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ABSTRACT
A compiler for multi-threaded object-oriented programs
needs information about the sharing of objects for a variety
of reasons: to implement optimizations, to issue warnings, to
add instrumentation to detect access violations that occur at
runtime. An Object Use Graph (OUG) statically captures
accesses from different threads to objects. An OUG extends
the Heap Shape Graph (HSG), which is a compile-time ab-
straction for runtime objects (nodes) and their reference re-
lations (edges). An OUG specifies for a specific node in the
HSG a partial order of events relevant to the corresponding
runtime object(s). Relevant events include read and write
access, object escape, thread start and join.

OUGs have been implemented in a Java compiler. Initial
experience shows that OUGs are effective to identify ob-
ject accesses that potentially conflict at runtime and isolate
accesses that never cause a problem at runtime. The capa-
bilities of OUGs are compared with an advanced program
analysis that has been used for lock elimination. For the set
of benchmarks investigated here, OUGs report only a frac-
tion of shared objects as conflicting and reduce the number
of compile-time reports in terms of allocation sites of con-
flicting objects by 28–92% (average 64%). For benchmarks
of up to 30 KLOC, the time taken to construct OUGs is,
with one exception, in the order of seconds.

The information collected in the OUG has been used
to instrument Java programs with checks for object races.
OUGs provide precise information about object sharing and
static protection, so runtime instrumentation that checks
those cases that cannot be disambiguated at compile-time
is sparse, and the total runtime overhead of checking for
object races is only 3–86% (average 47%).

Categories and Subject Descriptors
D.3.4 [Software]: Compilers; D.2.3 [Software Engineer-
ing]: Object-oriented programming—Java
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1. INTRODUCTION
A compiler for an object-oriented programming language

with multi-threading needs precise information about the
sharing of objects. The absence of precise information has
undesirable consequences: the compiler must make many
conservative assumptions, and they either inhibit a wide
range of optimizations or lead to additional synchronizing
operations.

A key issue is to determine the sharing of objects by
threads. Previous work on escape analysis [2, 3, 6, 30, 21]
has classified object accesses at compile-time according to
properties of the accessed object. This information is stored
in the global Heap Shape Graph (HSG) and provides the ba-
sis for improving the placement and kind of synchronization
operations.

The HSG keeps information that is valid for all points
in the program. If an object is accessed by two threads,
then the object is considered to be shared. However, there
are situations where more detailed analysis may reveal that
the second thread starts only after the termination of the
first, and in that case, no sharing of the object takes place.
This paper presents a practical approach to analyse object-
oriented programs to discover such cases. We construct an
Object Use Graph (OUG) that approximates the happened-
before relation [16] of access events that are issued by dif-
ferent threads to a specific object. The OUG augments the
HSG and refines “escape” information: Instead of attribut-
ing a global classification to an object (or rather its compile-
time abstraction) and the sites it is accessed from, the OUG
recognizes structural, temporal, and lock-based protection
of accesses in different lifephases of the object or contexts
from which the object is accessed. This information is de-
rived from the control flow inside individual threads and in-
formation about lock protection, object escape, thread-start
and join. This information allows a variety of optimizations
and, in addition, is precise enough to be useful for the static
detection of synchronization defects.

The information in the OUG is the foundation for vari-
ous applications in “concurrence-aware” compiler systems:
(1) reporting of potentially conflicting accesses to the pro-
grammer; (2) sparse program instrumentations for dynamic
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class Shared {
int i;
Shared () { i = 0; } // (20)

}

class Example extends Thread {
static Shared s_field;
static Object lock_ = new Object();

static void main(String[] args) {
Shared s_local = new Shared(); // (2),(3)
s_local.i++; // (4),(5)

s_field = s_local; // (6)
s_field.i++; // (7),(8),(9)

Thread t = new Example();
t.start(); // (10)

synchronized(lock_) {
s_field.i++; // (11),(12),(13)

}

t.join(); // (14)
s_field.i++; // (15),(16),(17)

}

void run() { // (22)
synchronized(lock_) {

s_field.i++; // (23),(24),(25)
} // (26)

}
}

Figure 1: Example Java program.

detection of access conflicts, e.g., [29, 7]; (3) compiling and
optimizing programs in view of specific programming-level
memory models, e.g., [18]; (4) optimization of synchroniza-
tion and memory allocation in concurrent programs [2, 3, 6,
30, 21].

We implemented OUGs for standard Java programs and
report here the evaluation for a set of multi-thread Java
programs. The computation of OUGs requires a whole pro-
gram analysis, and hence OUGs are designed for a way-
ahead compilation and link model.

2. EXAMPLE
Figure 1 shows a simple program with two threads that

both access an object of class Shared. We use this exam-
ple to illustrate how OUGs differ from previous abstractions.
The numbers in comments relate program statements to ab-
stract events that are used during the analysis described in
the following sections.

The terms abstract object and abstract thread refer to the
compiler’s entities that conservatively approximate runtime
entities and do not necessarily correspond to unique runtime
instances. The terms runtime object and runtime thread re-
fer to actual objects and threads that exist when the pro-
gram is executed. When there is no risk of confusion, we
just talk about objects and threads.

2.1 Modeling of threads
A key aspect of OUGs is to explicitly distinguish the effect

of different threads to abstract objects.
The Java language allows the compiler to determine the

threads that may ever be created and started during a pro-

gram run as well as the call-closure of methods executed
by these threads. In addition to the initial thread starting
at the main method, threads correspond to objects of class
Thread. The type, entry method, and the multiplicity of
threads are determined from the thread allocation sites (Sec-
tion 3.1). The implicit invocation of class initializers does
not generally allow to attribute their code to a particular
runtime thread, and hence static initializers are modeled as
separate initialization threads.

In the example of Figure 1, there is one main thread T1

with entry method Example::main, one user thread T2 with
entry method Example::run and several init threads corre-
sponding to class initializers.

2.2 Modeling of data
Java employs a simple memory model: Objects are allo-

cated on a global heap and object access is possible only
through references issued at object creation time. This
model facilitates the computation of an approximation of
the runtime object structure in the HSG at compile time.
Nodes in the HSG represent individual runtime objects or
sets of objects that are aliased. Edges represent points-to
relations introduced through reference fields. The overall
result of the shape analysis is a set of graphs rooted at class
or thread nodes.

Figure 2 shows the HSG for the example program of Fig-
ure 1. Nodes in the HSG are given unique names and gi

refers to the node with unique id i. In this example, g4

corresponds to class Example with its variables s field and
lock . The node is marked as thread root, because it is
the context of an init and the main thread. Similarly, nodes
g1, g2, g3 correspond to other classes. Nodes g5 to g11 repre-
sent objects that are allocated during the execution of ab-
stract threads in different contexts.

Figure 2: HSG for the example program.

2.3 Modeling of object uses
Object uses are modeled by OUGs. The nodes in the OUG

represent events, edges represent a safe approximation of the
happened-before relation. Events represent either program
actions (accesses to fields, thread activity, ...), or record the
compiler’s analysis. Possible nodes in an OUG are:

GET/PUT: Read or write access to a field of the object.

LOAD/STORE/ESCAPE: Fetch or deposit a reference to
the object from/to another variable. An ESCAPE node
is a variant of a STORE node and occurs if the object
holding the target variable is potentially shared among
threads.
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TSTART/TJOIN: Start or join of a thread.

ENTRY/EXIT: Thread entry and exit. These nodes do not
correspond to a program action.

CALL: Method invocation site. These nodes are only used
during the construction of the graph (Section 3); the
effect of events that are issued downstream of calls are
“inlined” into the graph at the position of the CALL
node. Recursive calls sites are not unfolded, but con-
nected to the surrounding invocation context (Section
3.3.3).

Nodes have a number of attributes: the abstract
thread and the program site that issues the event, the
thread that is managed (TSTART/TJOIN), the host
object (LOAD/STORE/ESCAPE), the accessed field or
method as well as the set of locks held during the access
(GET/PUT/CALL).

There are three kinds of edges that express a general or-
dering of events for all program executions:

Control-flow ordering: Control-flow edges represent the or-
der of events inside a thread. If a program accesses an
abstract object inside a loop or recursion, the OUG of
that abstract object is cyclic.

Reference-flow ordering: A thread cannot access an object
before the creator thread of an object has made the ref-
erence available through a shared variable. This restric-
tion is modeled by reference-flow edges that connect
STORE/ESCAPE nodes with corresponding LOAD
nodes. Reference-flow edges impose an ordering on
events of the same thread or different threads.

Thread-relation ordering: A thread T cannot issue any
event before T has been started. This fact is modeled
by a TSTART node that precedes the ENTRY node
representing the entry method of the started thread.
Similarly, a TJOIN node follows the EXIT. These edges
from/to TSTART and TJOIN are called thread-relation
edges.

Two events in the OUG are conflicting if (1) there is no
ordering between the events, and (2) the events stem from
different threads, and (3) at least one event is a PUT, and
(4) the accesses are not done under common lock protec-
tion. Events that are not conflicting with any other event
are safe. This definition of a conflict is a compile-time ab-
straction for a data race. This approximation is safe because
all runtime events that can constitute a data race are deter-
mined as conflicting in the OUG. As our compile-time view
considers all control-flows possible, there might however be
events that are determined as conflicting in the OUG that
do not constitute a data race in any program execution.

Figure 3 shows the final OUG example of the abstract
object g10 from Figure 3, and the construction steps are
described in subsequent sections. Note that the analysis
classifies the PUT and GET events (20), (4), and (5) as
safe, because references to (objects represented by) g10 are
not available to thread T2 (they have not escaped at that
stage of the execution). Events (8) and (9) are safe, because
T2 has not been started. Events (12), (13), (24), (25) are
not ordered in the graph, there is however a common unique
lock that is held during all accesses. Events (16) and (17)
are again safe, because T2 has been joined. Event (3) has
been refined by the activities of the constructor (events (19),
(20), (21)) and is therefore unlinked from the graph.

Figure 3: OUG for the abstract object g10 of Figure 2.

All update and read-/accesses to the Shared instance are
hence ordered. The example demonstrates that the ana-
lysis of OUGs is able to detect different patterns that are
commonly used to synchronize threads and protect shared
objects from unordered access. Without detecting the tem-
poral ordering, conservative assumptions would have to be
made.

2.4 Thread-directed heap traversal
OUGs are built during a symbolic execution of the ab-

stract threads. In an object-oriented program, the control
flow of the execution follows a path through the nodes that
represent the objects in the program. An action on a specific
node (e.g., getfield, putfield) is noted as an event in the corre-
sponding OUG. In that way, OUGs are built incrementally
during the traversal of the HSG.

Figure 4 shows the HSG extended with temporary refer-
ence edges that correspond to reference relations through
local variables along the execution of the main thread T1.
The heap traversal of T1 is illustrated as a path along the
reference edges with specific annotations at object accesses.
Accesses correspond to method invocation or field access.
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The initial sequence of the symbolic execution of the main

thread is illustrated in Figure 4:

A. Start of thread T1 at its entry method Example::main.

B. The object g10 of class Shared is created and initial-
ized. Allocation and constructor invocation are noted
as events (2) and (3) in the OUG of g10 (Figure 3).
Events that are issued by the constructor of Shape are
shown in a separate subgraph (events (19), (20), (21)).
The subgraph is inlined into the the graph of the main
method at the corresponding CALL event (3). For
simplicity, this scenario omits the access to the super-
class constructor in Shape::<init>.

C. Read and write of field Shared::i. The accesses ap-
pear as GET (4) and PUT event (5) in Figure 3.

D. Write access to field Example::s field in g4. Two
events are generated in different OUGs: A PUT event
is added to the OUG of g4, and an ESCAPE event is
recorded in the OUG of g10 (event (6) in Figure 3).

E. Read of field Example::s field in g4. Two events are
generated in different OUGs: A GET node is added to
the OUG of g4 , and the LOAD event (7) is added to
the graph that stands for the object pointed to by the
reference that is being handled (OUG of g10).

F. Read and write of field Shared::i in g10. The accesses
correspond to the events (8) and (9) in Figure 3.

G. Creation and initialization of g5.

Figure 4: Fragment of the HSG with annotations of the
start sequence of the heap traversal for the Example::main

thread.

The Java language defines a synchronization mechanism
that resembles Monitors [14], and locks are generally as-
sociated with objects. This mechanism enforces that the
protection region of locks coincides with dynamic program
scopes (methods or blocks), hence lock protection can be
tracked along a symbolic execution and added as annota-
tions to event nodes in the OUGs. Section 3.4 explains in
detail how lock protection can be inferred from sets of locked
abstract objects.

3. CONSTRUCTION OF OUGS
The overall process of constructing OUGs for a multi-

threaded program follows several phases:

1. Determine the abstract threads in the program and
their call graphs (Section 3.1).

2. Build the global heap shape graph (Section 3.2).

3. Build OUGs during a symbolic execution of the ab-
stract threads (Section 3.3).

4. Analyze OUGs and determine conflicting events (Sec-
tion 3.4).

The first and second phase are based on the procedures de-
scribed in [21] and hence our description is brief.

3.1 Determining abstract threads
An abstract thread is a compile-time concept that repre-

sents a sequential control flow in a program. An abstract
thread T is defined as

T := 〈tid , 〈m0, ..., mn〉, kind ,multi〉
where tid is a unique id of the thread, and m0, ..., mn specify
the entry methods. Three kinds of abstract threads exist:
an init thread for every class initializer method, one main
thread corresponding to the unique entry point of the overall
program, and user threads (instances of java.lang.Thread
or its subclasses). multi specifies if multiple concurrent run-
time instances of an abstract thread can exist. If a user
thread has multiple or multiply executed allocation sites,
then multiple instances are assumed to execute concurrently,
otherwise abstract threads are unique. An allocation site is
multiply executed, if it (or one of its callers) is inside a loop
or recursion, or the allocating thread is not unique.

Each abstract thread is characterized by the methods it
executes obtained from the call graph rooted at the thread
entry methods. Our implementation bounds the entry meth-
ods for user threads as well the implementation alternatives
at polymorphic call sites through a variable type analysis
(VTA) [26].

3.2 Computing the HSG
The HSG represents a flow-insensitive model of global

data and their reference relations, approximating object con-
nectivity at any program point. Flow-insensitivity makes
the HSG suitable for the analysis of multi-threaded pro-
grams, because the flow and progress of individual threads
is generally not known at compile-time.

The HSG is computed according to Ruf’s unification-
based analysis [21]. It is compositional because every
method is analyzed independently and method summaries
are used to transfer the effect of method execution to indi-
vidual call sites. A method summary is parameterized with
caller context (parameters, return value(s), and thrown ex-
ception(s)), and hence the analysis is context-sensitive. The
intra-procedural analysis is flow-insensitive.

The runtime values of reference variables are represented
as alias sets. Alias sets stand for a runtime object or sets of
such, and constitute the nodes in the HSG. In addition to
abstractions for object instances, the HSG contains a node
for each class modeling the class’ variables.

An alias set AS is defined as

AS := 〈fieldmap, props, tidmask〉
where fieldmap maps fully qualified field names to alias sets
representing the objects reachable through those fields. The
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flag props is used to note various properties, e.g., if the alias
set is equivalent or connected to an alias set for a class or
thread root (global) or if the object is accessed by multi-
ple thread instances (shared). tidmask specifies the abstract
threads that access the object(s) corresponding to the alias
set.

The data structure supports the union of two alias sets,
combining the field maps (the alias sets of the same fields
are unified recursively) and the global flags (the result is
global if at least one argument is marked global). Edges
in the shape graph are featured by references to alias sets
contained in the fieldmap.

The analysis associates variables with alias sets and uni-
fies those alias sets in a stepwise process along the control
flow of the program. Intra-procedural and inter-procedural
analyses approximate the effect of method invocations.

3.2.1 Inter-procedural analysis
First, alias sets for class and abstract threads are created.

These alias sets are the roots of the heap shape graph. Fur-
ther alias sets are connected to these roots as a result of
a sequence of intra-procedural steps (Section 3.2.2). Nodes
that are transitively reachable through these root nodes are
global and represent objects that are potentially accessed
from multiple threads. The inter-procedural analysis con-
siders all abstract threads and their methods in the reverse
order of their invocation (bottom up traversal of strongly
connected components in the call graph). Recursion is han-
dled specially, for details, see [21].

3.2.2 Intra-procedural analysis
Given a method, the goal of the intra-procedural analysis

is to establish a method summary that models the execution
effect of a method to a calling context. A method summary
captures aliases created through method invocation for data
shared between caller and callee, i.e., parameters, return
values, and thrown exceptions. In addition, the effect of the
method execution in terms of allocated, read, and written
objects is recorded. A method summary MS [m] of a method
m is defined as a tuple of alias sets

MS [m] := 〈〈f0, ..., fn〉, ret, except, allocs, reads,writes〉
The computation of the method summaries starts with the
creation of alias sets for all formal reference parameters
f0, ..., fn and local variables. ret and except are alias sets for
the return values and thrown exceptions. Formal parameters
are not aliased at this point, and caller-side aliasing is taken
into account when a method summary is instantiated at call
sites. A control-flow insensitive traversal of the statements
of the method gradually builds the method summary. As-
signment combines alias sets; field and array accesses create
field-reference relations (all slots of an array are represented
by a single symbolic field). Object allocation and access are
recorded in the sets allocs , reads , and writes .

At a call site, the method summary of the callee is already
available (see previous section). The summary is cloned and
embedded into the method summary of the caller by unify-
ing the alias sets of formal and actual parameters, return
values and thrown exceptions. This instanced version of the
callee’s method summary is called a method context.

At object access sites (allocation, field/array access,
method call), the id of the abstract thread is noted in the
alias set representing the access target. After the creation of

the HSG, this information is used to determine if objects are
accessed by multiple or multiply executed abstract threads
(hence global alias sets become shared).

3.3 Symbolic execution
The symbolic execution phase narrows the classification

of abstract objects further and partitions shared abstract
objects into conflicting and non-conflicting. For that pur-
pose, OUGs are gradually constructed for all shared objects
in the HSG. In an object-oriented environment, a symbolic
execution maps nicely into a traversal of the heap shape
structure determined in the previous analysis phase (Sec-
tion 3.2). The current position of the traversal reflects the
currently accessed abstract object.

3.3.1 Intra-procedural analysis
An OUG is assembled gradually during the symbolic exe-

cution, from individualMethod Object Use Graphs (MOUG).
Similar to an OUG at the whole program level, a MOUG
models the relevant events at the level of a method m. A
MOUG can be understood as a control-flow graph on which
actions that do not result in events for the abstract object
of interest are pruned.

MOUG[m, relevant] := 〈events, edges〉
The abstract object of interest is specified as a set of alias
sets relevant. This set specifies either local alias sets
l0, ..., ln that, in a given method context, correspond to the
object of interest, or as a global alias set if the object of
interest corresponds to a class. Hence, for a specific method
m, a number of MOUGs can exist, depending on the object
of interest and aliasing that is given by the caller.

MOUGs are created in a single flow-sensitive method
traversal, such that edges correspond to control-flow rela-
tions and nodes correspond to program actions. At any
object allocation, access, and call site, the analysis deter-
mines if the statement is relevant for the abstract object
of interest and consequently acts as follows: At allocation
sites, a NEW node is created in the MOUG. At access sites
to arrays or non-volatile, non-final fields, a PUT or GET is
created. If a reference variable is handled that refers to the
abstract object of interest, a STORE or LOAD event is cre-
ated. At a call site, if the call target or one of the arguments
to the call corresponds to the abstract object of interest, a
CALL node is created. CALL nodes are not unfolded dur-
ing the creation of MOUGs (see Section 3.3.2). Call sites of
other methods can be considered as start and join as well if
the callee starts a thread on any path, or joins a thread on
all paths. We use a data flow analysis to determine these
properties for all methods after the HSG is built.

Figure 5(a) shows an OUG for the Example::main

method, where the object of interest is referenced by the
first local variable (alias set l1), holding the return value of
the allocation statement of the Shared object. The local
variable that refers to the lock of the synchronized block is
l5, the global alias set representing class Example is g4. At
the start of the symbolic execution of thread T1 (or more
precisely, at step B in Figure 4), the MOUG in Figure 5(a)
is copied and mapped into the thread entry context, unify-
ing alias sets l1 with g10 and l5 with g11. Consequently, the
STORE event (6) becomes an ESCAPE, because the target
object g4, which stores the reference to g10, is shared. The
CALL event (3) is unlinked, and a copy of the MOUG in
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Figure 5(b) is inlined. The inlined nodes model events that
the constructor Shared::<init> issues to the object that is
being initialized (the this reference corresponds to alias set
l0). MOUGs are created on demand during the symbolic ex-
ecution and cached. Figure 5(a) and (d) are both MOUGs
for the Example::main method; they represent however a
view on different sets of relevant objects, l1 and l2.

Figure 5: Example MOUGs.

3.3.2 Inter-procedural analysis
The analysis processes each abstract thread and its entry

methods individually. The initial method context is deter-
mined from the thread-entry method and the thread root
object. The analysis ignores the control-flow inside meth-
ods. During the traversal, the analysis keeps track of the
abstract objects that are locked by the thread. The traver-
sal of methods with block monitors is handled as a special
case and follows the basic block structure such that the lock
protection of individual statements is determined correctly.

When the symbolic execution of m encounters the first
relevant event for an abstract object g, an initially empty
OUG is created and associated with g. Before processing a
statement, the analysis determines if an MOUG of method
m in the current method context has already been mapped
into the OUG of g. (The symbolic execution maintains a
mapping between method contexts and the corresponding
subgraphs. This mapping and the current statement allow
the symbolic execution to determine the node in the OUG

that corresponds to the current statement.) If not, the set L
of local alias sets that correspond to g in the current method
context is determined, then MOUG[m, L] is computed (Sec-
tion 3.3.1), cloned, and copied into the OUG of g.

The symbolic execution treats call sites as follows: First,
the method context of the callee is determined (see Section
3.2.2). At this point, the method context is complete re-
garding the information about which alias sets are global
or shared. The method context of the callee allows to de-
termine a set S of shared objects that are read, written or
allocated by the call. For each abstract object in s ∈ S, the
appropriate MOUG of the callee is determined, considering
aliasing at the call site (method context of the caller). This
MOUG is inlined at the CALL node that corresponds to
the current statement in the OUG of s. For polymorphic
call sites, each target method is processed separately. At
this point of the analysis, context sensitive type information
associated with alias sets can be exploited to bound poly-
morphism. At a recursive call site, the symbolic execution
reuses the method context of the corresponding active call
and does not descend further. The reuse of method contexts
during the symbolic execution is discussed in more detail in
Section 3.3.3.

At a field or array access site, the current set of locks is
attached to the access event in the affected OUG.

At allocation sites, a counter is incremented in the alias
set that corresponds to the allocated objects. The incre-
ment accounts for the uniqueness of the allocating thread
and whether the allocation or one of the call sites on the
stack of the symbolic execution is in a loop or recursion.
In contrast to the way uniqueness has been determined for
threads (Section 3.1), this method of tracking the multiplic-
ity of objects is context-sensitive and hence more precise.
Information about the uniqueness of ordinary object is nec-
essary to determine lock protection in the conflict analysis
(Section 3.4).

After the symbolic execution, an OUG is a disjoint set of
subgraphs resulting from different abstract threads. The
events in the graphs are connected through control-flow
edges. Then, reference-flow and thread-relation edges are
added after the symbolic execution to create a coherent
graph from the subgraphs. A reference-flow edge is added
between STORE/ESCAPE and LOAD nodes that specify
the same abstract object as host (and do not stem from the
same method context). In addition, thread-relation edges
are added between corresponding TSTART/ENTRY and
EXIT/TJOIN nodes.

In the example program, the OUG of g10 in Figure 3 is
combined from the MOUGs (a), (b) and (c) in Figure 5.

3.3.3 Optimizations
The symbolic execution can be the most expensive phase

of the analysis because it considers all possible flows through
the call graph of the program. If all call sites are followed
in a straight forward manner, the worst case complexity of
the symbolic execution is exponential in the number of call
sites.

The first optimization is to avoid repeated descents into
calls with equivalent method, thread and locking contexts.
These three aspects of context in the symbolic execution are
encoded in a site context SC:

SC := 〈m, 〈a0, ..., an〉, tid , lockset〉
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For the target method m of the call site, a0, ..., an are the
actual parameters, tid is the id of the abstract thread that is
processed, and lockset denotes the set of lock alias sets held
at the call site.

The symbolic execution memorizes all processed call sites
in terms of site contexts. At a call site, actual parame-
ters from the current method context, tid and lockset are
matched with site contexts of earlier invocations of m. In the
matching, global alias sets are identified with their unique
id, other alias sets can be determined as fully local if only
local alias sets are reachable through their fields. A match
means that the method tid, lockset, and all alias sets that
are not fully local are equal; in that case, the symbolic ex-
ecution does not descend into the call. This optimization
resembles call caching in functional languages [13], although
our mechanism for matching is simpler.

This first optimization has consequences that can deterio-
rate the precision of OUGs: The CALL node corresponding
to a cached call site is not unfolded, but handled such that
the subgraph of the earlier invocation is inlined. This pro-
cedure is safe with respect to the conflict analysis in Section
3.4, because the happened before relation is weakened: The
current site, the earlier site and all events in between will
be deemed to happen concurrently.

A second optimization is to avoid descents into methods
that do not affect the state of shared data. At a call site
the analysis determines from the method context if shared
data is allocated, read or written. A generic form of this at-
tribute is computed along the creation of method summaries
(Section 3.2.2).

3.4 Conflict analysis
The conflict analysis determines conflicting events (as de-

fined in Section 2.3) in an OUG. Runtime actions of con-
flicting events may participate in a data race. We assume
that events issued by static initializers are generally not
conflicting. This assumption allows to bypass conservatism
about the concurrency of init threads (Section 2.1) due to
the lack of information about implicit calls of static initial-
izers. The assumption makes the analysis unsound, i.e., po-
tentially conflicting accesses that involve static initializers
are not reported. In practice however, we found that this
assumption reduces the number of spurious reports and does
not lead to underreporting for the programs we investigated
(Section 5).

The conflict analysis identifies potentially conflicting PUT
and GET events in an OUG of object g in four steps:

First, control flow and reference flow are considered:
Events between a NEW and an ESCAPE event are safe be-
cause they happen before the object is accessible to threads
other than the allocating thread, unless we detect that these
events have a predecessor that is a successor to an ESCAPE.

The second step considers thread-relation ordering:
Events that are not successors of TSTART are safe if all
of them are issued by the same unique thread. Similarly,
events dominated by a TJOIN are safe if they are all issued
by the same unique thread. Two restrictions apply however:
A thread might be started at several sites, and hence not all
TSTART events of a thread may appear in the OUG of g
(those that happen before g is allocated could have been
omitted). In this case, TSTART is not a safe indicator for
thread ordering. Moreover, a JOIN event is a safe thread
relation information only if the joined thread is unique. In

these cases, the TSTART or TJOIN nodes do not allow to
infer protection properties from the ordering.

In the third step, the remaining access events are checked
for lock protection. If only GET events remain, the object
is classified as readonly. Else, an object g is lock-protected if
the intersection I of locksets of all events is not empty and
one of the following cases applies: (1) All accesses to g are
performed through the this-reference and g ∈ I is held. (2)
g is object-local, i.e., only reachable through some hosting
object h, and h ∈ I . (3) There is a unique lock object u ∈ I .

The fourth step is only done if lock protection cannot be
determined at the object level. Then accesses are differenti-
ated according to the fields they target, and lock or readonly
protection is determined for individual fields as in the third
step. If all fields are protected, the object is mix-protected,
otherwise the object is classified as conflicting.

4. USE OF THE OUG
This section explains how the findings of the conflict anal-

ysis can be efficiently exploited in the executing program.
The goal is to distinguish code that targets a conflicting ob-
ject at runtime from code that targets safe objects. Hence
the executed code should depend on the heap context of
the execution, and different versions of the same method
account for different classes of heap contexts (Section 4.1).

The result of this code classification is exploited by a pro-
gram instrumentation that checks for object races during a
program execution (Section 4.2).

4.1 Method specialization
In the view of OUGs, events originate at object access

sites in the program code. Turning the view from objects to
methods, the entirety of OUGs record the kinds of objects
and the kinds of access that may happen at a specific ob-
ject access site. The actual classification thereby depends
on the heap context within which the method that performs
the access is called. Specializations are created in 3 steps:
(1) First, all heap contexts are identified within which a
method operates. Every heap context provides a special-
ization candidate. This information is recorded during the
symbolic execution. Then, the conflict analysis determines
the conflict properties of abstract objects and individual ac-
cess sites. (2) Then specialization candidates are classified
and grouped according to the properties determined by the
conflict analysis. (3) Finally, actual method specializations
are determined and method invocation sites are adjusted to
invoke specializations if necessary. In specialized methods,
the resolution of polymorphic calls must consider not only
the type/compile-time properties of the target object (as
done with different variants of vtables), but also the calling
context. Our implementation unfolds polymorphic call sites
as cascades of instanceof checks, introducing additional
runtime overhead.

4.2 Object race checker
We have developed a program instrumentation that de-

tects object races [29] that occur at runtime. The system
is based on the checking of locksets for accesses to objects
that are actually shared. For the evaluation in Section 5.2,
we use a simplified version of the system in [29] (no second
ownership) that uses information from OUGs and optimizes
the instrumentation through program transformation and
data-flow analysis.
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philo elevator mtrt sor tsp hedc mold ray monte

program characteristics
appl loc 81 528 11298 300 706 28299 1402 1972 3674
appl classes 2 5 34 7 4 48 11 19 19
lib classes 129 142 158 132 141 208 129 131 146
methods in call graph 192 311 722 205 302 1025 224 270 441
bytecodes in call graph 3605 6820 20137 4483 6481 24375 6531 5982 8161
user threads 2 2 2 3 2 5 2 2 2
method spec 68 118 578 16 108 3653 111 150 267

compilation resources
shape analysis [s] 0.7 1.3 2.6 0.7 1.6 6.5 0.9 0.9 1.1
symb exec [s] 0.5 0.8 2.5 0.5 0.8 123.6 0.9 0.8 1.3
meth sites proc 103 191 1090 50 168 29254 156 209 431
meth sites reused 85 163 1640 43 123 60233 244 285 452
meth sites noeffect 100 179 855 81 163 29423 136 174 358
conflict analysis [s] 0.1 0.2 2.8 0.1 0.2 433.8 0.9 0.9 0.5
memory [MB] 0.5 3.0 14.7 0.5 1.5 263.5 1.5 3.4 3.8

Table 1: Benchmark characterization and compilation properties.

philo elevator mtrt sor tsp hedc mol ray monte

classification of HSG nodes
class 131 147 192 139 145 256 140 150 165
inst 43 65 199 44 62 467 51 71 79
inst unique 29 43 122 31 39 356 33 35 51
shared 10 13 97 3 13 184 16 29 36
shared readonly 3 6 55 1 6 116 6 12 28
shared lock-protected 6 3 36 1 4 30 6 6 2
shared mix-protected 0 0 1 0 0 2 0 3 1
shared conflicting 1 4 5 1 3 36 4 8 5

OUGs
nodes max 217 327 1618 286 311 83052 537 302 726
nodes median 50 95 74 116 99 417 99 64 59
edges max 435 689 6083 410 640 206456 616 616 2450
edges median 67 172 111 221 163 748 145 92 84

Table 2: Characteristics of HSG and OUGs (no arrays).

5. EXPERIENCE
We have implemented OUGs in a Java-X86 way-ahead

compilation environment. Our runtime system is based on
GNU libgcj version 2.96 [12]. The numbers we present in the
static and dynamic assessment refer to the overall program
including library classes, and excluding native code. The
effect of native code for aliasing and object access has been
modeled explicitly in the compiler.

We use several multi-threaded benchmark programs [29]
to evaluate the cost and precision of our program analysis
(Section 5.1) and to quantify the runtime consequences on
the example instrumentation for object race checking (Sec-
tion 5.2.3).

philo is a simple Dining Philosopher application. eleva-
tor is a real-time discrete event simulator that is used as an
example in a course on concurrent programming. Elevators
are modeled as individual threads that poll directives from a
central control board. Communication through the control
board is synchronized through locks. The configuration we
used simulates 4 elevators. mtrt is a multi-thread raytracer
from the JVM98 benchmark suite [28], configured with 2
threads. sor (Successive Over-Relaxation over a 2D grid),
and tsp (Traveling Salesman Problem) are data- and task-
parallel applications with data access patterns of scientific
codes; synchronization among threads is based on fork-join
rather than locks. hedc is a warehouse for scientific astro-
physics data developed at ETH [25]. This benchmark repre-
sents an application kernel that implements a meta crawler

for searching multiple Internet archives in parallel. In the
benchmark configuration, 4 principal threads issue random
queries to 2 archives each. The individual queries are han-
dled by reusable worker threads. The workload of this ap-
plication kernel is typical for Internet server applications
and similar to applications based on alternative mechanisms,
such as Java Servlets. The programs mol(dyn), ray(tracer),
monte(carlo) are multi-threaded numeric applications from
the Java Grande benchmarks [15].

5.1 Compile-time characteristics
Table 1 describes the benchmarks and the results of the

program analysis. The lines of code appl loc and classes appl
classes account only for the application, not for the Java
library. lib classes specifies the number of library classes
that an application is linked with. The number of methods is
given in methods in call graph including native and abstract
ones, bytecodes in call graph specifies the size of the analyzed
code.

The number of user threads specifies the number of ab-
stract threads determined by the analysis, including the
main-thread, not including init threads. Execution time and
memory consumption of the compilation have been mea-
sured on a Pentium IV 1.4 GHz; the implementation of
the analysis has not been tuned. method spec specifies the
number of specializations that are generated for object race
checking. method spec related to methods in call graph is an
estimation for the code-bloat.
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The shape analysis creates method summaries and pro-
cesses each (non-native, non-abstract) method in the call
graph once.

The symbolic execution phase is optimized to reuse results
from earlier passes through methods if possible. The number
meth sites proc specifies how many method invocation have
actually been followed during this phase of the analysis. For
all programs but hedc, the execution cost is on the order
of a few seconds (and actually lower than, e.g., the cost to
construct the call graph).

As discussed in Section 3.3, two optimizations are possi-
ble: meth sites reused, and meth sites noeffect list how often
these optimizations have been effective. We see that these
optimizations make the symbolic execution phase practical
and result in more than linear gains of analysis time for
larger programs (hedc, mtrt). The total saving is not just
the numbers reported undermeth sites reused andmeth sites
noeffect, but also includes nested calls that would have been
followed if the analysis had descended and processed these
calls. The long duration of the symbolic execution for hedc
is due to the imprecision of available type and alias infor-
mation. For this benchmark, 31 methods (some of which
are frequently used in different contexts) are found in one
strongly connected component of the call graph. Due to
the loss of context sensitivity, spurious aliasing is created
in the HSG among unrelated objects, leading to further im-
precision and conservative assumptions in the downstream
analyses. If objects that are actually local to methods or
threads become global or shared due to aliasing, this means
fewer optimization opportunities and hence more work dur-
ing the symbolic execution.

Rows class and inst in Table 2 specify the number of nodes
in the shape graph that correspond to classes or (sets of)
object instances (not including arrays). inst unique is the
number of unique objects of inst. Row shared quantifies
the subset of nodes that are accessed from several (non-init)
threads or a non-unique user thread during the symbolic ex-
ecution. Shared nodes are further distinguished according to
the results of the conflict analysis: Objects that are not writ-
ten after they have escaped (determined by the OUG) are
shared readonly (true for most alias sets that correspond to
classes). Abstract objects with lock protection are reported
as shared lock-protected. shared conflict specifies those ab-
stract objects that experience conflicting accesses without
lock protection on different fields. Object that use differ-
ent protection mechanisms for individual fields, but have no
conflicting fields, are given in row shared mix-protected.

Table 2 also reports the size of OUGs. For each program,
we observe that there are a large number of small OUGs
(median � max). Some OUGs are a lot larger than the
median. As shown in Table 3, row max alloc sites per obj,
there are some objects with a high degree of aliasing, and
the OUGs of these objects are the larger ones. This property
is crucial for hedc, which has 21 exceptionally large OUGs
(#nodes + #edges > 15000). Our implementation of the
conflict analysis only verifies lock protection in these cases,
and classifies 9 objects as safe and 12 as conflicting.

Table 3 illustrates the precision of information in OUGs
compared to other, more conservative variants for determin-
ing object sharing. Rows global specify global objects that
are read and written by the main or user threads, and the
total number of allocation and access sites. Such informa-
tion could be reported by an escape analysis, e.g., [3, 6,

30]. Row r/w shared refines this set and only reports ob-
jects that are r/w accessed from multiple-threads as, e.g.,
determined by the analysis of Ruf [21]. In row OUG (lock
protection), the the OUG-based conflict analysis has been
simplified (the first two steps in the conflict analysis in Sec-
tion 3.4 are omitted and lock-protection is determined for
all events in the graph). Finally the numbers for OUG (all)
report the findings of the complete conflict analysis. The
reduction compared to r/w shared quantifies the combined
effect of considering (1) control-flow inside a thread, (2) the
inter-thread relations, and (3) lock protection. The percent-
ages given in row improvement specify the saving compared
to r/w shared. We also specify the average and maximum
number of allocation sites corresponding to NEW events in
the OUGs per abstract object. This numbers indicates the
degree of aliasing encountered, which is particularly high
for hedc. In addition, the total number of conflicting fields
and the average and maximum number of access sites cor-
responding to GET and PUT events per field are given.

The conflicts encountered by some abstract objects can
be classified into four categories:

1. Row all writes locked specifies cases where all writes are
lock-protected (and reads are not). Most of such con-
flicts could be identified as benign access pattern for
lazy initialization (double-checked locking [23]). One
of the reports in tsp corresponds to a global variable
for the minimal tour length found so far. The up-
dates are monotone and double checked, and concur-
rent reads of outdated information are tolerated by the
algorithm. Hences this actual race is benign. Another
report corresponds to objects that represent route in-
formation. In the actual execution, writes are ordered
with respect to reads due to higher level synchroniza-
tion, hence there is no actual race.

2. Row object local to thread specifies critical objects that
are thread roots or object local to a thread root object.
All conflicts reported in this category turned out to
be benign, because the affected variables and objects
are accessed by a single runtime thread These reports
result from the inability of the analysis to distinguish
different runtime instances of abstract threads that are
not unique.

3. Row one lock but not unique specifies cases where the
lockset is non-empty, but the analysis fails to deter-
mine the uniqueness of the locked object. In elevator,
e.g., the locks protecting the data structures of indi-
vidual floors are initialized in a loop and stored in an
array. Despite the non-uniqueness of the lock in the
compile-time view, the same lock instance consistently
protects data for a certain floor at runtime. All reports
in this category have been benign for the benchmarks.

4. The last category no common lock summarizes
conflicts without common lock protection. In
mtrt, a data race is found on the variable
RayTracer::threadCount, which is however not rel-
evant to the execution of the program. In mol, two
reports refer to objects that are actually thread-local
to their non-unique allocating thread. Another con-
flict report for this benchmark is benign, because the
conflicting access is done only by one of multiple run-
time threads with a specific id (control flow depends
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on thread id). In ray, six reports correspond to ob-
jects that are initialized by the main thread and conse-
quently associated with a specific instance of a worker
thread that issues reads and writes. The conflict ana-
lysis recognizes that events of the main thread do not
participate in a conflict; however, the worker thread is
not unique and hence the analysis conservatively as-
sumes that the read and write events by the worker
threads conflict. For one reported object, a check-
sum is updated by the worker threads under common
lock protection and read by the main thread after
the worker threads are joined. The join is however
not safely recognized, because the joined thread is not
unique. In monte, a data race is found on a variable
that flags if debug information should be printed. The
race is benign, because the variable is always set to the
same value. In hedc most reports are spurious for two
reasons: Some critical objects are accessed from a non
unique user thread; at runtime however, each instance
is affiliated with only one actual thread. Moreover,
some critical objects are accessed by different abstract
threads without lock protection. At runtime, an or-
dering of these accesses is guaranteed by thread start
and join, however the corresponding thread manage-
ment events are not safely recognized by the conflict
analysis. A true report points to an unsynchronized as-
signment of null to a shared variable Task::thread ,
which could be read by another thread and lead to a
NullPointerException.

When investigating the cause of conflicts, the reports list
allocation and access sites for conflicting objects. For most
programs, these lists are short, and the classification of the
conflict allows easy analysis. For hedc, the scope of the
inspection is enlarged due to aliasing.

5.2 Runtime aspects

5.2.1 Classification of objects
At runtime, we use a mechanism that precisely tracks ac-

cesses to objects from different threads including lockset in-
formation [29]. This runtime information together with the
compile-time information tagged to the object headers al-
lows to verify consistency between the results of the compile-
time analysis and the actual runtime behavior. Objects that
the runtime checker observed to be accessed by more than
one thread are reported in Table 4 in row actually shared.
The difference between shared and actually shared can be re-
garded as an indicator for the precision of our compile-time
object classification.

There are two reasons for objects to be classified as shared
that never become actually shared at runtime: First, there
might be control-flow paths that enable actual sharing but
they have not been taken in the specific program run we
report. Hence in this case, the difference between shared
and non shared is caused by an application property. Sec-
ond, alias sets are conservatively classified as global/shared
during the creation of the HSG. This phenomenon is espe-
cially critical for methods that are part of a recursion, where
context sensitivity is lost (details in [21]).

The first aspect particularly affects tsp: Worker threads
that determine and rate tours in the graph topology main-
tain route information in objects. Depending on the overall
length of a tour, route information may be made available

to other threads or may be dropped early by the thread
that created it. The second aspect particularly affects hedc,
where our current implementation makes conservative as-
sumptions in the treatment of a large recursion (Section 5.1).

Row actually conflict lists the number of object races that
have been determined by the runtime checker. This number
is always lower or equal to conflict, and the difference is
again an indicator for the precision of the static analysis.
Some of the reported object races are not actual races since
ordering is given through program properties, e.g., higher-
level synchronization.

Some of the actual conflicts correspond however to real
program defects (see static conflict detection in Section 5.1,
and [29, 7]). For mtrt, tsp, and monte, the actual conflicts
correspond to real data races and have been already deter-
mined by the static analysis (see Section 5.1). The reports
for ray do not reflect real data races, due to an initialization
before thread start ordering (see Section 5.1 why a static
conflict has been assumed nevertheless). Similarly, the re-
port on mol and most reports of hedc do not correspond to
real races. In the latter, result data produced by worker
threads is collected from containers after these threads have
been joined, and hence accesses to the containers are natu-
rally ordered.

5.2.2 Classification of object accesses
This section reports and quantifies the runtime benefit

that is obtained from the precise classification of objects and
access sites. Table 5 lists the dynamic number of field ac-
cesses according to a compile-time classification of objects.
In row stack-escape, all accesses to stack-escaping objects
are counted, similarly for categories global and shared r/w.
The last two columns report accesses to objects that are
identified as conflicting based on their OUG. For row con-
flicting OUG flow-insensitive, all field accesses to conflicting
objects are counted. In row conflicting OUG flow-sensitive,
only accesses through conflicting access sites are counted.

For most benchmarks, i.e., philo, elevator, mtrt, tsp, hedc,
and monte, information from OUGs helps to reduce the num-
ber of accesses over shared r/w. Lock-protection, reference-
flow, and inter-thread ordering contribute to the improve-
ment. For some benchmarks, however, the analysis is not
effective, mainly due to conservatism in the classification of
objects and their access sites. In mol, e.g., most of the ac-
cesses target small objects that are solely accessed by the al-
locating thread. The OUG that corresponds to these objects
is nevertheless found to be conflicting, because the objects
are reachable through a field of the thread object (hence
global), the accessing thread is not unique (hence shared),
and the accesses do not happen under lock protection (hence
conflict).

5.2.3 Object race checking
Table 6 reports the dynamic frequency of access checks

in programs instrumented for object race detection (Section
4.2). The instrumentation associates a check with certain
“critical” field and method accesses; not all “critical” field
accesses need to be instrumented (details in [29]). An access
check is done in two stages: First, an inline check tests if
the accessed object is owned by the accessing thread; if so,
execution can proceed. Otherwise, a lockset check verifies
compliance with a certain locking policy. Rows inline and
lockset in Table 6 report the corresponding numbers.
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philo elevator mtrt sor tsp hedc mol ray monte

global
abstract objects 13 38 91 14 30 201 25 39 54
allocation sites 18 55 117 18 42 256 27 56 59
access sites 135 526 1002 288 478 1954 963 466 399

r/w shared
abstract objects 7 10 59 5 9 107 14 24 20
allocation sites 12 17 89 4 13 180 19 43 29
access sites 111 246 956 197 337 1818 899 408 252

OUG (lock protection)
abstract objects 2 7 8 5 6 76 8 18 20
allocation sites 2 9 19 4 5 163 7 31 29
access sites 21 168 165 155 190 1387 751 254 216

OUG (all)
abstract objects 1 4 5 1 3 36 4 8 5
... improvement (%) 86 60 91 80 67 63 71 67 75
allocation sites 1 6 16 2 3 129 5 16 15
... improvement (%) 92 65 82 50 77 28 74 63 48
access sites 11 113 121 75 58 1110 529 144 118
... improvement (%) 90 54 87 62 83 38 41 65 53
avg/max alloc sites per obj. 1.0/1 1.5/2 4.0/9 2.0/2 1.0/1 4.1/63 1.3/2 2.0/4 3.8/9
conflicting fields 2 12 20 11 6 198 50 19 19
avg/max acc sites per field 5.5/8 9.3/29 5.7/23 6.8/11 9.7/14 4.8/33 10.6/127 5.5/13 5.9/23

conflict types
all writes locked 0 2 1 0 2 11 0 0 2
object local to thread 1 1 1 1 1 2 1 1 0
one lock but not unique 0 1 2 0 0 8 0 0 2
no common lock 0 0 1 0 0 15 3 7 1

Table 3: Static conflict detection (no arrays).

philo elevator mtrt sor tsp hedc mol ray monte

shared
allocated 11 43 440 4 10011 861 2064 2103951 20020
actually shared 8 37 15 4 375 207 5 345 20013

conflict
allocated 2 33 6 2 5002 491 2051 2103667 20007
actually conflict 0 0 1 0 163 15 1 69 1

Table 4: Allocation of objects with their compile-time classification and the actual situation at runtime.

The instrumentation has been applied with different cri-
teria for determining “critical” objects. The number of dy-
namic inline checks decreases as the classification of “criti-
cal” objects becomes more precise (from row stack-escape to
OUG). The magnitude of lockset checks follows this trend,
the precise number may however vary for different program
runs, depending on the thread schedule and the moment
when objects become actually shared. A simple optimiza-
tion of the instrumentation is to cover more than a single
access with one check if accesses are not separated through
thread synchronization. Rows OUG optimized report the
resulting number of checks. For mtrt, hedc, mol and ray,
the numbers are reduced significantly. In the case of mol,
the static classification of object accesses has not been suc-
cessful to reduce the number of critical field accesses (Table
5). Hence, depending on the kind of instrumentation, con-
ventional optimizations can be an effective complement to
the static analysis for reducing the runtime penalty of an
instrumentation.

Table 7 quantifies the execution overhead for object race
checking on a Pentium III, 933 MHz system. philo, elevator
and hedc are not included since they are not CPU-bound;
for the other benchmarks, we report the average time of
three runs. The base version orig and the instrumented ver-
sions stack-escape, global, shared r/w, andOUG are compiled

without optimization. The variants optimized and OUG op-
timized are compiled with loop transformation, and PRE for
expression and redundant load elimination. The categories
correspond to the those in Table 6.

The execution overhead of the instrumentation stems from
lockset checking operations at certain critical object ac-
cesses. In addition, the resolution of polymorphic calls in
the instrumented versions creates overhead (Section 4.1):
Despite only about 1000 runtime checks (Table 6), mtrt is
slowed down due to frequent calls of specialized methods
(Section 4.1).

5.3 Limitations
The conflict analysis considers only accesses from user

threads (Section 2.1). Initializer threads do not execute
in separate runtime threads, but are invoked implicitly
in the stream of some user thread. Hence object ac-
cesses from initializer threads can also participate in con-
flicts, and those conflicts are not detected by our proce-
dure.

Our model does not consider the execution of finalize
methods invoked from a separate finalizer thread. Conse-
quently, our analysis of access conflicts does not take ac-
cesses in the scope of finalizer threads into account.
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philo elevator mtrt sor×106 tsp×106 hedc mol×106 ray×106 monte

stack-escape 8479 20957 231.3×106 150.6 696.4 149413 1311.4 3443.5 313.1×106

global 4783 17347 6.0×106 150.6 696.4 39808 1311.4 3391.1 651305
shared r/w 4728 17029 5.9×106 150.6 696.4 33480 1311.4 3391.1 490049
conflicting OUG flow-insensitive 136 10937 4578 150.1 521.5 27133 1310.0 2743.3 210017
conflicting OUG flow-sensitive 116 8662 3509 150.1 274.7 18144 1303.5 2740.7 210017

Table 5: Effect of the static analysis, number of field accesses to objects (no arrays).

philo elevator mtrt sor tsp hedc mol×106 ray×106 monte

stack-escape
inline 3610 5919 225.2×106 598 244.2×106 26177 637.9 2413.5 774040
lockset 1163 2559 5839 344 174.9×106 4764 316.5 326.4 195062

global
inline 2218 5421 935123 572 244.2×106 12456 637.9 2377.3 340205
lockset 780 2548 2925 339 174.9×106 3294 316.5 326.4 160057

shared r/w
inline 2257 5316 925564 509 244.2×106 11539 637.9 2377.3 340060
lockset 747 2527 816 303 174.9×106 3128 316.5 326.4 160019

OUG
inline 3 2237 2331 5 69.2×106 7786 629.7 1941.5 40007
lockset 0 2201 2196 0 5519 1595 314.4 0.2 1

OUG optimized
inline 2 2193 1038 4 56.2×106 6513 420.1 856.8 40007
lockset 0 2181 906 0 4971 902 104.8 104.6 2

Table 6: Effect of the optimization, number of dynamic checks done for object race checking (no arrays).

The approach of OUGs requires whole-program knowl-
edge and hence Java features like reflection and dynamic
class loading are not accommodated.

Information obtained from TSTART and TJOIN events
is used conservatively (Section 3.4). Additional information
about thread ordering, as could be obtained from annota-
tions or user input, would improve the precision of this anal-
ysis (e.g., for hedc).

6. RELATED WORK
An exhaustive survey on problems and current research in

the analysis of multi-threaded programs is given by Rinard
[20].
Concurrency analysis aims at approximating the order of

statements executed by different threads and computes the
may happen in parallel (MHP) relation among statements.
Statements are however not distinguished according to their
execution context and the accessed data. The combination
of MHP information with a model of program data (heap
shape and reference information) could be used to deter-
mine conflicting data accesses. This approach is discussed
by Midkiff et al. [18], but no compiler implementation re-
sults are yet available. OUGs naturally provide such an
integration of control- and data-flow information in context-
sensitive manner.

Bristow et al. [5] used an inter-process precedence graph
for determining anomalies in programs with post-wait syn-
chronization. Taylor [27], and Duesterwald and Soffa [9] ex-
tend this work and define a model for parallel tasks in Ada
programs with rendez-vous synchronization. The program
representation in [9] is modular and allows to efficiently an-
alyze programs with procedures and recursion based on a
data flow framework. Masticola and Ryder [17] generalize
and improve the approach of [9] and provide experimental
evidence of the effectiveness of their technique. Recent work
from Naumovich et al. [19] computes the potential con-

currency in Java programs at the level of statements. The
authors have shown that the precision of their data-flow al-
gorithm is optimal for most of the small applications that
have been evaluated; medium to large sized benchmark pro-
grams have not been studied. The approach requires that
the number of real threads in the system is specified as input
to the analysis; the handling of recursion is not described in
the paper.

OUGs borrow ideas from the program representations pro-
posed in [5, 9]. However, OUGs partition the view on all
program statements into sets of accesses statements to in-
dividual objects. This means a reduction in the size of the
graphs which is crucial for conflict analyses with superlinear
complexity. Moreover, OUGs account for an object-oriented
model of memory, threads, and locks, tailoring the analysis
of methods with regard to the heap-execution context (Sec-
tion 3.3.2). Recent work of Choi et. al. [7] models concurrent
threads in an interthread call graph, which is an extension
of a call graph including edges for thread start but not for
thread join. In addition, synchronized blocks are modeled
explicitly by approximating locks held at call sites. The
interthread callgraph contains one node per method and
hence, unlike OUGs, does not distinguish method execu-
tions in different thread- and heap-contexts.

Sasha and Snir [24] have studied shared memory programs
with structured multi-threading where the scope of paral-
lelism is limited and known at compile time. The focus is
determining inter-thread dependencies introduced through
shared data access. They developed an analysis that inserts
a minimum number of memory fence instructions into pro-
grams with data races, hence allowing sequentially consis-
tent executions of such programs on weak memory hardware.
OUGs can handle unstructured multi-threading as well.

In object-oriented programs, access to shared data is typ-
ically done indirectly through references. In such an envi-
ronment, program analysis faces more difficulties to deter-
mine the relation between threads and the data they access
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mtrt sor tsp mol ray monte

no instrumentation
base 20.8 3.8 8.9 20.6 49.4 23.4
optimized1 19.9 3.2 8.9 — 46.1 22.6

object race checking
stack-escape 41.7 3.9 23.8 64.0 116.1 41.5
global 29.6 3.9 23.8 65.5 111.5 41.3
shared r/w 29.0 3.9 23.9 65.4 110.9 42.0
OUG 28.5 (37%) 3.9 (3%) 10.3 (16%) 66.0 (220%) 82.7 (67%) 40.9 (75%)
OUG optimized 27.7 (39%) 3.3 (3%) 10.1 (14%) 38.4 (86%) 73.0 (58%) 40.4 (79%)

Table 7: Runtime in seconds and overhead of the program instrumentation (array access not instrumented).

than in languages with limited pointer usage. Flow-sensitive
pointer analysis has been extended to multi-threaded pro-
grams by Rugina and Rinard [22]. Their algorithm for Cilk
programs explicitly models the interference between parallel
sections in the program and the additional aliasing created
through this interference. Unlike Cilk, other object-oriented
languages model concurrent activities themselves as objects,
and hence the scope of concurrency is not limited to a static
program scope (unstructured concurrency). A starting point
for the optimization of such programs is to determine the lo-
cality of objects with respect to allocating threads. Based on
different variants of pointer analyses, escape analyses have
been developed for Java, e.g., [2, 3, 6, 30]. OUGs extend
this work and model locking, threads- and their interaction
with objects explicitly.

Other representations of parallel programs have been de-
signed with specific optimizations in mind. Diniz and Ri-
nard [8], e.g., focuses on the movement and elimination of
lock-operations in automatically parallelized object-based
programs. Their analysis is based on an inter-procedural
control flow graph of all threads. This graph explicitly mod-
els the structure of locking and protected program scopes.
Data are modeled as read and write sets that are attributed
to the individual nodes of the graph. The transformations
require that the program is free of data races, a condition
met by automatically parallelized programs. Unlike OUGs,
protection of data against concurrent access is only deter-
mined according to lock-protection and a known relation
between locks and protected code regions. Polymorphism
and different execution contexts of methods make it difficult
to infer such a relation in typical object-oriented programs.
OUGs, in contrast, compute a relation between data and
their protecting locks.

All aforementioned approaches to relate threads and ac-
cessed data, including OUGs, are based on data- and
control-flow information. Recent work on type systems has
shown that data protection and locking policies can also be
codified in data and method declarations that are checked
statically. The main advantage of this approach is its modu-
larity, which makes it, in contrast to a whole program anal-
ysis, well amenable to treat incomplete and large programs.
Unlike OUGs, the application of these approaches to existing
programs is not without difficulties: The type systems have
either been proposed as extensions to existing programming
languages [1, 4], or require annotations. Flanagan and Fre-
und [10] present a type system that is able to specify and

1mol is very sensitive to the cache layout of local variables
and optimizations resulted in a performance degradation; for
OUG optimized, loop transformations and PRE are disabled
for this program.

check lock-protection of individual variables. In combina-
tion with an annotation [11] generator, they applied the type
checker to Java programs of up to 450 KLOC. The annota-
tion generator is able to recognize common locking patterns
and further uses heuristics to classify as benign certain ac-
cesses without lock protection. The heuristics are effective in
reducing the number of spurious warnings; some are however
unsound (but this property has not been a problem for the
benchmarks investigated in [11]). OUGs model the reach-
ability of objects explicitly and recognize cases of isolation
beyond lock-protection that are covered by the heuristics
automatically. The number of clustered warnings generated
per KLOC is of the same magnitude as the reports we obtain
for our benchmarks.

7. CONCLUSION
The Object Use Graph is a concise extension of the Heap

Shape Graph and provides a model of the runtime structure
and the interaction of shared objects in the context of differ-
ent threads. The OUG builds on previous work on pointer
analysis and extends points-to information with information
about the temporal relation of accesses. This information is
thread-sensitive and approximates the complete set of pos-
sible accesses at runtime. We have implemented OUGs for
a way-ahead compilation system for Java. A first evalu-
ation for a set of non-trivial Java programs demonstrates
that OUGs can be constructed with acceptable effort and
that they produce tangible benefits for compilers and users.

OUGs provide information that is more precise than what
can be obtained by analyses that do not model the temporal
relationships. As a result, fewer accesses are approximately
classified as conflicting, so a compiler that wants to draw the
user’s attention to those (possibly erroneous) accesses has
fewer accesses to report. A runtime benefit can be realized as
well if the compiler wants to insert dynamic checks to report
actual sharing; there are fewer access sites to instrument.

As multi-threading is embraced by more users (and finds
its way into future processor architectures), there will be
increased demands on the compiler to provide reporting of
access conflicts or to optimize placement and kinds of syn-
chronization operations. OUGs are a solid foundation for
concurrence-aware compilation systems.
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