescape). This information is propagated along the creation of the
HSG. Finally, all abstract objects that are not object-escaping do never occur in contexts that
violate the assumptions of confinement and hence are object-specific.

The intuitive idea behind the conservative approximation of the object-specific property is
as follows: Instances with the property that references only appear in local variables or are
assigned/read from fields that are accessed through thethis-reference are object-specific. The
transfer rules in Figure3.7reflect this idea; two additional benign situations are accommodated:

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

30 CHAPTER 3. STATIC ANALYSIS

References that are passed into methods that do not escape the value can be object-specific.
References read and written to object-specific objects can be object-specific.

Similar to the escape analysis, the object-escape property of alias sets is computed imme-
diately after a method summary is created along a flow-insensitive traversal of the statements.
The transfer rules in Figure3.7 are applied until a fixed point is reached. It is assumed that
escape information has been already computed at this moment. Initially, all non-this formal
parameters of the analyzed method are marked asoescape.

Variables and domains Analysis state
m∈M methods ESC: O → bool escape flag for abstract objects
v∈ V local variables AS: V → O alias set lookup for local vars
o∈ O alias sets MS: M → S method summary lookup
s∈ S method summary

Statement Action
v0 = v1 v0.oescape≡ v1.oescape;
v = φ(v0, . . . ,vn) ∀i ∈ {0, . . . ,n} : v.oescape≡ vi .oescape;

v = c. f v.oescape= true;
c. f = v

v0 = v1. f if (v1 6= this)
v0.oescape= v0.oescape∨v1.oescape;

v1. f = v0 if (v1 6= this ∧ AS(v0) 6= AS(v1))
v0.oescape= true;

v = m(v0, . . . ,vn) let MS(m) = 〈〈 f0, . . . , fn〉,〈l0, . . . , lm〉, r,e,A′,R′,W′,E′〉:
∀i ∈ {0, . . . ,n} : vi .oescape= vi .oescape∨ESC(fi);
v.oescape= true;

return v v.oescape= true;
throw v v.oescape= true;

Figure 3.7: Transfer rules for the object-specific analysis. The equivalence-operator≡ is bidi-
rectional and transfers theoescapeproperty of any of its arguments to both arguments.

After a fixed point is reached, the object-escape information is transferred from the local
variables and denoted as a property of the corresponding alias sets, which is conveyed by the
unification algorithm. Finally, after all abstract threads are processed and the structure of the
HSG is complete, the analysis marks those global abstract objects asobject-specificthat are not
object-escaping. Following the incoming field edges backward in the HSG unveils the hosting
abstract object (there must be exactly one).

Example. The HSG in Figure3.1 specifies that the boolean array (o10) is object-specific to
theTable instance (o8). The methods of classTable handle the reference to this array object
such it is not leaked from the scope of the hosting object.

3.4. SYMBOLIC EXECUTION 31

3.4 Symbolic execution

The symbolic execution simulates the execution of a parallel program on the abstract domains
of threads (Section3.2) and global data (Section3.3). At this point, the sole purpose of the
simulation is to enumerate a conservative set of (abstract) access events to shared data. We do
not discuss how the computed information is used for the detection of synchronization conflicts
in this section but focus on the discussion of the general algorithm that computes these abstract
events. Chapters4 to 6 adopt this algorithm and elaborate on different uses of the generated
information for the purpose of detecting different kinds of synchronization defects.

An access event is a tuple〈s,o, f , t,L〉:

• s is the statement performing the access.

• o is the accessed abstract object.

• f is the accessed field.

• t is the accessing abstract thread.

• l is the set of abstract objects that are locked at the time of the access.

In a first approximation, the analysis is flow-insensitive and hence does not relate access events
according to their control flow and synchronization dependences. This simplification will be
offset by the data structure of OUGs described in Section4.1.

3.4.1 Algorithm

The symbolic execution processes each abstract thread separately. The analysis starts at the
entry methods of a thread, creates an initial method context, and applies the transfer rules in
Figure3.8along the statement sequence.

At a call site, the method summary of the callee is determined, cloned, and embedded into
the calling context: operationembedunifies actual parameters, return value and exception with
the context of the callee (Section3.3.2, Figure3.3). The operationprocessguides the analysis
straight into the callee (later, in Section3.4.2, we show two optimizations that refine this be-
havior and improve the efficiency of the symbolic execution). At polymorphic call sites, each
alternative is processed separately. The rule for method invocation in Figure3.8only specifies
the analysis of instance methods; class methods are handled correspondingly. At this point of
the analysis, context-sensitive type information associated with alias sets can be exploited to
bound polymorphism. It is not necessary to follow recursive method invocations (i.e., call sites
that are already being analyzed), because the contexts inside the recursion have been encoun-
tered earlier (see loss of context sensitivity in Section3.3.2) and hence the access events that
would be created by descending into the recursion would not add any new information.

The rules for field access specify the invocation of operationregisterEvent() that basically
records an access event. As mentioned earlier, this section does not elaborate on the use of the
recorded information.

Hugo
Highlight

32 CHAPTER 3. STATIC ANALYSIS

The traversal of methods with block monitors is handled specially and follows the basic
block structure such that the locking context is determined correctly. At the beginning of a pro-
tected code block, the rule formonitorenter is triggered, at the end the rule formonitorexit.1

The structure of locking in Java allows the symbolic execution to track abstract objects that are
locked along the execution path in a stack. The operationsacquireLock() and releaseLock()
maintain this stack; the operationset(L) returns the set of abstract objects on the lock stackL.

Variables and domains Analysis state
m∈M methods CAS: C → O alias set lookup for classes
v∈ V local variables AS: V → O alias set lookup for local vars
o∈ O alias sets MC : M → B method context creation
b∈ B method context
c∈ C classes
f ∈ F fields
t ∈ T abstract threads
s∈ S statements

Statement Action
v = c. f if (CAS(c).p is shared)
c. f = v registerEvent(〈s,CAS(c), f , t,set(L)〉);

v0 = v1. f if (AS(v0).p is shared)
v1. f = v0 registerEvent(〈s,AS(c), f , t,set(L)〉);

v = m(v0, . . . ,vn) if (m is synchronized)
acquireLock(AS(v0));

b = embed(MC(m));
process(b);
if (m is synchronized)

releaseLock(AS(v0));

monitorenter v acquireLock(AS(v));
monitorexit v releaseLock(AS(v));

Figure 3.8: Transfer rules for the symbolic execution.t is the current abstract thread,s is the
current statement,L is the stack of currently locked objects.

So far, we have discussed the analysis from the perspective of the control flow, i.e., as
a traversal of the call structure and individual statements. Note however that the symbolic
execution does not only track the control flow but also the data environment provided by the
method contexts. Hence in an object-oriented program, the symbolic execution maps nicely
onto a traversal of the HSG determined in the previous analysis phase (Section3.3.2): The
current position of the traversal reflects the currently accessed abstract object.

1At the bytecode level, the actual situation is different: due to exception handling, there can be several
monitorexits permonitorenter.

3.4. SYMBOLIC EXECUTION 33

Example. Figure3.9 illustrates the first steps of the symbolic execution of thePhilo thread.

Figure 3.9: Fragment of the HSG with prefix of heap traversal.

1. The symbolic execution starts at thePhilo::run method. The initial method context is
given by the thread root object (o7), the set of locks is initially empty. Two read events of
the final fieldsid andtab are registered.

2. The execution branches into methodTable::getForks. The target object (o8) is added
to the set of current locks because the method is synchronized. A series of access events
to the fieldsforks, numPhil andnumSnacks are registered. The processing of meth-
odsjava.lang.Object::wait andjava.lang.Object::notify does not create any
relevant access event and hence they are not considered in this description.

3. Read and write access to the boolean array that is associated with theTable instance.

4. After the return of methodTable::getForks (and the release of locko8), branch into
methodjava.lang.Math::random. The method is synchronized, hence the target class
(o1) is added to the set of current locks.

5. Creation and initialization of an instance of typejava.util.Random (o6). The call to
methodjava.util.Random::nextDouble and subsequent access to private synchro-
nized methods on that object lead to a series of field access events.

step 1 2 3 4 5
set of current locks /0 {o8} {o8} {o1} {o1,o6}

Table 3.1: Locks held at the initial steps of the symbolic execution.

Table3.1shows the set of current locks held at each step of the heap traversal in Figure3.8.

34 CHAPTER 3. STATIC ANALYSIS

3.4.2 Optimizations

The symbolic execution can be the most expensive phase of the analysis because it considers
all possible flows through the call structure of a program. Conceptually, all non-recursive call
sites are followed in a straightforward manner. This naı̈ve procedure is impractical for larger
benchmark programs. Hence, we have developed two optimizations that reduce the number of
descents into calls.

Call clipping

The first optimization avoids descents into methods that do not affect the state of shared
data. At a call site of methodm, the analysis determines from the method contextMC(m) =
〈〈 f0, . . . , fn〉,〈l0, . . . , lm〉, r,e,A,R,W,E〉 if shared data is allocated, read or written, i.e., there are
abstract objects that have the propertysharedin one of the setsA, R, andW.

Call caching

The second optimization avoids repeated descents into calls with equivalent method, thread,
and locking contexts. These three aspects of context in the symbolic execution are encoded in
asite context〈m,〈a0, . . . ,an〉, t,L〉:

• m is the callee.

• a0, . . . ,an are the abstract objects that are passed as actual parameters.

• t is the current abstract thread.

• L is the stack of currently locked abstract objects.

The symbolic execution memorizes all processed call sites it encounters in terms of site
contexts. At a call site, actual parameters, abstract thread and set of current locks are matched
with site contexts of earlier invocations ofm. In the matching, global alias sets are identified
with their unique identifier, other alias sets can be determined asfully local if only local alias
sets are reachable through their fields. A match means that the methodm, the abstract thread,
all locked abstract objects and all alias sets that are not fully local are equal; in that case,
the symbolic execution does not descend into the call (operationprocessin Figure3.8). This
mechanism resembles call caching in functional languages [59], although our mechanism for
matching is simpler.

3.4.3 Thread-specific analysis

Abstract objects arethread-specificif they are accessed only during the creation of the thread,
and consequently by the thread itself. This is an extended notion of objects that are object-
specific to thread objects. Thread-specific objects are common in Java and provide – besides
the determination ofglobal andsharedobjects – further opportunities to narrow the scope of
search for synchronization defects.

3.4. SYMBOLIC EXECUTION 35

We present two algorithms that determine thread-specificness. Both algorithms are com-
plementary and may conservatively classify different sets of abstract objects as thread-specific.
The thread-specific analysis executes both algorithms and combines their results.

Access-based algorithm

Choi et. al. [25] propose an approximation algorithm for determining thread-specific objects;
the algorithm determines thread-specificness based on the access statements and their execution
contexts. Two concepts are necessary to determine if an object is accessed only during the
construction of a thread and consequently by the thread itself:

• Safe thread. A user thread is safe if its reference does not escape from the constructor and
the thread is started only after the constructor completed.

• Safe method. (1) The constructor methods of a thread object and therun method (if only
invoked implicitly by java.lang.Thread::start) are safe. (2) All methods that are
only called by safe methods through thethis-reference are safe.

• Safe fields. A field is safe, if it belongs to a thread object and is accessed only inside safe
methods and through thethis-reference.

The access-based thread-specific analysis is done in three steps: First, safe methods and
threads are identified. Second, candidate objects are identified that are only reachable (in the
HSG) through safe fields of a safe thread object. The third step checks if the allocation and
member access through non-this-references (determined by the symbolic execution) to candi-
date objects occur inside safe methods. At this point, thread-specific objects that are immedi-
ately reachable through the field of a thread are determined.

A simple extension is to determine objects that are object-specific to thread-specific ob-
jects also as thread-specific. This step is based on the results of theobject-specific analysis
(Section3.3.6).

Example. There is one safe thread in the example Program3.1: the Philo thread. Candi-
date for safe fields arePhilo::tab andjava.lang.Thread::name. Thejava.lang.String
object that is reachable through the latter field is indeed thread-specific because it is – in the
example program – only accessed by safe methods, i.e., injava.lang.Thread::<init>.
The situation is different for theTable object (o8); this object is created and initialized in
theMain::main method which is not safe, and hence the abstract object is not thread-specific
either.

Confinement-based algorithm

An alternative algorithm to assess thread-specificness is to determine if references are confined
to a specific thread instance. Two concepts are necessary to determine confinement with respect
to a thread instance:

• Confining thread. An abstract threadti is confining if its root object is only accessed by
its creator thread and by the thread instance itself.

36 CHAPTER 3. STATIC ANALYSIS

• Thread-confined object. Abstract objects that are created and accessed only by a confining
thread and that are reachable in the HSG only from a confining thread root or other thread-
confined objects are themselves thread-confined.

We assume in the following that the creating and the created thread can be distinguished at
the abstract level, i.e., they are represented by different abstract threads. This property can be
checked during the computation of abstract threads (Section3.2); if the property is not met for
some abstract threadt, thent cannot be confining.

Confining threads are determined according to the reachability of their thread root object
in the HSG: First, the root object of threadti must not be reachable from abstract objects with
creator/access thread-mask different fromi. This guarantees that the reference to the thread-root
is not leaked(i.e., written to a shared variable) by the creating threadt j , j 6= i. This property is
checked by inspection of the HSG. Secondly, it must be ensured that a thread instance does not
leak a reference to itself: An abstract threadti must not write itsthis-reference to the field of
a ’traitor object’ which is accessible from the creating threadt j and made available to different
runtime instances ofti . This property is checked during the symbolic execution.

The analysis provides two results if confinement with respect to a threadti can be deter-
mined: (1) The thread root object ofti is accessed only by the allocating thread and a single
thread instance ofti . (2) Objects that are confined toti cannot have access conflicts even ifti is
not unique.

3.4.4 Uniqueness analysis

An abstract object isuniqueif the static analysis can determine that it corresponds to a single
runtime instance. Uniqueness is an important characteristic, e.g., for run threads and abstract
objects that are used as locks (Section4.4).

Section3.2describes how the notion of ’one-time execution’ can be approximated for indi-
vidual statements and in particular for allocation sites of run threads (i.e., unique run threads).
This procedure is conservative and does not distinguish between different contexts in which an
allocation site may execute.

The symbolic execution allows to do a more precise, context-sensitive computation of
uniqueness for abstract objects. At every statement, the symbolic execution has the following
information available: the current abstract thread, the caller hierarchy above the current method,
the current statement and whether it executes in a loop. The transfer rules in Figure3.10use
this information to count the number of allocationsnallocof global abstract objects.

At allocation sites,nalloc is incremented in the alias set that corresponds to the allocated
objects. The increment accounts for the uniqueness of the allocating thread and whether the
allocation or one of the call sites on the stack of the symbolic execution is in a loop or recursion.
In situations where calls are not followed due to the reuse of a method context (Section3.4.2),
the counters of those abstract objects that the reused method context specifies in its allocation
setA are adjusted explicitly.

3.4. SYMBOLIC EXECUTION 37

Variables and domains Analysis state
m∈M methods CAS: C → O alias set lookup for classes
c∈ C classes AS: V → O alias set lookup for local vars
v∈ V local variables
o∈ O alias sets
b∈ B method context

Statement Action
v = new c if (t is notunique∨ s is in a loop or recursion∨

some site on the call stack is in a loop or recursion)
AS(v).nalloc+ = 2;

else

AS(v).nalloc+ = 1;

Figure 3.10: Transfer rules for the uniqueness analysis.t is the current abstract thread,s is the
current statement.

Program 3.3: Lazy initialization of fieldrandom in classjava.lang.Math
static Random random_;

static synchronized double random () {
if (random_ == null)

random_ = new Random ();
return random_.nextDouble ();

}

The uniqueness analysis is intertwined with the symbolic execution. After the symbolic
execution, all global abstract objects that have an allocation counternalloc≤ 1 are marked as
unique.2

Example. There are several unique abstract objects in the HSG of the Dining Philosopher
program (Figure3.1 and Program3.1). The allocations of thejava.io.PrintStream in-
stance (o11) and the character array (o14) are executed once in the scope of a class initializer.
Similarly the instance of classTable (o8) that is allocated in themain method. Some ob-
jects that are actually unique are not recognized by our conservative algorithm: The allocation
of the java.util.Random object (o6) is done lazily in methodjava.lang.Math::random
(Program3.3). At runtime, only a single instance is created and associated with class
java.lang.Math. The static analysis determines that the call tojava.lang.Math::random

is inside a loop and issued by a non-unique abstract thread; hence multiple executions of the
method and multiple allocations of thejava.util.Random object are assumed.

2Abstract objects that represent classes,java.lang.String constants, ornull havenalloc= 0.

38 CHAPTER 3. STATIC ANALYSIS

3.5 Experience

We first introduce the infrastructure (Section3.5.1) and the benchmarks (Section3.5.2) that are
used for the evaluation in this and subsequent chapters. Afterwards, we report on our experience
with the HSG (Section3.5.3) and the symbolic execution (Section3.5.4).

3.5.1 Infrastructure and runtime system

Our runtime system is based on GNU libgcj [49] (version 2.96). The numbers we present in the
static and dynamic assessment refer to the overall program including library classes. The effect
of native code on aliasing, object creation, and object access is modeled explicitly. We use a
Pentium IV 1.4 GHz multiprocessor system for the compilation and a Pentium III 930 MHz
uniprocessor for the execution of the compiled programs.

3.5.2 Benchmarks

• philo is a simple, monitor-based implementation of the Dining Philosopher problem (see
Section3.1). The used configuration executes five philosopher threads.

• elevator is a real-time discrete event simulator that is used as an example in a course on
concurrent programming. Elevators are implemented as threads that poll directives from a
central control board. Communication through the control board is synchronized through
locks. The configuration we use simulates four elevators.

• mtrt is a multi-threaded raytracer from the JVM98 benchmark suite [108] configured with
two threads. The source code is slightly modified to remove the compile-time dependence
with the Java-awt-library (not supported by GNU libgcj [49]).

• sor (Successive Over-Relaxation over a 2D grid), andtsp (Traveling Salesman Problem)
are data- and task-parallel applications with data access patterns of scientific codes. Syn-
chronization among threads is based on fork-join rather than locks. The used configura-
tion operates with two threads and performs 50 iterations over a 500 matrix.

• hedc is a warehouse for scientific data developed at ETH Zurich [113]. This benchmark
represents an application kernel that implements a meta crawler for searching multiple
Internet archives in parallel. In the benchmark configuration, four principal threads issue
random queries to two archives each. The individual queries are handled by reusable
worker threads. The workload of this application kernel is typical for Internet server
applications and similar to applications based on alternative mechanisms, such as Java
Servlets.

• The programsmold(yn), ray(tracer), andmonte(carlo) are multi-threaded numeric appli-
cation kernels from the Java Grande benchmark suite [68]. All benchmarks are executed
with two threads in their ’size A’ configuration.

• specjbb is an e-commerce benchmark [107]. Due to a limitation of our runtime system,
we tested only a configuration with one warehouse.

3.5. EXPERIENCE 39

• jigsaw is an Open Source web-server [130] (version 1.0alpha5). The workload for runtime
experiments is created by two http-clients that each fetch 50 random web-pages of 1024
bytes.

LOC bytecodes methods classes abstract threads
appl in CG in CG lib appl init user

philo 81 3603 192 129 2 21 2
elevator 528 6818 311 142 5 23 2
mtrt 11298 20135 719 158 34 33 2
sor 251 4481 206 132 7 25 3
tsp 706 6479 299 141 4 24 2
hedc 27952 24371 1021 208 48 47 3
mold 1402 6529 224 129 11 24 2
ray 1972 5980 270 131 19 27 2
monte 3674 8159 441 146 19 35 2
specjbb 31903 47742 1398 182 73 64 2
jigsaw 31596 32642 1396 168 129 60 6

Table 3.2: Size and thread characteristics of the benchmark programs.

Table3.2 reports terms of lines of application code (LOC), and the number ofbytecodes
andmethods in the call graph (CG) for each benchmark. The number of abstractuser threads
includes the main thread. For all benchmarks, only the main thread can be determined as unique;
for other user threads, multiple concurrent runtime instances are assumed.

3.5.3 Computation of the heap shape graph

Resource requirements. The duration and memory requirements of the HSG computation
are detailed in Table3.3. Overall, the cost is moderate for the benchmarks. For each
method in the CG, a method summary is computed. Method summaries are typically small,
their size is however related to the depth of the call graph and the size of the benchmark:
Larger benchmarks likehedc, jigsaw, andspecjbb usually operate on larger, polymorphic data
structures and hence have larger method summaries. In addition, forhedc and specjbb, re-
cursions over 31, respectively 24 methods lead to a loss of context sensitivity. The sum-
maries of methods inside the recursion might be charged with nodes that actually origi-
nate from calling context(s) of the method. Unfortunately, frequently called methods like
java.lang.String::valueOf(java.lang.Object) are found inside the recursion, leading
to unwanted aliasing among objects that flow as actual parameter into this method.

Table3.4 reports the number of nodes in the HSG of each benchmark and classifies them
according to their runtime correspondence into nodes that representclasses, instances, andar-
rays.

Shared analysis. The results of the shared analysis (Section3.3.4) are reflected by the number
of shared objects. The analysis is effective and shared nodes are typically a small fraction of the
global nodes. The more nodes are excluded from being shared at runtime, the more effective
are the optimizations of the symbolic execution (Section3.4.2). Note that a large number of
class nodes corresponds to classes that do not have static variables, or classes with only final

40 CHAPTER 3. STATIC ANALYSIS

time mem method summary
[s] [kStmts/s] [MB] max nodes avg nodes

philo 0.7 1.7 1 26 3.1
elevator 0.9 2.7 1 53 5.0
mtrt 2.5 2.9 1 169 8.3
sor 0.8 2.0 1 31 3.1
tsp 0.9 2.5 1 41 4.8
hedc 5.0 1.9 5 285 14.3
mold 0.8 2.9 1 25 3.5
ray 0.9 2.4 1 36 4.0
monte 1.0 3.1 1 35 4.5
specjbb 13.2 1.4 9 444 27.1
jigsaw 9.0 1.4 9 447 44.6

Table 3.3: Runtime characteristics of the reference analysis.

fields that are written during the class initialization and subsequently read. Such classes are not
shared.

Uniqueness analysis. The uniqueness analysis (Section3.4.4) is effective and can determine
that a significant fraction of abstract objects that origin in dynamic allocations (columnunique
for instances and arrays) have a unique runtime counterpart.

Object-specific analysis. The results of the object-specific analysis (Section3.3.6) and
thread-specific analysis (Section3.4.3) are given in columnso/t-spec. A considerable frac-
tion of abstract objects that represent arrays are local to another object; this is due to Java’s
jagged array model (multi-dimensional arrays are represented as arrays of arrays) and due to
the encapsulation of arrays in other objects which is typical in object-oriented design.

Thread-specific analysis. The thread-specific analysis is less successful: only few instances
and arrays are identified as thread-specific. There are two reasons for this: First, there are few
candidate objects in the benchmark programs. Second, the effects of false aliasing in combina-
tion with the conservatism of the thread-specific analysis defeat several actual thread-specific
objects from being classified as such. Inhedc, e.g., the imprecision of the call graph identifies
therun methods of all user threads as being invoked explicitly (although this is only the case
for one of the user threads) and hence all abstract objects accessed by these methods and their
callees are not classified as thread-specific.

Complexity. Conceptually, the number of nodes in the HSG can be at least exponential in
the program size. The following example is given by Ruf [100]: Imagine a methodm0 that
allocates nodes in the lowermost hierarchy of a tree structure, i.e., it returns an abstract object
a0 with fieldmap{(left,a1),(right,a2)}. Similarly methodm1 allocates the lowermost but
one hierarchy and returns abstract objectb0 with fieldmap{(left,b1),(right,b2)}, where
b1 and b2 are created through methodm0. A cascade ofk methodsmk would createO(2k)
shape graphs nodes. Such a scenario occurs however rarely in practice, because inductive data
structures are usually created and maintained by recursive or iterative methods.

3.5. EXPERIENCE 41

class instance array
global shared global shared unique o/t-spec global shared unique o/t-spec

philo 131 4 39 6 20 2/3 27 3 19 13/0
elevator 147 2 62 11 20 15/1 36 8 19 12/0
mtrt 192 16 193 75 47 44/3 45 25 18 16/0
sor 139 1 40 2 20 2/0 32 4 21 13/0
tsp 145 5 51 8 23 8/3 38 12 24 14/1
hedc 256 36 457 155 143 110/0 72 57 27 29/0
mold 140 5 45 11 23 5/3 42 14 26 22/1
ray 150 5 65 25 24 6/5 34 6 20 18/3
monte 165 13 74 16 33 15/1 34 7 20 12/0
specjbb 255 29 393 57 122 116/0 79 33 22 33/2
jigsaw 297 46 432 147 164 116/0 90 63 29 36/0

Table 3.4: HSG nodes and their classification.

In practice, we observe that the number of nodes in the final HSG is roughly proportional
to the size of the analyzed code. Figure3.11illustrates the relationship between the size of the
analyzed program (featured by the number ofbytecodes in CG) and the total number of nodes
in the HSG (sum ofclass, instance, andarray in Table3.5).

X
X

X

X
X

X

X
X

X

X
X

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45 50

no
de

s
in

 H
S

G

kBytecodes in CG

specjbbjigsaw
hedc

mtrt

monte

ray

philo
sor

elevator

tsp

mol

Figure 3.11: Size of the HSG (number of nodes).

We observe that the runtime of the reference analysis is almost linear in the program size
(Table3.3, between 1.4 and 3.1 kStmts/s). Larger programs perform worse, due to the sizes
of the individual method shape graphs and the duplication of nodes established in the callees.
Figure3.12illustrates the relationship between the size of the analyzed program (bytecodes in
CG) and the duration of the reference analysis.

3.5.4 Symbolic execution

Table 3.5 reports the execution times and memory requirements of the symbolic execution.
The resource demands increase rapidly but remain manageable even for our largest benchmark

42 CHAPTER 3. STATIC ANALYSIS

X X

X

X X

X

XX X

X

X

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50

an
al

ys
is

 ti
m

e
in

 s
ec

on
ds

KBytecodes in CG

specjbb

jigsaw

hedc

mtrt

monte
rayphilo

sor

elevator
tsp

mol

Figure 3.12: Duration of the reference analysis.

programs. One important factor that contributes to the long duration of the symbolic execution
for hedc, specjbb, and jigsaw is the imprecision of available type and alias information. For
these benchmarks, conservative assumptions are made in the case of objects that are instanced
from dynamically loaded classes (all of them fall into a single type and alias set). Moreover,
31 methods inhedc (some of which are frequently used in different contexts) are found in
one strongly connected component of the call graph. Due to the loss of context sensitivity,
spurious aliasing is created in the HSG among unrelated objects, leading to further imprecision
and conservative assumptions in the downstream analyses. If objects that are actually local to
methods or threads become global or shared due to false aliasing, there are fewer optimization
opportunities and hence more work needs to be done during the symbolic execution.

Column time, [kStmts/s] reports the frequency at which the program, more precisely the
statements that are relevant to the symbolic execution (e.g., object, array, and class access and
method invocation), are processed. Note that the symbolic execution might process the same
statement several times in different contexts. The rate is higher for larger programs, i.e.,hedc,
specjbb, and jigsaw, than for smaller programs. This is because the overall duration of the
analysis is used to calculate the rate; the overall duration includes a certain fixed ramp-up time
where global data structures for the analysis are initialized. For smaller benchmarks, this initial
cost contributes relatively more to the overall cost and hence, for the smaller programs, the rate
calculated inkStmts/s looks lower than it actually is.

The efficiency of the symbolic execution depends on the effectiveness of the optimizations
discussed in Section3.4.2. For the measurements in Table3.5 two optimizations are enabled:
(1) The analysis does not descend into call sites that have no effect (alloc, read, write, escape)
on shared data. (2) The analysis does not descend into calls if the callee has been processed
in the same lock and object context earlier. One important aspect of determining equivalent
contexts is the classification of non-global alias sets asfully local (Section3.4.2).

Columnproc in Table3.5specifies the number of method incarnations that are processed,no
eff, the number of call sites that are skipped due to optimization (1), and columncache specifies

3.5. EXPERIENCE 43

time mem call sites
[s] [kStmts/s] [MB] proc no eff cache

philo 0.8 1.1 1 98 145 34
elevator 0.9 1.7 2 186 251 81
mtrt 1.7 4.0 7 1049 1574 839
sor 0.8 1.4 1 47 105 13
tsp 1.0 1.5 2 158 213 56
hedc 10.4 11.2 28 16475 35268 17836
mold 1.0 2.2 1 153 289 87
ray 1.0 2.0 1 208 339 114
monte 1.0 2.7 3 399 596 185
specjbb 19.3 14.4 26 24197 109813 42381
jigsaw 29.6 11.9 24 38872 122296 87986

Table 3.5: Characteristics of the symbolic execution (normal case).

calls sites skipped due to optimization (2). The optimizations result in more than linear savings
of analysis effort for larger programs (hedc, mtrt). The total saving is not just the numbers
reported underno eff andcache, but also includes nested calls that would have been followed
if the analysis had descended and processed these calls. We have experimented with differ-
ent configurations of call caching to estimate the potential of more elaborate implementations.
Tables3.5and3.6report four configurations:

• Thenormal case (Table3.5) approximates thefully local property and determines an alias
set as fully local if all connected alias sets are reachable through at most two field indirec-
tions and all these alias sets are not global. This heuristic is the default implementation to
determine recurring site contexts.

• The best case (Table3.6) assumes that all non global alias sets arefully local, i.e., no
global objects are reachable through field references of alias sets that are not global. In
this setting, moresite contextscan be matched with already processed site contexts and
hence call caching is more effective. While this (best case) assumption is not valid in
general (it can lead to incorrect results of the symbolic execution), it expresses an upper
bound on the potential of determiningfully local alias sets. The results show, thatspecjbb
andjigsaw may benefit from a more precise implementation for determining thefully local
property of alias sets.

• Theworst case (Table3.6) assumes that there are nofully local alias sets, hence less site
contexts are recognized as recurring. This configuration serves to rate the performance
of our implementation of call caching against the most conservative assumptions to de-
terminefully local. The results show, that the approximation offully local in thenormal
case is quite effective to determine recurring site contexts that are not matched in the
worst case.

• no cache (Table3.6) assumes that call caching is disabled altogether. This configuration
shows the importance of call caching to make the symbolic execution practical: The
execution times increase most rapidly, even for programs of moderate size. We give no
reports (–) formtrt, hedc,specjbb, and jigsaw, because the analysis time exceeded two
hours.

44 CHAPTER 3. STATIC ANALYSIS

best case worst case no cache
[s] proc no eff cache [s] proc no eff cache [s] proc no eff

philo 0.8 98 145 34 0.9 130 169 66 1.0 772 432
elevator 0.9 185 251 81 0.9 215 280 105 1.1 1247 768
mtrt 1.7 1034 1541 838 1.8 1304 2103 1128 – – –
sor 0.8 47 105 13 0.8 47 105 13 0.9 93 145
tsp 1.0 157 210 56 1.1 188 240 88 1.3 1016 635
hedc 9.8 15535 31496 18067 13.2 21794 52194 27864 – – –
mold 1.0 153 289 87 1.0 241 383 151 1.3 2363 1337
ray 1.0 208 339 114 1.0 307 436 177 1.4 3404 1908
monte 1.0 387 589 188 1.1 702 948 348 35.5 168682 63388
specjbb 6.0 5452 9659 7125 27.5 48530 143916 56425 – – –
jigsaw 5.8 7146 9882 5109 36.9 55464 166430 87315 – – –

Table 3.6: Effect of different call caching strategies on the symbolic execution.

Complexity. The complexity of the symbolic execution is at least as high as the complexity
of computing the HSG. If all call sites are followed in a straightforward manner, methods are
processed several times in different contexts and hence the complexity is exponential in the
number of call sites. Figure3.13illustrates the execution times of the symbolic execution with
different call caching configurations. The curves are exponential fits of the data points; all
configurations exhibit a super-linear correlation among program size and analysis time; theno
cache scenario definitely exhibits an exponential pattern. The other configurations show that
call caching is the key to enable the symbolic execution for larger programs. The cost of the
symbolic execution with call caching does not only depend on the program size, but is also
strongly related to the effectiveness of the call caching and the characteristics of the application
in its interaction with shared data (e.g., the number of allocations and access sites to data that is
classified as shared).

X X XX X

X

XX X

X

X

H H HH H

H

HH H

HH

+ + +
+ +

+

++ +

+

+

O OO OOO

O

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

ex
ec

ut
io

n
tim

e
in

 s
ec

on
ds

kBytecodes in CG

specjbb

jigsaw

hedc

mtrt

monte

ray

philo
sor

elevator
tsp

mol

worst
bestnormal X

+

H

no cache O

Figure 3.13: Duration of the symbolic execution with different configurations of call caching.

3.6. DISCUSSION 45

Applications. In Chapters4 to 6, static analyses are described that determine three classes
of synchronization defects: data races (Chapter4), violations of atomicity (Chapter5), and
deadlock (Chapter6). All analyses are based on the symbolic execution and its capability to
track access to shared objects in different contexts. There are basically two phases in each
analysis: First, data about the access/locking behavior of the program is collected along the
symbolic execution; then, these data are analyzed for potential synchronization faults.

3.6 Discussion

3.6.1 Sources of unsoundness

The shared analysis does not consider init threads as separate runtime entities and thus may
not classify objects as shared although they are accessed in the scope of a class initializer and
a user thread (which may be different from the thread that executes the class initializer). This
simplification makes the designation of abstract objects assharedunsound. In practice, there
are two reasons why this source of unsoundness is not a significant problem for the detection
synchronization defects: First, the situation in which certain data is accessed by a thread in the
scope of a static initializer and otherwise only by threads different from the initializing thread
is rare (we have not observed such a scenario in the benchmarks we investigated). Second,
we have observed that static initializer methods typically create and initialize objects that are
consequently available to other threads. Ordering between initialization and subsequent uses
is either guaranteed through Java’s class initialization mechanism (see [53, Chapter 12.4]), or
through the fact that the initializer makes the reference to some object available only after the
initialization is performed. Hence, abstract objects that are mistakenly not classified as shared
are typically not candidates for synchronization defects.

Our model does not consider the execution offinalize methods that are typically invoked
by a separatefinalizer thread. This indifference could lead to a situation where an object is
accessed by two runtime threads (one of which is the finalizer thread) but is not classified as
shared at the abstract level by our static analysis. Finalization in Java, is generally regarded
as a source of errors that is hardly amenable to static and dynamic analysis [14]. Finalizers
should be used sparsely and specified with care; the benchmarks we evaluated do not make use
of finalization.

3.6.2 Sources of incompleteness

As mentioned earlier, spurious aliasing can be a source of imprecision in the sense that a num-
ber of allocation and access sites that actually operate on thread-local data may be deemed to
operate on shared data just because one of the abstract objects merged into the bloated common
abstraction happens to be shared.

On the example of the thread-specific analysis, we notice that imprecision in the call graph
and heap shape graph can spoil the recognition of thread-specific objects. Such objects might
falsely be reported as target of a synchronization defect in downstream analyses (e.g., Chap-
ter4).

46 CHAPTER 3. STATIC ANALYSIS

Hence, precise alias and type information is important to bound the scope of the symbolic
execution and to direct the search for synchronization defects. A pragmatic design choice is to
consider flow-insensitive algorithms for reference analysis because they abstract from statement
ordering and interleaving in multi-threaded programs. However, this choice reduces the preci-
sion of alias information compared to flow-sensitive analyses. Moreover, our reference analysis
is based on unification. While this choice offers attractive performance (the complexity is typi-
cally linear in the size of the program) and ease of implementation, Ruf [100] notes inaccuracies
in this schema. In some cases, false aliasing can be avoided through a manual program transfor-
mation. Alternatively, a more precise, subset-based scheme [6] could be used. Liang et al. [77]
compare unification and subset-based reference analyses for Java programs and observe that
subset-based analyses can be significantly more precise. A subset-based, context-sensitive ref-
erence analysis for Java programs has been developed by Milanova et al. [86]. Similar to our
work, the notion of context is based on objects, not call strings like in previous work, e.g., [55].
The technique in [86] avoids the redundant analysis at method invocations with different call
sites but the same target object. The analysis is generic such that not only the target of a call,
but also other variables can be used for context disambiguation; in our analysis, the global ob-
jects that are reachable through actual parameters, the abstract thread, and the set of current
abstract locks determine the context of a method invocation. Despite the cubic time worst case
complexity of the subset-based reference analysis, [86] shows that object-sensitivity enables the
efficient analysis of even large and complex Java programs.

3.6.3 Related work

Extensive research has been done in the field of reference and points-to analysis for object-
oriented languages. A good overview on this complex topic is given by Hind [62, 61], Ri-
nard [99], and Ryder [102]. The discussion here is focused on analyses for multi-threaded
programs.

The principle of a data flow analysis is to determine for a given statement, the set of control
flow successors; in sequential programs, this set is typically small and hence allows flow-based
analyses to be more precise than flow-insensitive analyses. For multi-threaded programs how-
ever, the set of successor statements may encompass all statements of concurrent threads, which
can significantly reduce the accuracy of the data flow analysis. Three principal strategies have
been pursued to handle this problem (from the most conservative to the most precise):

• Flow-insensitive analysis.A flow-insensitive analysis is oblivious to the execution order
of individual statements and hence the result is independent of the control flow of the
program.

• Thread structure and synchronization based analysis.This kind of analysis refines the
flow-insensitive analysis and rules out certain control flows that are impossible due to the
thread start or join relation or explicit synchronization.

• Coarsened flow-sensitive analysis.This kind of analysis operates on an approximated set
of possible flows of a parallel program. Intra-thread and inter-thread activity are distin-
guished to reduce to the number of relevant flows that the analysis has to consider.

3.6. DISCUSSION 47

Flow-insensitive analysis. Conceptually, a flow-insensitive analysis assumes that all intra-
thread and inter-thread flows are possible and thus this kind of analysis can be easily adopted to
multi-threaded programs. Context-insensitive [15] and context-sensitive variants of this anal-
ysis [21, 100] are sufficiently accurate to determine the sharing of objects and to effectively
remove unnecessary synchronization. Our approach uses the flow-insensitive and context-
sensitive technique in [100] to approximate the call structure and to compute a global model
of heap data (Section3.3). Some escape analyses are sensitive to the data flow among local
variables (inclusion-based reference to analysis), however field variables – which may be ac-
cessed from multiple threads – are treated in a flow-insensitive manner [24, 128]; hence these
analyses are also conservative about the ordering of accesses to shared variables and thus we
categorize them as flow-insensitive here.

Thread structure and synchronization based analysis. This kind of analysis is particularly
effective for programs that declare the structure of threading explicitly; these programs typically
follow fork-join or post-wait style synchronization. Rugina and Rinard [101] developed a flow-
sensitive reference analysis that explicitly considers the data flow at thread fork and join points.

Thread structure analysis is however hard to apply to programs with unstructured parallelism
where the lifetime and the number of threads is difficult or impossible to assess by a static
analysis, and many threads execute the same code; typical Java and C] server applications fall
into this category. In Ruf’s [100] and our work, threads are determined by their type. The model
in Choi. et. al. [26, 25] can be more precise because in addition to the type, start site and the
context of the start site are used to differentiate threads at compile-time.

Choi et al. [26] use theinter-thread control flow graphas program representation; this graph
contains one control flow representation of each method and connects thread start sites with
the corresponding thread entry methods (thread start relation). The authors develop a context-
sensitive points-to analysis where the notion of a context is defined by the control flow path that
reaches a statement. The authors note that this path-sensitive approach is very expensive and
hence evaluate only a simplified, less preciseall-path (i.e., context-insensitive) variant of their
analysis.

Our work has a different context model: Not the control flow that reaches a method incar-
nation, but the relevant abstract objects that some method incarnation operates on define the
context (Section3.4). This notion of context – although expensive for larger programs – allows
an efficient context-sensitive analysis of the largest benchmark that is checked in [26], which is
mtrt.

In addition to the thread structure, the analyses provide also information about common
synchronization contexts. Choi et al. [26] use must-alias information to determine common
synchronization objects along different path contexts. In our analysis, the symbolic execution
(Section3.4) tracks the set of abstract locks that are held at a certain statement during the
context-sensitive symbolic execution (Section3.4).

Coarsened flow-sensitive analysis.A simple flow-sensitive procedure would consider all in-
terleavings of instruction of all threads. This procedure is however not practical and performs
a lot of redundant work. There are analysis techniques that do better and exploit the observa-
tion that thread interference is limited to certain program points or language constructs; these
analyses handle points of potential interference specially and treat program regions between

48 CHAPTER 3. STATIC ANALYSIS

interaction points (that perform only local computations) like sequential code. The concept of
treating code regions instead of individual statements as the unit for the intra-thread analysis is
calledcoarsening.

Knoop et al. [72] developed a data flow analysis for parallel programs that processes each
thread individually and propagates the findings about potential interactions of the analyzed
thread to threads that may execute concurrently. For certain bit-vector analyses the precision of
this algorithm is the same as a the precision of a procedure that considered all possible thread-
interleavings. The accuracy for a more complicated reference analysis is however hampered
because the algorithm overestimates the effects of thread-interaction [99].

For multi-threaded object-oriented programs flow-sensitive analysis techniques have been
proposed in [32, 90, 88, 131] that compute a precise models of dynamic data structures and con-
current threads at every program point. A crucial aspect of effective coarsening is to determine
as few relevant thread interaction sites as possible. In [32], the interaction sites are narrowed
by determining thread-local data (access to those is not an interaction point) and data that are
protected through locking (relevant interaction point is the lock access not the data access).
While coarsening enables these analyses, the complexity of these analyses is still an important
limitation when treating larger programs.

The work on flow-sensitive analyses of multi-threaded programs mostly presents techniques
that enable this form of analysis. However, there is yet few work that actually applies these
techniques to relevant programs and problems like race detection. Hence it is difficult from our
perspective to assess the practical benefit that these techniques have over techniques that are
flow-insensitive or variants thereof.

4
Static detection of data races

The identification of data races requires information about three aspects of a program:

• Program data.This aspect is approximated by a reference analysis; data that is potentially
shared is modeled by abstract objects in the HSG.

• Access events.Events that access shared data are approximated by the symbolic execu-
tion; the program model underlying the symbolic execution is based on abstract threads,
the call graph (CG), and the control flow inside methods (CFG).

• Synchronization.Two ways of explicit inter-thread synchronization are determined by the
static analysis: First, the symbolic execution tracks locking along monitor boundaries.
Second, methods for thread start and join are recognized in the call graph and control
flow.

The core of the static data race detection is a data structure, called theobject use graph
(OUG) [124], that combined these three aspects. An OUG can be understood as the lifemap of
an abstract object that notes events relevant to that object (creation, access, escape, thread start
and join) and approximates the ordering among those events according to intra-thread control
flow and inter-thread synchronization.

Section4.1 defines OUGs and provides an example. Section4.2 describes how OUGs are
computed along the symbolic execution. Sections4.3 and4.4 describe the data race detection
based on OUGs. Section4.5reports on our experience and the experiments we have done with
benchmark programs.

4.1 Object use graphs

An OUG refines “escape” information: Instead of attributing a global classification to an ab-
stract object and the sites it is accessed from, the OUG recognizes structural, temporal, and
lock-based protection of object access in different contexts. Anobject use graph(OUG) con-
tains information that is specific to one abstract object, hence there is a separate OUG for every
node in the HSG. For the purpose of data race detection it is sufficient to build OUGs for those
abstract objects that can be subject to a data race, i.e., that have thesharedproperty. The nodes
in the OUG representabstract events, i.e., a common representative of runtime events that are
issued by a specific statement in a specific runtime context. An abstract eventei is a tuple
〈k,m,o, t,L〉:

49

Hugo
Highlight

Hugo
Highlight

50 CHAPTER 4. STATIC DETECTION OF DATA RACES

• i is a unique id.

• k specifies the kind of abstract event. Possible kinds are

NEW. Object allocation.

GET/PUT. Read or write access to a field of the object.

LOAD/STORE/ESCAPE.Fetch or deposit a reference to the object from/to another vari-
able. ESCAPE is a variant of STORE and occurs if the refer-
ence to the object is leaked into a context or variable where it
might be made available to other threads.

START/JOIN. Start or join of a thread.

ENTRY/EXIT. Method entry and exit. These events do not correspond to a
program action and serve only to record the compiler’s analy-
sis.

CALL. Method invocation site. These nodes are only used during the
construction of the graph (Section4.1); the effect of events that
are issued downstream of calls are “inlined” into the graph at
the position of the CALL node. For polymorphic call sites,
each target method is processed separately. Recursive calls
sites are not unfolded, but connected to the surrounding invo-
cation context (Section4.2).

• m is the accessed member in case of CALL and GET/PUT nodes.

• o is the abstract target object in case of LOAD/STORE/ESCAPE nodes and the root of
the controlled thread in case of a START/JOIN event.

• t is the abstract thread issuing the event.

• L is the set of abstract objects that are locked during a GET/PUT event.

There are three relations among abstract events:

• Control flow relationγ: Control flow edges establish an intra-thread relationship among
abstract events. Not all events issued by the same abstract thread are however (tran-
sitively) related: For reasons of efficiency, the inter-procedural analysis maps different
access contexts of an object separately into the OUG, and hence there is no control flow
relation among events from different contexts (details are given in Section4.2.2). If the
access occurs inside a loop or recursion, the control flow relation is cyclic.

• Reference flow relationρ: An object cannot be accessed unless a reference to it is avail-
able in the current method context. There are two ways of conveying references between
contexts: First, through the call stack and parameter passing; this aspect is covered by
the control flow relation. Second, through other objects that store the reference in a field
variable and make it available in another context; this aspect is addressed by the reference
flow relation that relates STORE/ESCAPE events with corresponding LOAD events. Ref-
erence flow relates events of the same thread or different abstract threads.

4.1. OBJECT USE GRAPHS 51

• Thread control relationτ: A threadt cannot issue any event beforet has been started.
This fact is modeled by a relation between the thread START event and all abstract events
issued by the started thread. Conversely, all events of an abstract thread are related to
the corresponding JOIN event. Depending on the context in which a thread is started or
joined, START and JOIN events might not be at all or only incompletely be recorded in an
OUG. There are three important constraints that have to be met by thread START/JOIN
events to yield useful information and hence establish the thread control relation.

– A START event is only valid if the abstract thread issuing the event is unique. This
property of a START event can be easily determined during the assembly of the
OUG (Section4.2.2).

– A JOIN event is valid if all instances of a given joined abstract thread are actually
joined at that event. The automated analysis uses the following heuristic to deter-
mine this property: If there is a single JOIN event for a given abstract thread, then
it is valid. This heuristic is not sound (i.e., there is no guarantee that the constraint
is actually met at runtime) but has been correct for the benchmarks we investigated.
This limitation is discussed further in Section4.7.

– If the set of START events is incomplete (e.g., an abstract thread is started in two
contexts, but only one START event is noted in the OUG), then the START events
are invalid.

Invalid events are ignored by the analysis; while this loss of start and join information can
be tolerated by the conflict analysis, it may deteriorate the precision because conservative
assumptions must then be made about the concurrency of events, e.g., in the starter and
started thread.

Definition. An OUG is a directed graphOUG[o] = 〈N,E〉:

• o is the abstract object that is characterized by the OUG.

• N is the set of nodes corresponding to abstract events.

• E is the set of edges corresponding to the control flow relationγ.

Example. We continue the example of the Dining Philosopher program (Program3.1 and
Figure3.1). Figure4.1shows the OUG of thePhilo object (o7 in the HSG in Figure3.1).

There are two abstract threads that contribute to the events registered in the OUG: Events (1)
to (17) result from themain thread (o1), events (18) to (21) from thePhilo thread (o2). Events
(1) to (11) are triggered by methodMain::main and correspond to allocation, constructor of
Philo, thread start, join, and the invocation ofPhilo::report. Events issued in callees of
Main::main are noted separately (e.g., events (12) to (14) for the constructor invocation) and
inlined at the corresponding CALL node (e.g., node (3)).

52 CHAPTER 4. STATIC DETECTION OF DATA RACES

Figure 4.1: OUG for thePhilo object.

4.2 Building object use graphs

OUGs are associated with abstract objects (nodes in the HSG) and are created gradually during
the symbolic execution. The creation of OUGs is conceptually split into an intra-procedural
and an inter-procedural analysis. The intra-procedural analysis computes subgraphs that model
the treatment of an abstract object inside a specific method, the inter-procedural analysis coor-
dinates the assembly of sub-graphs and connects them to complete OUGs.

4.2.1 Intra-procedural analysis

Similar to an OUG at the whole program level, a so-calledmethod object use graph(MOUG)
models the relevant events at the level of an individual method. A MOUG can be understood
as a control flow graph in which statements that do not result in events for an abstract object
of interest are pruned. A MOUG is generic with respect to the thread and locking context and
serves as building block that is copied and instanced in specific contexts along the creation of
OUGs in the inter-procedural analysis (Section4.2.2). A MOUG is a connected, directed graph
MOUG[m,R] = 〈N,E〉:

• m is the method underlying the MOUG.

• R is a set of alias setso0, . . . ,on from the method summary ofm that, in a given method
context, are aliases’ of the object of interest; if the object of interest corresponds to a
class,Rcontains only a single entry representing the class.

• N is a set of nodes that correspond to relevant abstract events.

Hugo
Highlight

4.2. BUILDING OBJECT USE GRAPHS 53

• E is a set of edges that correspond to the control flow relation among events.

For a specific methodm, different MOUGs can exist, depending on the object of interest and
aliasing that is given in different calling contexts. A MOUG is built in a single flow-sensitive
method traversal. The transfer rules for the computation of relevant events are specified in
Figure4.2.

The operationcreateEventadds an abstract event to the graph. The thread or locking con-
text remains unspecified at this point; this information is furnished when an MOUG is cloned
and embedded into a specific calling context during the inter-procedural analysis. The edges
among the events are generated according to the control flow (CFG). Formultiply executed
methods (Section3.2), a control flow edge is added from EXIT to ENTER. This is necessary to
approximate the ordering of abstract events inside OUGs correctly (Section4.3).

Access to class variables, fields, or arrays can have two effects: First, a GET or PUT node
is created if the target object corresponds to the object of interest. Second, a LOAD or STORE
node is created if the object that is referenced by the handled value corresponds to the object of
interest.

throw and catch statements lead to STORE and LOAD events in the MOUG and are
used as hooks for modeling the reference flow of exception objects inside a method and across
method boundaries.

An object allocation leads to a NEW event if the allocated object corresponds to the object
of interest.

CALL nodes serves as hooks for inlining the MOUG of a callee during the inter-procedural
analysis (Section4.2.2). The following three strategies for introducing CALL nodes in an
MOUG are are possible:

The first strategy would insert a CALL node at every call site. This option is however too
expensive and lets the size of the MOUGs grow considerably.

The second strategy would omit CALL nodes altogether; while this alternative is efficient
and still lead to correct OUGs, essential control flow information across method boundaries is
tossed away and hence the results of consequent analyses would be unnecessarily conservative
and imprecise.

The third strategy is a balance between the first and the second option and reflects the
implementation that we have chosen: At a call site, a node should be created if the callee
starts or joins a thread or the callee accesses the object of interest. The occurrence of start
or join can be approximated as follows: Invocations ofjava.lang.Thread::start and
java.lang.Thread::join lead to START and JOIN nodes. If start and join happen in the
scope of a callee, a CALL node is created that might later (see Section4.2.2) be converted to
a START or JOIN.mayStartThread(n) specifies thatn or one of its callees starts a thread on
some control flow path,mustJoinThread(n) specifies that a thread is joined on all control flow
paths; both predicates are computed along an inter-procedural analysis. For JOIN, we must also
ensure that the callerm satisfiesmustJoinThread(m), otherwise there could be a control flow
that bypasses the JOIN inm. The effects of the callee to the object of interest are approximated
as well: There are three basic cases how a reference to the object of interest can be available
to a callee: (1) A reference is passed on the stack as actual parameter; (2) the reference is ob-
tained by name (for classes); (3) the reference is read from the heap. The solution specified in
Figure4.2 recognizes all cases that fall in categories (1) and (2): A CALL node is created if

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

54 CHAPTER 4. STATIC DETECTION OF DATA RACES

Variables and domains Analysis state
m,n∈M methods CAS: C → O alias set lookup for classes
c∈ C classes AS: V → O alias set lookup for local vars
f ∈ F fields
v∈ V local variables
o∈ O alias sets

Statement Action
v = c. f if (CAS(c) ∈ R)

createEvent(〈GET, f ,−,−,−〉);
if (AS(v) ∈ R)

createEvent(〈LOAD,−,CAS(c),−,−〉);

c. f = v if (CAS(c) ∈ R)
createEvent(〈PUT, f ,−,−,−〉);

if (AS(v) ∈ R)
createEvent(〈STORE,−,CAS(c),−,−〉);

v0 = v1. f if (AS(v1) ∈ R)
createEvent(〈GET, f ,−,−,−〉);

if (AS(v0) ∈ R)
createEvent(〈LOAD,−,AS(v1),−,−〉);

v1. f = v0 if (AS(v1) ∈ R)
createEvent(〈PUT, f ,−,−,−〉);

if (AS(v0) ∈ R)
createEvent(〈STORE,−,AS(v1),−,−〉);

v0 = n(v1, . . . ,vk) if (n = java.lang.Thread :: start)
createEvent(〈START,−,AS(v1),−,−〉);

else if(n = java.lang.Thread :: join ∧ mustJoinThread(m))
createEvent(〈JOIN,−,AS(v1),−,−〉);

else if(mayStartThread(n) ∨
(mustJoinThread(n) ∧ mustJoinThread(m)) ∨
(∃i : AS(vi) ∈ R) ∨
(o∈ Rcorresponds to a class∧ n accesseso))

createEvent(〈CALL ,n,−,−,−〉);

v = new c if (AS(v) ∈ R)
createEvent(〈NEW,−,−,−,−〉);

throw v if (AS(v) ∈ R)
createEvent(〈STORE,−,−,−,−〉);

catch v if (AS(v) ∈ R)
createEvent(〈LOAD,−,−,−,−〉);

Figure 4.2: Transfer rules for the computation of MOUGs.m is the method to be processed,
R is the set of relevant alias sets.

4.2. BUILDING OBJECT USE GRAPHS 55

a relevant alias set is passed as actual parameter or returned from the method. If the relevant
alias set stands for a class, a CALL node is created if the callee reads or writes fields of that
class. The former aspect can be directly determined at the call site, the latter information can
be obtained from the read and write sets that are associated with the method summary of the
callee. If the callee obtains references to the object of interest through alternative (3), the CALL
node might not be noted in the OUG. Section4.2.2discusses how the inter-procedural analysis
accommodates this case and relates abstract events of caller and callee (reference flow relation
ρ).

The single-entry-single-exit region of a method is delimited in the MOUG by a BEGIN and
an END node. These nodes serve as hooks when the MOUG is copied and inlined at a CALL
node during the inter-procedural analysis (Section4.2.2) .

Example Figure4.3shows the CFG for theMain::main method. The statements are denoted
as pseudo-bytecode instructions (A)–(L) that lead to abstract events in the MOUGs.

Figure 4.3: CFG of methodMain::main.

56 CHAPTER 4. STATIC DETECTION OF DATA RACES

Some possible MOUGs of this method are illustrated in Figure4.4. The annotations on the
abstract events unveil the correspondence between abstract events and program actions. For
MOUG (a), the object of interest is thePhilo instance (o7); for the MOUG (b), the object of
interest is theTable instance (o6); the MOUG (c) models the effects of the method to the array
instance holding reference to the thread objects (o101); finally MOUG (c) models the interaction
of the method with the string array passed as parameter (o100) – there is no access, hence only
the START and JOIN events are noted.

Figure 4.4: Example MOUGs of methodMain::main.

4.2.2 Inter-procedural analysis

The inter-procedural computation of OUGs proceeds in three phases:

1. Assembly and control flow relation.Assemble all MOUGs to an OUG during the sym-
bolic execution. After this phase, all relevant abstract events are noted in the OUG. This
phase establishes the control flow relation.

2. Reference flow relation.Compute the reference flow relation and determine ESCAPE
events.

3. Thread control relation.Compute the thread-control relation.

Assembly and control flow relation. Figure 4.5 shows extensions of the transfer rules of
the symbolic execution in Figure3.8 that build the OUGs. The description uses the following
auxiliary functions:

4.2. BUILDING OBJECT USE GRAPHS 57

Variables and domains Analysis state
m∈M methods CAS: C → O alias set lookup for classes
v∈ V local variables AS: V → O alias set lookup for local vars
o∈ O alias sets MC : M → B method context creation
b∈ B method context
c∈ C classes
f ∈ F fields
t ∈ T abstract threads
s∈ S statements
e∈ E abstract events
p∈ P subgraph of OUG

Statement Action
v = c. f let p = getMOUG(CAS(c),b), e= getEvent(p,s):
c. f = v initEvent(e,−, t,L);

let p = getMOUG(AS(v),b), e= getEvent(p,s):
initEvent(e,CAS(c), t,L);

v0 = v1. f let p = getMOUG(AS(v1),b), e= getEvent(p,s):
v1. f = v0 initEvent(e,−, t,L);

let p = getMOUG(AS(v0),b), e= getEvent(p,s):
initEvent(e,AS(v1), t,L);

v0 = m(v1, . . . ,vk) let b′ = MC(m) = 〈〈 f1, . . . , fk〉,〈l0, . . . , ln〉, r,e,A′,R′,W′,E′〉:
∀i ∈ {0, . . . , l} : let p = getMOUG(AS(vi),b),

e= getEvent(p,s):
initCall(e,b′);

∀o∈ R′∪W′ : let p = getMOUG(o,b),e= getEvent(p,s):
if (o corresponds to a class)

initCall(e,b′);

v = new c let p = getMOUG(AS(v),b), e= getEvent(p,s):
throw v initEvent(e,−, t,L);
catch v

Figure 4.5: Transfer rules for building the OUGs along the symbolic execution.t is the current
abstract thread,s is the current statement,L is the current set of locked abstract objects,b is the
current method context. The value ’−’ expresses that no information is provided for the specific
field in the event record.

• For each method context in which an abstract object is allocated/accessed/escaped,
a copy of the corresponding MOUG is created and mapped intoOUG[o]. Function
getMOUG(o,b) creates such a subgraph inOUG[o] for the method contextb, if it is
not already available, and returns it.

Hugo
Highlight

58 CHAPTER 4. STATIC DETECTION OF DATA RACES

• FunctiongetEvent(p,s) returns the abstract event corresponding to statements in the
subgraphp.1

• The operationinitEvent(e,o, t,L) associates context information with an abstract event
e. t is the abstract thread issuing the event,L is the set of locks held during a GET,
PUT, LOAD, or STORE event. For LOAD and STORE events, the objecto hosting the
reference to the object of interest is initialized. In the case where a STORE or LOAD
corresponds to athrow or respectivelycatch statement, there is no alias set for the
hosting object. The computation of the reference flow relation accounts for this specific
case (next paragraph).

• The operationinitCall(e,b) inlines a clone of a MOUG (obtained by functiongetMOUG)
into its calling context, i.e., at the CALL nodee that corresponds to the call site. Pre-
decessors of the CALL node become predecessors of the ENTRY node of the subgraph,
successors ofe become successors of the EXIT node. If the contextb is encountered
at several call sites (see the optimization of call caching in Section3.4.2), the inlining
is done for all corresponding CALL nodes (there is however only a single copy of the
MOUG).

The assembly phase establishes the control flow relation: the intra-procedural control flow is
taken from the MOUGs; the inter-procedural control flow is established through the inlining
of calling contexts in cases where the reference to the object of interest is passed as argument
between caller and callee context. Hence, not all events that target the same abstract object
are related through the control flow relation; disconnected contexts obtain the reference to the
object through the reference flow relation (next paragraph).

Reference flow relation. This phase relates STORE events withcompatibleLOAD events.
Two events〈STORE,−,o, t,L〉 and〈LOAD,−,o′, t ′,L′〉 are compatible if the hosting objects
are equal, i.e.,o = o′. STORE events are mutated to ESCAPE if the event might render the
reference available to other runtime threads, i.e., if the hosting object is shared. References
to classes are obtained by name, hence there are no LOAD and STORE events in the OUG
of a class. Nevertheless, an artificial ESCAPE event is introduced that constitutes the root of
the OUG. There reference flowρ relates this ESCAPE event with the ENTRY nodes of all
unconnected components.

Thread control relation. This phase mutates CALL events that are not expanded to
START or JOIN nodes. Such CALL nodes are added to the MOUG due to the predicates
mayStartThread() or mustJoinThread() (Figure4.2). The thread control relation relates valid
START events with all events of the started abstract threads and conversely all events of that
abstract thread with the corresponding valid JOIN event.

Example. Figure 4.6 shows the OUG of theTable instance (o6) in the Dining Philoso-
pher program (Program3.1 and Figure3.1). The graph is assembled from 6 MOUGs that

1There can be two abstract events for one statement; e.g., agetfield bytecode can cause a GET and LOAD
event in the same OUG. The given description of thegetEventfunction does not account for this and is simplified
for this illustration.

Hugo
Highlight

4.2. BUILDING OBJECT USE GRAPHS 59

Figure 4.6: OUG for theTable object (o6).

model events relevant to the abstract object (o6) in different method contexts; in this sim-
ple example, all method contexts are from different methods: Events (1)–(7) stem from
methodMain::main (see also Figure4.4 (b)), events (8)–(10) fromTable::<init>, events
(11)–(13) fromPhilo::<init>, events (14)–(19) fromPhilo::run, events (20)–(26) from
Table::getForks, and events (27)–(29) fromTable::putForks. Note that the events (1)–
(13) and (14)–(29) are issued by different threads and hence are located in different disconnected
components of the OUG.

60 CHAPTER 4. STATIC DETECTION OF DATA RACES

4.3 Approximating happened-before

This section derives properties of runtime events and their ordering relation from the abstract
event model. For the purpose of conflict detection, it is sufficient to consider only the happened-
before relationship among events that address/handle the same class or runtime instance, i.e.,
we focus the investigation on events in the same OUG.

4.3.1 Runtime model

We use the following model to illustrate the correspondence of runtime events and abstract
events: Assume that each object has a counter associated with it which is incremented at each
occurrence of a runtime event. Possible runtime events of an objecto correspond to the homony-
mous abstract events:

• NEW.Allocation of the instanceo.

• PUT/GET.Field access at objecto.

• LOAD/STORE/ESCAPE.Handling of the reference to instanceo.

• ENTRY.Start of a method. Ifo is an instance, then a reference too is passed as actual
parameter; ifo is a class, then some variable of that class is accessed in that method.

• START/JOIN.Some runtime thread is started or joined.

Let r0, . . . , rn, be a sequence of runtime events that target a certain runtime object (class
or instance) and 0≤ i ≤ n be the value of the event counter associated with that object. The
context and statement issuing a runtime eventr i allow to mapr i onto its abstract counterpartei

in the OUG. Lete0, . . . ,en be the sequence of abstract events that correspond to the execution
r0, . . . , rn.

We assume that the runtime order of events is consistent withγ,ρ andτ on the abstract events
in the OUG. Consistency means that for all runtime eventsr i , i > 0, at least oner j , j < i must
exist such thatej is related toei through control flow, reference flow or thread control relation,
i.e.,γ(ej ,ei)∨ρ(ej ,ei)∨ τ(ej ,ei). The consistency between the order of the runtime events and
corresponding abstract events in the OUG reflects the intuitive notion of the combined relations
γ,ρ, andτ. Moreover, we assume that GET events return the value of the most recent PUT to
the same variable (or the null value if there is no previous PUT).

This model, which assumes a total order of runtime events and sequentially consistent mem-
ory, is a simplification of today’s hardware and compiler systems. The reordering of runtime
events through the compiler or hardware can lead to incompatibilities of the runtime reality with
the abstract event model, i.e., the relationsγ,ρ andτ. We discuss this effect and its consequences
on the static conflict detection in Section4.6.

According to the runtime model, an execution associates a set of values with an abstract
event; the set expresses the value of the event counter at the time a runtime instance of the
event occurred. LetC(e) be the set of counter values for a specific abstract evente in a specific
execution.

4.3. APPROXIMATING HAPPENED-BEFORE 61

Definition. A binary relationR over abstract events ishappened-before compatibleif R is
empty orR(e0,e1) implies thatall runtime correspondences ˜e0 of e0 occur beforeall runtime
correspondences ˜e1 of e1. This means that for all possible executions∀c0∈C(e0),∀c1∈C(e1) :
c0 < c1.

Relations that are happened-before compatible determine a strict temporal ordering of run-
time events corresponding to abstract events. Such information is useful for the static detection
of access conflicts. Unfortunately, the relationsγ,ρ andτ do not provide that information.

Theorem 4.1 γ (control flow),ρ (reference flow),τ (thread control) are not happened-before
compatible.

We give an example that violates the happened-before compatibility for each relation:

(γ) Assume the control flow relation relates events inside a loop; these abstract events can have
multiple runtime counterparts, e.g., if the loop is traversed multiple times. The correspond-
ing sets of runtime counters would violate the happened-before compatibility.

(ρ) Assume two STORE eventss1,s2 that are related to the same LOAD eventl , i.e.,
ρ(s1, l),ρ(s2, l). The semantics of the program could allow the runtime event sequence
. . . , s̃1, . . . , l̃ , . . . , s̃2, In this case,ρ(s2, l) violates the happened-before compatibility.

(τ) Assume a sequence of START runtime events that are issued inside a loop (same abstract
events). A started thread could begin execution (issue some eventb) before the sequence
of runtime START events is finished. Hence there are executions in which someb̃ occurs
befores̃. Henceτ(s,b) violates the happened-before compatibility. �

Our strategy is as follows: We consider regions of the OUG and relate abstract events in these
regions to the remainder of events through a relation that is happened-before compatible. Re-
gions and the resulting relations are defined according to three aspects:

• Confinement between NEW and ESCAPE.Abstract events that only occur during the ini-
tialization of an object are ordered with respect to abstract events that are issued after a
reference to the object is made available to other threads (Section4.3.2).

• Ordering before START.Abstract events that occur before all thread STARTs and are
issued by a unique thread are ordered with respect to abstract events that follow some
START event (Section4.3.4).

• Ordering after JOIN.Abstract events that occur after all JOINs and are issued by a unique
thread are ordered with respect to abstract events that precede some JOIN event. (Sec-
tion 4.3.5).

4.3.2 Confinement between NEW and ESCAPE

Confinement between NEW and ESCAPE isolates access events that only occur after the
allocation of an instance and before the instance is made available to other threads. Let
OUG[o] = 〈N,E〉 be an OUG;o shall not stand for a class. An event in such OUG is recur-
sively classified asNEW-safe:

62 CHAPTER 4. STATIC DETECTION OF DATA RACES

• NEW events are NEW-safe.

• ESCAPE events are not NEW-safe because they might surrender a reference too to other
threads.

• STORE events are not NEW-safe because they make a reference to the object available in
a different context in which events are not NEW-safe.

• LOAD events are not NEW-safe because events that follow the LOAD in the control flow
might operate on a different instance than the one created at NEW.

• If o stands for a thread root instance then START events that control the corresponding
abstract thread are not NEW-safe because the reference to the object is implicitly made
available to the started thread (like ESCAPE).

• An evente1 is NEW-safe if all its predecessors in the OUG are NEW-safe, i.e.,e1 is
NEW-safe⇒ ∀e0 ∧ γ(e0,e1) : e0 is NEW-safe.

Let Nnew⊆ N be the maximal set of NEW-safe events in an OUG.

Definition. Θnew is a relation among abstract events:Θnew = {(e0,e1) : e0 ∈ Enew,e1 ∈ E−
Enew}.

Theorem 4.2 Θnew is happened-before compatible.

Proof. We call a runtime eventNEW-safeif it corresponds to an abstract event that is NEW-
safe. Letr0, . . . , r i , r i+1, . . . rn be a sequence of runtime events;r0 must be a NEW event.Θnew

is happened-before compatible iff every sequence can be partitioned into eventsr0 . . . r i that are
NEW-safe andr i+1 . . . rn that are not NEW-safe. Eventr0 is NEW-safe by definition. Sub-
sequent NEW-safe events cannot make the object accessible to threads other than the creator
threads (an ESCAPE event would be necessary, but such event and its successors in the control
flow are not NEW-safe). Hence events that disrupt the initial sequence of NEW-safe events
must stem from the creator thread. This is not possible because (a) the NEW-safe events origin
from method contexts that are connected through the control flow relationγ (a STORE/LOAD
combination which would render the object accessible to another context is not NEW-safe), and
(b) a region of NEW-safe events cannot be entered from a region that is not NEW-safe (all con-
trol flow predecessors of NEW-safe events must also be NEW-safe – except for NEW itself).
�

4.3.3 Auxiliary acyclic ordering

This section defines an auxiliary relationΓacgon abstract events that is used to determine events
that occur before START (Section4.3.4) and after JOIN (Section4.3.5).

An acyclic component graph (ACG) is used to elide loops from the OUG and combine
events in strongly connected components (SCC). An ACG〈S,E〉 whereS is the set of SCCs
andE is the set of edges (control flow relationγ) defines a relationγacg among abstract events
as follows: If s0,s1 ∈ S ands0 → s1 ∈ E, then∀e0 ∈ s0∀e1 ∈ s1 : γacg(e0,e1). Let Γacg be the
transitive closure ofγacg.

4.3. APPROXIMATING HAPPENED-BEFORE 63

Example. Figure 4.7 shows the ACG of the OUG of theTable object (o6). Events that
occur in control flow loops are combined in SCCs: SCC (4) aggregates events that occur in the
initialization and start loop of thePhilo threads. SCC (11) aggregates all events that occur in
the scope of thewhile loop in methodPhilo::run.

Figure 4.7: SCCs andγacg relation in the of OUG theTable object (o6).

Effect of call caching. Call caching is an optimization of the symbolic execution that also
affects the structure of the OUGs (Section4.2.2). Figure4.8 shows parts of an OUG and its
partitioning into SCCs. The calls sites corresponding to events (2) and (5) have a recurring
context. Figure4.8 (a) illustrates the OUG built without call caching, in Figure4.8 (b) call
caching caused the reuse of the method subgraph forcallee. The γacg-ordering is weakened
through call caching due to larger SCCs. Although events (3) and (4) and their intermediaries

64 CHAPTER 4. STATIC DETECTION OF DATA RACES

Figure 4.8: Effect of call caching on the structure of the OUG and theγacg-ordering.

are actually ordered (Figure (a)), call caching blurs this relationship and combines the events
into a single SCC (Figure (b)).

Theorem 4.3 Γacg is not happened-before compatible.

Proof. Imagine different runtime instances of some abstract thread that operate on the same
runtime object. In the general case, i.e., without explicit synchronization, the runtime events of
different thread instances occur in an arbitrary interleaved sequence, although the corresponding
abstract events might be related throughΓacg. �

Theorem 4.4 The restriction ofΓacg to events of unique abstract threads is happened-before
compatible.

Proof. Γacg is an abstraction of the control flow relationγ and hence only relates events that
stem from the same abstract thread. The construction of OUG guarantees thatγ is cyclic for
events that occur in a loop, recursion, or multiply-executed context (Section4.2.1). Events
inside such a cyclic contexts are hence not related byΓacg. ThusΓacg may relate events that
occur in separate loops, recursions or contexts, i.e., ifΓacg(e0,e1) then there is some control
flow path frome0 to e1 which is not cyclic. Ase0, e1 are issued by a single runtime thread, all
runtime occurrences ofe0 precede those ofe1. �

4.3.4 Ordering before START

Let OUG[o] = 〈N,E〉 be an OUG andS⊂N is the set of START events in that OUG. A prereq-
uisite to determine ordering before START is thatScontains the START events of all but one
unique abstract thread accessingo. Let t be that unique abstract thread for which no START

4.3. APPROXIMATING HAPPENED-BEFORE 65

event is given (usually,t is themain thread). The set ofSTART-safeeventsNstart⊂ N shall
contain all abstract eventse that meet the following criteria:

• emust be ordered with respect to all START events inΓacg, i.e.,∀s∈ S: Γacg(e,s).

• all events inNstart must be issued by the same unique abstract threadt, i.e.,∀e∈ Nstart :
e.t = t ∧ t is unique.

Definition. Θstart is a relation among abstract events:Θstart= {(e0,e1) : e0 ∈ Nstart,e1 ∈ N−
Nstart}.

Theorem 4.5 Θstart is happened-before compatible.

Proof. If Nstart= /0 thenΘstart is empty and the claim is correct.

AssumeNstart 6= /0. The happened-before compatibility between events inNstart and events
(N−Nstart)|t that are issued by the same unique abstract threadt follows from Theorem4.4.

Thus consider only the relation among events inNstartand(N−Nstart)|s,s 6= t that are issued
by some abstract threadsdifferent fromt. All START events, and in particular the START event
for threads, must have been issued by the unique threadt that also issues the events inNstart.
Hence Theorem4.4is applicable and specifies that all runtime events corresponding to abstract
events inNstart occur before all runtime START events. This ordering can be extended beyond
the START event to all events issued by the started threads: According to the runtime model
(Section4.3.1), the runtime ordering of events is compatible with the thread control relationτ,
and hence some START event must precede all events of the started threads. This means that
all runtime events corresponding toNstart also happen-before(N−Nstart)|s,s 6= t. �

4.3.5 Ordering after JOIN

The case of ordering after JOIN is symmetric to the ordering before START. LetOUG[o] =
〈N,E〉 be an OUG andJ⊂N be the set of JOIN events in that OUG. A prerequisite to determine
ordering after JOIN is thatJ contains the JOIN events for all but one unique abstract thread
accessingo. Let t be that unique abstract thread for which no JOIN event is given (usually,t is
themain thread).

In addition to the case for START, ordering after JOIN relies on the fact that atall runtime
instances of an abstract thread are joined at a specific site (see definition thread control rela-
tion τ). We define the set ofJOIN-safe events Njoin ⊆ N as all abstract eventse that meet the
following criteria:

• emust be ordered with respect to all JOIN events inΓacg, i.e.,∀ j ∈ J : Γacg(j,e).

• all events inNstart must be issued by the same unique abstract thread, i.e.,∀e∈ Nstart :
e.t = t.

66 CHAPTER 4. STATIC DETECTION OF DATA RACES

Definition. Θjoin is a relation among abstract events:Θjoin = {(e0,e1) : e0 ∈ N−Njoin,e1 ∈
Njoin}.

Theorem 4.6 Θjoin is happened-before compatible.

Proof. The proof is symmetric to the happened-before compatibility ofΘstart. �

4.4 Conflict detection

An access conflictis a compile-time approximation of the runtime phenomenondata race: If
two statements can participate in a data race at runtime, then the corresponding events in the
OUG areconflicting. There reverse is however not true, i.e., there can be access conflicts among
abstract events in the OUG that do not become manifest as a data race in any execution. The
approximation is hence conservative with some restrictions that are discussed in Section4.7.

Definition. Two access events (GET or PUT) in an OUG areconflictingif all of the following
conditions are met:

(1) The events stem from different threads (different or non-unique user threads).

(2) At least one event is a PUT.

(3) The event target the same data (same object, same field).

(4) The static analysis cannot determine temporal ordering among the events.

Events that are not conflicting with any other event aresafe. An abstract object is subject to
an access conflict if there are conflicting events in its OUG. The information for conditions (1)
and (2) can be easily obtained from OUG. Strategies for determining conditions (3) and (4) are
discussed in Section4.4.1.

4.4.1 Algorithm

The overall algorithm for detecting access conflicts is shown in Figure4.9. Each OUG is pro-
cessed separately. The procedure is structured along four aspects that are discussed in the
following paragraphs.

Object exclusion. The general scope of search for access conflicts is limited to specific ab-
stract objects. Abstract objects that are not shared have already been excluded earlier from the
inspection (Section3.3.4). Some of the shared abstract objects cannot have conflicts:

• First, abstract objects are classified asread-onlyif there is no write access from a user
thread. This is the case if, e.g., all fields are final or the initialization is done in a static
initializer, followed by shared read access. Read-only objects cannot have conflicts.

Hugo
Highlight

Hugo
Highlight

4.4. CONFLICT DETECTION 67

• Second, abstract objects can be classified asthread-specific(Section3.4.3). Thread-
specific objects cannot be conflicting. Abstract objects that are neither read-only nor
thread-specific are calledshared r/win the following.

Reference confinement. The spread of references to an object determines potential usage
contexts; hence confinement to a certain context narrows the scope of potentially conflicting
access.

• One variant of reference confinement is thestructural confinement that addresses, e.g.,
references to thread root objects: A set of access events to a user thread root object cannot
conflict among each other if the accesses are issued by the user thread itself, the events
occur through thethis-reference, and the user thread does not issue a LOAD event to
obtain a reference to the abstract thread object (i.e., the only reference through which
such fields are accessed is obtained through the implicit argument of therun method).
We call this form of data encapsulationintra-thread encapsulation.

• Another variant of reference confinement is thetemporalconfinement of a reference ac-
cording to init-escape ordering. This aspect is elaborated in the following paragraph on
event ordering.

Event ordering. The set of potentially conflicting access events to the same variable is nar-
rowed in a stepwise process along the criteria for happened-before ordering (Section4.3):

• Thread-start.Access eventse1,e2 cannot conflict ifΘstart(e1,e2). START-safe events in
an OUG are provided by methodstart safe().

• Thread-join.Access eventse1,e2 cannot conflict ifΘjoin(e1,e2). JOIN-safe events in an
OUG are provided by methodjoin safe().

• Init-escape.NEW-safe events in an OUG are provided by methodnewsafe().

• Monitor protection. Given the intersection of locksetsL = e1.L ∩ e2.L andL 6= /0; the
eventse1 ande2 cannot conflict if one of the following is true: (1)∃l ∈ L : l is unique,
(2) e1,e2 access the object through thethis-reference and their issuing methods are syn-
chronized, or (3) the accessed object is object-specific to one of the locked objects. In
all cases, locking guarantees that the corresponding runtime events ˜e1 andẽ2 are ordered
through happened-before, i.e., either ˜e1 → ẽ2, or ẽ2 → ẽ1.

Three auxiliary functions are used in the algorithm in Figure4.9 to determine monitor
protection:haveuniquelock() checks if the intersection is not empty and if at least one
common locked object is unique.havelock() checks if the intersection of locksets con-
tains a specific object.host object() determines the host of some object-local object.

The conflict analysis reports the following information:

• The abstract objects that have a conflict.

• The symbols of fields that are conflicting.

68 CHAPTER 4. STATIC DETECTION OF DATA RACES

• The allocation sites of conflicting objects.

• The access sites that participate in conflicts.

• For allocation and access sites: the calling context in which the conflict occurs; this
information is used internally by the compiler for method specialization, Section7.3.

Variable disambiguation. Access events (GET/PUT) can be partitioned according to the
fields they target. Access to different fields cannot conflict. Variable disambiguation is com-
plementary to alias information: Access events to the same abstract object and same field may
target the same variable at runtime. Hence, all access events of an OUG are partitioned accord-
ing to the accessed field and conflict analysis is done separately for every partition.

4.4.2 Examples

We continue the example of the abstractTable object (o6, OUG in Figure4.6, ACG in Fig-
ure4.7). This object is not read-only (e.g., due toe24), and not thread-specific. There are three
access events to fieldTable::numSnacks: e9, e23, e24. The runtime events corresponding to
the abstract events are ordered: It holdsΘ(e9,e5), hence evente9 is ordered with respect to the
thread start and consequent events issued by the started thread(s). The access eventse23, e24 are
ordered with respect to each other due to monitor protection (access happens in the scope of the
same unique lock). All abstract events are safe, hence the abstract object is safe.

Another shared object in the Dining Philosopher program is thePhilo object (o7, OUG in
Figure4.1, ACG in Figure4.10). The abstract object is neither read-only nor thread-specific.
There is one shared fieldPhilo::snacksEaten that is accessed ate13, e16, e19, ande20. Event
e13 is safe due to init-escape; hence this event occurs before the reference to the accessed object
escapes (or in this case, the thread is started). Evente16 occurs after the join, i.e.,Θ(e8,e16),
hence it is safe. For the remaining eventse19 ande20, intra-thread encapsulation applies. All
abstract events are safe, hence the abstract object is safe.

The examples demonstrate that the conflict analysis based on OUGs is able to detect com-
mon patterns to synchronize threads and protect shared objects from unordered access: Initial-
ization before use, thread start and join, monitor synchronization, and thread-specific data.

4.5 Experience

This section gives an evaluation of the conflict analysis on the benchmarks described in Sec-
tion 3.5.2. The conflict analysis is applied to abstract objects that correspond to classes and
instances. Array instances could be analyzed just like instances of classes, assuming a single
abstract field that represents all slots of the array. This model is very conservative and introduces
false conflict reports in the common case where different threads operate on disjoint parts of the
same array. A precise value analysis for array indices could mitigate this source of imprecision.
In this section, the conflict reporting focuses on classes and instances and omits arrays.

4.5. EXPERIENCE 69

O = 〈set of all shared abstract objects in the program〉;
R= /0;

conflict analysis()
∀o∈O:

if (o is thread-specific)
// nothing to do

elseif (OUG[o].N does not contain a PUT event)
marko asshared read-only;

else

analyze(o);
report conflicts(R);

analyze(o)
acg = computeacg(OUG[o]);
events= 〈all abstract events inOUG[o].N that are issued by user threads〉;
if (o does not stand for a class)

events= events−new safe(OUG[o]);
if (eventscontains a complete set of START events)

events= events−start safe(acg,OUG[o]);
if (eventscontains a complete set of JOIN events)

events= events−join safe(acg,OUG[o]);
fields= 〈set of all fields accessed inevents〉;
∀ f ∈ fields:

f events= 〈set of all GET/PUT events ineventsthat targetf 〉;
if (o is root of a user thread∧ intra-thread encapsulation applies forf events)

// nothing to do
elseif (f eventscontains events from a non-unique or several abstract threads∧

f eventscontains a PUT event)
is conflict= haveuniquelock(f events);
if (is conflict∧ all access events inf eventshappen throughthis)

is conflict= havelock(f events,o);
if (is conflict ∧o is object-specific)

host= host ob ject(o);
is conflict= havelock(f events,host);

if (is conflict)
R= R∪ {new Report(o, f , f events)};

Figure 4.9: Algorithm for the conflict analysis.
.

70 CHAPTER 4. STATIC DETECTION OF DATA RACES

Figure 4.10: Acyclic component graph withγacg relation for the OUG of thePhilo object (o7).

4.5.1 Static aspects

Table 4.1 reports the duration and memory requirements of the analysis on a Pentium IV
1.4 GHz multiprocessor system. The symbolic execution takes longer than reported in Ta-
ble3.5since OUGs are created along the processing of individual statements; similarly, the use
of memory is moderately increased. The overall resource demands are acceptable, although
hedc, specjbb, andjigsaw are again relatively more expensive for the reasons explained in Sec-
tion 3.5.4.

Complexity The cost of the conflict analysis is related to the number and size of OUGs.
For eachOUG[o] = 〈N,E〉, the cost of computing the ACG isO(|N|+ |E|). Similarly, the
relationsΘnew, Θstart, andΘjoin can be obtained inO(|N|+ |E|) time [33] and hence the overall
complexity of the conflict analysis is linear in the size of an OUG.

The actual complexity encountered during the computation of OUGs is consistent with the
conceptual result: The runtime of the conflict analysis for different benchmarks follows the
numbers and size of OUGs reported in Table4.2. Columnconflict detection [k(|N|+|E|)/s] in
Table4.1 specifies the duration of the conflict analysis relative to the overall number of nodes
and edges in all OUGs. This number is almost uniform over all benchmarks. The speed of the
conflict analysis formtrt is above-average because a high proportion of OUGs can be classified
as read-only early during the conflict analysis.

The number of OUGs (first column of Table4.2) corresponds basically to the number of
shared abstract objects representing classes or instances (Table3.4); OUGs for instances of
java.lang.String and objects for which no access events are registered, e.g., classes that
have only final or volatile fields are not analyzed and not included in the statistics.

4.5. EXPERIENCE 71

symb exe conflict detection mem
[s] [s] [k(|N|+|E|)/s] [MB]

philo 1.4 0.5 3.4 3.5
elevator 2.2 0.8 4.7 5.0
mtrt 7.6 1.9 18.2 20.2
sor 2.0 0.5 2.7 3.6
tsp 2.5 0.8 4.7 5.8
hedc 176.6 423.3 2.1 206.2
mold 13.8 0.9 5.8 25.5
ray 2.5 0.8 7.0 6.0
monte 2.2 0.9 6.1 6.4
specjbb 77.4 168.7 2.2 133.9
jigsaw 286.6 125.3 8.5 286.5

Table 4.1: Runtime characterization of the computation of OUGs and conflict analysis.

The size of individual OUGs is generally moderate; the benchmarkshedc, specjbb, and
jigsaw exhibit few very large OUGs (columnsmax) that also lead to an elevated average value
of nodes and edges. Large OUGs correspond either to classes with frequently accessed fields
or abstract objects that suffer from false aliasing. False aliasing occurs if the reference analysis
combines unrelated alias sets that origin from different allocation sites into a single abstraction,
e.g., due to conservative assumptions or the loss of context sensitivity inside a recursion. As
a consequence, several objects that are actually thread or stack-local are classified as shared
and their access events are registered in the corresponding OUG. Columnallocs/obj - max in
Table4.6 shows this effect forhedc, specjbb, andjigsaw: Some abstract objects correspond to
up to hundred or more allocation sites.

The cost of the conflict analysis forhedc, specjbb, andjigsaw is, similarly to the cost of the
symbolic execution, relatively more expensive due to the higher number of OUGs and the very
large size of some OUGs (Table4.1).

nodes edges
OUGs max avg median max avg median

philo 10 217 66.1 41 326 104.7 55
elevator 13 327 107.7 95 505 181.7 168
mtrt 90 803 131.0 74 2074 253.3 116
sor 3 277 167.7 115 394 274.7 219
tsp 13 311 106.1 98 483 184.5 152
hedc 175 87883 1551.5 276 186542 3588.4 435
mold 16 537 129.5 87 598 197.8 148
ray 30 302 72.3 64 456 113.6 90
monte 29 229 71.4 50 532 118.4 78
specjbb 77 63329 1621.8 211 108806 3242.6 372
jigsaw 186 127698 1556.2 91 431930 4179.3 142

Table 4.2: Characteristics of OUGs

Table4.3shows the characteristics of OUGs for abstract objects that areglobal respectively
shared r/w. The columns report the number of OUGs for classes and instances, the total number
of allocation sites that correspond to the NEW events and the total number of access sites that
correspond to GET and PUT events. The numbers serve as a point of reference to illustrate the
performance of the conflict analysis in reducing the number of allocations and access sites that
have to be regarded as candidates for conflicts.

72 CHAPTER 4. STATIC DETECTION OF DATA RACES

global shared r/w
class inst allocs accs class inst allocs accs

philo 4 5 10 93 1 5 10 88
elevator 7 27 33 317 0 9 16 142
mtrt 16 64 90 915 4 51 75 876
sor 4 5 11 218 1 2 3 146
tsp 9 17 30 401 2 5 10 278
hedc 30 131 338 1869 9 77 282 1736
mold 6 12 17 890 2 10 17 871
ray 6 25 42 364 1 19 38 315
monte 18 24 25 276 3 8 13 145
specjbb 49 94 358 2736 10 19 248 2169
jigsaw 33 128 276 1929 7 83 192 1816

Table 4.3: Characteristics of OUGs forglobal and shared r/w abstract objects (classes and
instances, no arrays).

The conflict analysis is only done for abstract objects that are classified asshared r/w: Ta-
ble 4.4 reports on the effectiveness of the different criteria for event ordering (Section4.3) to
prune events from the OUG that cannot participate in conflicts. The table specifies the maxi-
mum (max) and average (avg) percentage of nodes in an OUG that are ordered due to NEW,
START or JOIN-safety. The exclusion of events between NEW and ESCAPE is most effec-
tive and covers in many cases all initialization events (PUT) of variables; in such cases only
read events (GET) occur after the ESCAPE and the absence of a conflict can be guaranteed at
compile-time.

In some benchmarks, e.g.,tsp, several initialization events are identified as START-safe
such that consequent reads can be considered as non-conflicting. In all OUGs ofhedc, START-
safety cannot be determined becausenot all START events of the accessing threads are noted
in the OUGs.

The yield of JOIN-safety is the least which is partly due to the selection of benchmarks. For
the scientific codesmold, ray, andmonte, a fork-join pattern is recognized and some events can
be identified as JOIN-safe. This is useful to determine the absence of conflicts in a scenario
where worker threads update a result data structure that is read by the main thread after joining
the workers. Conceptually,hedc also uses such a pattern but implements the join through Java’s
thread interrupt mechanism (worker threads are terminated after timeout) and hence the pattern
is not recognized.philo, elevator, andspecjbb do not use join, hence JOIN-safety is not an issue.

Table4.5details on the characteristics of those OUGs that are finally classified asconflicting.
The columns correspond to the categories in Table4.3. Each column specifies two values, first
the absolute number of abstract objects, second the reduction of this number relative to column
shared r/w in Table4.3.

The results show that for most benchmarks only a small fraction of theshared r/w allocation
and access sites areconflicting. Hence the heuristics used by the conflict analysis to identify
ordering and to prune events and abstract objects from the set of potential conflicts are quite
effective. Forphilo, elevator, mtrt, sor, mold andmonte, type and heap shape information is
precise and the used synchronization idioms match our heuristics.tsp uses a specific pattern
to ensure the absence of critical interference on instances ofTourElement that represent route
information: Such objects are pre-allocated in a pool; worker threads temporarily lend objects
from the pool and update them. Eventually, instances ofTourElement are returned into the

4.5. EXPERIENCE 73

NEW-safe START-safe JOIN-safe
max avg max avg max avg

philo 63.4 27.8 22.2 2.7 - -
elevator 31.8 15.8 18.9 2.4 - -
mtrt 76.9 21.3 64.8 2.0 1.9 < 0.1
sor 16.6 13.9 14.4 9.3 0.4 0.1
tsp 33.3 14.5 32.6 14.7 1.2 0.1
hedc 84.2 20.1 0.0 0.0 - -
mold 21.1 10.3 47.2 6.1 14.9 1.9
ray 48.6 22.6 26.9 3.0 25.8 2.1
monte 38.1 17.4 40.9 3.9 33.3 2.0
specjbb 91.7 17.1 44.3 1.4 - -
jigsaw 82.4 23.7 35.7 0.4 0.0 0.0

Table 4.4: Effectiveness of the conflict analysis in excluding abstract events from conflicts. The
numbers are given as percentage of the total number of nodes in an OUG.

pool and consequently taken by other workers etc.. This form of higher-level synchronization
is not recognized by the conflict detection, hence the corresponding abstract object (instance
of TourElement), its allocation and some of its access sites are flagged as conflicting. Inray,
some of the conflicting objects are actually associated with a specific instance of a non-unique
thread but the static analysis cannot unravel their thread-specificness. Forhedc, specjbb, and
jigsaw, very large OUGs with false aliasing are classified as conflicting and hence the reduction
of allocations and access events relative toshared r/wis not as good as for the other benchmarks.

conflicting
class inst allocs accs

total red [%] total red [%] total red [%] total red [%]
philo 0 100.0 0 100.0 0 100.0 0 100.0
elevator 0 0.0 3 66.7 5 68.8 28 80.3
mtrt 0 100.0 1 98.1 1 98.7 2 99.8
sor 0 100.0 0 100.0 0 100.0 0 100.0
tsp 1 50.0 1 80.0 1 90.0 32 88.5
hedc 7 22.2 19 75.3 196 30.5 730 57.9
mold 1 50.0 0 100.0 0 100.0 2 99.8
ray 1 0.0 6 68.4 14 63.2 95 69.8
monte 1 66.6 0 100.0 0 100.0 2 98.6
specjbb 8 20.0 5 73.7 201 19.0 1670 23.0
jigsaw 6 14.3 23 72.3 101 47.4 1149 36.7

Table 4.5: Characteristics of OUGs forconflicting abstract objects. The columns show abso-
lute numbers and the reduction relative to the corresponding values in columnshared r/w in
Table4.3.

Table4.6refines the reports and classifies the conflicting fields, the access sites per conflict-
ing field and the number of allocation sites per conflicting abstract object. Conflicting fields fall
into one of the following three categories:

• nr - no read: All conflicting field access events in this category are writes (i.e.,
there are no reads). There are two cases: First, fields that are initialized and
not used in the context of a specific benchmark; inspecjbb, e.g., the private field
spec/jbb/Order::allLocal and all (write) access events to it could be safely removed;

74 CHAPTER 4. STATIC DETECTION OF DATA RACES

fields accs/field allocs/obj
nr lnu awl other max avg max avg

philo 0 0 0 0 0 0.0 0 0.0
elevator 0 4 1 0 8 6.0 2 1.7
mtrt 0 0 0 1 2 2.0 1 1.0
sor 0 0 0 0 0 0 0 0.0
tsp 0 0 3 0 14 10.7 1 1.0
hedc 7 15 9 96 33 5.8 161 10.6
mold 0 0 0 1 2 2.0 0 0.0
ray 0 1 0 9 13 5.5 4 2.3
monte 0 0 0 1 2 2.0 0 0.0
specjbb 19 27 42 125 79 7.9 188 40.4
jigsaw 5 35 42 85 24 6.8 62 4.5

Table 4.6: Classification of conflicts and reporting details (nr = no read,lnu = lock not unique,
awl = all writes locked).

similarly field w3c.jigsaw.http.Client::tstart in jigsaw. However, this optimiza-
tion is not possible in all cases because there could be uses in other contexts outside the
specific benchmark (e.g., for fields of library classes). Second, there could be reads that
are not conflicting, e.g., issued by a unique thread after a join; we have not encountered
this case in the benchmarks.

• lnu - lock not unique:In this case, there exists a common abstract lock among access
events to a particular field, however the analysis fails to determine the uniqueness of
the locked object. Inelevator, e.g., the locks protecting the data structures of individ-
ual floors are initialized in a loop and their references are stored in an array. Despite
the non-uniqueness of the lock in the compile-time view, the same lock instance consis-
tently protects data for a certain floor at runtime. One report inray refers to an update
of a global variableJGFRayTracerBench::checksum1 in a synchronized block. The
runtime object that is used for synchronization is however specific to each thread (the
same abstract object at compile-time, but different instances at runtime), hence this re-
port reflects a synchronization error in the program. Several reports forhedc, specjbb,
and jigsaw are due to situations in which the analysis fails to determine the uniqueness
or object-specificness (Section4.4.1). E.g., the runtime instance reachable through the
field System::properties is unique; the initialization happens once; the static analysis,
however, determines that the call site of the initialization method is multiply executed
and hence conservatively assumes that the (non-final) fieldSystem::properties might
refer to different instances along the program execution.

• awl - all writes locked: In this case, all writes are lock-protected and some read is
not. Two reports forelevator correspond to a potential problem in the implemen-
tation of java.lang.Vector: updates of fieldelementData are done under com-
mon lock protection during the initialization and resizing of the vector; the field is
however read without lock protection by the implementation of an iterator associ-
ated with the vector instance. Higher-level synchronization is used to ensure that a
java.util.ConcurrentModificationException is thrown in the critical case where
elementData is updated during an iteration.2 One of the reports intsp corresponds to

2This feature is not implemented in the version of libgcj [49] that we used.

4.5. EXPERIENCE 75

a global variable for the minimal tour length found so far. The updates are monotone
and double checked, and concurrent reads of outdated information are tolerated by the
algorithm. Hence this actual race is benign. Another report corresponds to objects that
represent route information (classTourElement). In the actual execution, writes are or-
dered with respect to reads due to higher level synchronization, hence there is no actual
race.

In hedc, specjbb, andjigsaw, most reports are due to a variety of patterns for lazy initial-
ization resembling the double-checked locking [105]. The correctness of such patterns
depends on type modifiers of the initialized fields (final or volatile); these modifiers con-
trol the implementation and the actual ordering of memory access at runtime [79]. Several
instances of double-checked initialization in the GNU library are indeed incorrectly im-
plemented (field variables are not declared final or volatile), such that partly initialized
objects could become accessible to threads other than the creator thread.

Another report addresses the fieldnextEntry in classjava.util.HashtableEntry;
the problem is again related to an unsynchronized read through an iterator, while updates
to this field through the implementation of thejava.util.Hashtable class are synchro-
nized.

• other: This case reports conflicts that do not fall into any other category, i.e., cases in
which no common abstract lock object can be determined for reads and writes. Inmtrt,
a conflict is found on the variableRayTracer::threadCount, which is however not
relevant to the execution of the program (this variable presumably served for debugging
purpose). Inmold, the conflict report on the global variablemd::interactions is benign
because the conflicting access is done only by one of multiple runtime threads with a
specific id (control flow depends on thread id). Inray, some reports correspond to fields of
objects that are initialized by themain thread and consequently associated with a specific
instance of a worker thread that issues reads and writes (the objects are not however not
recognized as thread-specific). The conflict analysis recognizes that events of themain

thread do not participate in a conflict; however, the worker thread is not unique and hence
the analysis conservatively assumes that the read and write events by the worker threads
conflict.

In monte, a conflict is found on a variable that flags if debug information should be
printed. The conflict is benign, because the variable is always set to the same value.
In hedc most reports are spurious for two reasons: Some critical objects are accessed
from a non-unique user thread; at runtime however, each instance is affiliated with only
one actual thread (but not recognized as thread-specific by the compiler). Moreover,
some critical objects are accessed by different abstract threads without lock protection.
At runtime, an ordering of these access events is guaranteed through thread start and
join, however the corresponding thread control events are not safely recognized by the
conflict analysis. A true report points to an unsynchronized assignment ofnull to a
shared variableTask::thread , which could be read by another thread and lead to a
NullPointerException. Figure4.1 illustrates this scenario. Note that the conflicting
access statements to variablethread (lines 10, 18, 19) are in different classes and hence
difficult to spot through manual inspection.

76 CHAPTER 4. STATIC DETECTION OF DATA RACES

Program 4.1: Harmful data race in classTask and subclasses (benchmark
hedc).

1 abstract class Task implements Runnable {
2 protected Thread thread_ = null;
3 public abstract void cancel();
4 public abstract void runImpl();
5
6 public void run() {
7 try {
8 runImpl();
9 } catch(Exception e) { ... }

10 thread_ = null; // data race!
11 }
12 }
13
14
15 class TaskImpl extends Task {
16
17 public synchronized void cancel() {
18 if (thread_ != null)
19 thread_.interrupt(); // may cause NullPointerException
20 }
21
22 public void runImpl() {
23 ...
24 }
25 }

4.5.2 Dynamic aspects

We do not report numbers forspecjbb andjigsaw because these benchmarks instantiate objects
through reflection, i.e., through methodClass::newInstance. Although recognized as as
allocation sites by the static analysis, the current implementation of the program instrumentation
for tracking objects and their properties at runtime does not handle such object creation sites.

First, we investigate the discrepancy between the compile-time classification of allocated
objects and their runtime properties. Table4.7lists the number of allocated instances (no arrays
and classes) that areshared andconflicting. The compile-time classification assharedis done
according to the algorithm in Section3.3.4, hencethread-specificor shared read-onlyobjects
are included in the numbers. At runtime, an object becomes shared as soon as a thread differ-
ent from the allocating thread accesses the object. We use a mechanism for object ownership
tracking that is described in [122]. The compile-time classification ofconflictingcorresponds
to the results of the conflict analysis (an object is conflicting if it has at least one conflicting
field). Columnconflict - runtime reports the number of objects that are subject to anobject
race. Object-race detection is described in Chapter7.

The numbers illustrate that the correspondence between the static approximation and ac-
tual situation at runtime can widely differ among the benchmarks.mtrt, sor, and monte
show a good match, while the compile-time classification intsp, ray, andhedc is far off the
runtime reality. There are two main reasons for this discrepancy: (1) unnecessary conser-
vatism of the static analysis and (2) the runtime classification depends on the control flow
and input of the program. While aspect (1) could be improved through a more precise

4.5. EXPERIENCE 77

shared conflict
compile-time runtime compile-time runtime

philo 7 4 0 0
elevator 41 36 31 0
mtrt 23 12 1 1
sor 3 3 2 0
tsp 10006 371 5000 162
hedc 781 143 510 28
mold 4109 6 0 0
ray 2104354 679 2103799 0
monte 20008 20005 0 0

Table 4.7: Allocation of instances with compile-time classification and actual situation at run-
time (no arrays and classes).

static analysis or programmer annotations, aspect (2) is an inherent limitation of static anal-
ysis.

In ray and hedc, the discrepancy is mainly due to the first aspect (unnecessary conser-
vatism). The thread-specific analysis (Section3.4.3) is not successful to recognize several
actually thread-specific objects inray; in hedc, another source of imprecision is the loss of
context sensitivity in the HSG due to in a large recursion that classifies a number of objects as
sharedthat are actually thread-local.

In tsp, the discrepancy is due to the second aspect: A certain number of objects that repre-
sent route information are pre-allocated by the main thread. Worker threads acquire and release
such objects from a pool and depending on the problem size, only few of objects in the pool
may be used by some worker thread (i.e., become shared or conflicting). Hence the relation be-
tween compile-time and runtime classification as a metric for the accuracy of the shared/conflict
analysis has to be taken with care.

shared r/w conflict conflict site
philo 96.7 0.0 0.0
elevator 72.7 25.5 25.0
mtrt 91.4 0.0 0.0
sor 99.7 99.7 99.7
tsp 74.9 18.1 18.1
hedc 78.1 68.6 48.3
mold 99.0 0.5 0.5
ray 71.7 64.3 64.0
monte 31.7 5.4 5.4

Table 4.8: Field access according to the static classification of target objects (classes and in-
stances, no arrays). The numbers are reported relative to access events toglobalobjects (100%).

Table4.8 reports on the number of field access events toshared r/w andconflict objects
relative to the access events toglobal objects; the classification of objects is done at compile-
time (Table4.7). For benchmarks that are well amenable to the conflict analysis (philo, mtrt,
sor, mold, andmonte), the number of access events toconflict objects is only a small fraction of
the access events toshared r/w objects. This reduction enables to implement a sparse program
instrumentation for efficient, dynamic conflict detection (Chapter7). Not all access events to
conflict objects can participate in access conflicts. Columnconflict site reports the number of

78 CHAPTER 4. STATIC DETECTION OF DATA RACES

Program 4.2: Violation of the init-escape ordering illustrated on the example of an
erroneous implementation of the Double Checked Locking idiom.
class DoubleChecked {

static Data data = null;

static void getUnique() { // executed by "reader" threads
if (data == null) {

synchronized (this) {
if (data == null) // "double check"

data = new Data();
}

}
use(data);

}
}

executed access statements that are neither NEW-safe, nor START-safe, nor JOIN-safe. For
most benchmarks, the reduction compared toconflict is not significant.

4.6 Extensions for weak memory models

The runtime model in Section4.3 assumes a total order of events and abstracts from the run-
time reality of modern compiler- and hardware systems that reorder memory accesses. This
section discusses the consequences of that simplification on the validity of the three ordering
relationships derived from OUGs. The conflict analysis is extended such that situations where
the reordering of memory accesses could invalidate the init-escape ordering are identified.

4.6.1 Confinement between NEW and ESCAPE

The confinement of events between NEW and ESCAPE relies on the assumption that memory
access happens in a total order that is consistent with the program order of individual threads
More specifically, PUT events that occur before an ESCAPE according to the control flowγ
are assumed to happen-before subsequent LOAD and GET events. Although such ordering
between ESCAPE and preceding PUTs could be achieved with the compiler’s help through a
write barrier before the ESCAPE [97, Section 3.1.1], Java’s memory model does not prescribe
this ordering for ordinary, i.e., non-volatile or non-final, variables [79].

The Double-Checked Locking idiom [105] illustrates the problem: The idiom is commonly
used to provide a one-time initialization and subsequent lock-free read access to a variable.
Unfortunately, many implementations of this idiom are incorrect [97] such as the example in
Program4.2. The OUG of theData instance specifies that all access events issued inside the
constructor occur between NEW and ESCAPE (target variable isdata). The conclusion that
these access events are ordered with respect to subsequent reads of other threads is incorrect:
Java’s memory model [79] does not guarantee that the update ofdata is visible only after all
updates inside the constructor ofData are visible to other threads. Hence some thread could
obtain the a reference to theData instance and come across a partly initialized object. The
problem is that the variable that conveys the reference to other threads (data) is itself subject

4.6. EXTENSIONS FOR WEAK MEMORY MODELS 79

of a data race. In the given implementation, (Program4.2), two reports should be issued: one
for variabledata and another report for ordinary field variables ofData that are initialized in
the constructor and read by other threads.

There is however a simple fix to the implementation in Program4.2: If variabledata was
declared as volatile it would not be conflicting and subsequently init-escape protection could
be assumed for access events inside the constructor ofData. In such case, the conflict analysis
should not generate a report.

More general, ordering across an ESCAPE event is only guaranteed if the variable through
which the reference escapes isnotsubject to a conflict. Abstract objects for which all ESCAPE
events target non conflicting variables areorderly escaping. We have extended the conflict anal-
ysis to determine theorderly escape propertyof an object before confinement between NEW
and ESCAPE is inferred: The conflict analysis is invoked recursively on all abstract objects that
are target of an ESCAPE; cyclic dependencies in the analysis are resolved conservatively (all
objects are not orderly escaping).

Note that there is a chain of logical implication among conflicts: A conflictc1 on a reference
variablev might lead to a conflictc2 on the object which reference escapes through that variable
v (conflict c2 is due to the loss of init-escape ordering). In the original version of the conflict
analysis, such “second order” conflictsc2 might be overlooked, whilec1 would still be reported.

As an aside, note that most implementations of lock-based data race checkers that are de-
scribed in literature, e.g., [103], also assume strict ordering between escape and preceding vari-
ables accesses: To account for an initialization phase during which unsynchronized access is
permitted, the lockset checking is usually delayed until the first access of a thread that is differ-
ent from the allocating thread. Preceding access events are not recorded in the access history
and hence errors due to reordering through an unsafe ESCAPE may not be recognized.

4.6.2 Ordering before START

Java’s memory model [79] defines that a START event happens-before all events of the started
thread [79]. Hence the ordering of runtime events in all executions are consistent with the
thread control relationτ among the corresponding abstract events and “ordering before START”
protection is valid, independently of the ordering constraints for ordinary memory accesses.

4.6.3 Ordering after JOIN

Java’s memory model [79] defines that all events of a thread happen before the JOIN event of
that thread; the argument is symmetric to “ordering before START”.

4.6.4 Experience

Table4.9specifies the conflict reports of the enhanced conflict analysis; we compare the results
to the reporting of the standard conflict analysis in Tables4.4, 4.5, and4.6.

The first two columns illustrate the number of events protected through init-escape ordering
relative to the values in Table4.4. For some benchmarks, the condition of an orderly escape
means a severe setback: Inelevator the average number of NEW-safe events is only 27.2%

80 CHAPTER 4. STATIC DETECTION OF DATA RACES

of those determined by the standard analysis. The reduction is mainly due to events in ab-
stract objects that are reachable from the fieldjava/lang/Vector::elementData. The field
is subject to a conflict (an iterator reads it without synchronization) and hence init-escape con-
finement cannot be assumed for all objects that are reachable through that field. Consequently,
the number of conflicting instances, alloc and access sites also increase for this benchmark.
Although the ESCAPE is not considered assafeby the analysis, the implementation ensures
that the deposit of a reference in a Vector and a subsequent retrieval of it through an iterator in
another thread is always separated through an intervening synchronization in both threads on
theVector instance.

A similar situation occurs inmoldyn where the number of events that are NEW-safe is
reduced to 37.9% of the original value. The reason is however different: The analysis runs into
a cyclic dependency (determine safety of ESCAPEs foro1 → conflict analysis for someo2 →
relies on conflict property ofo1), such that thread-locality cannot be determined for four abstract
objects which are then conservatively classified as conflicting. These objects are frequently
accessed (static access sites and dynamic access counts).

For hedc, specjbb, andjigsaw, the effectiveness of the conflict analysis is also significantly
reduced and there are two main reasons: First, all benchmarks exhibit large recursions in their
CG which leads to a loss of context sensitivity during the construction of the HSG; conse-
quently several nodes in the HSG are merged (false aliasing), leading to spurious cycles in the
shape-graph. This introduces cyclic dependencies in the conflict analysis when the orderly es-
cape property is determined; such dependency is handled conservatively leading to a loss of
init-escape confinement for all OUGs in a cycle. Second, large OUGs that subsume multiple
allocation and escape sites are more likely to loose init-escape confinement due to a number
of different targets objects of ESCAPE events; the classification of a single ESCAPE as un-
ordered leads to a loss of init-escape confinement in the overall OUG such that a large number
of allocation and access sites is classified as conflicting.

NEW-safe inst allocs accs fields
max (%) avg (%) total % total % total % total %

philo 100.0 95.3 0 100.0 0 100.0 0 100.0 0 100.0
elevator 64.8 27.2 8 266.7 10 200.0 76 271.4 9 180.0
mtrt 100.0 76.1 1 100.0 1 100.0 2 100.0 1 100.0
sor 100.0 100.0 0 100.0 0 100.0 0 100.0 0 100.0
tsp 100.0 95.2 1 100.0 1 100.0 32 100.0 3 100.0
hedc 91.3 34.3 36 189.5 236 120.4 1070 146.6 211 166.1
mold 66.4 37.9 3 100.0 4 100.0 683 34150.0 64 6400.0
ray 100.0 79.2 7 116.7 16 114.3 98 103.2 10 100.0
monte 100.0 85.1 0 100.0 0 100.0 2 100.0 1 100.0
specjbb 65.9 15.2 16 320.0 239 118.9 1989 119.1 254 119.3
jigsaw 100.0 21.5 54 234.8 153 151.5 1636 142.4 246 147.3

Table 4.9: Conflict characteristics if confinement between NEW and ESCAPE is abandoned
for objects that do not orderly escape. The percentages given are relative to the results of the
standard conflict analysis in Tables4.4, 4.5, and4.6).

4.7. DISCUSSION 81

4.7 Discussion

The computation and analysis of OUGs requires whole-program knowledge and hence Java
features like reflection and dynamic class loading are not accommodated.

4.7.1 Sources of unsoundness

The conflict analysis considers only object access from user threads (Section3.2). However
access from init threads can also participate in conflicts, and those conflicts are not detected by
our procedure.

Our model does not consider the execution offinalize methods that are typically invoked
by a separatefinalizer thread.

The occurrence of a JOIN event in the OUG means that all runtime instances of the respec-
tive abstract thread are joined. The analysis uses a heuristic for determining the validity of a join
but this heuristic is not sound (Section4.1). The predicatemustJoinThread(m), which deter-
mines if methodmexecutes a join on every control flow path is defined such that an invocations
of java.lang.Thread::join in a loop is still regarded as “must join”, although the control
flow may allow to bypass the loop body.

4.7.2 Sources of incompleteness

There are two main sources of incompleteness: (1) the inaccuracy of alias and type information
that lead to unnecessary conservatism; (2) parallel programming patterns that are not recog-
nized in our analysis. The first aspect has been discussed in Section3.6.2, the second aspect is
discussed in this section.

Java provides language features for synchronization, i.e., monitor-style synchronization
(synchronized keyword, wait, notify) and thread management primitives (start, join). Our
analysis is tuned to recognize the protection scope of these features in the most common cases.
In some cases, however, the analysis is unnecessarily conservative and reports a potential con-
flict event though there is no actual synchronization defect. We give some examples for such
programming patterns in the following:

Lock-free access to shared data. Program4.3is an efficient (lock-free) implementation of a
shared variable that is frequently read and seldomly updated. The issue of this synchronization
pattern is that threads that read thedata field (line 7) never see a value that is ”too old”. In
particular, it is never the case thatavailable is seen astrue but data is seen asnull. The
writer thread may exchange the object reached through fielddata and readers eventually see
the new object. The correctness of this synchronization pattern (which cannot normally be
automatically deduced) relies on the ordering guarantees forvolatile variables given by the
Java memory model [79]. Moreover, in a real program, class “Object” should be replaced by
a class with all-final fiends. The example is taken from [70] and has been given by Doug Lea.
Our conflict analysis reports a conflict on the variabledata due to concurrent access and the
absence of a unique enclosing lock.

82 CHAPTER 4. STATIC DETECTION OF DATA RACES

Program 4.3: Example for synchronization through a volatile variable.
1 class VolatileSync {
2 volatile boolean available = false;
3 Object data = null;
4
5 void f() { // executed by "reader" threads
6 if (available)
7 use(data);
8 }
9

10 void g() { // executed by a "writer" thread
11 while (true) {
12 if (occasionallyTrue) {
13 data = new Data();
14 available = true;
15 }
16 }
17 }
18 }

Program 4.4: Example for synchronization based on a semaphore.
1 class Semaphore {
2 boolean occupied;
3
4 synchronized void p() {
5 while (occupied)
6 wait();
7 occupied = true;
8 }
9

10 synchronized v() {
11 occupied = false;
12 notify();
13 }
14 }
15
16
17 class Example2 extends Thread {
18 static Semaphore sem;
19 static Data data;
20
21 static main(String args[]) {
22 sem = new Semaphore();
23 data = new Data();
24 for (int i = 0; i < 2; ++i)
25 new Example2().start();
26 }
27
28 void run() {
29 sem.p();
30 data. ...; // operate on data
31 sem.v();
32 }
33 }

4.7. DISCUSSION 83

Synchronization with semaphores. Program4.4 shows the use of a semaphore for mutual
exclusive access to the shared data reachable through fielddata. According to the definition of
anaccess conflict(Section4.4), the conflict analysis classifies the access statement in line 30 as
conflicting (no lock held during access).

Shared object pools. Another pattern that is not recognized by our concurrency analysis are
shared object pools: Threads temporarily borrow objects from the pool; references to such
objects are guaranteed to be available only to one thread at a time. This pattern is used intsp
andhedc; both cases are handled conservatively by our analysis such that the respective pooled
objects are considered and reported as conflicting.

Summarizing, we found that synchronization patterns like the above examples that deviate
significantly from Java’s monitor-stylesynchronized mechanism are sparsely used in Java ap-
plications. Their correct implementation requires most diligent programming expertise and an
in-depth knowledge of the Java memory model. Some effort to make efficient synchronization
patterns and thread-safe data structures available in the standard library is underway [74]; spe-
cific library classes and their correct uses could be incorporated in the static analysis presented
here to reduce spurious reporting for such data structures.

4.7.3 Related work

We discuss related work in the field of the parallel program analysis only as far as it relates
to determining the structure of concurrency, synchronization, and the interference on shared
data. Extensive research is done on the analysis and optimization of parallel (shared memory)
programs that assumes that such information is known or can be easily determined from the
program (structured multi-threading); this research is not described here.

Bristow et al. [17] use an inter-process precedence graph for determining anomalies in pro-
grams with post-wait synchronization. Taylor [118] and Duesterwald and Soffa [37] extend this
work and define a model for parallel tasks in Ada programs with rendez-vous synchronization.
The program representation in [37] is modular and allows to efficiently analyze programs with
procedures and recursion based on a data flow framework. Masticola and Ryder [81] generalize
and improve the approach of [37] and provide experimental evidence of the effectiveness of
their technique. OUGs borrow ideas from the program representations proposed in [17, 37], but
OUGs implicitly focus on those parts of the program that access the abstract object modeled by
the OUG. Hence, OUGs account for an object-oriented model of memory, threads, and locks
and allow to tailor the analysis of methods to different object contexts (Section4.1).

Naumovich et al. [89] present the MHP (may happen in parallel) analysis that computes
potential concurrency among statements in multi-threaded Java programs. The authors show
that the precision of their data flow algorithm is optimal for most of the small applications that
have been evaluated; medium to large sized benchmark programs have not been studied. The
approach requires that the number of real threads in the system is specified as input to the anal-
ysis; the handling of recursion is not described in the paper. MHP analysis does not distinguish
statements according to their execution context and the accessed data. The combination of MHP
information with a model of program data (heap shape and reference information) could be used
to determine conflicting data accesses. This approach is discussed by Midkiff et al. [84] but no
compiler implementation results are yet available. OUGs naturally provide such an integration

84 CHAPTER 4. STATIC DETECTION OF DATA RACES

of control and data flow information in context-sensitive manner.

Mellor-Crummey [83] developed an inter-procedural data dependence analysis for Fortran
programs with parallel loops. The analysis determines protection guarantees for certain data
that are accessed by one thread (loop iteration) at a time. The results of this analysis are used to
reduce the instrumentation for a dynamic race checker.

The static analysis of Emrath and Padua [40] and similarly the analysis of Balasundaram
and Kennedy [11] determine the interaction of program statements or blocks with shared data
in the presence of post-wait synchronization. The novel aspect of this work is that the program
model addresses program statements and data. Both analyses can determine the ordering of
accesses from different threads to the same data even for complex parallel loop constructs with
nested synchronization. The approaches assume a static data model of variables and arrays; the
thread structure corresponds to parallel loops or is explicitly given. Our approach targets object-
oriented programs that commonly have unstructured threading and dynamic data structures that
do not easily map into the abstractions used by [40, 11].

In object-oriented programs, access to shared data is typically done indirectly through ref-
erences. In such an environment, program analysis faces more difficulties to determine the
relation between threads and the data they access than in languages with limited pointer usage
(e.g., Fortran). Flow-sensitive pointer analysis has been extended to multi-threaded programs
by Rugina and Rinard [101]. Their algorithm for Cilk programs explicitly models the interfer-
ence between parallel sections in the program and the additional aliasing created through this
interference. Unlike Cilk, other object-oriented languages model concurrent activities them-
selves as objects, and hence the scope of concurrency is not limited to a static program scope
(unstructured concurrency). A starting point for the optimization of such programs is to deter-
mine the locality of objects with respect to allocating threads. Based on different variants of
pointer analyses, escape analyses have been developed for Java, e.g., [13, 15, 24, 128]. OUGs
extend this work and model locking, threads- and their interaction with objects explicitly.

Choi et. al. [25] use an inter-thread call graph, which extends an ordinary call graph to in-
clude edges for thread start (but not for thread join). Synchronized blocks are modeled explicitly
by approximating locks held at block boundaries. The inter-thread call graph contains one node
per method and hence, unlike OUGs, does not distinguish method executions in different thread
and heap contexts. In [26], the authors describe a more sophisticated, path-sensitive static data
race analysis. Potential data races are determined along a complex data flow analysis that ap-
proximates lock protection and statement ordering. While the goals of their analysis and our
static data race detection in Chapter4 are the same, the algorithms and data structures are dif-
ferent. One of the important differences between [26] and our analysis is the notion of context
in the context-sensitive analysis (see Section3.6.3).

Other representations of parallel programs have been designed with specific optimizations
in mind. Diniz and Rinard [35], e.g., focuses on the movement and elimination of lock op-
erations in automatically parallelized object-based programs. Their analysis is based on an
inter-procedural control flow graph of all threads. This graph models the structure of locking
and protected program scopes. Data are modeled as read and write sets that are attributed to
the individual nodes of the graph. The transformations require that the program is free of data
races, a condition met by automatically parallelized programs. Unlike OUGs, protection of data
against concurrent access is only determined according to lock protection and a known relation
between locks and protected code regions. Polymorphism and different execution contexts of

4.7. DISCUSSION 85

methods make it difficult to infer such a relation in typical object-oriented programs. OUGs, in
contrast, compute a relation between data and their protecting locks.

Warlock is a tool [112] that implements a purely static approach to determine lock-based
data races in multi-threaded C programs. The tool basically traces the execution of every path
through a program and notes which locks are held each time a variable is accessed. Warlock is
an interactive tool that is guided by program annotations and user input to reduce the number
of false reports.

All aforementioned approaches to relate threads and accessed data, including OUGs, are
based on data and control flow information. Recent work on type systems has shown that data
protection and locking policies can be codified in data and method declarations that are checked
statically. The main advantage of this approach is its modularity, which makes it, in contrast to
a whole program analysis, well amenable to treat incomplete or large programs. Unlike OUGs,
the application of these approaches to existing programs is not without difficulties: The type
systems have either been proposed as extensions to existing programming languages [9, 16], or
as annotations [41]. Flanagan and Freund [41] present a type system that is able to specify and
check lock-protection of individual variables. In combination with an annotation [42] generator,
they applied the type checker to Java programs of up to 450 KLOC. The annotation generator
is able to recognize common locking patterns and further uses heuristics to classify as benign
certain accesses without lock protection. The heuristics are effective in reducing the number of
spurious warnings; some are however unsound (but this property has not been a problem for the
benchmarks investigated in [42]). OUGs model the reachability of objects explicitly and recog-
nize cases of isolation beyond lock-protection that are covered by the heuristics automatically.
The number of clustered warnings generated per KLOC is of the same magnitude as the reports
we obtain for our benchmarks.

5
Static detection of atomicity violations

This chapter investigates situations where access to shared variables is ordered through critical
sections, i.e., there are no data races. However, critical sections can be too fine grain and may
not cover at once an entire sequence of actions that a programmer intended to happen without
interference. The technique described in this chapter presumes that regions of activity without
interference correspond to methods. We present an algorithm that detects those methods that
could violate this presumption, i.e., methods that can appear to execute non-atomically. The
algorithm is based on the abstractions and the whole program analysis that are described in
Chapter3.

Example Consider the example of a bank account in Figure5.1: methodupdate is invoked
by several concurrentUpdate threads. The shared variablebalance is accessed under common
lock protection and hence there is no data race. The structure of locking specifies that the
lock associated with theAccount instance protectseither a reador a write of fieldbalance.
Methodupdate applies this synchronization discipline, however it performs a readanda write
and hence cannot be atomic.

The example illustrates a common pattern of software defects where one thread first queries
the state of some shared data structure and then relies on this information during the further
execution while being oblivious to the fact that other concurrent threads could have changed
the data in the meantime. More generally, the interaction sequence of the thread with the data
structure is not atomic, hence aviolation of atomicityoccurred.

Our strategy to determine violations of atomicity is as follows: First an object access dis-
cipline is defined (Section5.1) that, if violated, allows to conclude on common patterns of
atomicity violations at the method level. Then, an algorithm is presented (Section5.2) that
determines violations of this access discipline and hence potential violations of atomicity at
compile-time.

5.1 Method consistency

Method consistency(MC) specifies an access discipline for shared variables. The access dis-
cipline is determined from the access behavior of methods and the usage of locks. MC adopts
concepts fromview consistency[8] and extends it to accommodate the scope of methods as
consistency criterion. A violation of MC indicates that the corresponding method may not ex-
ecute atomically, i.e., there there could be interference by other threads on shared data that are
accessed in the scope of the method. The rationale of MC is to conjecture atomic treatment for

87

88 CHAPTER 5. STATIC DETECTION OF ATOMICITY VIOLATIONS

Program 5.1: Example of anAccount class with non-atomicupdate method.
class Account {

int balance;

synchronized int read() {
return balance;

}

void update(int a) {
int tmp = read();
synchronized(this) {

balance = tmp + a;
}

}
}

class Update extends Thread {
static Account acc;

static void main(String args[]) {
acc = new Account();
new Update().start();
new Update().start();

}

void run() {
acc.update(123);

}
}

a set of shared variables that are accessed in the dynamic scope of a method (method view). The
execution of a method is atomic if there are no concurrent updates of variables in its method
view.

The activities of threads are modeled bylock views. A lock viewis a set of〈variable, access〉
pairs that correspond to variable access events of a threadt in the dynamic scope of a lock. The
accesscomponent specifies if the variable is read (r) or updated (u), i.e., written, or read and
written. There is at most one entry per variable in a lock view. The set of lock views of a thread
t is specified asLt = {l0, . . . , ln} where eachl i stands for an access〈vi , ai〉.

Example For the program in Figure5.1, lock views correspond to the fields accessed
inside the synchronized methodread and the synchronized block in methodupdate:
LUpdate = {lread, l〈syncblock〉}= {{〈balance, r〉},{〈balance,u〉}}.

A method viewmodels the conjecture about sets of variables that should be treated atomically.
There is one method viewmi for each methodi; this method view contains two entries per
accessed variable, namely a read and an update entry (there are always both entries, irrespective
the kind of access performed by the method). The set of method views of a threadt is Mt =
{m0, ...,mn}.

5.1. METHOD CONSISTENCY 89

Figure 5.1: Illustration of method consistency.

Example The method views for theUpdate threads in the example are1MUpdate =
{mrun,mupdate} wheremrun = {〈balance, r〉,〈balance,u〉,〈acc, r〉,〈acc,u〉} andmupdate =
{〈balance, r〉,〈balance,u〉}.

Definition We need two concepts to define method consistency (MC):

• View overlap. Two views ui and u j overlap if their intersection is not empty,
i.e.,ui ∩ u j 6= /0.

• Chain property. A set of views{u0, . . . ,un} forms a chainwith respect to a viewu if
the set contains only a single element or for all pairs of non-empty viewswi = u∩ ui ,
w j = u∩ u j , where at least oneui, j originates from a thread that is concurrent to the
originating thread ofu, it holds(wi ⊆ w j)∨ (w j ⊆ wi).

MC is given if for all methodsi, the lock views that overlap the method viewmi form a chain.
The concept of overlap serves to filter out irrelevant variables. The chain property detects lock
usage scenarios that are susceptible to atomicity violations: e.g., a lock protectseither reads
or updates of one variable or a lock protects different but overlapping sets of variables (see
high-level data races [8]). If the chain property does not hold for a given methodi and a set of
overlapping lock views, MC is violated in methodi and a potential violation of atomicity ini is
detected.

Figure5.1illustrates the definition of method consistency using a method viewu, lock views
w0,w1,w2, and a number of events that stand for runtime occurrences of read and write access
to shared objects. In part (a) of the figure the lock views form a chain, i.e., they are nested. Part
(b) of Figure5.1shows a scenario where the lock views do not form a chain (w1 andw2 are not
nested), hence method consistency is violated.

Example In the example, there are concurrent threadstUpdate with method views
mrun,mupdate, andmread. All lock views in LUpdate = {lread, l<syncblock>} overlap withmrun

and mupdate but they do not form a chain; hence MC is violated for the methodsrun and
update. Figure5.2 illustrates this situation.

1We omit the method view forread because this method does not execute subordinate locking and does not
call java.lang.Object::wait; provided that shared data access is synchronized through monitors, this method
is not a candidate for an atomicity violation (details in Section5.2.2).

90 CHAPTER 5. STATIC DETECTION OF ATOMICITY VIOLATIONS

Figure 5.2: Method view and lock views for Program5.1.

Program 5.2: ClassAccount with atomicupdate method.
class Account {

int balance;

synchronized int read() {
return balance;

}

synchronized void update(int a) {
int tmp = read();
balance = tmp + a;

}
}

Program5.2 shows the corrected implementation of classAccount where methodupdate
is atomic. If this implementation is used in the context of theUpdate threads in Program5.1,
method consistency exists: There is a single lock view in this program corresponding to method
update, i.e.,LUpdate = {lupdate} = {{balance/u}}; methodread is only called in the scope
of update, hence locking is reentrant in this invocation context ofread and the analysis does
not register a lock view. The lock viewlupdate overlaps with the method viewmupdate and, as
there is only a single overlapping lock view, trivially forms a chain. Figure5.3 illustrates this
situation.

Figure 5.3: Method view and lock views for theAccount class with atomicupdate method
(Program5.2).

5.2. ALGORITHM 91

5.2 Algorithm

MC is a property of a program execution. In this section, an algorithm is presented that deter-
minespotentialviolations of MC through static program analysis. The algorithm is based on
abstract domains of access events and views, like the static conflict detection presented in Chap-
ter4. When there is no risk of confusion, we just refer to “MC violations” and “views”, instead
of “potential MC violations” and “abstract views”. Violations of MC are determined in two
steps: First, abstract views are computed (Section5.2.1); then violations of method consistency
are determined and reported (Section5.2.2).

5.2.1 Computation of views

Views are computed along the symbolic execution according to the transfer rules in Figure5.4.
The execution maintains a stack of lock views (LV) and a stack of method views (MV) that keep
track of the method and lock scopes that areactive, i.e., on the simulated runtime stack at a
certain point during the symbolic execution.

Field access to shared abstract objects is recorded in the views: Lock views containeither
a read entryor an update entry (update overrides read), depending on whether the variable is
read or updated in the scope of the corresponding lock. A readand update entry is added to
all active method views regardless of the kind of access. This means that method views always
contain pairs of entries for each variable (one for access type read and one for update) such that
overlap with a lock view can be determined through intersection (the intersection is not empty
if the lock view operates on a variable that is common with an entry in the method view).

Access events that occur during the initialization of a shared object cannot participate in
inter-thread interference that leads to a violation of atomicity. Hence we chose that views should
not account for access through thethis-reference in the scope of a constructor and for access in
the scope of initializer methods. This convention is practical to reduce the number of spurious
reports but entails the potential of underreporting (Section5.4.1).2 Access to final and volatile
fields is omitted from the views.

The elements of the view set specify variables in terms of fields. Hence these transfer
rules do not exploit the availability of precise heap context information during the symbolic
execution: The same field in different abstract objects is considered as the same variable (field-
basedanalysis [127]). A more precise variable disambiguation would be possible, however
there are several reasons that justify the simpler variant we present here:

• The abstraction errs on the conservative side because access events thatmay target the
same instance at runtime target the same variable abstraction in the static analysis (one
abstract object per class).

• In the benchmarks at hand, most of the shared abstract objects are accessed by the same
code in equivalent contexts, i.e., the lock and method views would be the same for dif-
ferent instances. Hence the overreporting introduced through the omission of the heap
context information is minor.

2This heuristic approximates the NEW-safe property (Section4.3.2) of access statements; as access events are
collected during the symbolic execution, OUGs and theΘnew relation are not available at the stage of the whole
program analysis.

92 CHAPTER 5. STATIC DETECTION OF ATOMICITY VIOLATIONS

Variables and domains Analysis state
m∈M methods CAS: C → O alias set lookup for classes
c∈ C classes AS: V → O alias set lookup for local vars
f ∈ F fields MV : 2U stack of current method views
v∈ V local variables LV : 2U stack of current lock views
o∈ O alias sets
t ∈ T abstract threads
u,w∈U views

Statement Action
v = c. f if (CAS(c).p is shared)

∀u∈MV : u = u∪{〈 f , r〉,〈 f ,u〉};
∀u∈ LV : if (〈 f ,u〉 6∈ u)

u = u∪{〈 f , r〉};
v0 = v1. f if (AS(v1).p is shared)

∀u∈MV : u = u∪{〈 f , r〉,〈 f ,u〉};
∀u∈ LV : if (〈 f ,u〉 6∈ u)

u = u∪{〈 f , r〉};

c. f = v if (CAS(c).p is shared)
∀u∈MV : u = u∪{〈 f , r〉,〈 f ,u〉};
∀u∈ LV : u = (u∪{〈 f ,u〉})−{〈 f , r〉};

v1. f = v0 if (AS(v1).p is shared)
∀u∈MV : u = u∪{〈 f , r〉,〈 f ,u〉};
∀u∈ LV : u = (u∪{〈 f ,u〉})−{〈 f , r〉};

v = m(v0, . . . ,vn) MV.push(new MethodView(m, t))
if (m is synchronized)

LV.push(new LockView(t));
process(m);
if (m is synchronized)

LV.pop();
MV.pop();

monitorenter v LV.push(new LockView(t))
monitorexit v LV.pop()

Figure 5.4: Transfer rules for the computation of method and lock views along the symbolic
execution;t is the current abstract thread.

• The implementation of the consistency checker and the reporting are simplified.

The analysis does not register lock views for lock operations that are found to be reentrant, i.e.,
an acquire operation on a lock that is already taken is ignored.

5.2. ALGORITHM 93

M = 〈all method views〉;
L = 〈all lock views〉;
R= /0;

methodconsistencyanalysis()

/∗ phase 1: narrow views∗/
readonlyfields= { f : 6 ∃ u∈ L : 〈 f ,u〉 ∈ u};
∀u∈ L ∪ M:

if (〈 f , 〉 ∈ u∧ f ∈ readonlyfields)
u = u−{〈 f ,u〉,〈 f , r〉};

∀u∈ M:
if (meth(u) does not have subordinate locking)

M = M−{u};
partition views();

/∗ phase 2: assess method consistency∗/
∀u∈M:

olv = overlap(u,L);
ilv = checkchain(olv, thread(u));
if (ilv 6= /0)

R= R∪ {new Report(meth(u),class(u),u, ilv)};

/∗ phase 3: aggregate reporting∗/
∀r ∈ R:

if (∃s∈ R−{r} : s.fields= r.fields∧
s.methis abover.methin the caller hierarchy)

R= R−{s};

Figure 5.5: Algorithm for determining violations of MC.
.

5.2.2 Violations of method consistency

Figure5.5 shows the algorithm that determines potential violations of MC. Input to the algo-
rithm are sets of method views and lock viewsM andL that have been determined during the
symbolic execution. The result of the algorithm is the set of violation reportsR. The auxiliary
functionsmeth(), class(), andthread() take a view as argument and return the method (if view
corresponds to a method), the class (views are partitioned according the affiliation of fields with
classes, see below), and the thread that exhibits the view.

94 CHAPTER 5. STATIC DETECTION OF ATOMICITY VIOLATIONS

The algorithm proceeds in three phases:

1. Views are reduced and partitioned to limit the scope of search for subsequent phases:
Fields that areshared read-only(heuristic used here: fields that are only assigned through
this in the constructor) cannot bear interference in the form of atomicity violations. In
addition, views of methods that do not execute synchronization actions in their dynamic
scope are pruned fromM because they are atomic, provided that the program is free from
data races. The operationpartition views() partitions views according to the affiliation
of fields with classes. This means that the overlap and chain properties are determined
only among field variables that belong to the same class. This strategy is justified because
object-oriented design typically imposes consistency constraints on variables of the same
class; moreover, spurious reports due to a violations of the chain property for unrelated
variables are omitted. We discuss the effect of this partitioning of views on the reporting
further in Section5.4.3.

2. Method consistency is assessed among the method and lock views according to the over-
lap and chain criteria. Methodcheckchain() returns a set of potentially interfering lock
views ilv ⊆ L that violate the chain property with respect to a method viewu.

3. The reporting is aggregated in the third phase of the algorithm. Assume some method
m is found to violate MC; naturally, all callers ofm will also violate MC. Hence, for a
specific violation only the lowermost method in the caller hierarchy is reported.

A report of a potential violation of MC specifies the following information:

• meth: the method that exhibits this view.

• fields: the field variables in this view.

• class: the class to which the fields in this view belong to.

• olv: set of overlapping lock views (locked object or method and the set of field variables
that cause interference).

5.3 Experience

First, we verify if the analysis is capable do detect known violations of atomicity that cor-
respond to synchronization defects. Our system determines atomicity violations that corre-
spond to the scenarios of theAccount, java.lang.StringBuffer, java.util.Vector and
java.io.PrintWriter classes in [45]. Moreover, non atomicity in the use of iterators for
common collection classes likejava.util.Vector andjava.util.Hashtable that are dis-
cussed in [126] are detected. These classes provide explicit means to determine actual viola-
tions of atomicity at runtime (java.util.ConcurrentModificationException). We have
also successfully checked several scenarios with high-level data races, e.g., theCoordinate

example in [8]. Second, we look at several benchmark programs (Section3.5.2) and determine
potential violations of atomicity at the application scope.

I/O facilities are commonly shared among threads and interaction sequences of individual
threads are usually not atomic. We omit the reporting of violations of method consistency

5.3. EXPERIENCE 95

time mem reports methods
[s] [MB] app lib app lib

false–spurious–benign–harmful reports total reports total
philo 0.1 1 0 0 0 4 0 24
elevator 0.2 3 0–0–1–0 0–1–0–0 4 16 2 32
mtrt 1.1 5 0 0–3–0–0 0 43 3 207
sor 0.1 1 0 0 0 5 0 2
tsp 0.2 1 0–1–0–0 0 1 14 0 27
hedc 19.9 58 0–2–3–0 3–5–2–0 10 141 3 366
mold 0.3 2 0–1–0–0 0–2–0–0 6 28 0 24
ray 0.3 3 0–1–0–0 0–2–0–0 3 45 0 26
monte 0.3 3 0 0–1–0–0 2 71 0 38
specjbb 23.9 30 0–17–3–0 1–3–0–0 19 472 5 317
jigsaw 18.4 34 0–19–2–2 1–3–0–0 17 474 3 276

Table 5.1: Analysis characteristics and reports of atomicity violations.

related to I/O library classes because non-atomicity is the natural behavior of these classes that
users expect. Moreover, our current implementation does not account for array access and hence
atomicity violations that are due to thread interference on shared arrays may not be reported.

The first columns in Table5.1show the execution times of the MC analysis and the memory
requirements of the static analysis on a Pentium IV 1.4 GHz multiprocessor system. Overall,
the analysis is practical for the reported programs and the resource requirements are moderate.

Further columns in Table5.1characterize violations of MC that we found. Columnreports
specifies the number of method views that are found to be inconsistent with lock views. We
report only the smallest method views that still exhibit violations; method views that are a
supersets of those reported would exhibit the same violations but would make it more difficult
to identify the cause of the report. If interference is due to field variables that belong to the
library classes, numbers are reported in categorylib, otherwise in categoryapp.

The assessment of individual reports can be difficult and requires precise information about
the synchronization discipline for the affected shared data structures. We use the following
classification schema as a guidance (columnreports: false–spurious–benign–harmful):

• False reportsare due to the imprecision of the static analysis (e.g., if data is not shared
but actually thread-local).

• Spurious reportsspecify that violations of atomicity do not occur at runtime in the given
usage context of a data structure due to higher level synchronization (e.g., through a
protected encapsulating object or thread start/join; see also Program5.5).

• Benign reportsrefer to situations where an atomicity violation at the method level is
possible. Such situations are not uncommon and do not necessarily represent a synchro-
nization fault. This is especially true for methods that are invoked at a high level in the
caller hierarchy of a multi-threaded application with shared data. An exemplary situation
where non-atomicity is desirable are methods that calljava.lang.Object::wait: The
execution of this method suspends the current thread, expecting that other threads change
a shared (condition) variable and signal the state change such the current thread can con-
tinue execution. More general, any explicit inter-thread communication through shared
variables will lead to a violation of atomicity.

96 CHAPTER 5. STATIC DETECTION OF ATOMICITY VIOLATIONS

• Harmful reportsmean that a violation of atomicity can occur that can lead to unintended
runtime behavior.

Columnsmethodsin Table5.1 specifies the number of methods reported by the checker (re-
ports) and the overall number of methods for which a view is registered (total). The reports
contain only methods that (1) access variables in at least one subordinate lock view (viewv1 is
subordinate tov2 if v1 occurs in the scope ofv2), and (2) that are at the lowest levels of the caller
hierarchy. Aspect (1) suppresses reports of methods that do not use synchronization during their
execution but exhibit a method view that is conflicting with lock views. For those methods, we
report their callers (one of those will make use of synchronization because we assume that there
are no data races). Aspect (2) excludes the reporting of all callers of a method for which a
potential violation is determined (a method that calls a non-atomic method is not atomic either).
If a method belongs to a library class, it is reported in categorylib, elseapp.

Most of the smaller benchmarks share data in arrays, hence there are few or no classes that
we consider for reporting. Inelevator, there is one benign report for a shared data structure that
represents the state of the simulated system and is repeatedly accessed by the top-level methods
of the simulator threads. A spurious report concerns an instance of classjava.util.Vector

that is however used such that no concurrent modification can occur.

mtrt exhibits three spurious reports that concern some instances ofjava.util.Vector and
java.util.Hashtable used in the library; these data structures are initialized once and then
read (the scenario is similar to Program5.5). tsp has one spurious report due to a lock scope that
violates the chain property but actually executes without concurrency during the initialization
of the program.

In hedc, three reports are false and correspond to execution scenarios that the compiler
conservatively assumed due to imprecise type information. Similar tomtrt, several reports
are spurious on shared collection classes where initialization and subsequent shared read are
ordered. Some reports are benign, e.g., for variables that are used to communicate information
between worker and controller thread; another benign report addresses methods that perform
subsequent access to a shared thread pool.

In specjbb, 10 reports correspond to instances that represent database records, where fields
are accessed independently and atomicity is only necessary at the level of individual fields, or
explicitly ensured by the transaction logic that is implemented at the application level. Depend-
ing on the correctness criteria at the application level, these reports can be classified as spurious
or benign. Three reports are benign and concern shared data containers that hold database
records.

We discuss two interesting reports forjigsaw. The first report addresses class
w3c.jigsaw.http.ClientState that represents an element of a linked list of client
connections. Its fieldsprev and next link the structure and are accessed indepen-
dently from fields idle and client (lock views are disjoint). All fields are cleared
when a connection is removed from the pool and hence the fields are combined to
a method view, leading to a report that does not reflect a problem in the program.
The second report concerns classw3c.tools.store.ResourceStoreManager shown in
Program 5.3. Method shutdown intends to remove all entries from the store (map
referenced through fieldentries) and prevent further insertions by setting the latch
closed. Atomicity is violated for methodloadResourceStore (the sequencecheckClosed

5.3. EXPERIENCE 97

Program 5.3: Violation of atomicity in class
w3c.tools.store.ResourceStoreManager in jigsaw.
class ResourceStoreManager {

boolean closed = false;
Map entries = new HashMap();

synchronized void checkClosed() {
if (closed)

throw new RuntimeException();
}

ResourceStore loadResourceStore(..) {
checkClosed();
StoreEntry se = lookupEntry(...);
return se.getStore();

}

synchronized Entry lookupEntry(...) {
Entry e = (Entry) entries.get(..);
if (e == null) {

e = new Entry();
entries.put(..., e);

}
return e;

}

synchronized void shutdown() {
while (...) {

// remove all entries
}
closed = true;

}
}

and lookupEntry is not atomic). An unfortunate schedule can lead to the situa-
tion that entries are added to a resource manager after methodshutdown has exe-
cuted.

The benchmarksmold and ray share part of the code and both report violation for lock
views with disjoint variable sets on classjgfutil.JGFTimer. There is indeed a notion of
consistency among the variables that could be violated if methods would be interleaved in a
particular sequence. There is however an explicit runtime check that detects this situation and
issues a warning.

So far, views are restricted to shared variables. We have experimented with a further restric-
tion: reads are only entered into lock views if the value is exposed outside the lock scope or
method (i.e, the value is returned from a synchronized method or assigned to a stack escaping
object). This modification reduces the number of reports by around 30-50%, however some
cases of high-level data races are not recognized any more.

98 CHAPTER 5. STATIC DETECTION OF ATOMICITY VIOLATIONS

Program 5.4: Example of underreporting.
class Counter {

int val;

synchronized int inc(int a) {
val = val + a;
return val;

}
}

class Main extends Thread {
static Counter ctr;

static void main(String args[]) {
ctr = new Counter();
new Main().start();
new Main().start();

}

void run() {
int i = ctr.inc(0);
ctr.inc(i);

}
}

5.4 Discussion

The algorithm for detecting method-level violations of atomicity is effective and detects several
important scenarios that can lead to actual violations at runtime. Our experience shows that
non-atomicity can also be a natural and desirable property of a method (Section5.3, benign
reports) and hence does not necessarily correspond to a synchronization defect.

The reporting of the algorithm can err in two directions: First, the algorithm isunsound,
i.e., it might overlook cases where violations of atomicity are possible at runtime; however, the
algorithm detects all cases where one thread reads a shared variable under lock protection that
may consequently be modified by concurrent threads (hence the result of the read might become
stale). Second, the algorithm isincomplete, i.e., it might report incidents that do not lead to an
atomicity violation in any execution.

5.4.1 Sources of unsoundness

Program5.4 demonstrates the unsoundness of our algorithm, i.e., it illustrates a violation of
method-level atomicity that is not detected. There are two threads that each perform two con-
sequent updates of a shared counter variableval. If methodrun would execute atomically, i.e.,
without interference, the final value of the counter would be doubled;n threads would incre-
ment the counter by 2n. However the access sequences of multiple threads could interfere and
the update of some thread might get lost. Hencerun is not atomic. Note that there is only
a single lock viewlinc that overlaps with the method viewmrun (see Figure5.6) and trivially
satisfies the chain property. Hence method consistency is not violated.

5.4. DISCUSSION 99

Figure 5.6: Method view and lock view for Program5.4.

The focus of our method is to detect violations of atomicity due to interference of field
variables. Violations that involve array variables are not detected.

5.4.2 Sources of incompleteness

Program5.5 illustrates an example for the incompleteness of our algorithm, i.e., a report of a
method inconsistency that does not correspond to a violation of atomicity: The lock views that
overlap with the view of methodrun do not form a chain (lock protects readsor updates, see
Figure5.7); hence MC is violated. However, the initialization of the map happens only once
and the effect of methodrun is the same regardless of the thread interleaving. The general
reason for this imprecision is that our analysis assumes that all control flow paths are feasible
for all threads (which is does not hold for the example at hand).

So far, the conceptual capabilities of MC have been discussed. Additional imprecision is
added through the fact that static analysis relies in many cases on a conservative approxima-
tion of the runtime situation. Abstract views might specify an approximated set of variable
access events that may differ from the actual runtime views due to infeasible control flows or
the inability of the static analysis to differentiate access to field variables in different object
instances. The approximation of the static analysis to distinguish different object instances and
to determine thread interference and data sharing can lead to reports that do not correspond to
real violations of atomicity – hence a potential source of overreporting.

5.4.3 Effect of view partitioning

The algorithm in Section5.2.2partitions views according to the affiliation of fields with classes
(operationpartition views()). This strategy reduces the size of lock and method views and we
argue that it avoids spurious violations of MC that involve unrelated variables and also makes
the reporting of harmful incidents more concise (large method views do not easily unveil the
variable(s) that caused the violation). One concern of view partitioning is that it might lead to
underreporting. We discuss in the following that this concern is immaterial.

Consider Program5.6: Two threads operate on the shared objects of classA and B that
protect their fields from unordered access through their instance locks; hence, there is no data
race. Methodupdate operates on these data structures that are individually protected through
their own locks; hence this method is a candidate for an atomicity violation. In the following,
we discuss how this potential problem is discovered in an approach without and with view
partitioning.

Table5.2 shows the method and lock views of Program5.6; read-only fields are not re-
moved. The views are specified without and with partitioning. There are no views for method
put because this method is not in the call graph of the program.

100 CHAPTER 5. STATIC DETECTION OF ATOMICITY VIOLATIONS

Program 5.5: Example of overreporting.
class Map {

Object[] keys;
Object[] values;
boolean volatile init_done = false;

void init() {
if (!init_done)

synchronized (this) {
if (!init_done) {

init_done = true;
// update keys and values

}
}

}

synchronized Object get(...) {
// read keys and values
return ...;

}
}

class MapClient extends Thread {
static Map map;

static void main(String args[]) {
map = new Map();
new MapClient().start();
new MapClient().start();

}

void run() {
// lazy initialization
m.init();
o = m.get(...);
...;

}
}

The views in Table5.2 illustrate that a partitioning can indeed lead to the loss of reports:
The three lock viewsl0, l1, l2 overlap withm1. These lock views do however not form a chain
becausel0∩ l2 = /0. Hence a violation of method consistency is reported formayinc. If the
views are partitioned according to classes, the situation is different: the lock views that overlap
m′

1.1 andm′
1.2 form a chain and hence there is no report.

This difference in the reporting is however misleading and does not reflect the impact of
view partitioning in practice: Program5.6 doesnot suffer from a potential atomicity violation
because there are no updates ofa in the program, which is necessary for methodmayinc to
observe a violation of atomicity. If there was an update ofa (e.g., a call toinc), methodmayinc
could indeed observe an atomicity violation andbothstrategies (with and without partitioning
of views) would issue a report.

5.4. DISCUSSION 101

Figure 5.7: Method view and lock views for Program5.5.

Program 5.6: Example of underreporting due to the partitioning of views.
class A {

int a;

synchronized int get() {
return a;

}

synchronized void put(int i) {
a = i;

}
}

class B {
int b;

synchronized void mayinc(A a) {
if (b == a.get())

inc();
// assert(a.a == b-1) ?

}

synchronized void inc() {
b++;

}
}

class Main extends Thread {
static A aobj;
static B bobj;

static void main(String[] args) {
aobj = new A();
bobj = new B();
new Main().start();
new Main().start();

}

void run() {
bobj.mayinc(aobj);

}
}

102 CHAPTER 5. STATIC DETECTION OF ATOMICITY VIOLATIONS

method method views lock views

not partitioned
get m0 = {〈a, r〉, 〈a,u〉} l0 = {〈a, r〉}
mayinc m1 = {〈a, r〉, 〈a,u〉, l1 = {〈a, r〉, 〈b,u〉}

〈b, r〉, 〈b,u〉}
inc m2 = {〈b, r〉, 〈b,u〉} l2 = {〈b,u〉}

partitioned
get m′

0 = {〈a, r〉, 〈a,u〉} l ′0 = {〈a, r〉}
mayinc m′

1.0 = {〈a, r〉, 〈a,u〉} l ′1.0 = {〈a, r〉}
m′

1.1 = {〈b, r〉, 〈b,u〉} l ′1.1 = {〈b,u〉}
inc m′

2 = {〈b, r〉, 〈b,u〉} l ′2 = {〈b,u〉}

Table 5.2: Method and lock views of Program5.6.

More general, our algorithm has, independent of the strategy that is used for view partition-
ing, the following property: All incidents where one thread reads a shared variable under lock
protection and other threads may update the same variable under lock protection are reported as
potential violations of atomicity.

5.4.4 Related work

Method consistency is motivated by previous work of Artho et. al. [8], which analyzes the struc-
ture of locking in a program and infers consistency constraints for sets of shared variables (view
consistency). Violations of their consistency model correspond to potential synchronization de-
fects calledhigh-level data races. The notion of high-level data races is similar to violations of
atomicity although both concepts are incomparable and several important scenarios of atomicity
violations are not covered by the definition of high-level data races [126].

Burrows and Leino [18] identify local variables that hold copies of shared data; a potential
error occurs if during the program execution, the local copy becomes inconsistent with the
original shared variable but is still assumed to hold the up-to-date value. The kind of errors
that are detected (stale-value errors) resemble violations of method consistency. Their analysis
is complementary to our work, because it detects errors that are not found by our work (our
procedure does not inspect uses of local variables; also the error in Program5.4would be found
by the stale-value analysis), and vice versa (the error in Program5.3would not be found by the
stale-value analysis).

Flanagan and Qadeer [46, 45] follow a different approach to detect potential violations
of atomicity and focus on the structure of statements and the possible interleavings of state-
ments through multi-threading. They have developed a type system that verifies atomic-
ity. Unlike our technique that regards methods as the unit of atomic execution, Flana-
gan and Qadeer conjecture atomicity only for synchronized methods and blocks (the er-
ror in Program5.3 would not be found). In their work, the type checker associates atom-
icities at the level of statements and combines these atomicities based on Lipton’s the-
ory of left and right movers [78] to obtain atomicity information for statement groups
and methods. This approach is modular and requires explicit information about the syn-
chronization discipline and lock protection of shared variables. This information is pro-

5.4. DISCUSSION 103

vided through annotations and hence Flanagan and Qadeer’s technique is not fully auto-
mated.

Wang and Stoller [126] propose dynamic techniques to detect atomicity violations that is
based on [46, 45] but improves on the precision. The key observation is that there can be groups
of transactions that the reduction-based algorithm in [45] reports as non-atomic that still behave
atomically in all schedules and hence should not be reported. Instead of individual transactions,
the algorithm of Wang and Stoller groups transactions and searches for specific non-serializable
access patterns in groups of transactions. So far, the authors have not applied their algorithms
to large programs.

Based on their earlier work in [46, 45], Flanagan and Freund [43] present also a dynamic
technique to determine violations of atomicity. Atomicity is checked for regions of code that are
synchronized and, similar to our approach, for all methods that are public or package protected.
The checker determines atomicity for over 90% of these methods, confirming that atomicity at
the method level is a reasonable expectation of the programmer and common design principle
for multi-threaded object-oriented programs. The checker infers the relation between data and
protecting locks dynamically (using an object ownership model that is similar to the model
we present in [122] and Section7.1.2) and hence, unlike in their type-based detection of non-
atomicity [46], this relation need not be specified explicitly. Moreover, the runtime technique is
able to handle programs with data races.

6
Static deadlock detection

This chapter presents a program analysis that detects potential deadlock in programs with
monitor-style synchronization. The algorithm is based on lock-usage information that are gath-
ered during the symbolic execution (Section3.4).

6.1 Resource deadlock

There are two cases that cause a thread to block upon access to an exclusive resource, i.e., a
resource that can be used by a single thread at a time: First, the invocation of a synchronized
method or the entry of a synchronized block is delayed until the accessing thread obtains the
lock associated with the target argument. Second, a call to methodjava.lang.Object::wait

(or variants of it) causes a thread to release the lock associated with the target argument and to
block until methodjava.lang.Object::notify (or some variant of it) is called by another
thread.

Definition. A resource deadlockoccurs if one or more threads move into a wait situation that
cannot not be resolved in the subsequent execution of the program. There are three factors that
can lead to such a situation:

• Critical wait: A thread invokeswait while holding locks other than the target of the call.

• Indefinite wait:A thread invokeswait but there is no corresponding call tonotify.

• Mutual wait: Several threads want to acquire the same locks in different orders and be-
come entrapped in a cyclic wait condition.

More general definitions of deadlock exist that also consider wait situations due to external
communication; our deadlock detection does not account for such wait situations.

6.2 Algorithm

The static deadlock detection algorithm proceeds in two steps: First lock, unlock, and wait
events and their execution contexts are determined. Second, a so-calledlock-order graphis
created and mutual wait dependencies are determined (Section6.2.3). An overview of the
algorithm is given in Figure6.1and is discussed in more detail in Sections6.2.1to 6.2.3.

105

106 CHAPTER 6. STATIC DEADLOCK DETECTION

Locked= 〈all abstract objects that are used as locks〉;
Waits= 〈all contexts in whichwait is called〉;
Notifys= 〈all contexts in whichnotify is called〉;
LockStrings= 〈all lock-strings〉;
R= /0;

deadlockdetection()

/∗ phase 1: critical and indefinite waits∗/
∀ w∈Waits:

let o = 〈target object ofw〉, L = 〈lockset atw〉:
if (∃ l ∈ L : l 6= o)

R= R∪ {new Report(w, CRITICAL)};
if (6 ∃ n∈ Notifys: o = 〈target object ofn〉)

R= R∪ {new Report(w, INDEFINITE)};

/∗ phase 2: mutual waits∗/
log = 〈empty graph〉;
∀ o∈ Locked:

log.addNode(o);
∀ s= 〈l0, . . . , ln〉 ∈ LockStrings:

for (i ∈ {0, . . . ,n−1})
log.addEdge(l i , l i+1);

〈Nacg,Eacg〉 = computeacg(log);
∀ n∈ Nacg:

if (n corresponds to multiple locks inlog)
R= R∪ {new Report(w, MUTUAL)};

Figure 6.1: Algorithm for determining potential deadlock.
.

6.2.1 Computation of lock usage information

Lock usage information is recorded along the symbolic execution (Section3.4) according to
the rules in Figure6.2. The rules reflect situations that may cause a thread to block a runtime.
VariableL refers to the ordered collection of abstract objects that are locked at the current state-
ment (not including the lock acquired by the statement itself). This collection is maintained by
the operationsacquireLock() andreleaseLock(); these operations are already indicated in the
corresponding rules in Figure3.8 but we repeat them here (Figure6.2) for clarification. Al-
though not specified explicitly in the rules, it is only necessary to record lock usage information
for objects that areshared(Section3.3.4). Operationprefix() converts the lockstackL to an
ordered set of abstract objectsLS, calledlock-stringsuch that the locks acquired earliest in the
scoped hierarchy are retained and abstract objects that correspond to lock reentrance are elided.

6.2. ALGORITHM 107

Variables and domains Analysis state
m∈M methods AS: V → O alias set lookup for local vars
c∈ V local variables
o∈ O alias sets
LS∈ 2O ordered set of alias sets (lock-string).

Statement Action
v.wait() let LS= prefix(L):

if (LS.length() > 1)
warn(“critical wait”);

registerWait(AS(v));

v.notify() registerNotify(AS(v));

v = m(v0, . . . ,vn) let LS= prefix(L):
if (m is synchronized∧¬ LS.contains(AS(v0))

LS.append(AS(v0));
registerLockString(l);

acquireLock(AS(v0));

monitorenter v let l = prefix(L):
if (¬ LS.contains(AS(v0))

LS.append(AS(v0));
registerLockString(l);

acquireLock(AS(v));

monitorexit v releaseLock(AS(v));

Figure 6.2: Transfer rules for the computation of lock-strings along the symbolic execution;t is
the current abstract thread;L is the stack of currently locked objects.

The operationscontains() andappend() operate on this ordered set and have the obvious se-
mantics. OperationregisterLockString() memorizes lock-strings and makes them available for
the computation of the lock-order graph (Section6.2.3). Similarly, operationsregisterWait()
andregisterNotify() record information for the detection of critical and indefinite waits (Sec-
tion 6.2.2). Lock usage information is the input to the algorithm in Figure6.1 and is provided
by the setsLocked, Waits, Notifys, andLockStrings.

6.2.2 Identifying critical and indefinite wait

Critical and indefinite waits are identified in a straightforward manner through iteration over all
calling contexts ofwait: An invocation is critical if the lockset specified by the context contains
locked objects other than the target of the call. An invocation ofwait (without timeout) is
indefinite if there are no invocations ofnotify on the same object.

108 CHAPTER 6. STATIC DEADLOCK DETECTION

6.2.3 Lock-order graph and cycle detection

In our model exclusive resources correspond to locks. A mutual wait condition cannot occur
if there exists a total order of locks and all threads adhere to this order when acquiring locks.
The lock-order graphserves to determine an ordering among locks from a program: Nodes
correspond to locks; edges correspond to the order in which some thread acquired the lock,
i.e., there is an edge froml1 → l2 if some thread acquiresl2 while holding lockl1. While the
lock-order graph can be built at runtime and used for dynamic deadlock detection (e.g., [69]),
the algorithm presented in this section computes a static approximation of the lock-order graph
over all program paths on the abstract domain of objects and threads defined in Chapter3.

Definition. A lock-order graphis a directed graphLOG= 〈N,E〉:

• N is the set of nodes corresponding to abstract objects that are used as locks.

• E is the set of directed edges that reflect the order in which each thread acquires locks.

The lock-graph is built in the second phase of the algorithm in Figure6.2(operationsaddNode()
andaddEdge()); nodes correspond to nodes in the HSG, edges are created from lock-strings.
Cycles in the lock-order graph are determined through the computation of an acyclic component
graph (ACG): If a node in the ACG subsumes multiple nodes in the original graph, a mutual
wait situation is detected and reported.

6.3 Experience

We have detected all deadlocks in the small example programs that are distributed with the Rivet
virtual machine and model checking tool [19] (benchmark sections ’Deadlock’ and ’Deadlock-
Wait’). Moreover, we apply the deadlock checker to the benchmarks introduced in Section3.5.2
and report the results in Table6.1.

critical indefinite mutual
philo 0 0 0
elevator 0 0 0
mtrt 0 0 0
sor 0 0 0
tsp 0 0 0
hedc 0 0 1
mold 0 0 0
ray 0 0 0
monte 0 0 0
specjbb 0 0 1
jigsaw 0 0 1

Table 6.1: Results of the deadlock detection.

Most benchmarks have a simple structure of locking and do not allow for resource deadlock.
The results of the deadlock analysis reflect this situation such that there are no reports for all
but three benchmarks.

6.4. DISCUSSION 109

The report forhedc is spurious and does not reflect a genuine synchronization error.
Three locks are involved: The locks associated with the classesjava.util.TimeZone and
java.util.Locale that are used to provide lazy one-time initialization of default values, and
the lock corresponding to the default instance ofjava.util.Properties. The lock of the
time zone and the locale classes are accessed independently, the lock of the properties instance
is accessed in the locking scope of time zone and locale (i.e, ’after’ in the lock-order). The
properties instance is however aliased with other objects that are locked ’before’ time zone and
locale in the lock-order; hence the lock-order graph contains edges in both directions between
the properties and the time zone respectively locale nodes but each direction is due to a different
object instance. The resulting cycle leads to the spurious report. Two other spurious reports in
specjbb andjigsaw follow a similar pattern of three abstract locks, one of which obliterates the
lock-order due to false aliasing.

6.4 Discussion

The algorithm is effective in determining important scenarios where inappropriate lock usage
can lead to deadlock at runtime. Apart from reporting true positives, the algorithm can err:
The algorithm isunsound, i.e., it might overlook cases where resource deadlock might actually
occur at runtime. The algorithm is alsoincomplete, i.e., it might report incidents that do not
lead to deadlock in any execution.

6.4.1 Sources of unsoundness

The analysis is flow-insensitive and assumes that somenotify is alway executed after a corre-
spondingwait – an assumption that might not hold in all program executions. Hence a deadlock
situation involving threads that wait on monitors on which no signal will be forthcoming may
not be recognized by the static analysis. Tools that are based on model checking like Ban-
dera [31] or the Java Path Finder [120] can remedy this problem (they cannot provide a precise
solution either because the problem of determining feasible execution paths is equivalent to the
halting problem). For the given benchmark programs, we could not determine false negatives
of indefinite waits.

Moreover, the analysis treats abstract objects as if they correspond to unique runtime in-
stances: Lock sets are contracted to lock-strings such that an acquire operation on an abstract
lock that is already held is considered as reentrant (each abstract objects occurs at most once
in a lock-string). Multiple runtime lock instances that the static analysis cannot disambiguate
are represented as a single node in the lock-order graph, and consequently cyclic dependencies
among different runtime instances of aliased locks are not apparent from the graph. Hence mu-
tual wait conditions between aliased locks may not be reported. We have not encountered this
phenomenon in the benchmarks.

6.4.2 Sources of incompleteness

First, the flow-insensitivity of the analysis could lead to a report of a mutual wait situation
which actually cannot occur at runtime: Imagine that a parallel program that executes in two

110 CHAPTER 6. STATIC DEADLOCK DETECTION

phases, e.g., with intervening barrier synchronization. Threads in the first and second phase
could assume different orders among the locks as long as all threads obey a common ordering
in each of the phases.

Second, false aliasing may lead to cycles in the lock-order graph that would not exist if the
lock-order graph was based on runtime instances. According to our experience, false aliasing is
one of the major sources of overreporting. Our analysis compares favorable to other tools like
Jlint [7] that disambiguates locks only based on declaration information (type-based) and does
not omit uncontended locks (abstract objects that are not shared).

6.4.3 Related work

A common technique for static deadlock detection is to translate a program into a state-based
model where states represent control- and data information and transitions correspond to state-
ment execution or inter-thread communication. The number of states in such a model can grow
exponentially if the effects of individual threads are combined. Hence a major difficulty in ap-
plying static state-based deadlock detection to larger programs is thestate-explosion problem,
and different techniques have been proposed to reduce and control the number of states that
have to be considered by the static checker [30, 131]. This static technique of verification is
very general, i.e., it can also be used to determine communication deadlock, and precise, i.e., it
detects all potential deadlock situations and reports few false positives. However, the very large
resource demands due to the state-explosion are still a limiting factor if this approach is applied
to larger programs.

Masticola and Ryder [80] developed a static deadlock detection that operates on a flow-
oriented program representation; the so-calledsync graphcaptures synchronization interactions
between tasks that use the barrier rendez-vous model of Ada. The analysis is more efficient in
time and space than state-based approaches that rely on program verification techniques. How-
ever it can be less precise due to conservatism that leads to spurious reports. Naumovich et.
al. [88] adopt and extend this technique for Java programs and describe constraints for check-
ing misuses of Java specific synchronization features, not general synchronization defects like
deadlock however.

Other than previous techniques, our approach to deadlock detection is basically flow-
insensitive but context-sensitive; this is possible because we focus on the detection of resource
deadlock in programs with a monitor-style lock and unlock discipline that follows control flow
scopes; this is the default synchronization style of the Java language and is hence frequently
encountered in practice. While the synchronization structure in this class of programs is scoped
and hence may be simpler than the more general cases considered in previous work, the issue
of our work relates to the disambiguation of locks and the tracking of contexts in which these
locks are active; both aspects are addressed in our static analysis framework for concurrent-
object oriented programs (Chapter3).

7
Dynamic checking

This chapter discusses two low-overhead techniques for the dynamic detection of synchroniza-
tion faults. Both techniques are implemented as a combination of sparse program instrumenta-
tion and runtime library support.

7.1 Object race detection

This section describes the design and implementation of a dynamic checker for object
races [122]. The intuition of object races is to coarsen the granularity of runtime checks from
individual variables to objects. This decision is motivated by the observation that all fields of
mutable shared object are typically protected by the same synchronization discipline, e.g., the
same lock instance is held during the access of any field. This assumption helps to reduce the
checking overhead and retains the accuracy of reporting for programs that adhere to this typical
synchronization discipline.

7.1.1 Locking discipline

An object race is a variant of unique-lock data race (Section2.2.2). The definition of an object
race in a program execution is given in Section2.2.3: Every access to some mutable field of a
shared object must be protected by a unique lock, i.e., the lock must be held during the access.
This definition prescribes alocking disciplinewhich – if obeyed by the a certain execution –
implies the absence of data races in that execution.

An online checker can validate this locking discipline as follows [103]: Each runtime object
or classo has an associated lockseto.L; initially, o.L contains all possible locks. At each access
(GET/PUT event) too during the program execution, the associated lockset is refined, i.e.,o.L
is intersected with the set of locks held by the accessing thread. Like this, the protecting lock
of an object is gradually inferred during the execution. The locking discipline is violated ifo.L
becomes empty ando is accessed by more than one thread.

This simple locking discipline is however impractical for determining object races in real
program executions because the following correct programming patterns would lead to spurious
reports [103]:

• Initialization: The creator thread of a shared object can initialize and access the object
without lock protection as long as no reference to the object is available to other threads.

111

112 CHAPTER 7. DYNAMIC CHECKING

• Shared-read objects:Objects that are initialized by the allocating thread, then made avail-
able to other threads that perform concurrent reads, do not need lock protection.

These patterns occur frequently and hence a practical checker should account for them and sep-
arate the initialization phase of an object from its shared use. This separation is accomplished
by the object ownership model.

7.1.2 Object ownership model

The locking discipline is complemented by anownership modelthat distinguishes different life
phases of an object and adjusts the checking policy accordingly. A design goal for our detection
system is to determine the initialization phase of an object and to carry out expensive lockset
operations only for those objects that are actually shared. The ownership model is illustrated by
the transition graph in Figure7.1where nodes correspond to the ownership states of an object.
The following states are possible:

• Init: Initial state after object allocation and during initialization. The owner of the object
is the allocating thread. This state requires no actions with regard to the race checking.
An action that may make the reference to the instance available to other threads (escape)
will transit the object to theownedstate.

• Owned:The owner remains the same as in stateinit. In this state, the locks held at object
access arenot tracked in the lockset associated with the accessed object. Access by a non-
owner thread must be recognized and leads the object to ahandoffstate (handoff readif
the access is a read,handoff modifiedif the access is a write).

• Handoff read:In this state, the object is accessed by a single thread other than the initial
owner. This thread is called thesecond owner[122]. Only read access is allowed. Write
access by the second owner leads to the statehandoff modified. In contrast to stateowned,
the locks held at object access are tracked in the lockset associated with the accessed
object. An empty lockset does not yet lead to a report. Access by threads other than the
second owner must be recognized and lead the object to asharedstate (shared readif the
access is a read,shared modifiedif the access is a write).

• Handoff modified:Same as statehandoff read, however, the second owner may write to
the object. Access by a thread other than the second owner leads toshared modified.

• Shared read:The object may experience concurrent read access. Access is tracked by
updating the lockset associated with the object. No report is given, even if the lockset
becomes empty.

• Shared modified:The object may experience concurrent read and write access, hence it
must thus be consistently protected by at least one common lock: the lockset associated
with the object is updated at every access, and a conflict is reported if the set becomes
empty.

• Conflict: An access conflict has been observed for this object; it is not subject to further
access checks.

7.1. OBJECT RACE DETECTION 113

Figure 7.1: Ownership model.

There are two kinds of transitions:

1. Access transitionshappen in response to read and write access of different threads.

2. Spontaneous transitionshappen due to object creation, escape, and the findings of the
access checker.

Objects may not be advanced through all states in the ownership model. Our evaluation in
Section7.1.6shows that it is common that object remain in stateowned, or one of thehandoff
states throughout their lifetime. The ownership model is tuned for two aspects: First,thread-
local objects are handled efficiently, because they prevail in stateownedand locks are not
tracked in this state. Second, object-handoff is accommodated though statehandoff: If first
the creator and then some other threads access an object without common lock, no report is
given. This heuristic is useful to avoid false reports in scenarios where one thread creates and
initializes an objects that is passed to and then exclusively used by a second thread.

7.1.3 Object access protocol

The online object race checker is implemented as anobject access protocol, i.e., a convention
of access that threads obey when accessing objects that are candidates for object races. There
are two tasks that the protocol must perform: (1)ownership trackingand (2)validation of the
access discipline. The following auxiliary data structures are used in the definition of the object
access protocol:

114 CHAPTER 7. DYNAMIC CHECKING

init(o, t)
o.s= INIT;
o.t1 = t;
o.t2 = null;
o.w = false;
o.l = 〈all possible locks〉;

Figure 7.2: Object initialization in the object access protocol.

escape(o)
o.s= OWNED;

Figure 7.3: Escape event of object access protocol.

• t.L set of locks held by threadt.

• o.l the lockset associated with objecto.

• o.s the ownership state of objecto (one of {INIT, OWNED, HANDOFF, SHARED,
CONFLICT}).

• o.w flag that specifies if there has been a write in state HANDOFF or SHARED.

• o.t1 the first owner ofo.

• o.t2 the second owner ofo.

Object initialization

The initial owner of an object is the allocating thread, the initial ownership state is OWNED.
In this state, the object cannot be accessed concurrently from different threads because the ref-
erence to it is confined inside the allocating thread. No provision needs to be taken to detect
concurrent access or to update the lockset associated with the object. The procedureinit() sum-
marizes the actions that immediately follow the allocation of objecto by threadt (Figure7.2).

Object escape

If the owner threadt assigns the reference of an objecto to a variable that may communicate the
reference to another thread,escape() is triggered (Figure7.3). The escape event terminates the
INIT phase. Our implementation determines the point of escape conservatively at compile-time:
The allocation of an object is followed by a series of NEW-safe access events (Section4.3.2).
The first access that is not NEW-safe triggers the escape event that transits the object to the
OWNED state.

7.1. OBJECT RACE DETECTION 115

/∗ prologue∗/
if (o.t1 6= t)

atomic :
if (o.s= OWNED)

o.s= HANDOFF;
o.t1 = null;
o.t2 = t;

else

o.w = o.w ∧ is write(e);
if (o.s= HANDOFF ∧ o.t2 6= t)

o.s= SHARED;
o.t2 = null;

/∗ access∗/
〈threadt issues access evente to objecto〉;

/∗ epilogue∗/
if (o.t1 6= t ∧ o.s 6= CONFLICT)

atomic :
o.l = o.l ∩ t.L;

if (o.l = /0 ∧ o.s= SHARED ∧ o.w)
new Report(e,o, t);
o.s= CONFLICT;

Figure 7.4: Prologue and epilogue of the object access protocol.

Object access

Object access statements that are not NEW-safe are encased within an access prologue and
epilogue (Figure7.4): Let e be the access event,o the accessed object, andt the accessing
thread.

The prologue serves for ownership tracking: A thread that accesses an object that it does
not own in state OWNED or HANDOFF must advance the object to HANDOFF respectively
SHARED. The state change must happen atomically because several threads may perform the
update concurrently and updates of the auxiliary header fieldss,w, t2 could be lost. The epilogue
serves to validate the locking policy. If a report is generated, the ownership state ofo is advanced
to CONFLICT such that subsequent access checking ofo is bypassed.

Call sites of synchronized methods are not instrumented.1 Instead, the equivalent of the
prologue is done inside the method after the lock is acquired; symmetrically, the epilogue is
performed immediately before the lock is released.

The auxiliary fields for the owning thread and the ownership state in each object are them-
selves accessed concurrently and may be subject to data races. The specification ofprologue()
andepilogue() in Figure7.4 assumes a sequentially consistent memory model for these auxil-

1All call sites are “de-virtualized” in programs that are instrumented for race detection. Details are described
in Section7.3.

116 CHAPTER 7. DYNAMIC CHECKING

acquire(l , t)
t.L.add(l);
〈perform lock operation onl〉;

release(l , t)
if (¬〈release corresponds to a reentrant acquire〉)

t.L.remove(l);
〈perform lock operation onl〉;

Figure 7.5: Lock operations in the object access protocol.

iary fields; code regions that are required to execute without interference are specified inatomic

sections. The implementation ofprologue() andepilogue() is platform dependent and may re-
quire that ordering or atomicity are ensured through memory fences, atomic instructions or
locking. Our implementation and the issue of memory ordering are discussed further in Sec-
tion 7.1.4.

Locking

The operations for lockacquire() andrelease() are complemented and maintain the locksett.L
of locks held by the current thread (Figure7.5).

7.1.4 Implementation

Instrumentation

The access prologue and epilogue are implemented through inline code at object access sites;
only those access sites are instrumented that participate in an access conflict, i.e., correspond to
a conflicting event in some OUG (Section4.4).

Optimization

The dynamic frequency of prologue/epilogue executions can be reduced through a compile-
time optimization: The principal observations is that for the validation of a locking discipline,
an access sequence to the same object in the same locking context can be subsumed under a
single check. Hence it sufficient to execute the prologue before the first access in the sequence
and the epilogue after the last access. We have implemented the omission of redundant epi-
logue/prologue sequences in two scenarios:

First, the instrumentation corresponding to critical access statements inside a method
through thethis-pointer can be combined: The instrumenter treats the invocation of an in-
stance method that may execute conflicting access through thethis-reference like an object
access, i.e., the invocation site is surrounded by a corresponding prologue/epilogue pair. Con-
sequently, access through thethis-reference inside the method need no longer be instrumented.
The execution of a method is considered as write access if the method may write to a field of

7.1. OBJECT RACE DETECTION 117

its target object. Class methods can be treated similar to instance methods such that accesses
to global variables of the same class need not be instrumented. To simplify the presentation,
we refer to both cases (class and instance) as “access toself”, whereself refers to the object
context provided by the enclosing method and means thethis-reference in case of an instance
method and the defining class in the case of a class method. Synchronized methods or methods
with block monitors are treated specially such that the execution of the prologue/epilogue takes
into account the change in the locking context caused by the lock operation. This optimization
is effective in reducing the number of runtime checks if access toself occurs frequently (this
aspect is evaluated and discussed in more detail in Section7.1.6). The optimization can how-
ever lead to overreporting, e.g., if a method call signals a write access to the target object but
the flow inside the method incarnation does not actually execute the write.

Second, we prune redundant occurrences of prologue and epilogue for field access to ob-
jects other thanself. The SSA property of the intermediate representation can be exploited
to identify object access to the same instance inside a method. The effectiveness of disam-
biguating local references variables is increased through preparative program transformations
like inlining, loop unrolling, copy propagation, and PRE-based load elimination [125]; these
transformations promote heap variables to local variables (or registers) and hence support the
scope of SSA-based value disambiguation. The rationale of the optimization is the following: If
multiple access statements that target the same object occur in the same basic block, a prologue
at the beginning and an epilogue at the end of the block is sufficient. For access statements
in different basic blocks, the prologues can be combined and hoisted to a common dominator
block; similarly, the epilogue can be sunk to a common post-dominator. Note that prologue and
epilogue sequences must not be moved across block synchronization statements or calls that
may invokejava.lang.Object::wait.

Code generation

This section discusses issues of code generation for the object access protocol on the Intel IA-32
platform [67]. All instruction of the prologue and the common execution path of the epilogue
are inlined at critical object access sites. The lockset operation in the epilogue and the extension
of the locking are implemented in the runtime library [49].

The frequent use of the thread identification information in the instrumentation lead us to
change the compiler (register allocator) and runtime system to make the unique id of the cur-
rently executing thread available in a callee-saved register (%ebx).

We have enhanced the IA-32 code generator and specified code templates corresponding
to inline code. The instrumentation of the access prologue requires five instructions. In state
OWNED, one read and one conditional jump are executed; in states HANDOFF and SHARED,
two reads and two conditional jumps are executed. The access epilogue requires 8 assembly
instructions. In the states HANDOFF and SHARED, a branch into the library is executed to
register the current lockset; in state OWNED/CONFLICT, one/two reads and one/two condi-
tional jumps are executed.

118 CHAPTER 7. DYNAMIC CHECKING

init owned handoff-0 handoff-1 shared conflict
field access 1.0 1.1 6.5 19.1 20.4 1.5
static call 1.0 1.3 3.7 9.1 9.6 1.4
virtual call 5.7 5.9 8.2 13.1 13.6 5.9
monitor (enter+exit) 3.8

Table 7.1: Cost of instrumented object and lock access relative to the un-instrumented variants.
The columns distinguish the ownership state of the accessed object; columnhandoff-0 refers to
the execution in state HANDOFF where no lock is held during the access; forhandoff-1, one
lock is held during the access.

Micro benchmarks

We use a micro benchmark that executes object access statements inside a loop of 107 iterations;
all (but the first) memory accesses are served from the L1 processor cache. Execution time is
measured on a Pentium III 933 system with 512 MB of main memory. Table7.1 illustrates the
relative cost of the object access protocol. The numbers show the relative execution time of an
instrumented access (access that is not instrumented for race detection corresponds to 1.0). We
report data dependent on the ownership state of the accessed object.

Row field access considers read and write access and reports the average. There is no
additional cost for variable and static method access in state INIT. The significant overhead
for virtual call stems from our mechanism for code specialization where polymorphic calls
are not dispatched through the ordinary vtbl-mechanism but through a chain ofinstanceof

invocations (details in Section7.3). The number given for state INIT is the baseline overhead
due to this mechanism. Additional overhead forvirtual call in other states stems from the
instrumentation.

The overhead in state OWNED stems from the comparison of the owner thread with the
current accessing thread in the prologue and epilogue. This overhead is small.

In states HANDOFF and SHARED, the overhead of object access stems from the execution
of the prologue and epilogue. The cost of the ownership tracking in the prologue which requires
an additional check of the object header is largely hidden by the processor cache (the header
field and the accessed variable are in the same cache line) and the processor-level instruction
level parallelism (ILP). The cost of the epilogue is more significant because a library call is
executed that updates the lockset associated with the accessed object if necessary and reports a
violation (in state SHARED). The predominant factor is the cost of the lockset operations that
depends on the number of locks being held (the table shows numbers where no or one lock is
held during access in state HANDOFF). The cost in state SHARED is even higher due to the
lockset intersection. The implementation of the lockset data structure is based on the STL [111]
set data type; concurrent intersection is prevented by spin locks.

Once an empty lockset is encountered in state SHARED, the conflict is reported and the
object is advanced to state CONFLICT. In this state, the epilogue bypasses the library call and
the cost of the instrumentation becomes negligible.

The overhead of monitor access (monitor (enter+exit)) stems from maintaining a lock-nest-
counter, and adding and removing the target lock from the set of locks currently held by a
thread. This overhead is independent of the ownership state.

7.1. OBJECT RACE DETECTION 119

Memory ordering

In our implementation, the race detection is performed inline by the application threads. Hence
auxiliary variables and data structures that support the race checker constitute themselves shared
data such that concurrent access must be ordered. Two kind of data are relevant: The additional
header field that is used for ownership tracking and the lockset associated with an object that
records the locks held during object access.

An aligned word (4 bytes) variable is reserved in each object header to record the owner
thread identification and the ownership state. All operations on this header field operate on
the entire word and hence the IA-32 architecture guarantees that all values that are read have
been written previously (no word-tearing and out-of-thin-air values can occur). Threads might
however observe stale values that can lead to the situation that the checker overlooks an actual
violation of the locking policy or issue more than one report for a specific object. The effect of
stale values is equivalent to the scheduling dependence of the detection mechanism, which is
discussed in Section7.1.6.

There is an auxiliary structure per object that implements the monitor lock. This structure
is allocated lazily when the lock associated with an object is used for the first time. Our imple-
mentation extends this object specific auxiliary structure to hold a reference to the lockset and
the flag that specifies if a write access has been seen. The lazy allocation of this structure now
also occurs if the object transits to a handoff state.

7.1.5 Memory overhead

Four additional bytes in the object header increase the total amount of memory by at most
25% (the smallest object in the original implementation is three words in size). The memory
necessary for the extension of the auxiliary per object structure and the locksets is very low
because most benchmarks advance a rather small fraction of the allocated objects and arrays to
a handoff state and beyond (see Section7.1.6, Table7.2).

7.1.6 Experience

Ownership model

Table7.2shows the fraction of arrays and instances that are advanced to the stateshandoff (read
or write),shared-read,shared-write, andconflict. Each column includes the objects reported in
the subsequent category (right column next to it). Benchmarks that operate mostly on local
data, e.g.,mtrt andray, advance only very few objects to statehandoff and beyond. In other
benchmarks, a larger fraction of instances of arrays are actually accessed by more than a single
thread. Insor, the majority of objects are rows of two matrices (that are implemented as jagged
arrays in Java) that are accessed concurrently. Intsp, the proportion ofshared objects seems
low; the majority of these objects stem from a pool of pre-allocated objects from which only a
small fraction is used for the tsp-problem size in this run.

120 CHAPTER 7. DYNAMIC CHECKING

handoff shared-r shared-w conflict
philo 1.70 1.09 0.97 0.00
elevator 21.14 8.88 5.71 1.27
mtrt 0.47 < 0.01 < 0.01 < 0.01
sor 94.56 94.47 93.90 93.81
tsp 3.80 3.32 3.21 2.01
hedc 23.78 4.53 0.76 0.32
mold 1.59 0.52 0.31 0.26
ray 0.01 < 0.01 < 0.01 < 0.01
monte 27.88 3.49 3.48 < 0.01
specjbb 5.22 0.01 0.01 < 0.01
jigsaw 19.23 1.61 0.41 0.18

Table 7.2: Ownership states reached by instances and arrays as percentage of the overall number
of allocations (stateinit).

Access characteristic

Table7.3 summarizes the object access characteristics of the benchmark programs. The first
six columns of the table partition access events intofield or array access,method invocation,
andmonitor lock access. The numbers report the relative frequency of each category, the sum
is 100%. Access to fields distinguishes between references to variables that belong to the same
instance or class as the currently executed method (self), or not (other). Method invocations
are split up according tostatic andvirtual2 dispatch. The number of method invocations is in
most cases clearly lower than the number of field accesses. For most benchmarks, the number
of access events in categoryself is larger than in categoryother. Both observations support the
design rationale of the dynamic checker that focuses on objects rather than individual variables
and render checks throughself redundant. Some benchmarks have a significant number of
array accesses which, in the case ofsor andmold, mostly target shared data.

field array method monitor rc (incl array) rc (no array)
self other static virtual optimized

philo 39.0 9.9 12.6 29.5 3.8 5.1 0.5 0.0 0.0
elevator 40.3 6.6 15.9 17.1 9.9 10.2 14.3 4.6 4.6
mtrt 48.1 < 0.1 11.6 2.5 37.7 0.2 < 0.1 < 0.1 < 0.1
sor 37.5 < 0.1 62.5 < 0.1 < 0.1 < 0.1 31.2 0.0 0.0
tsp 39.2 29.8 30.0 < 0.1 1.0 < 0.1 13.7 6.9 5.6
hedc 41.6 4.2 30.4 17.0 4.0 2.8 12.9 2.0 1.7
mold 40.9 37.7 21.3 0.1 < 0.1 < 0.1 1.4 < 0.1 < 0.1
ray 31.2 54.7 2.7 8.7 2.7 < 0.1 48.1 48.1 18.7
monte 61.4 < 0.1 22.4 4.3 6.8 5.0 < 0.1 < 0.1 < 0.1
specjbb 41.3 5.6 25.1 9.2 14.4 4.3 17.8 8.9 4.4
jigsaw 45.2 3.4 18.1 22.3 6.3 4.6 21.2 11.5 11.4
average 14.8 7.4 4.2

Table 7.3: Access characteristics and dynamic frequency of access checks for object race de-
tection. The number of access events are normalized such that the sum is 100%. The number
of checks are relative to the total number of access events.

2Polymorphism is reduced through type information that is computed along the variable-type analysis
(VTA, [115]).

7.1. OBJECT RACE DETECTION 121

Table7.3also specifies the number of runtime checks for object race detection: with checks
for array access (columnrc (incl arrays)) and without (columnsrc (no arrays)). Details of the
optimized version in the latter variant are discussed below.

The frequency of access checks for object race detection is investigated in more detail in
Table 7.4. Two principal settings are distinguished: checking that includes (rc (incl array))
and excludes (rc (no array)) array access. Several categories stand for different degrees of
instrumentation:

• all: In this category, all field and array access statements (forrc (incl array)) and respec-
tively field access statements (forrc (no array)) are instrumented. These variants are not
explicitly stated in the table, but the numbers of other categories are reported relative to
it, i.e., the reports forall - rc (incl array) andall - rc (no array) would be 100%. The
instrumentation strategy of this category does not exploit the information provided by the
static conflict analysis in reducing the amount of instrumentation.

• conflict: This instrumentation variant applies checking only to the objects that are de-
termined as conflicting by the static conflict analysis (Section4.4). It is the standard
configuration of the object race checker where method invocations are instrumented if
the call targets a conflicting object and one of the invoked methods reads or write the
target object; additionally, field respectively array access to objects other thanself is
instrumented.

• conflict-self: This variant is similar toconflict, however access toself is instrumented
but calls are not instrumented. This configuration, compared toconflict, expresses the
runtime effect of grouping access checks toself at method boundaries.

• optimized: Similar to conflict, however the program as well as the instrumentation are
optimized. Some optimizations do not affect the variable access frequency (inlining and
loop peeling), others may reduce the number of access events (copy propagation and par-
tial redundancy elimination). The optimized program variant also incorporates transfor-
mations of the program instrumentation, i.e., the reduction of redundant checks discussed
in Section7.1.4. Both columns indicate that the number of runtime checks is very low
relative to the overall access frequency.

The first number in each column of Table7.4 refers to the fraction of inline checks relative
to categoryall, the second entry specifies the percentage of checks that necessitate a library
call (which is only necessary for objects that reach the ownership stateshandoffor shared).
The fraction of inline checks that also descend into the library is also high, at least for the
benchmarks that exercise a significant number of checks. This confirms that the static analysis
is able to accurately determine the sharing of objects (for objects that remain in stateowned, the
static analysis erred (on the conservative side) in assuming that the object would eventually be
advanced to statesharedor conflict). Note that the number of inline access checks and library
descents can vary in different program runs. We did however not experience large variations in
the measurements reported here.

The numbers show that the static conflict analysis is very effective (categories reported in
Table7.4vs. categoryall) in reducing the amount of dynamic checking, although most bench-
marks operate intensively on shared data. For some benchmarks however, the static analysis is

122 CHAPTER 7. DYNAMIC CHECKING

rc (incl array) rc (no array)
conflict conflict-self conflict optimized

inline lib [%] inline lib [%] inline lib [%] inline lib [%]
philo 1.4 96.4 0.0 - 0.0 - 0.0 -
elevator 27.6 36.3 11.7 99.6 11.6 100.0 11.6 100.0
mtrt 3.7 8.6 < 0.1 75.0 < 0.1 75.0 < 0.1 100.0
sor 31.2 99.2 0.0 - 0.0 - 0.0 -
tsp 14.0 10.4 10.0 1.9 10.0 0.9 8.2 2.3
hedc 20.1 91.3 12.4 37.2 6.5 39.8 5.5 35.5
mold 1.4 20.6 < 0.1 100.0 < 0.1 100.0 < 0.1 0.0
ray 54.4 77.5 63.1 79.4 56.1 77.5 21.8 80.5
monte < 0.1 1.1 < 0.1 0.7 < 0.1 1.1 < 0.1 1.6
specjbb 29.7 87.7 37.5 49.3 17.4 73.7 8.6 57.9
jigsaw 27.6 53.1 27.5 11.1 20.6 20.3 20.4 12.8

Table 7.4: Dynamic frequency of access checks for object race detection. The numbers are
normalized to a program variant where all fields and array (rc (incl array)) respectively field
access statements (rc (no array)) are instrumented (100%).

not able to identify the absence of conflicts on core data structures; this is the case for some
configurations that include arrays and also the benchmarkray, resulting in a relatively high
frequency of checks.

The grouping of access checks toself at method boundaries (categoriesconflict-self vs.
conflict) can reduce the number of checks, e.g., for the benchmarkshedc and ray. As both
benchmarks execute a relatively high number of runtime checks, the optimization is especially
profitable. The grouping of checks may however also lead to an increased number of checks and
overreporting: if a check at a method boundary is done although no actual object access/update
is performed inside the method. We observed that this contingency is not a significant problem
in practice.

Runtime performance

original rc (incl array) rc (no array)
SUN jvm [s] [s] optimized [s] all conflict all conflict-self conflict optimized

mtrt 6.4 20.0 19.6 1.33 1.26 1.30 1.24 1.25 1.24
sor 2.6 2.8 2.4 6.96 3.89 1.25 1.00 1.00 1.00
tsp 5.6 7.3 6.0 5.68 1.78 2.92 1.14 1.15 1.10
mold 12.9 18.3 23.8 4.01 1.95 2.73 1.96 1.87 1.17
ray 43.3 44.4 45.8 6.01 3.64 5.85 3.98 3.65 2.27
monte 12.3 21.6 22.8 2.33 1.91 1.97 1.82 1.81 1.78
average 4.39 2.41 2.68 1.86 1.79 1.44

Table 7.5: Runtime of original and instrumented programs. The execution times are normalized
to the runtime oforiginal, which is specified in seconds; the runtime ofrc optimized is relative
to original optimized

.

Table7.5 shows the execution times of different instrumentation variants. The measure-
ments are done on a Pentium III 933 MHz system with 512 MB of main memory, which is
sufficient for each program to execute in main memory. We report the average execution time

7.1. OBJECT RACE DETECTION 123

of three runs; unless noted explicitly, the duration of different runs varied insignificantly.philo,
elevator, hedc, jigsaw, andspecjbb are not reported because these benchmarks are not CPU-
bound or have a fixed execution time. The runtime of theoriginal, i.e., uninstrumented program
variants (without the extension of the object header and the auxiliary per object structure) are
specified in seconds, the runtime of the instrumented variants are given as a factor relative to
the performance of the uninstrumented counterpart, e.g., 1.33 means a 33% overhead.

Column original - SUN jvm specifies the execution time on SUN’s HotSpot virtual ma-
chine [69]. The numbers demonstrate that the quality of the code generated by our static
compiler is comparable to a commercial optimizing JIT compiler. The performance formtrt
is hampered by the inefficient implementation of locks in the runtime system we use (GNU
libgcj [49]). monte is floating-point intensive and our register allocator and code-generator does
not handle floating-point arithmetic efficiently; hence, also the performance of this benchmark
is impaired relative to SUN’s HotSpot. It is important that the performance of our compiler
is comparable to commercial environments, because we report the overhead of the race detec-
tion relative to the uninstrumented program variant that is also generated with our compiler; an
inefficient baseline variant could hide the actual overhead of the race detection that would be
encountered in highly optimizing compile- and runtime environments.

For some of the scientific benchmarks (mold, ray, andmonte), the program transformations
in modeoriginal - optimized andrc (no array) - optimized, do not improve but even degrade
the execution performance compared to modeoriginal. As some of the optimizations (inlining,
loop-unrolling and partial redundancy elimination) introduce temporary variables, the effective-
ness of the optimizations ultimately depends on the capability of the compiler and architecture
to allocate these temporaries in registers or conceive a cache-efficient layout of local variables
on the stack. The optimizations in the compiler we use for the experiments are not tuned with
respect to this issue.

The overhead in the execution time is determined by two factors: (1) The compile- and run-
time provisions that allow to execute specialized code in different contexts incur some runtime
overhead (this issue is discussed in Section7.3). For benchmarks that execute no or very few
runtime checks, e.g.,sor andmtrt in variantrc (no array), the overhead is entirely due to the
method specialization. A more detailed evaluation of the overhead due to method specialization
is given in Section7.3. (2) Additional inline code and library functionality cause a runtime
overhead that is roughly proportional to the number of dynamic access checks and lock events
reported in Table7.3 and7.4: the lower the share of runtime checks, the lower the execution
overhead. The sparse instrumentation of conflicting access statements in the case ofconflict,
conflict-self, andoptimized lead to a significant reduction of the runtime overhead vs.all. For
benchmarks with frequent access to conflicting arraystsp, andmold, the omission of checks at
array access reduces the total overhead significantly.

The runtime overhead of the checker is significantly lower than that of previously reported
systems. In the variant where the instrumentation of array access is omitted (rc (no array) - con-
flict), the overhead is between 25% formtrt and 265% forray (average 79%). For the optimized
variant, the relative is even lower, i.e., between 24% and 127% (average 44%). The benchmark
specjbb is not reported because it has a fixed runtime and reports the rate (operations/s) at which
the program progressed. We have observed that race detection halves the execution rate of this
benchmark in both the optimized and the non-optimized variant.

124 CHAPTER 7. DYNAMIC CHECKING

Accuracy

Table7.6 shows the number of reports issued during a specific execution. There is one report
for every class or runtime instance on which a conflict is detected. The columnsincl array and
no array report the results of two program variants, one where arrays are treated like objects,
one where arrays are not considered. For the latter variant, the reports are classified as follows
(column reportsspurious–benign–harmful):

• Spurious reportscan reflect spurious object races, e.g., if object access is actually ordered
but not through unique lock protection. Spurious reports can also correspond to true ob-
ject races that are however no data races: e.g., a report due to access of different variables
on the same object (and access to each individual variable is without conflict), or a report
due to a static classification of a method as write that actually performed only reads in the
checked execution.

• Benign reportscorrespond to true data races that are intended or tolerable in the program.

• Harmful reportsreflect true and unintentional data races that occurred due to incorrect
synchronization. Harmful reports correspond to program defects.

The inclusion of arrays into the race detection generally adds few additional reports that, in
most cases, can be related to other reports of objects that these arrays are affiliated with. Intsp,
there is a large number of reports for instances of classTourElement. Each instance has an
int-array associated that also appears in the reports if the checking of array access is enabled.
Note that the results in moderc (incl array) and rc (no arrays) stem from different program
runs. The reporting in some benchmarks, and in particular the reports given fortsp depend on
the thread scheduling. The number of reports is generally manageable. The reports correspond
to incidents that are detected by the static conflict analysis and are discussed in Section4.5.1.

The report formtrt refers to a real data race on variableRayTracer::threadCount which
is however not relevant for the correctness of the program.

In sor, 1000 reports occur for arrays that represent the rows (Java implements jagged arrays)
of two shared 500 matrices.

In tsp, 160 reports correspond to instances ofTourElement that are managed in a pool
and reused by different threads. Individual instances are accessed without lock protection, ac-
cesses from different threads is however ordered because a reference to each instance is avail-
able only to one thread at a time. One of the reports intsp corresponds to the global variable
TspSolver.MinTourLen for the minimal tour length found so far. The updates are monotone
and double checked, and concurrent reads of outdated information are tolerated by the algo-
rithm.

In hedc, there are 15 spurious races on instances ofjava.lang.String; this is
amazing, since objects of that type are actually immutable. However, the static
analysis classifies the effect of a polymorphic call tojava.Object::toString in
method java.util.Hashtable::toString conservatively as a write of the target ob-
ject becausesome variant of the callee may modify the target object; there is how-
ever no write if the target of the call isjava.lang.String::toString. More-
over, four spurious reports concern objects that are created through methodclone; the

7.1. OBJECT RACE DETECTION 125

rc (incl array) rc (no arrays)
total spurious–benign–harmful

philo 0 0
elevator 0 0
mtrt 2 0–1–0
sor 1000 0
tsp 287 160–1–0
hedc 34 21–0–10
mold 11 0
ray 2 0–0–1
monte 1 0–1–0
specjbb 3 1–0–2
jigsaw 14 7–1–1

Table 7.6: Conflict reports (each conflicting object instance, array, or class is reported once).

cloning also conveys the header fields used for race detection from the original to
the cloned object and this perturbs the race checker. Two further spurious reports
are raised due to the invocation of methodsjava.net.InetAddress::getByName and
ethz.util.SystemProperties::getProperty. Both methods actually access the variables
of the underlying class under lock protection through a separate synchronized method. The
instrumentation does however not account for this subtlety and classifies both methods (which
are not synchronized themselves) as writes in the object access protocol. Ten real race are de-
tected that correspond to errors in the program and the library: Two reports address instances
of java.text.DecimalFormat; the implementation of this class in [49] is not thread-safe, but
the instances are used in a multi-threaded context and hence may function incorrectly. More-
over, there is one report for each of the library classesgnu.gcj.convert.UnicodeToBytes

andnu.gcj.convert.BytesToUnicode that initialize the default instance of the de-/encoder
through an incorrect implementation of the double-check locking idiom (i.e., the variable that
holds the reference to the unique instance is not volatile). Another five reports point to an un-
synchronized assignment ofnull to a shared variableTask::thread , which could be read by
another thread and lead to aNullPointerException. The details and order of reports for the
Task objects depend on the specific execution; note however that there can be other benign or
spurious reports on the same object such that the checking might be passed in ownership state
conflict and the critical report (referring to variableTask::thread) might not appear in the
execution log.

The report in ray relates to the update of the global variablechecksum1 in class
JGFRayTracerBench in a synchronized block. The runtime object that is used for synchro-
nization is however different for each thread; hence this report reflects a synchronization error
in the program.

The report in monte is due to the global variableUNIVERSAL DEBUG in class
montecarlo.Universal which is read and written by different threads without synchroniza-
tion. In the specific program, no inconsistencies can occur, because all threads write the same
value; hence this report is classified as benign.

There is one spurious report inspecjbb that refers to an object of instance
spec.jbb.SaveOutput with unsynchronized methods. The instance acts as a wrapper of an
underlying synchronized implementation of a print stream; the report is due to a call to a method
of classspec.jbb.SaveOutput that is classified as write, although the actual write occurs in

126 CHAPTER 7. DYNAMIC CHECKING

the scope of a downstream synchronized method. Two reports correspond to errors: There is
a data race on fieldmode of an instance of classspec.jbb.Company. This variable is used to
communicate the current phase of the benchmark between the main thread and the workers;
the field should be declared as volatile. Another error is found in the library related to an er-
roneous implementation of the double checked locking idiom for the default instance of class
java.util.TimeZone.

Two reports injigsaw refer to instances of the thread classw3c.jigsaw.http.Client.
The thread is started inside the constructor such that therun method may start to execute be-
fore the constructor finishes. Although this report points to a censurable programming pat-
tern, the report is benign because the start happens as the last action in the constructor. Two
spurious reports occur on instances of classw3c.jigsaw.http.ClientState which are ar-
tifacts due to race checking at the level of objects: Different fields of the instance are pro-
tected by different locking contexts; hence the lockset associated with the object becomes
empty, although each individual field is actually protected by a unique lock. There is also
a violation of atomicity related to this object (Section5.3). Two other reports for instances of
classw3c.jigsaw.http.CommonLogger andw3c.jigsaw.resources.DirectoryResource
are spurious due to the invocation of methods that are not synchronized, that are clas-
sified as write access and effectively that access fields of the underlying object through
the invocation of private synchronized methods. A benign race is found on variable
w3c.tools.timers.EventManager::donewhich is used to communicate a thread stop notifi-
cation to a running thread. The variable is set under lock protection but read outside a protecting
lock scope. The reading thread does regularly acquire and release the lock that is used when the
flag is set, and hence the visibility of the update of the flag is guaranteed. One report corresponds
to a genuine error, namely a data race on the global variablejava.lang.System::secman that
refers to the default instance of the security manager. This error in the implementation of the
library might unintentionally cause the creation of several security manager instances.

Sources of unsoundness The reporting of the checker can depend on the thread interleaving
in a particular program execution, i.e., an actual race that occurred might be hidden in a specific
interleaving of access events. This is due to the fact that the checker delays reporting until an
object is recognized asshared modified. Imagine an execution where the last update of the
creator thread occurs just before the access by the second owner thread. Although access may
not be ordered through explicit synchronization, the checker transits the object to statehandoff
and does not report a conflict.

Sources of incompleteness Not all reports issued by the runtime checker correspond to gen-
uine synchronization errors. Some of the inaccuracy is due to the general approach of checking
(unique) lock-based races and has been discussed in Section2.2.2. Here we only report addi-
tional inaccuracy introduced through object races.

First, there is one lockset per object, assuming that all field variables of a shared ob-
ject are protected by the same synchronization discipline. This is common for object-
oriented programs but not mandatory. Hence our checker would report spuriously a case
where, e.g., one field variable of an object is initialized then shared read (without lock),
and another field variable is read and written under unique lock protection. Our ex-
periments have shown that spurious reports due to the detection at the object granular-

7.1. OBJECT RACE DETECTION 127

ity are rare in practice. This observation has also been made by other authors [25,
93].

A second concern is the aggregation of checks forself-access at method boundaries. The
static analysis classifies the call to a method conservatively as a write if there is some path in
the method where a write access toself occurs. This classification could mislead the checker
in a scenario where the first execution initializes some variable and subsequent executions only
read from it.

7.1.7 Related work

Savage at al. [103] developed the Eraser system which is the original implementation of lockset-
based data race detection. Since then, the ’Eraser principle’ has been adopted by other dynamic
race checkers and optimized along two dimensions: First, to reduce the runtime overhead of the
checking; second, to increase the accuracy of the reporting. The focus of our work is on the first
aspect.

Overhead. Static program analysis is useful to avoid the monitoring of data for which races
can be excluded already at compile-time. While this idea has been applied earlier to Fortran
programs [83], object-oriented programs are different and open new challenges and opportuni-
ties for static analysis. A simple approach determines thread-local data through escape analy-
sis [122], while more elaborate static analyses also approximate access ordering on shared data
like [25] and the analysis presented in Chapter4.

There are two principal directions to reduce the residual checking for access to shared data
that are candidates for data races according to the approximation of the static analysis: First,
checks to related variables or memory regions can be combined, e.g., at the level of objects [122]
or minipages [96]. Second, some checks are redundant and need not to be performed. A check is
redundant if some previous access to the same data has been checked in the same thread and the
same or a weaker locking context. Choi et al. [25] implement a system that allows to efficiently
recognize and avoid redundant checking. The architecture of their system is different from ours:
The checking is done by a separate thread which polls access events from access event caches
that are filled by and associated with individual threads. This architecture is advantageous for
dynamic optimizations in two ways: First most of the core data structures that support race
checking can be accessed without synchronization from the unique checker thread. Second, the
event caches are used to filter redundant events, hence reducing the work of the checker thread.
[25] reports that this technique eliminates almost all access checks. The runtime overhead
of this race checker is only 13%, 20%, and 42% for the benchmarkssor, mtrt, andtsp (the
overhead in our optimized implementation is 4%, 24%, and 10% (array access is not checked).
Some of the redundant checking can already be identified and removed at compile-time ([25]
and Section7.1.4).

Accuracy. The original lockset algorithm [103] is not effective in recognizing synchroniza-
tion through mechanisms other than locks. For situations like object-migration and barrier
synchronization, the algorithm reports false positives. Pozniansky and Schuster [96] extend
the original lockset algorithm [103] to accommodate barrier synchronization; the key idea is to
re-initialize the locksets to hold all possible locks once a barrier is executed.

128 CHAPTER 7. DYNAMIC CHECKING

In addition, [96] and also [93] combine happened-before race detection with the lock-based
technique (this combination was originally proposed by Dinning [36]). In these so-calledhybrid
data race checkers, a race is reported if two accesses violate the lockset criterionandthere is no
happened-before ordering.

7.1.8 Discussion

Low-overhead dynamic data race detection is an important mechanism to support the debugging
of parallel programs. We have designed an automated race detection system that is integrated
with the compiler and exploits structural properties of object-oriented programs.

While the majority of reports obtained by the object race checker are spurious, the source
of the report and the classification could be done with without difficulty. The claim that “object
race checking leads to the reporting of many false races” [93] can be rebutted as follows:

• The overall number of reports is manageable and is lower than in a previous version of
our online object race checker [122], which was not guided by detailed static conflict
analysis. E.g., the system in [122] instrumented and reported potential race conditions in
a number of situations where the static conflict analysis (Section4.4) recognizes ordering
through thread-start, thread-join, or init-escape.

• Many of the false race reports, e.g., fortsp, are not due to particularities of object race
checking, but due to the underlying lock-based race checking principle that accounts only
for synchronization based on monitors.

• Some of the reports, even if spurious or benign, point to weaknesses in the application
and synchronization design, e.g., forjigsaw. Though spurious, these reports can be useful
to the programmer!

• Two sources of spurious reports in the object race checker could be eliminated through a
simple extension of the implementation: (1) The read/write classification at polymorphic
call sites could be resolved separately for each target method; this would remove the
reporting of thejava.lang.String instances inhedc. (2) Access toself that occurs in
the scope of a synchronized block or method should not be attributed to the encapsulating
respectively the calling method. This procedure would remove some spurious reports in
the benchmarkshedc andjigsaw.

7.2 Detecting violations of object consistency

This section definesobject consistency(OC) [58, 4, 95, 23, 121, 123] which is a high-level
memory model that guarantees the absence of thread interference on objects at runtime. We
have designed a compiler and runtime system that enable object consistency through a program
instrumentation and detect violations due to insufficient thread synchronization at runtime. In
contrast to mechanisms for dynamic data race detection, the system does not aim at finding all
synchronization errors in an execution but only those situations where the impact of insufficient
synchronization becomes apparent in a violation of the high-level memory consistency model.
This philosophy is similar to a system for the detection of violations of sequential consistency

7.2. DETECTING VIOLATIONS OF OBJECT CONSISTENCY 129

proposed by Gharachorloo and Gibbons [51]: Either a specific execution complies with the
memory model (object consistency in our case, sequential consistency in [51]), or the system
issues a report. Our system is implemented in software and requires, apart from memory fences,
no specific hardware support.

7.2.1 Object consistency

With sequential consistency, no thread ever sees an inconsistent state of a variable (it always
observes the value of the most recent write). OC extends this model to objects. The central
idea is that the intermediate object state during method execution must not become visible to
concurrent threads. Hence this model guaranteesatomicityof object access (method or field) to
the programmer. Object access issequentially consistent, i.e., the execution behaves as if there
was a global access order that is compatible with the program order of individual threads.

OC has originally been introduced [4, 23] as a programming model that users should follow
by applying appropriate synchronization to a parallel object-oriented program. Our system
checks if a specific execution follows this model. Hence, the checker is charged with verifying
anobject access discipline.

In the OC model, there is no notion of consistency for arrays and hence array access is not
subject to a specific access discipline. Moreover, objects that are used as monitors (actually
condition variables) have to be treated specially because atomicity of method execution can
sometimes be violated on purpose (synchronized methods, invocation ofwait).

7.2.2 Object access discipline

A simple approach to achieve OC is to require that object access is serialized and naturally
leaves the object in a consistent state. This discipline can be unnecessarily restrictive, because
according to the definition of OC, only object access for which different execution orders leave
the object in different final states [23] must be serialized.

We pursue a pragmatic approach and check that mutual exclusion is fulfilled for field and
method accesses that read or write the internal state of the object; we allow read-read over-
lap and also concurrent unordered access to variables that the programmer declared as volatile.
With this access discipline, all actual violations of OC are detected; in addition, some object
access with benign overlap (e.g., same object but different variables) also violates the access
discipline. Hence there is nounderreporting, but there might be someoverreporting. Overre-
porting is moderate and has not been a problem in our experience (Section7.2.6). To simplify
the presentation, we use the terms ”violation of OC” instead of ”violation of the object access
discipline” if the distinction between both is apparent or irrelevant.

7.2.3 Object access protocol

The compliance of an execution to the OC object access discipline is verified through an object
access protocol. The following auxiliary data structures are associated with each object to
facilitate the checking for the access discipline:

• o.t the thread that is currently active on the objecto.

130 CHAPTER 7. DYNAMIC CHECKING

init(o)
o.t = null;
o.w = false;

Figure 7.6: Object initialization.

• o.w flags if the current thread writes to the object.

Additionally, four local variablestbefore, tafter, wbefore, andwafter are reserved in each method to
temporarily store thread and write information about an accessed object.

Object initialization

At object allocation, there is no active thread on the allocated object and the write flag is not
set. The procedureinit() summarizes the actions that immediately follow the allocation of an
objecto (Figure7.6).

Object access

The object access discipline is then checked at field access statements and method access. The
checking is split into an access prologue and epilogue (Figure7.7). Let ebe the access event,o
the accessed object, andt the accessing thread.

The access prologue stores the existing thread and write flag of the accessed object and in-
stalls the current thread and write flag corresponding to the access. The checking for a violation
is done in the epilogue. To avoid that the actual access and the actions of the access protocol
are reordered, a memory fence (mfence) is inserted after the prologue and before the epilogue.

In the epilogue, two checks are done: (1) the active thread ono that is determined after the
access (variabletafter) must be the same as the thread executing the epilogue (t). (2) The active
thread before the epilogue (variabletbefore) must benull or t; in the latter case the accesse is
reentrant. A report is issued if one of the test fails and at least one access that overlapped is a
write.

Treatment of monitors

Objects that are used as monitors are treated specially by the checker because in such case,
overlapped object access can be intentional and should not be reported as a violation of OC.
Consider, e.g., some threadt1 that invokes a synchronized method and temporarily leaves the
monitor through a call towait. Another threadt2 can enter the monitor, alter the state of the
object, callnotify, and finally leave the monitor. An object access protocol that is ignorant of
monitors would report an OC violation. Hence, the following adaptations are made to accom-
modate the special case of monitor objects:

• There is no instrumentation at the call site of a synchronized method. Instead, the pro-
logue is executed immediately after the monitor lock is acquired; the epilogue is executed
immediately before the method returns.

7.2. DETECTING VIOLATIONS OF OBJECT CONSISTENCY 131

/∗ prologue∗/
atomic :

tbefore= o.t;
wbefore= o.w;

atomic :
o.t = t;
if (is write(e))

o.w = true;
mfence;

/∗ access∗/
〈threadt issues access evente to objecto〉;

/∗ epilogue∗/
mfence;
atomic :

tafter = o.t;
wafter = o.w;

atomic :
o.t = tbefore;
o.w = wbefore;

if (tafter 6= t ∨ (tbefore 6= null ∧ tbefore 6= t))
if (is write(e) ∨ wbefore ∨ wafter)

new Report(e,o, t);

Figure 7.7: Object access prologue and epilogue.

• Invocations ofjava.lang.Object::wait are instrumented specially, namely in thein-
verseway of Figure7.7: Beforethe call, the “epilogue” restores the header fields of the
object prior to entering the monitor;after the invocation, the “prologue” re-acquires the
monitor object and the thread continues with its activities on the monitor object.

• The start of a block monitor is treated like the entry of a synchronized method; the end of
a block monitor is treated like the return from a synchronized method.

7.2.4 Verification

We have used the SPIN model checker [65] to validate that the protocol correctly detects over-
lapped object access, irrespective of the thread interleaving. The model in Program7.1. is con-
figured with 4 concurrent threads; three global variables represent the header of the accessed
object (header), the accessed field variable (ctr), and a flag that marks if a report is issued
(report). All threads execute the prologue, the access itself, then the epilogue. The double
colon (::) means selection, i.e., one of the statements inside anif/fi-block is executed. In
the model, the statements following the choice is guarded, i.e., the second part (after the−>)
is executed after and if the guard (before the−>) evaluates totrue. Finally, the assertion de-

132 CHAPTER 7. DYNAMIC CHECKING

Program 7.1: Simplified model of OC protocol as input for the SPIN model checker.
#define NUM_THREADS 4

byte header = -1;
byte ctr = 0;
bool report = 0;

active [NUM_THREADS] proctype user()
{

byte before;
byte after;

/* prologue */
before = header;
header = _pid;

/* access */
ctr++;

/* epilogue */
after = header;
header = -1;
if
:: (after != _pid) -> report = 1;
fi;
if
:: (before != -1 && before != _pid) -> report = 1;
fi;

assert (report == 1 || ctr == NUM_THREADS);
}

mands that not lost update occurs (ctr == NUM THREADS) or a report is issued (report == 1).
Overreporting is allowed, i.e., both conditions may becometrue.

The given model passes the checker without violating the assertion. This means that any
sequentially consistent execution of the program maintains the invariant. The model in Pro-
gram7.1is simplified for the purpose of presentation. The actual model that we used to validate
the protocol is more complex and also accounts for reentrant object access.

7.2.5 Implementation

Instrumentation

The instrumentation issparseand only targets those object access statements that participate in
an access conflict, i.e., correspond to a conflicting event in some OUG (Section4.4). Access to
self needs no instrumentation.

Code generation

This section discusses issues of code generation for the object access protocol on the Intel IA-
32 platform [67]. The inline code sequences are designed such that the most frequent cases are

7.2. DETECTING VIOLATIONS OF OBJECT CONSISTENCY 133

OC
field access 4.8
field access (shared read) 7.2
static call 2.3
virtual call 4.0

Table 7.7: Execution time of object access with instrumentation for OC checking relative to the
un-instrumented access.

handled most efficiently and do not require a library call. We enhanced the IA-32 code gen-
erator and specified code templates corresponding to inline code. The protocol requires thread
identification information to enable threads to distinguish their own activity from the activities
of other threads. We use high-order bits of the stack-pointer (%esp) as a unique identification.

The instrumentation of the access prologue requires 3 respectively 5 instructions for read
respectively write access; there is one read, one write access to memory and a memory fence.
The epilogue is 15 assembly instructions long. The common cases (no violation of OC) requires
a memory fence, one write, one read memory access, and 5 integer arithmetic instructions.
Overlapping reads are resolved in a library call and hence are slightly more expensive (see
micro benchmarks below).

Memory ordering

On modern multi-processor architectures the program actions and the actions of the object ac-
cess protocol might appear out of order from the perspective of different threads. This can
impact the detection accuracy such that harmful thread interference (e.g., lost update) might
remain undetected. As the object access protocol should reliably detect any actual interfer-
ence, ordering between prologue, actual object access, end epilogue must be enforced. This is
done through a memory fence (Figure7.7). On the IA-32 architecture [67], we use thelock
instruction prefix to achieve the effect of a bidirectional memory barrier.

Micro benchmarks

We use micro benchmarks to assess the execution overhead due to the program instrumentation.
The methodology is the same as in Section7.1.4. Table7.7 reports the execution times of an
instrumented access relative to its un-instrumented version. For field access, the most significant
portion of the overhead is due to the memory fences in the inlined code sequence. On the
Pentium III architecture that we used for the experiment, the cost of a memory fence is several
times the cost of an ordinary memory access. Concurrent reads are relatively more expensive
because this case is not handled by the inline code such that a branch into the runtime library is
necessary. The cost of an access that leads to a report is in the same order; only one report is
issued per object. The absolute overhead of a static call is the same as for a field access (as a
call is generally more expensive than a field access, the relative overhead is lower for the call).
Polymorphic calls are again relatively more expensive than static calls due to the call resolution
throughinstanceof-chains (details in Section7.3).

134 CHAPTER 7. DYNAMIC CHECKING

7.2.6 Experience

Performance

We investigate three different program variants that differ in the degree of instrumentation:

• all: In this category, all sites that do not accessself are instrumented. The instrumenta-
tion does not account for different access contexts or access classifications by the static
conflict analysis.

• conflict: This variant limits the instrumentation to sites that that do not accessself and
participate in access conflicts.

• optimized: Similar to conflict, however the program as well as the instrumentation are
optimized (Section7.1.4).

oc (no array)
conflict optimized

philo 0.0 0.0
elevator 20.4 20.4
mtrt < 0.1 < 0.1
sor 0.0 0.0
tsp 23.0 18.7
hedc 9.7 2.4
mold < 0.1 < 0.1
ray 72.6 28.2
monte 0.2 0.2
specjbb 34.9 27.2
jigsaw 12.9 12.8

Table 7.8: Frequency of access checks for different instrumentation variants.

Table7.8shows the frequency of dynamic access checks relative to variantall. Apart from
ray, the static analysis reduces the numbers significantly. Optimization is especially beneficial
for ray, where partial redundancy elimination eliminates a large number of the field access
events and their associated checks.

original oc (no array)
optimized all conflict optimized

mtrt 20.0 19.6 1.09 1.05 1.09
sor 2.8 2.4 1.00 1.00 1.00
tsp 7.3 6.0 2.74 1.41 1.33
mold 18.3 23.8 2.69 (0.93) (0.64)
ray 44.4 45.8 3.99 3.12 1.91
monte 21.6 22.8 1.44 1.38 1.29
average 2.15 1.59 1.25

Table 7.9: Runtime of original and instrumented programs.

Table7.9shows the runtime of different instrumentation variants. The time for instrumented
programs in columnsoc (no array) is given as a factor of the execution time of the uninstru-
mented program (original); all and conflict are relative to the un-optimized,oc (no array) -

7.2. DETECTING VIOLATIONS OF OBJECT CONSISTENCY 135

optimized is relative to the optimized program variant. The measurements are done on a Pen-
tium III 933 MHz system with 512 MB of main memory, which is sufficient for each program
to execute in main memory. We report the average execution time of three runs.

The cost of OC varies across the benchmarks, depending on their access characteristics. In
sor, e.g., most access event target arrays orself hence the cost of OC checking is negligible;
the static analysis determines no conflicts on classes or object instances and hence not a single
check is executed in the variantsconflict andoptimized. The situation forray is the opposite: A
large number of field accesses to objects that are notself result in very frequent checking. The
static analysis is not able to determine the absence of conflicts for some core data structures and
hence the overhead remains significant (212% inconflict and 91% withoptimization).

The performance ofmoldyn is very sensitive to cache performance and in particular the num-
ber and layout of local variables in one of its very large methods (moldyn.mdRunner::run).
The number and order of local variables varies with the degree of instrumentation and optimiza-
tion; hence the execution times of the instrumented variants are improved due to the fortunate
coincidence of a cache compliant variable layout. Our compiler is not tuned to address this
issue.

Reporting

Table7.10 classifies the OC violations reported for a specific program run. The reports are
classified as follows (column reportsspurious–benign–harmful):

• Spurious reportsdo not correspond to actual violations of OC; such reports occur, e.g.,
due to the static classification of a method as write that actually performed only reads in
the execution.

• Benign reportscorrespond to actual violations of OC that are intended or tolerable in the
program.

• Harmful reportscorrespond to actual violations of OC that reflect synchronization de-
fects.

total spurious–benign–harmful
philo 0 0
elevator 0 0
mtrt 0 0
sor 0 0
tsp 0 0
hedc 9 0–1–8
mold 0 0
ray 0 0
monte 0 0
specjbb 2 0–1–1
jigsaw 14 2–12–0

Table 7.10: Violations of the object access discipline.

There are generally very few reports, which confirms that object consistency is mostly fol-
lowed in practice. The reporting may slightly vary between different program runs due to
scheduling dependence.

136 CHAPTER 7. DYNAMIC CHECKING

8 reports inhedc concern thread objects. These threads provide a methodTask::cancel

that allows other threads to issue a termination signal. Therun andcancel methods may hence
be executed with overlap on the same thread object by different threads and hence a violation
of OC is reported. This is also the context where the critical unsynchronized assignment of
null to a shared variableTask::thread occurs that could be read by another thread and lead
to a NullPointerException. Hence these reports are classified as errors. Another report
is spurious and addresses classjava.net.InetAddress where the unsynchronized method
getByName is accessed concurrently. The implementation of this method is, however, based on
other synchronized methods and is safe.

There are two reports forspecjbb: There is an error report that addresses an instance of class
spec.jbb.Company where fieldmode is used to communicate the current phase of operation to
the transaction managers of individual threads. The variable is updated and read concurrently
and should be declared as volatile. There is another report for the global variablemyCompany in
classspec.jbb.JBBmain. The variable is read by different threads while themain method is
active. The initialization occurs before the start of the threads and hence this report is benign.

12 benign reports injigsaw occur in a situation where a thread is started, hence therun

method starts to execute while the constructor of the thread has not terminated. All situations do
not represent an actual problem, because no critical access occurs after the start. One spurious
report concerns an instance of classClientState where disjoint set of fields are accessed
concurrently under different locking contexts. Another spurious report is given for an instance
of classDirectoryResource where an unsynchronized method is classified as a write access,
the actual variable access is however done in the scope of a private synchronized method.

7.2.7 Related work

This section discusses fundamental approaches at different layers of a system to compensate
and hide the programmer-visible effects of low-level memory access optimizations. Hardware-
centric SC systems [51, 60] are not included since, due to the combined effects of compiler and
runtime system, hardware-based solutions can simplify but not entirely resolve the aspect of
memory consistency at the programming level.

Weak memory systems. Weak memory systems [2, 52, 12, 66, 48] constitute aprogrammer-
centric [50] approach to hiding the effects of buffering and reordering of memory accesses
from the user. Weak memory models are defined from the hardware perspective and thus are
not specific about programming language aspects. For a certain class of programs where syn-
chronization is present, e.g., according to the conventions imposed by Release Consistency [52],
the memory abstraction for the user is SC. Restricting the scope of programs for which guar-
antees are made is however a limitation of weak memory systems: The property of compliance
to the programming model is undecidable and cannot be efficiently determined from program
executions either.

Our approach of OC differs from Scope Consistency [66] and Entry Consistency [12] in that
programming conventions for these memory models define memory scopes based on critical
regions (i.e., program segments) that are specified by the programmer, whereas our approach
uses a partitioning based on the object space that is determined automatically by the compiler.

7.2. DETECTING VIOLATIONS OF OBJECT CONSISTENCY 137

Concurrent object systems. Various systems (including Amber [20], Orca [10], SAM [104],
Concert [22, 95, 23]) have exploited the idea of user-defined objects as the basis for sharing.
These systems have been successful in mapping parallel programs onto memory systems that
are far more complicated than the shared memory systems that are the target of our work and
have even targeted distributed memory machines (where explicit copy or transfer operations
are necessary to maintain a shared object space). These systems define tailored programming
languages and require system specific annotations by the user, e.g., about available parallelism
and how data will be accessed.

Compiler-based memory consistency. Lee et. al. [76] investigate constraints on basic com-
piler optimizations in the presence of access conflicts. In [75, 84] a compile-time algorithm for
the sparse placement of memory fence instructions is described. This procedure guarantees a
specific memory behavior in explicitly parallel programs with access conflicts. The work pro-
poses the design of an optimizing compiler that exploits information about variable sharing and
the memory model of the underlying hardware. [84] does not quantify the cost of the analysis
and the runtime impact of the program instrumentation. Our work is complementary to the work
of Lee et. al.. We focus on the identification of shared data and structural protection guarantees.
Our goal is to provide a pragmatic memory model with access checking (OC) for Java while
limiting the impact of the instrumentation on the execution performance.

7.2.8 Discussion

Object consistency is ahigh-level memory modelthat addresses not only interference on in-
dividual variables but also the aspect of access atomicity on individual objects. This notion
of atomicity is however different from the method-level atomicity discussed in Chapter5: the
scope of object-level atomicity extends only to specific objects, whereas method-level atomicity
requires atomic treatment of all data that are accessed in the dynamic scope of a method. This
narrowing the scope of atomicity to individual objects opens new opportunities for the efficient
implementation of a runtime checker.

We have developed a runtime systems that checks for the compliance of an execution to
OC. The system is fully automated and assumes OC as execution model for all objects. The
reporting issafe, i.e., every violation of OC is recognized and reported. The number of reports
is generally low for the Java programs we studied. This confirms our conjecture that OC also
can be understood as a programming model that is commonly followed when arranging the
synchronization in a multi-threaded object-oriented program. While only few reports pointed
out genuine error conditions, most of the reports unveiled flaws in the design of the application
that should be improved.

Despite the compiler support, optimization, and efficient inline instrumentation, the runtime
overhead of the checker is still significant (9–91%, avg. 25%). This overhead is mainly due to
the software-centric implementation. Memory fences are the major factor contributing to the
overhead; more selective hardware mechanisms such as non blocking synchronization primi-
tives (e.g., the load-linked (LL) and store-conditional (SC) instructions [71, 57]) would allow a
more efficient implementation of OC checking. The rationale of these hardware extensions is to
expose information about cache coherence actions to a program for the purpose of interference
detection.

138 CHAPTER 7. DYNAMIC CHECKING

7.3 Method specialization

This section discusses a code specialization technique that enables to execute different variants
of a method in different calling context. The technique is general with respect to the notion of
context, i.e., different criteria could be used to distinguish invocation contexts.

We use the technique here to implement the object access protocols discussed in Sec-
tions 7.1.3 and 7.2.3. The criterion for context disambiguation is the conflict property that
the analysis in Chapter4 associates with the abstractions of heap allocated data. This procedure
allows to limit the execution of the object access protocol to objects and access sites that are
classified as conflicting.

The effectiveness of the method specialization in reducing the execution frequency of the
object access protocol depends on the the contexts in which a certain data type is used: If the
same type of data structure is used in different contexts and access conflicts are only found in
few contexts that are rarely executed, the method specialization is highly effective in reducing
the number of access checks. Otherwise, if, e.g., all instances of a certain type are conflicting,
most or all access to that type should execute the object access protocol and hence method
specialization is without effect; in this case, all access sites of a certain object type could be
instrumented.

7.3.1 Example

Program7.2 illustrates context sensitivity and motivates the necessity of context-sensitive
method specialization. The program creates two instances of classFlag and accesses them
in different contexts. The instance allocated at line 22 is thread-local and is accessed only by
the main thread. The instance allocated at line 23 is shared. The static conflict analysis (Chap-
ter4) reveals that there is a conflict on fieldFlag::b between the read access at line 35 and the
update in the scope of the call at line 27.

A simple, context-insensitive instrumenter would insert the prologue and epilogue of the
access protocol at all access sites of fieldFlag::b. This is possible but might entail unnecessary
checking (the protocol is also applied to object access that is thread-local) or spurious reporting
(access statements that occur before the escape would also be instrumented and this may mislead
the access protocol).

An ideal instrumenter would rearrange the program such that the object access protocol is
executed at runtime only for conflicting objects at conflicting access sites. The context-sensitive
method specialization approximates this goal by generating specializations of method respective
their invocation contexts and by adapting the calling structure of the program accordingly; the
procedure is not perfect though and some unnecessary instrumentation may be executed under
certain circumstances where the static program analysis looses context sensitivity, e.g., inside
in a recursion.

7.3.2 Implementation

The classification of object access statements depends on the heap context within which the
method that performs the access is called. Specializations are created in 4 steps:

7.3. METHOD SPECIALIZATION 139

Program 7.2: Example of a program where instances of class
Flag are used in different contexts.

1 class Flag {
2 boolean b;
3
4 Flag() {
5 b = false;
6 }
7
8 void set() {
9 b = true;

10 }
11
12 void unset() {
13 b = false;
14 }
15 }
16
17
18 class Specialization extends Thread {
19 Flag s;
20
21 static void main(String args[]) {
22 Flag local = new Flag();
23 Flag shared = new Flag();
24 Thread t = new Specialization(shared);
25 t.start();
26 local.set();
27 shared.set();
28 }
29
30 Specialization(Flag s) {
31 this.s = s;
32 }
33
34 void run() {
35 if (s.b)
36 System.out.println("main is done");
37 }
38 }

1. First, all heap contexts are identified within which a method operates. This information
is recorded during the symbolic execution (Section3.4). Every heap context provides a
specialization candidateof that method.

2. Then, the conflict analysis determines the conflict properties of abstract objects and indi-
vidual access sites. (Chapter4.4).

3. Then specialization candidates are classified and grouped according to the properties de-
termined by the conflict analysis.

4. Finally, method specializations are determined by combining specialization candidates
that operate in equivalent abstract contexts; call sites are adjusted to invoke specializations
if necessary. In specialized methods, the resolution of polymorphic calls must consider
not only the type/compile-time properties of the target object (as done with different vari-

140 CHAPTER 7. DYNAMIC CHECKING

ants of vtables), but also the calling context. Our implementation unfolds polymorphic
call sites to cascades ofinstanceof checks.

The implementation does not specialize thread root methods (main andrun) because they
are directly called from the runtime system and hence their call sites cannot be changed; only for
thread root methods, the calls and instrumentation are adjusted directly in the original version
of the method. All other methods that have instrumented access statements or call methods
with instrumented access statements are specialized themselves. Their original versions are
not instrumented in our current implementation; consequently call-backs from native methods
or the runtime system branch into un-instrumented code. Although this shortcoming of our
current implementation may affect the detection accuracy of the object access protocol, we
have not found it to be a critical issue during our experiments.

Example In the simple example of Figure7.2, the context-sensitive method specialization
would apply the following code transformations:

• Ultimately, the conflicting access to the shared instance ofFlag happens in methods
Flag::set andSpecialization::run. The former method is specialized and hence
a variantFlag::set.1 is created that contains the access instrumentation; the original
method remains unaffected. The latter method cannot be specialized (it is a thread root
method) and hence the access instrumentation is inserted directly.

• Call sites that invokeFlag::set on the shared instance ofFlag must be up-
dated. This concerns the call at line 27 of methodSpecialization::main. As
Specialization::main cannot be specialized itself (it is a thread root method), the site
is updated directly in the original version of the method to invokeFlag::set.1 instead
of Flag::set.

7.3.3 Experience

Table7.11 specifies the number of methods and specializations in the benchmarks. Column
methods total specifies the number of methods in the call graph. A large fraction of those meth-
ods require to be specialized (columnmethods spec) because they perform access that needs
to be instrumented, or they invoke methods that are specialized. Columnspecializations gives
the total number of specializations, as well as the maximum and average number of special-
ization per specialized method. Inhedc, specjbb and jigsaw, the imprecision of the compiler
in assessing the call structure and bounding the polymorphism may lead the specializer to tai-
lor method specializations to specific execution contexts that never occur at runtime. Hence in
these benchmarks, a number of specialized methods will never actually execute at runtime.

The programsphilo andsor show another inefficiency of our current implementation of the
specializer: Although the static analysis shows that there are no access conflicts and and hence
no checking and code specialization would be necessary, method specializations for the case
“no instrumentation” are generated and executed. This leads to some (unnecessary) overhead
that is an artifact of the current implementation.

Columncode bloat specifies the growth of the executable file with context-sensitive method
specializations relative to the size of the original program. Note that the executable does not

7.3. METHOD SPECIALIZATION 141

methods specializations code bloat runtime (rc) runtime (oc)
total spec total max avg [%] frac [%] frac [%]

philo 192 52 65 3 1.25 3 - - - -
elevator 311 76 105 5 1.38 5 - - - -
mtrt 719 345 504 10 1.48 21 1.26 > 99 1.05 90
sor 206 14 14 1 1.00 1 1.04 < 1 1.00 < 1
tsp 299 68 93 4 1.37 5 1.12 20 1.03 7
hedc 1021 720 3891 84 5.40 175 - - - -
mold 224 83 110 4 1.33 6 1.83 93 1.64 n/a
ray 270 111 151 4 1.36 7 1.44 18 1.26 12
monte 441 165 196 3 1.19 8 1.47 56 1.37 98
specjbb 1398 978 2270 46 2.12 77 - - - -
jigsaw 1396 972 1841 53 1.89 58 - - - -
average 33 1.36 1.22

Table 7.11: Benchmark characteristics with context-sensitive method specializations.

only contain the methods specified in the call graph (columnmethods total), but the complete
set of methods of all standard library classes (libgcj version 2.96 [49]) that are used by the
application program or runtime system. The code bloat is generally low and slightly increased
for benchmarks with deep call hierarchies and an allegedly high degree of polymorphism (hedc,
specjbb, andjigsaw).

Columnsruntime quantify the overhead due to method specialization. We report the pro-
gram variantsrc andoc separately: The variants correspond to the programs evaluated in Sec-
tions7.1.6and7.2.6, the inline code instrumentation at critical access sites is however omitted
(to isolate the overhead due to method specialization). While both program variants (rc and
oc) have the same structure of method specializations,rc reserves one register for the id of the
current thread. Hence variantrc is generally slower thanoc, and the difference can be attributed
to the reserved register that is not available to standard register allocator.

Each of the columnsruntime (xx) specifies two values: The first value is the execution time
relative to the original benchmarks (Table7.5 and7.9). The second value (columnsfrac [%])
specifies the fraction of the overhead of the race checker (rc) respectively object consistency
(oc) that is due to the method specialization.

The runtime cost of context-sensitive method specialization is due to cascades of
instanceof checks at polymorphic call sites. Benchmarks with frequent dynamic method
dispatch (Table7.3) are specifically impaired, e.g.,mtrt andmonte. Formtrt, the net overhead
of object race checking can almost entirely be attributed the method specialization. There are
several directions for improvement: (1) The static call resolution could be refined; our current
technique is context-insensitive (the variable-type analysis, VTA [115]) and has only a coarse
approximation of alias information. (2) The current implementation of dynamic sub-type check-
ing is not tuned.

Despite only few dynamic method resolutions (Table7.3), the performance ofmoldyn
seems particularly hampered through the code specialization. The performance degrada-
tion is however due to another reason:moldyn is very sensitive to cache performance
and in particular the number and layout of local variables in one of its very large meth-
ods (moldyn.mdRunner::run). The layout is different for the original and the pro-
gram variant with specialized methods. We do not report the fraction of the special-
ization overhead for variantoc of benchmarkmoldyn because we observed that the in-

142 CHAPTER 7. DYNAMIC CHECKING

strumented variant executes faster than the original variant due to cache effects (Ta-
ble7.9).

The runtime of the benchmarksphilo, elevator, hedc, jigsaw, andspecjbb is not reported in
Table7.11because these benchmarks are not CPU-bound or have a fixed execution time.

7.3.4 Related work

There are several techniques to distinguish different method execution contexts in object-
oriented programs at runtime. The implementation strongly depends on the notion of context
used by the static analysis. Hence not all variants that we describe are applicable and equally
effective for different analyses.

Choi et. al. [24] develop a solution to suppress unnecessary synchronization on thread-local
objects. The notion of context is given by object allocation sites; the compiler classifies sites
in a conservative manner as local or global; this classification is denoted in a header flag when
an instance is allocated at runtime. On a synchronization access, the flag is checked and a real
synchronization action is only executed if the flag specifies a global object. In this approach, a
small runtime cost remains for synchronization access to local objects.

For the same purpose, Bogda and Hölzle [15] propose the creation of different class variants
for local and global instances. Unlike [24], this technique does not require to modify the run-
time environment or virtual machine and eliminates any overhead associated with synchroniza-
tion. Each class is subclassed such that the synchronization related to instances is eliminated
in the subclass implementations. At object allocation sites that are local, the subclass instead
of the original class is allocated and dynamic method dispatch ensures that methods without
locking are invoked on that instance. Several subtleties of the Java language, like final classes,
final methods, and private fields, complicate the implementation of this approach but can be
overcome [15].

Whaley and Rinard [128] implement their context-sensitive synchronization elimination and
stack allocation with method specialization – a technique that is similar to our implementation.
In their case, the notion of context is determined through access paths from the allocation site
of an object to access sites of synchronized methods (or synchronized blocks). Methods along
these paths are specialized by the compiler such that synchronization on the object is eliminated
and call sites of methods along these paths are adjusted to invoke specialized method variants
(the corresponding procedure is applied for stack allocation).

7.3.5 Discussion

Context-sensitive method specialization is useful to tailor code to specific object contexts. We
use the technique to differentiate between execution contexts that operate on shared conflicting
and other data. Access to shared conflicting data can be furnished with an access protocol that
determines actual conflicts or memory consistency. This flexibility comes however at a certain
cost: In our implementation, which is not tuned, the overhead relative to the original program
is on average 22% (variantoc) in time and 33% in code space.

The two object access protocols that are presented in Section7.1 and7.2 do not depend
on the availability of the code specialization: A simple approach would furnish every poten-

7.3. METHOD SPECIALIZATION 143

tially conflicting access site with an object access protocol, irrespective the object contexts in
which this site executes. While this approach saves the cost of method specializations, there
could be redundant executions of the object access protocol, namely in contexts where the com-
piler would have already deemed the access protocol as unnecessary. Hence, if performance is
critical, the use of code specialization has to trade off between these two cost factors.

For the benchmarks at hand, we used the context-sensitive code specialization mainly as
a research vehicle to precisely assesses the effect of actual data sharing and access conflicts.
Access conflicts are mainly found on application data that tend to be used in uniform contexts
(i.e., either in a shared conflicting or some non-conflicting context). In this scenario, the cost of
the code specialization might not have been offset by the benefit of avoiding redundant checks
and hence the simpler lump-sum instrumentation approach might have resulted in even less
overhead for the object access protocols.

8
Conclusions

The way to correctly synchronized parallel programs is thorny and full of pitfalls: Too much
synchronization can lead to liveness problems (deadlock), too few synchronization can lead to
safety problems (data races, violations of atomicity). The problem of correct synchronization
is more relevant than ever in the context of recent developments in hardware architectures that
foster multi-processing capabilities [39, 119] and programming languages enable explicit multi-
threading at the software level (Java and C]). Hence it is a legitimate concern that a new class of
software error not known in sequential programming, namely synchronization defects, spreads
and puts software quality at a risk. This concern is confirmed by the study in this work and
related work, e.g., [25, 54, 93, 45], that finds a number of synchronization defects in common
application and benchmark programs.

Ideally, the quest for synchronization defects should be done statically and the checker
should have have two properties: It should be sound, i.e., all errors are detected, and com-
plete, i.e., all reports correspond to genuine errors. There are however three major impediments
that make it difficult to achieve these goals in practice:

• The presence of synchronization errors is defined on the basis of a program execution.
Hence, tools for static program analysis are challenged to deduce the potential of a defec-
tive execution from the program text. While it is already difficult for sequential programs
to determine the existence of certain program executions (input dependence), the situa-
tion is even more difficult for executions of multi-thread programs that are additionally
characterized by interleaving of individual threads (scheduling dependence).

• Synchronization patterns are manifold and a precise static analysis has to recognize such
patterns. Popular programming languages like Java and C] are extensions of sequential
languages and offer low-level synchronization primitives (locks, volatile variables) that
do not reflect the high-level synchronization discipline to a static analysis tool.

• Two important classes of synchronization defects (data races and violations of atomic-
ity) target the unwanted interference of threads on common shared variables; hence the
precise disambiguation data and threads at compile-time is important. In object-oriented
programs, this disambiguation cannot be easily established: Shared memory is commonly
accessed through indirection, such that aliasing can lead to imprecision in the static ap-
proximation of a runtime situation. Moreover, threads are commonly modeled as objects
(active objects) and hence similar problems arise in assessing the lifetime, structure, and
multiplicity of threads.

145

146 CHAPTER 8. CONCLUSIONS

Despite these impediments, this dissertation shows on the example of an existing program-
ming language (Java) that a fully automated detection of synchronization defects is possible in
practice, i.e., at an acceptable cost and a useful accuracy. There are two essential factors for
success: First, the flexible static analysis framework that allows to determine possible program
executions and their essential properties. Second, the close integration of the static analysis
with a sparse program instrumentation that enables efficient runtime monitoring and dynamic
checking.

8.1 Summary and contributions

Static analysis framework. We have designed a static analysis framework for multi-threaded
programs that approximates the effect of all possible program flows and thread interleavings:
The program is simulated along a symbolic execution on an abstract domain of data and threads.
The criteria for defective synchronization in an execution can be mapped onto the abstract
domain such that synchronization defects can be recognized during the symbolic execution. The
design of the abstract domain for data and threads is thereby a critical factor to the efficiency
and accuracy of the static analysis: First, we found that precise points-to and alias information
is of key importance. Second, it is highly beneficial to the efficiency of the analysis to narrow
the focus of the analysis to certain data of interest.

Framework instantiation. The static analysis framework is used to implement three algo-
rithms for the detection of (1) data races, (2) atomicity violations, and (3) deadlock in con-
current object-oriented programs. The novel aspect is that all algorithms have been originally
designed to operate at runtime and are now adopted for static analysis: (1) the data race de-
tection is based on the lockset algorithm that has been initially used by an online race checker
called Eraser [103]; (2) the detection of atomicity violations is motivated by the principles of
an online checker for high-level data races [8]; (3) the detection of deadlocks is based on the
cycle detection in a resource allocation graph, which is a common procedure of online deadlock
detection [106].

Evaluation. The accuracy of the static analysis is evaluated and related to observations in
actual program executions. As a result, a detailed study of several programs (up to 30 KLOC)
and their access behavior to local and shared data is done. This study sheds light on the sources
of inaccuracy and the intrinsic limits of static (concurrency) analysis.

The design of the checkers for the three types of synchronization defects is a trade-off be-
tween accuracy and efficiency (none of the procedures is sound or complete). The runtime of
the static analyses is comparable to common static program analyses done in compilers. Under-
reporting has not been an issue for the benchmark programs, and the number of spurious reports
is typically low and amenable to manual inspection.

Two methods are useful to assess the reports and filter out false positives: First, some reports
are due to false aliasing and refined alias and type information can help to screen out reports
manually. Second, a dynamic checker can assess the runtime situation in critical cases. Our
experience shows that the overhead for the residual dynamic checking is very low, i.e., far
below the overhead of previously reported dynamic checkers.

8.2. TRENDS AND FUTURE WORK 147

Runtime mechanisms. As part of the compiler framework, a code specialization technique
has been designed that allows to execute different code in the context of objects with differ-
ent compile-time classification. Based on this code specialization mechanism, two techniques
are presented that make information about concurrency and locking available at runtime: An
online race checker (object races) and a checker that assesses the compliance of an execution
with a high-level memory model (object consistency). The novel aspect is that relevant infor-
mation about concurrency and sharing is determined at the granularity of objects, not individual
variables. We show that the object-level view and the tight integration with the compile-time
analysis enables the compiler to reduce the runtime overhead of both runtime techniques with-
out affecting the accuracy of the tracked information in practice.

8.2 Trends and future work

8.2.1 Interaction with hardware

The programming interface of future systems and micro-architectures might provide abstrac-
tions known from distributed systems and may expose features that determine the absence or
presence of concurrency or atomicity. Such features have been proposed in the literature (e.g.,
transactional memories [57]) and allow for optimistic techniques to dynamic optimization and
concurrency control. This proposed hardware functionality should be leveraged by compil-
ers and dynamic analysis tools to implement higher-level synchronization primitives (Section
8.2.2) or runtime monitoring. In general, the increasing availability of computational resources
will allow a runtime system or compiler to schedule cooperative actions for runtime monitoring
without intrusion at a low cost for the execution to be monitored.

An initial step towards a concurrency-aware compiler and runtime system has been de-
veloped in this dissertation. Our model of object consistency (Section7.2.1) and other runtime
systems that assesses concurrency (e.g., approaches to optimistic concurrency control [114, 56])
have demonstrated the potential and benefit of concurrency awareness at runtime. One impor-
tant limiting factor of today’s implementations is the overhead of the software layer on which
these systems are based.

8.2.2 Language aspects

The introduction of this chapter describes tree major impediments that hinder the precise static
detection of synchronization errors in current programming languages. These aspects lead to the
following recommendations for the design of languages that are amenable to synchronization
analysis:

Synchronization discipline. Current models for parallel programming and synchronization
are diverse and hardly amenable to automated static or dynamic analysis. It is desirable that the
structure and boundaries of synchronization are more explicit and follow certain patterns, even
if this implies restrictions on their use.

Most static and dynamic checkers for synchronization defects verify that an execution or
program meets a certain synchronization discipline. Compliance with the discipline implies

148 CHAPTER 8. CONCLUSIONS

the absence of synchronization errors. The checker’s task of re-engineering and unraveling the
structure of synchronization from the program text or an execution is hard and often afflicted
with unnecessary conservatism. A more elegant approach would be to codify the synchroniza-
tion discipline statically. The role of the checker in such a system would be different: Instead
of giving proof of compliance, it may only have to validate compliance in occasional critical
cases. There are several approaches that are based on type systems and guarantee the absence of
data races altogether [9, 41, 16]. These systems have been discussed under the language-centric
approach to correct synchronization in Section2.5.

High-level synchronization primitives. Commonly used synchronization primitives areop-
erational, i.e., they describe an action that the issuing thread performs with respect to the be-
havior of other threads. Examples of such synchronization mechanisms are locks, monitors,
barriers and rendez-vous constructs. In contrast to operational constructs, transactions provide
a declarativedescription of synchronization, e.g., in the form of ’atomic regions’ [56] that
guarantee the absence of conflicting interference on any shared data that is accessed during the
execution of the region. If programming languages adopt such a declarative model of synchro-
nization, the ground rules for synchronization analysis and compiler may change and compilers
may find themselves in a new role of orchestrating and synthesizing operational synchroniza-
tion actions. So far, features for transactional execution have been hardly incorporated into
programming languages because their implementation is considered to be expensive. Novel
trends in hardware (Section8.2.1) may however change this picture.

Alias control. Most object-oriented programming languages provides a simple and flexible
object model: dynamic allocation and object access through references. This model impli-
cates the phenomenon of aliasing which aggravates static program analysis significantly (Chap-
ters3 to 6). It is generally desirable to limit the spread of references (which serve as access
keys to objects) such that the usage scope of an object can be confined to a specific thread or
component. Yet, practical mechanism foralias control[64] need to be developed. The purpose
of alias control is to restrict the occurrence of aliases to certain parts of a program. Research
in this field addresses, e.g., type systems to control the handling of references to objects and
object access, e.g., [5, 87, 16]). As such techniques provide a more precise notion of aliasing at
compile-time, they could improve the accuracy of the static synchronization analyses presented
in Chapters4 to 6.

Modular program analysis. The static analysis in Chapter3 assumes the availability of the
whole program and explicit models for the use of reflection and native methods. This is unre-
alistic in some environments with dynamic compilation or mobile code. There are two aspects
that necessitate whole-program information:

First, the flow of references in Java is not bounded through the lexical scope or the type
system, and hence a precise reference analysis is required to operate across class and component
boundaries. Mechanisms for alias control that are discussed in the previous paragraph declare
the bounds of reference flow explicitly and enable modular reasoning over object structures.

The second aspect that gets in the way of a modular synchronization analysis in Java is re-
lated to the synchronization mechanisms themselves: The potential of thread interference dur-
ing the execution of a certain methods depends on the context in which the method is invoked.

8.2. TRENDS AND FUTURE WORK 149

This is due to the synchronization (e.g., the monitor) that could prevent critical interference on
a modulem is supplied by the caller ofm, while m itself is oblivious to the protection properties
provided by its usage contexts.

Any analysis can be modular if it is conservative with respect to effects outside the analysis
scope. For synchronization analysis of Java programs, this procedure is however not practical
because the precision of analysis would deteriorate dramatically.

Program optimization. Today’s compilers typically transform and optimize programs ac-
cording to a sequential execution model, accounting for data and control dependence. The
transformation of parallel programs, however, has to be done with care: The existence of ac-
cess conflicts may introduce additional constraints that inhibit reordering beyond intra-thread
control- and data dependence [85, 76]. A naive optimizer for parallel programs, i.e., an opti-
mizer that performs code transformation irrespective of concurrent conflicting access, encoun-
ters the following limitations: First, the resulting programs may behave incorrectly with respect
to a sequentially consistent execution model (subset correctness, [76]). Second, such a naive
optimizer might not exploit the full optimization potential [125]. There are two strategies that
address these limitations: First, memory consistency could be relaxed such that transforma-
tions for sequential programs are also “correct” for parallel programs; this strategy is common
practice, e.g., [79]. Alternatively, compilers for parallel programs could adopt concurrency and
synchronization analysis (as presented in this dissertation); the results of these analyses could
guide the program transformation, enabling aggressive optimization while at the same time
preserving correctness with respect to a sequentially consistent memory model [125].

Bibliography

[1] S. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.IEEE
Computer, 29:66–76, 1996.

[2] S. Adve and M. Hill. Weak ordering — A new definition. InProceedings of the Annual
International Symposium on Computer Architecture (ISCA’90), pages 2–14, June 1990.

[3] S. Adve and M. Hill. A unified formalization of four shared-memory models.IEEE
Transactions on Parallel and Distributed Systems, 4(6):613–624, June 1993.

[4] G. Agha. Concurrent object-oriented programming.Communications of the ACM,
22(9):125–141, Sept. 1990.

[5] P. S. Almeida. Balloon types: Controlling sharing of state in data types. InProceedings of
the European Conference on Object-Oriented Programming (ECOOP’97), pages 32–59,
June 1997.

[6] L. Andersen.Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU Report 94/19).

[7] C. Artho. Finding faults in multi-threaded programs. Master’s thesis, Swiss Federal
Institute of Technology, Z̈urich, 2001.

[8] C. Artho, A. Biere, and K. Havelund. High-level data races. InProceedings of the
Workshop on Verification and Validation of Enterprise Information Systems (VVEIS’03),
Apr. 2003.

[9] D. Bacon, R. Strom, and A. Tarafdar. Guava: A dialect of Java without data races. In
Proceedings of the Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’00), pages 382–400, Oct. 2000.

[10] H. Bal, F. Kaashoek, and A. Tanenbaum. Orca: A language for parallel programming of
distributed systems.IEEE Transactions on Software Engineering, 18(3):190–205, 1992.

[11] V. Balasundaram and K. Kennedy. Compile-time detection of race conditions in a parallel
program. InProceedings of the International Conference on Supercomputing (ISC’89),
pages 175–185, 1989.

[12] B. Bershad, M. Zekauskas, and W. Sawdon. The Midway distributed shared memory
system. InProc. of the 38th IEEE Int’l Computer Conf. (COMPCON Spring’93), pages
528–537, Feb. 1993.

[13] B. Blanchet. Escape analysis for object-oriented languages - Application to Java. InProc.
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’99),
pages 20–34, Nov. 1999.

151

152 BIBLIOGRAPHY

[14] H.-J. Boehm. Destructors, finalizers, and synchronization. InProceedings of the Sympo-
sium on Principles of Programming Languages (POPL’03), pages 262–272, 2003.

[15] J. Bogda and U. Ḧolzle. Removing unnecessary synchronization in Java. InProc. Conf.
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’99),
pages 35–46, Nov. 1999.

[16] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: preventing
data races and deadlocks. InProceedings of the Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA’02), pages 211–230, Nov.
2002.

[17] G. Bristow, C. Dreay, B. Edwards, and W. Riddle. Anomaly detection in concurrent
programs. InProceedings of the International Conference on Software Engineering
(ICSE’79), pages 265–273, 1979.

[18] M. Burrows and K. R. M. Leino. Finding stale value errors in concurrent programs.
Research Report 2002-004, Compaq SRC, 2002.

[19] J. Chapin et al. The Rivet project.http://sdg.lcs.mit.edu/rivet.html, 1998.

[20] J. Chase, F. Amador, E. Lazowska, H. Levy, and R. Littlefield. The amber system:
Parallel programming on a network of multiprocessors. InProceedings of the Symposium
on Operating Systems Principles (SOSP’89), pages 147–158, 1989.

[21] R. Chatterjee, B. G. Ryder, and W. Landi. Relevant context inference. InProceedings of
the Symposium on Principles of Programming Languages (POPL’99), pages 133–146,
1999.

[22] A. Chien and J. Dolby. The Illinois Concert System: A problem-solving environment
for irregular applications. InProceedings of the Symposium on Parallel Computing and
Problem Solving Environments (DAGS’94), 1994.

[23] A. Chien, U. Reddy, J. Plevyak, and J. Dolby. ICC++: A C++ dialect for high perfor-
mance parallel computing. InProceedings of the International Symposium on Object
Technologies for Advanced Software (ISOTAS’96), pages 190–205, Mar. 1996.

[24] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis for Java.
In Proc. Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’99), pages 1–19. ACM Press, Nov. 1999.

[25] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. Efficient
and precise datarace detection for multithreaded object-oriented programs. InConference
Programming Language Design and Implementation (PLDI’02), pages 258–269, June
2002.

[26] J.-D. Choi, A. Loginov, and V. Sarkar. Static datarace analysis for multithreaded object-
oriented programs. Technical Report RC22146, IBM Research, Aug. 2001.

[27] M. Christiaens and K. de Bosschere. TRaDe: A topological approach to on-the-fly race
detection in Java programs. In USENIX Association, editor,Proceedings of the Java
Virtual Machine Research and Technology Symposium (JVM’01), pages 105–116, Apr.
2001.

[28] E. Coffman, M. Elphick, and A. Shoshani. System deadlocks.ACM Computing Surveys,
(3)2:67–78, June 1971.

BIBLIOGRAPHY 153

[29] S. A. Cook. Soundness and completeness of an axiom system for program verification.
SIAM Journal of Computing, 7(1), 1978.

[30] J. Corbett. Evaluating deadlock detection methods for concurrent software.IEEE Trans-
actions on Software Engineering, 22(3), 1996.

[31] J. Corbett, M. Dwyer, J. Hatcliff, and S. Laubach. Bandera: Extracting finite-state models
from Java source code. InProceedings of the International Conference on Software
Engineering (ICSE’00), pages 439–448, June 2000.

[32] J. C. Corbett. Constructing compact models of concurrent Java programs. InProceed-
ings of the ACM International Symposium on Software Testing and Analysis (ISSTA ’98),
volume 23(2) ofACM Software Engineering Notes, pages 1–10. ACM Press, Mar. 1998.

[33] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. The MIT
Press, 1990.

[34] E. Dijkstra. Hierarchical ordering of sequential processes.Acta Informatica, 1(2):115–
138, 1971.

[35] P. Diniz and M. Rinard. Synchronization transformation for parallel computing. InProc.
Symp. Principles of Programming Languages (POPL’97), pages 187–200, Jan. 1997.

[36] A. Dinning and E. Schonberg. Detecting access anomalies in programs with critical
sections. InProceedings of the ACM/ONR Workshop on Parallel and Distributed Debug-
ging, pages 85–96, Dec. 1991.

[37] E. Duesterwald and M. Soffa. Concurrency analysis in the presence of procedures using
a data-flow framework. InProceedings of the Symposium on Testing, Analysis, and
Verification (TAV4), pages 36–48, 1993.

[38] ECMA. Standard ecma-334: C# language specification.http://www.ecma-
international.org/publications/files/ecma-st/Ecma-334.pdf, Dec. 2002.

[39] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and D. Tullsen. Simultaneous multithread-
ing: A platform for next-generation processors. InProceedings of IEEE Micro, pages
12–18, Sept. 1997.

[40] P. A. Emrath and D. A. Padua. Automatic detection of nondeterminacy in parallel pro-
grams. InProc. of the ACM Workshop on Parallel and Distributed Debugging, pages
89–99, Madison, Wisconsin, Jan. 1989.

[41] C. Flanagan and S. Freund. Type-based race detection for Java. InProceedings of the
Conference on Programming Language Design and Implementation (PLDI’00), pages
219–229, June 2000.

[42] C. Flanagan and S. Freund. Detecting race conditions in large programs. InProceedings
of the Workshop on Program Analysis for Software Tools and Engineering (PASTE’01),
pages 90–96, June 2001.

[43] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity checker for multithreaded
programs. InProceedings of the Symposium on Principles of Programming Languages
(POPL’04), pages 256–267, Jan. 2004.

[44] C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata. Extended static
checking for Java. InProceedings of the Conference on Programming Language Design
and Implementation (PLDI’02), pages 234–245, June 2002.

154 BIBLIOGRAPHY

[45] C. Flanagan and S. Qadeer. A type and effect system for atomicity. InProceedings of the
Conference on Programming Language Design and Implementation (PLDI’03), pages
338–349, June 2003.

[46] C. Flanagan and S. Qadeer. Types for atomicity. InProceedings of the International
Workshop on Types in Language Design and Implementation (TLDI’03), pages 1–12,
Jan. 2003.

[47] I. Foster and C. Kesselman.The Grid: Blueprint of a New Computing Infrastructure.
Morgan Kaufmann, 1998.

[48] G. Gao and V. Sarkar. Location consistency — A new memory model and cache con-
sistency protocol. CAPSL Technical Memo 16, University of Delaware, Department of
Electrical and Computer Engineering, Feb. 1998.

[49] GCJ: The GNU Compiler for the Java Programming Language.http://gcc.gnu.org/

java.

[50] K. Gharachorloo. Retrospective: Memory consistency and event ordering in scalable
shared-memory multiprocessors. In25 Years of the International Symposia on Computer
Architecture (ISCA), Selected Papers, pages 67–70, 1998.

[51] K. Gharachorloo and P. Gibbons. Detecting violations of sequential consistency. In
Proceedings of the Symposium on Parallel Algorithms and Architectures, (SPAA’91),
pages 316–326, July 1991.

[52] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory
consistency and event ordering in scalable shared-memory multiprocessors. InProceed-
ings of the International Symposium on Computer Architecture (ISCA’90), pages 15–26,
June 1990.

[53] J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java Language Specification, 2nd
Edition. Addison-Wesley, 2000.

[54] A. Greenhouse and W. Scherlis. Assuring and evolving concurrent programs: Annota-
tions and policy. InProceedings of the International Conference on Software Engineer-
ing (ICSE’02), pages 453–463, May 2002.

[55] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph construction in object-
oriented languages. InProceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’97), pages 108–124, Oct. 1997.

[56] T. Harris and K. Fraser. Language support for lightweight transactions. InProceedings of
the Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’03), pages 388–402, Oct. 2003.

[57] M. Herlihy and E. Moss. Transactional memory: Architectural support for lock-free data
structures. InProceedings of the International Symposium on Computer Architecture
(ISCA’93), pages 289–301, May 1993.

[58] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concur-
rent objects.ACM Transactions on Programming Languages and Systems (TOPLAS),
12:463–492, July 1990.

[59] A. Heydon, R. Levin, and Y. Yu. Caching function calls using precise dependencies. In
Proceedings on the Conference on Programming Language Design and Implementation
(PLDI’00), pages 311–320, June 2000.

BIBLIOGRAPHY 155

[60] M. Hill. Multiprocessors should support simple memory-consistency models.IEEE
Computer, 31(8):28–34, Aug. 1998.

[61] M. Hind. Pointer analysis: Haven’t we solved this problem yet? InProceedings of
the Workshop Program Analysis for Software Tools and Engineering (PASTE’01), pages
54–61, June 2001.

[62] M. Hind and A. Pioli. Which pointer analysis should i use? InInternational Symposium
on Software Testing and Analysis, pages 113–123, Aug. 2000.

[63] C. A. R. Hoare. Monitors: An operating system structuring concept.Communications of
the ACM, 17(10):549–557, Oct. 1974.

[64] J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt. The geneva convention on the
treatment of object aliasing.OOPS Messenger, 3(2), Apr. 1992.

[65] G. J. Holzmann. The model checker SPIN.IEEE Transactions on Software Engineering,
23(5):279–295, 1997.

[66] L. Iftode, J. Singh, and K. Li. Scope consistency: A bridge between release consistency
and entry consistency. InProc. of the 8th ACM Annual Symp. on Parallel Algorithms and
Architectures (SPAA’96), pages 277–287, June 1996.

[67] Intel. IA-32 Intel architecture optimization reference manual.http://developer.

intel.com/design/PentiumIII/manuals, 2001.

[68] Java Grande Forum multi-threaded benchmark suite.http://www.epcc.ed.ac.uk/

javagrande/.

[69] Java HotSpot Virtual Machine (VM).http://java.sun.com/products/hotspot.

[70] Java memory model mailing list.http://www.cs.umd.edu/˜pugh/java/memoryModel.

[71] E. Jensen, G. Hagensen, and J. Broughton. A new approach to exclusive data access in
shared memory multi-processors. Technical Report UCRL-97663, Lawrence Livermore
National Laboratory, Nov. 1987.

[72] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Efficient and optimal bitvec-
tor analyses for parallel programs.ACM Transactions on Programming Languages and
Systems, 18(3):268–299, 1996. Extended and revised version of KnSV95b-C.

[73] L. Lamport. Time, clock and the ordering of events in a distributed system.Communi-
cations of the ACM, 21(7):558–565, July 1978.

[74] D. Lea et al. Java Specification Request #166: Concurrency Utilities.http://gee.cs.

oswego.edu/dl/concurrency-interest.

[75] J. Lee and D. Padua. Hiding relaxed memory consistency with compilers. InProc. of
The IEEE Intl. Conf. on Parallel Architectures and Compilation Techniques (PACT’00),
pages 111–122, Oct. 2000.

[76] J. Lee, D. Padua, and S. Midkiff. Basic compiler algorithms for parallel programs.
In Proceedings of the Symposium on Principles and Practice of Parallel Programming
(PPoPP’99), pages 1–12, May 1999.

[77] D. Liang, M. Pennings, and M. J. Harrold. Extending and evaluating flow-insensitive
and context-insensitive points-to analyses for Java. InProceedings of the Workshop on
Program Analysis for Software Tools and Engineering (PASTE’01), pages 73–79, June
2001.

156 BIBLIOGRAPHY

[78] R. Lipton. A method of proving properties of parallel programs.Communications of the
ACM, 18(12):717–721, Dec. 1975.

[79] J. Manson, W. Pugh, et al. Java Specification Request #133: Java Memory Model and
Thread Specification.http://www.cs.umd.edu/˜pugh/java/memoryModel.

[80] S. Masticola and B. Ryder. Static infinite wait anomaly detection in polynomial time.
In Proceedings of the International Conference on Parallel Processing (ICPP’90), pages
78–87, 1990.

[81] S. Masticola and B. Ryder. Non-concurrency analysis. InProceedings of the Symposium
on Principles and Practice of Parallel Programming (PPoPP’93), pages 129–138, 1993.

[82] J. Mellor-Crummey. On-the-fly detection of data races for programs with nested fork-join
parallelism. InProceedings of the Supercomputer Debugging Workshop, pages 24–33,
Nov. 1991.

[83] J. Mellor-Crummey. Compile-time support for efficient data race detection in shared-
memory parallel programs. InProceedings of the Workshop on Parallel and Distributed
Debugging, pages 129–139, May 1993.

[84] S. Midkiff, J. Lee, and D. Padua. A compiler for multiple memory models. InRec.
Workshop Compilers for Parallel Computers (CPC’01), June 2001.

[85] S. Midkiff and D. Padua. Issues in the optimization of parallel programs. InProceedings
of the International Conference on Parallel Processing, pages 105–113, Aug. 1990.

[86] A. Milanova, A. Rountev, and B. Ryder. Parametrized object-sensitivity for poits-to and
side-effect analyses foe Java. InProceedings of the ACM International Symposium on
Software Testing and Analysis (ISSTA ’02), pages 1–11, July 2002.

[87] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and dependency
control. Technical Report 279, Fernuniversität Hagen, 2001.

[88] G. Naumovich, G. Avrunin, and L. Clarke. Data flow analysis for checking properties of
concurrent java programs. InProceedings of the International Conference on Software
Engineering (ICSE’99), pages 399–410, May 1999.

[89] G. Naumovich, G. Avrunin, and L. Clarke. An efficient algorithm for computing MHP
information for concurrent Java programs. InProceedings of the European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 338–354, Sept. 1999.

[90] G. Naumovich, L. A. Clarke, and J. M. Cobleigh. Using partial order techniques to
improve performance of data flow analysis based verification. InProceedings of the
Workshop Program Analysis for Software Tools and Engineering (PASTE’99), pages 57–
65, Sept. 1999.

[91] R. Netzer and B. Miller. Detecting data races in parallel program executions. Technical
Report TR90-894, University of Wisconsin, Madison, Department of Computer Science,
Aug. 1990.

[92] R. Netzer and B. Miller. What are race conditions? Some issues and formalizations.
ACM Letters on Programming Languages and Systems, 1(1):74–88, Mar. 1992.

BIBLIOGRAPHY 157

[93] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. InProceedings
of the Symposium Principles and Practice of Parallel Programming (PPoPP’03), pages
167–178, June 2003.

[94] J. Oplinger, D. Heine, and M. Lam. In search of speculative thread-level parallelism.
In Proceedings of the Conference on Parallel Architectures and Compilation Techniques
(PACT’99), pages 303–313, Oct. 1999.

[95] J. Plevyak, X. Zhang, and A. Chien. Obtaining sequential efficiency for concurrent
object-oriented languages. InProceedings of the Symposium on Principles of Program-
ming Languages (POPL’95), pages 311–321, 1995.

[96] E. Pozniansky and A. Schuster. Efficient on-the-fly data race detection in multithreaded
c++ programs. InProceedings of the Symposium Principles and Practice of Parallel
Programming (PPoPP’03), pages 179–190, June 2003.

[97] W. Pugh. The Java memory model is fatally flawed.Concurrency: Practice and Experi-
ence, 12(6):445–455, 2000.

[98] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable.
ACM Transactions on Programming Languages and Systems (TOPLAS), 22:416–430,
2000.

[99] M. Rinard. Analysis of multithreaded programs. InProceedings of the Static Analysis
Symposium (SAS’01), July 2001.

[100] E. Ruf. Effective synchronization removal for Java. InProceedings of the Conference on
Programming Language Design and Implementation (PLDI’00), pages 208–218, June
2000.

[101] R. Rugina and M. Rinard. Pointer analysis for multithreaded programs. InProc. Conf.
Programming Language Design and Implementation (PLDI’99), pages 77–90, May
1999.

[102] B. Ryder. Dimensions of precision in reference analysis of object-oriented languages. In
Proceedings of the Conference on Compiler Construction (CC’03), pages 126–137, Apr.
2003.

[103] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic
data race detector for multi-threaded programs. InProceedings of the Symposium on
Operating Systems Principles (SOSP’97), pages 27–37, Oct. 1997.

[104] D. Scales and M. Lam. The design and evaluation of a shared object system for dis-
tributed memory machines. InProceedings of the Symposium on Operating Systems
Design and Implementation (OSDI’94), pages 101–114, 1994.

[105] D. Schmidt and T. Harrison. Double-checked locking: An optimization pattern for effi-
ciently initializing and accessing thread-safe objects. InPattern Languages of Program
Design (PLoP) 3, pages 363–375, 1998.

[106] M. Singhal. Deadlock detection in distributed systems.IEEE Computer, 22(11):37–48,
Nov. 1989.

[107] SPEC JBB2000 Java Business Benchmark.http://www.specbench.org/osg/jbb2000.

[108] SPEC JVM98 Benchmarks.http://www.spec.org/osg/jvm98.

158 BIBLIOGRAPHY

[109] M. Sridharan. Dynamic datarace detection for object-oriented programs. Master’s thesis,
Massachusetts Institute of Technology, 2002.

[110] B. Steensgaard. Points-to analysis in almost linear time. InProceedings of the Symposium
on Principles of Programming Languages (POPL’96), pages 32–41, Jan. 1996.

[111] A. Stepanov and M. Lee. The Standard Template Library. Technical report, Hewlett-
Packard Company, 1994.

[112] N. Sterling. WARLOCK: A static data race analysis tool. In USENIX Association, editor,
Proceedings of the USENIX Winter 1993 Conference, pages 97–106, Jan. 1993.

[113] E. Stolte, C. von Praun, G. Alonso, and T. Gross. Scientific data repositories – designing
for a moving target. InProceedings on the International Conference on Management
of Data and Symposium on Principles of Database Systems (SIGMOD/PODS’03), pages
349–360, June 2003.

[114] R. Strom and J. Auerbach. The optimistic readers transformation. InProceedings of the
European Conference on Object-Oriented Programming (ECOOP’01), pages 275–301,
June 2001.

[115] V. Sundaresan, L. J. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon, and
C. Godin. Practical virtual method call resolution for java. InProceedings of the Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’00), pages 264–280, Oct. 2000.

[116] D. Sutherland, A. Greenhouse, and W. Scherlis. The code of many colors: Relating
threads to code and shared state. InProceedings of the Workshop Program Analysis for
Software Tools and Engineering (PASTE’02), pages 77–83, June 2002.

[117] R. Taylor. Complexity of analyzing the synchronization structure of concurrent pro-
grams.Acta Informatica, 19:57–84, 1983.

[118] R. Taylor. A general purpose algorithm for analyzing concurrent programs.Communi-
cations of the ACM, 26(5):362–376, May 1983.

[119] T. Ungerer, B. Robic, and J. Silc. A survey of processors with explicit multithreading.
ACM Computing Surveys, 35:29–63, Jan. 2003.

[120] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. InProceedings
of the International Conference on Automated Software Engineering, Sept. 2000.

[121] C. von Praun and T. Gross. Compiler-based object consistency. InWorkshop on Caching,
Coherence, and Consistency (WC3’01), June 2001.

[122] C. von Praun and T. Gross. Object race detection. InProceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’01),
pages 70–82, Oct. 2001.

[123] C. von Praun and T. Gross. Compiling multi-threaded object-oriented programs. In
Workshop on Compilers for Parallel Computers (CPC’03), Jan. 2003.

[124] C. von Praun and T. Gross. Static conflict analysis for multi-threaded object-oriented
programs. InProceedings of the Conference on Programming Language Design and
Implementation (PLDI’03), pages 115–129, June 2003.

BIBLIOGRAPHY 159

[125] C. von Praun, F. Schneider, and T. Gross. Load elimination in the presence of side effects
concurrency and precise exceptions. InProceedings of the International Workshop on
Compilers for Parallel Computing (LCPC’03), Oct. 2003.

[126] L. Wang and S. Stoller. Run-time analysis for atomicity. InWorkshop on Runtime Veri-
fication (RV’03), July 2003.

[127] J. Whaley and M. Lam. An efficient inclusion-based points-to analysis for strictly-typed
languages. InProceedings of the Static Analysis Symposium (SAS’02), Sept. 2002.

[128] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java programs.
In Proc. Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’99), pages 187–206, Nov. 1999.

[129] R. Wilson and M. Lam. Efficient context-sensitive pointer analysis for C programs. In
Proceedings of the Conference on Programming Language Design and Implementation
(PLDI’95), pages 1–12, June 1995.

[130] World Wide Web Consortium. Jigsaw: Open Source web server.http://www.w3.org/

Jigsaw.

[131] E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued logic.
In Proceedings of the Symposium on Principles of Programming Languages (POPL’01),
pages 27–40, Jan. 2001.

Curriculum Vitae

Christoph von Praun

January 20, 1972 Born in Munich, Germany

1978 – 1982 Primary school, Munich

1982 – 1991 Ludwigs-Gymnasium, Munich

1991 Abitur

1991 – 1996 Studies in Computer Science, TU-Munich

1994 Internship at IXOS Software AG, Grasbrunn

1996 Diploma in Computer Science, TU-Munich

1996 – 1998 Fellowship at CERN, Geneva

1998 Visiting Scientist at the California Institute of Technology

since 1998 Research and Teaching Assistant
Laboratory for Software Technology, ETH Zurich

161

	Introduction
	Motivation
	Scope
	Thesis
	Outline

	Background
	Terminology
	Data races
	Violations of atomicity
	Deadlock
	Trails to correct synchronization

	Static analysis
	Preliminaries
	Abstract threads
	Reference analysis
	Symbolic execution
	Experience
	Discussion

	Static detection of data races
	Object use graphs
	Building object use graphs
	Approximating happened-before
	Conflict detection
	Experience
	Extensions for weak memory models
	Discussion

	Static detection of atomicity violations
	Method consistency
	Algorithm
	Experience
	Discussion

	Static deadlock detection
	Resource deadlock
	Algorithm
	Experience
	Discussion

	Dynamic checking
	Object race detection
	Detecting violations of object consistency
	Method specialization

	Conclusions
	Summary and contributions
	Trends and future work

