
CS 526 Advanced Topics in
Compiler Construction
1 of 12

2 of 12

Course Organization
Instructor:

David Padua
3-4223
padua@uiuc.edu
Office hours: By appointment

Course material:

Textbook: Randy Allen and Ken Kennedy
Optimizing Compilers for Modern Architectures
Web papers and Photocopies (oldies)

Website
polaris.cs.uiuc.edu/~padua/cs526

3 of 12

Grading

25% Homeworks

25% Presentations

25% Midterm Exam (take home exam due
on the Ides of March)

25% Final Exam (take home exam due the
first day of final exams
week)

Course subject
• Optimizing compiler technology and

some notions of program generation.

• Topics in program analysis, and
program transformation for
sequential performance, parallelism,
and locality.

• The study of compilers involve both
theoretical and engineering issues.
4 of 12

Block diagram of compilers and
program generators

Source Program

Internal representation

Algorithm

Program Transformation

Program Generation

Executable Program
5 of 12

Importance of
optimizing compilers

• Compilers facilitate programming by
• Presenting a high-level interface
• Enabling portability/Machine independence

• For computational intensive applications, the
acceptance of a programming language
largely depends on the availability of
effective compilers.

• For some classes of applications performance
is not that important (e.g. web applications in
which all program does is to wait.)
6 of 12

• Optimizing compilers liberate the
programmer from concerns about
machine-related issues and in this way
make programs easy to port without
performance loss.

• Compilers enable the programmer to
focus on the development of clean (easy
to understand and debug) programs.
However, programmers still need to
choose a good algorithm. And, usually,
more efficient algorithms are more
complicated.
7 of 12

8 of 12

A difficult problem
“Like most of the early hardware and software systems,
Fortran was late in delivery, and didn’t really work when
it was delivered. At first people thought it would never
be done. Then when it was in field test, with many bugs,
and with some of the most important parts unfinished,
many thought it would never work. It gradually got to
the point where a program in Fortran had a reasonable
expectancy of compiling all the way through and maybe
even running. This gradual change of status from an
experiment to a working system was true of most
compilers. It is stressed here in the case of Fortran
only because Fortran is now almost taken for granted,
as it were built into the computer hardware.”

 Saul Rosen
 Programming Languages and Systems
 McGraw Hill 1967

• Question: How far we can go with
program transformation?
9 of 12

Performance and compilers
"It was our belief that if FORTRAN, during its first months, were
to translate any reasonable "scientific" source program into an
object program only half as fast as its hand coded counterpart,
then acceptance of our system would be in serious danger. This
belief caused us to regard the design of the translator as the real
challenge, not the simple task of designing the language."...
"To this day I believe that our emphasis on object program
efficiency rather than on language design was basically correct. I
believe that has we failed to produce efficient programs, the
widespread use of language like FORTRAN would have been
seriously delayed.

John Backus
FORTRAN I, II, and III
Annals of the History of
Computing
Vol. 1, No 1, July 1979

Is performance equally important today ?
10 of 12

What drives
optimizing compiler technology?

• High-level language, applications, and
computer architecture define the character
of the optimizing compiler technology that
connects them.

• High-level languages:

• General purpose language evolve slowly. Most of
the constructs popular today were available in the
1960s.
• Nevertheless they evolve. Object orientation is
an example of evolution. Two future directions: par-
allel programming and higher levels of abstraction.
•

11 of 12

• Applications
• Applications determine the programming pat-
terns that guide optimization strategies.

• Architecture
• Parallelism in the form of global address
space will dominate
• Need to develop compiler technology for this.
Compiling parallel programming languages. Auto-
matic parallelization.
12 of 12

