
Induction variable elimination

Algorithm DIV: Detection of Induction Variables

Our objective here is to associate with each induction variable, j, a triple 
(i,c,d) where i is a basic induction variable and c and d are constants 
such that the value of j is c*i+d.

We define as basic induction variables those scalar variables whose only 
assignments in loop L have the form i = i ± c .
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begin
Find the basic induction variables. Associate with each 
basic induction variable i, the triple (i,1,0).

for each variable k with a single assignment to k within 
L of the form k = j ± b or k = j * b where b is 
a constant and j is an induction variable do
 if j is a basic i.v. then

associate to k, the triple (j,1,±b) in the first 
case and (j,b,0) in the second case. 

else 
let j be associated with the triple (i,c,d)
if 
there is no assignment to i from the lone 
point of definition of j to the assignment of 
k and 
no definition of j from outside L reaches k 
then

associate (i,c,d±b) with k in the first 
case and (i,b*c,b*d) in the second case

fi
fi

od
end
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Strength Reduction

The purpose of strength reduction is to replace multiplications inside a 
loop by additions.

begin
for each basic induction variable i do

for each non-basic i.v. j associated with a triple of 
the form (i,c,d) do

Create a new variable s (unless another i.v., 
say m, associated with the same triple was 
processed before. In this case use the same 
variable created for m)
Replace the assignment to j with j=s
after each assignment i = i + n append 
s=s+c*n (notice that c*n is a constant).
Insert s=c*i+d just before the loop.

od
od

end



Another definition of basic induction variable

The previous discussion does not deal with some important cases. for 
example, coupled induction variables ( i= j +2 ... j = i+1)

An alternative approach introduced by Cocke and Kennedy (CACM Nov. 
1977) is to define as induction variable those scalar variables within a 
strongly connected region (if n0 and nm are two blocks in a strongly 
connected region, then there is a path from n0 to nm within the region) 
that are defined only by simple instructions of the from:

i = j ± k
i = ± j

where j and k a re either induction variables or region constants

These induction variables can be detected by the following algorithm

Algorithm A2DIV: Another Algorithm for the Detection of 
Basic Induction Variables

Input:

1.A strongly connected region R of the flow graph

2.The set RC of constants within the region (see loop-invariant detection 
above)

Output: The set IV of basic induction variables
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Method:
begin

IV = ∅
for each instruction I in R do

if I is of the form i=j±k or i=±j then
IV += {i}

fi
od
change = true
while change do

change = false
for each instruction I in R whose lhs is in IV do

if I is not of the form i=j±k or i=±j or 
any operand ∉ IV ∪  RC then

remove i from IV
change = true

fi
od

od
end

This is based on the following observations

1. It is simpler to define what is not an induction variable than is to define 
what is

2. if x= op(x,z) and op is not one of store, negative, add or subtract, 
then x is not an induction variable.

3. if x = op(y,z) and y and z are not both elements of IV ∪  RC, then 
x is not an induction variable
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Another Strength-Reduction Algorithm

Candidates for strength reduction

1.Multiplication by a constant
loop

n=i*a
...
i=i+b

after strength reduction
loop

n=t1
...
i=i+b
t1=t1+a*b

after loop invariant removal (b is a constant because i is an induction 
variable)

c= a * b
loop

n=t1
...
i=i+b
t1=t1+c
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2.Multiplication by a constant plus a term
loop

n=i*a+c
...
i=i+b

after strength reduction
loop

n=t1
...
i=i+b
t1=t1+a*b

Notice that the update to t1 does not change by the addition of the 
contant. However, the initialization assignment before the loop should 
change.

3.Two induction variables multiplied by a constant and added
loop

n=i*a+j*b
...
i=i+c
...
j=j+d
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after strength reduction
loop

n=t1
...
i=i+c
t1=t1+a*c
j=j+d
t1=t1+b*d

4.Multiplication of one induction variable by another
loop

n=i*j
...
i=i+a
...
j=j+b

After strength reduction of i*j
loop

n=t1
...

--------- t1=i*j
i=i+a

--------- new t1 should be (i+a)*j=t1+a*j
t1=t1+a*j

...
j=j+b

-------- new t1 should be i*(j+b)=t1+b*i
t1=t1+b*i

After strength reduction of a*j 
loop

n=t1
...
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i=i+a
t1=t1+t2

...
j=j+b
t1=t1+b*i
t2=t2+a*b

b*i is handled similarly.

5.Multiplication of an induction variable by itself
loop

n=i*i
...
i=i+a

After strength reduction

loop
n=t1
...
i=i+a

-------- new t1 should be (i+a)*(i+a)=t1+2*a*i+a*a
t1=t1+2*a*i+a*a

Now strength reduce 2*a*i+a*a
loop

n=t1
...
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i=i+a
t1=t1+t2

-------- new t2 should be 2*a*(i+a)+a*a=t2+2*a*a
t2=t2+2*a*a
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begin
PILE={S| rhs of S is i*x with i∈ IV and x ∈  IV∪ RC}

while PILE ≠∅  do
S from PILE (e=i*x)
if e is of the form vix then

delete S
else

create a new variable vix
replace S with e = vix

fi
for each T in DEFS(i,S) ∪ DEFS(x,S) do

if there is a definition of vix in T then
next

elseif T is outside the loop then
insert vix=i * x just before the loop

elseif T is of the form i = k then
replace T with the sequence
[R: vix = k*x,

i = k]
PILE += {R}

elseif T is of the form i=k+l and x ≠ i then
replace T with the sequence
[R1: vkx=k*x,
R2: vlx=l*x,

vix=vkx+vlx,
i=k+l]

PILE += {R1,R2}
elseif x≡i and T is of the form i=k+l 

then
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replace T with the sequence
R1: vkk=k*k
R2: vll= l*l
R3: vlk=l*k
R4: v2lk=2*vlk

v2lk+ll=v2lk+vll
vii= vkk+ v2lk+ll
i=k+l

PILE+={R1,R2,R3,R4}
fi

od
od

end
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Aliasing and Pointers

When assignments of the form *p=a or of the form x=*p are found in a 
block the analysis algorithm has to take into account their possible effects. 

In the case of reaching definitions, the most naive (conservative) approach 
is to assume that *p=a may define any program variable and does not kill 
any definitions (i.e. it is not a must define of any variable). However such 
assumptions result in more reaching definitions than is realistic.

In the case of live variable analysis, the most naive (conservative) 
approach is to assume that *p=a does not define any program variable and 
that x=*p may access (use) any variable. However such assumptions 
result in more live variables than is realistic.

We show next a simple algorithm to improve the accuracy of the analysis 
in the presence of pointers. The algorithm will compute for each block the 
set of variables that a pointer may point to at the beginning of the block. 
This set will contain pairs of the form (p,a) where p is a pointer and a is a 
variable or array. 

With this information, we can compute the set S of possible values of a 
pointer at a particular statement and use it as follows:

1.For reaching definitions *p=a will generate a definition of every variable 
b such that (p,b) is in S. Also, *p=a kills definitions of b only if b is not 
an array and is the only variable that p could point to. 

2.For live variable analysis, *p=a uses only a and p. It may also be 
assumed to define b if b is the only variable that p might point to. a=*p 
represents a definition of a and a use of p. It should also be assumed to 
access (use) any variable that p could point to.
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Computing the effect of pointer assignments

The algorithm assumes that only additions and subtractions of constant 
are valid operations on pointers.

Also, if a pointer points to an array, say a, adding or subtracting a 
constant will not change the fact that the pointer points to a.

However, adding or subtracting a constant is not valid for the case of 
scalars.

A function (transI(S)) is defined that defines the effect of an instruction I 
on the set S of possible variables and arrays where the pointers used in 
the program may point to.

transI(S) is computed as follows:

1. if I is p=&a or p=&a+c where a is an array, then the result is 
(S-{(p,b)|(p,b) is in S}) + {(p,a)}

2. If I is p=q±c for pointer q and nonzero constant c, then the result is
(S-{(p,b)|(p,b) is in S}) + {(p,b)|(q,b) is in S and b is an array)}

3. If I is p=q, the the result is
(S-{(p,b)|(p,b) is in S}) + {(p,b)|(q,b) is in S)}

4. If I assigns to pointer p any other expression, then the result is
(S-{(p,b)|(p,b) is in S})

5. If I does not assign to a pointer, then the result is 
S (i.e. there is no change)
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If a block B consists of the instructions I1, I2, ...,In, then transB(S) is 
defined as transIn(...transI2(transI1(S))...).

Now, we define out[B] = transB(in[B]) and

This can be solved iteratively.

in B[ ] out P[ ]
P PRED B[ ]∈

∪=
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Interprocedural Data Flow Analysis

The objective here is to determine how each procedure influences the sets 
gen, kill, use, and def and then compute the data flow information for 
each procedure independently.

Consider
subroutine p(x,y)
...
a=b+x
...
y=c
...
d=b+x
...
end

Is b+x available at the last statement? It will depend on whether y=c 
kills the expression or not. If call p(z,z) is possible, or the following 
sequence is possible

subroutine q(u,v)
...
call p(u,v)
...
end
...
call q(z,z)

The y=c would kill the expression b+x



Alias Computation

In some situations it is conservative not to regard variables as aliases of 
one another. For example, for reaching definitions. In other cases the 
conservative choice is to assume aliasing when in doubt. For example in 
available expressions.

We will assume that the language has global variables and parameters, and 
that a global variable can be a parameter. We do not distinguish between 
occurrences of a variable at different points of the program containing 
calls to the same procedure. That is, although the same variable may 
represent totally different values at two different points of the program, it 
will be considered the same parameter in all cases. Also, the computation 
is for the whole program. that is, we will assume that if two variable could 
be aliased at a certain point, we will assume they always could be.

Algorithm AC: Alias Computation.

Input: A collection of procedures and global variables

Output: An equivalence relation with the property that whenever there is a 
position in the program where x and y are aliases on one another, x R y; the 
converse need not be true.

Method:
begin

Rename variables v local to each procedure p (including 
formal parameters) as p$v.

For each call p(y1,y2,..yn) to procedure 
p(x1,x2,...,xn) set xi R yi.

Take the transitive and reflexive closure of R
end
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The change[p] set

We now compute change[p], the set of globals or formal parameters that 
can be changed by calling p.

Let def(p) the set of formal parameters and globals changed within p 
itself.

for each procedure p do change[p]=def(p) od
while changes to any change[p] occur do

for each procedure q called by p do
add any global variables in change[q] to 
change[p]
for each call to q add to change[p] the actual 
parameters whose formal equivalents are in 
change[q].

od
od

The change information, together with the alias information can be sued 
to do data flow analysis. For example, to compute ekill in the available 
expression problem, a call to a procedure q can be safely assumed to 
assign (define) only those variables aliased to a variable in change[q].
18
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⊥

Monotone Data Flow Analysis Framework

Definition. A relation R on a set S is
(a) reflexive iff (∀  x ∈  S)[xRx], 
(b) antisymmetric iff [xRy ∧ yRx → x=y]
(c) transitive iff (∀  x,y,z ∈ S) [xRy ∧  yRz → xRz]

Definition. A partial ordering on a set S, which we denote by the symbol 
≤, is a reflexive, antisymmetric, and transitive relation on S. The pair 
(S,≤) is called a partially ordered set.

We write x < y iff x ≤ y and x ≠ y.

Definition. Let (S, ≤) be a partially ordered set, and let a and b be 
elements of S. A join (AKA least upper bound, lub) of a and b (denoted 
a∨ b) is an element c ∈  S such that [ a ≤c and b ≤ c and there is no x ∈  S 
such that (a≤x<c and b≤x<c)].

A meet (AKA greatest lower bound, glb) of a and b (denoted a ∧  b) is an 
element d ∈  S such that [d≤a and d≤b and there is no x ∈ S such that 
(d<x≤a and d<x≤b)].

A minimal element of a partially ordered set, T, is an element a∈ T such 
that there is no x∈ T for which x < a. The maximal element is similarly 
defined.

The bottom (AKA zero, minimum, least) element of S is an element ⊥∈ S 
such that ⊥  ≤ x for all x∈ S. The top (AKA one, maximum, greatest) 
element of S is an element T∈ S such that x ≤ T for all x∈ S.

Observation. Both meet and join are idempotent x∧ x=x,x∨ x=x
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Definition A lattice is a partially ordered set, any two elements of which 
have a unique join and meet.

Definition A semilattice is a pair (S,*) where S is a nonempty set and * is 
a binary operation on S which is idempotent, commutative, and 
associative. If (S, ∧ , ∨ ) is a lattice, then both (S, ∧ ) and (S, ∨ ) are 
semilattices.
21
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A data flow analysis framework consists of:

1. A semilattice (L,∧ ). Where L is a nonempty set, and ∧  is a binary 
operation on L. ∧  represents the confluence operator.

2. A set F of transfer functions f∈ F, f:L→L.

The elements of L are the values at the top of the nodes of a flow graph. 
For example, the in[B] sets in the reaching definitions problem would be 
elements of L. Thus, L=2D where D is the set of definitions in the 
program.

The transfer functions define the effect of a node of the flow graph on the 
elements of L. In the case of reaching definitions, the set F is the set of 
functions of the form f(X)=A∪ (X-B) where A, B ∈  L. A is gen and B is 
kill. (∧  is set union).

For available expressions, L=2E where E is the set of expressions 
computed by the program. F has the same form as the function above, but 
A and B are now sets of expressions. (∧  is now set intersection).
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For constant propagation each element of L is a function (or table) 
ψ:V → R ∪  {nonconstant, undefined}. 

Where V is the set of variables in the program.

The transfer functions are created from the type of operation in the 
flowgraph:
(a) if no definitions then f is the identity.
(b)if x=c then f(µ)=ν with ν(w)=µ(w) ∀ w ≠ x and ν(x) = c.
(c)if x=y+z then f(µ)=ν with ν(w)=µ(w) ∀ w ≠ x ν(x)=µ(y)+µ(z) 
[where 

nonconstant+a=nonconstant,
undefined + a=undefined, 

noncontant+undefined=noncontant]
(d) if read(x) then f(µ)=ν with ν(w)=µ(w) ∀ w ≠ x. ν(x)=nonconstant...

The meet operation of two tables m and n is defined with the following 
table

nc d undef

nc nc nc nc

c nc if c=d 
then c 
else nc

c

undef nc d undef
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In semilattices: µ ≤ ν iff µ ∧  ν = µ.

Also: µ ∧ ν ≤ µ  and µ ∧ ν ≤ ν

Thus, in reaching definitions, x ≤ y is equivalent to y ⊆  x.

In available expressions x ≤ y is equivalent to x ⊆  y.
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Basic assumptions

Definition. Given a semilattice (L,∧ ) of finite length with a top element, 
a set of operations F on L is said to be a monotone operation space 
associated with L iff the following four conditions are satisfied.

1. Each f∈ F is monotonic. That is

(∀ f∈ F)(∀ x,y∈ L) [x≤y→f(x)≤f(y)]. 

This is equivalent to:

(∀ f∈ F)(∀ x,y∈ L)[f(x∧ y)≤f(x)∧ f(y)]

2. There is I ∈  F such that ∀  x ∈  L, I(x)=x

3.∀ f,g ∈  F there is fg ∈ F such that ∀ x∈ L fg(x)=f(g(x))

4. For each x ∈  L there exists f ∈  F such that x=f(⊥ )

Definition Given a semilattice (L,∧ ) with a top element T in L (i.e., and 
element T such that T∧ m=m ∀ m ∈  L) , a monotone data flow analysis 
framework is a triple (L,∧ ,F) where F is a monotone operation space 
associated with L.

Recall that ∧  is associative, commutative, and idempotent.

Definition. Distributivity: f(µ∧ν )=f(µ)∧ f(ν)
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The Meet-Over-All-Paths Solution to Data-Flow 
Problems

Consider a monotone dataflow framework (L,∧ ,F). Assume that the 
functions fB ∈  F represent the effect of a basic block on the sets conatining 
data for a particular dataflow problem.

Let fP(x)=fBk-1(... fB1(fB0(x) ...) for a path P = (B0, B1, ..., Bk-1)

The solution to the dataflow problem is

mop(B) = ∧ (over all paths from B0 to B) fp(T), where T ≥ s for all elements of 
the semilattice L.

When the fB are montone and distributive, the mop can be computed as 
follows

foreach node B do
out[B] = fB[T]

od
while changes to any out occur do

foreach block B in depth-first order do
in[B] = ∧  (over all predecessors P of B) out[P]
out[B]=fB(in[B])

od
od

Avaialble expressions, live analysis, reaching definitions have monotone 
distributive f’s.

Constant propagation is not distributive.



Computing Live Variable Using Interval Analysis

Let in[x] be the live definitions at the beginning of block x. This block 
could be a basic block or represent an interval.

Live variable will be computed in two phases. First, we will present the 
second phase. 

Algorithm LVIA-2:Live variable using interval analysis-Pass 2.

Input: The derived sequence of control flow graphs G0, G1, ..., Gm. 
Where G0 is the original graph, and Gm is the trivial graph.

The set use[x] of variables with upwardly exposed uses in block x. Block 
x could be a basic block (graph G0) or represent an interval (graphs G1 
thru Gm).

The set notdef[x,y] of variables not necessarily defined when block x is 
traversed towards y.

Output: in[x] the set of live definitions for all blocks x.

x

In the single node case:
notdef(x,y) = notdef(x,z)=
U-def(x)

x

z y

z y

For a supernode the definition is more
involved.
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Method:

begin
in[N] = use[N] /* N is the single node in Gm */
for each G= Gm-1, ... G0 do

for each interval I of G do
in[head(I)] = in [I] 
for each J in SUCC(I) do

in [head(J)] = in [J]
od
/* in [I] and in[J] are available from the previous 
iteration */
for each x in I - head(I) in reverse interval order do

od
od

od
end

in x[ ] use x[ ] notdef x y,[ ] in y[ ]∩( )
y SUCC x( )∈

∪∪=
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To compute use[x] and notdef[x,y] we apply the following algorithm:

Algorithm LVIA-1:Live variable using interval analysis-Pass 1.

Input: The derived sequence of control flow graphs G0, G1, ..., Gm. 
Where G0 is the original graph, and Gm is the trivial graph.

The set use[x] of variables with upwardly exposed uses in basic block x 
of graph G0. 

The set notdef[x]=U-def[x] of variables not necessarily defined in basic 
block x of graph G0. Notice that, since x is a basic block, 
notdef[x,y]=notdef[x] for all y in SUCC(x).

Intermediate: For each x in interval I, path[x], the set of variables V for 
which there is a clear path (not containing a store into V) from the entry 
of I to the entry of x.

Output: use[x] for all blocks x in graphs G1, ..., Gm. notdef[x,y] for all 
pairs of connected blocks x and y (i.e. y is a successor of x in some graph 
Gi). 
29



Method:

begin
for each G= G0, ... Gm-1 do

for each interval I of G do
use[I] = use[head(I)]
path[head(I)] = U /* U is the set of all variables */
/*use[head(I)] is available from the previous iteration */
for each x in I - head(I) in interval order do

od
for each J in SUCC(I) do

od
od

od
end

path x[ ] path y[ ] notdef y x,[ ]∩( )
y PRED x( )∈

∪=

use I[ ] use I[ ] path x[ ] use x[ ]∩( )∪=

notdef I J,[ ] path y[ ] notdef y head J( ),[ ]∩( )
y PRED head J( )( ) I∩∈

∪=
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Reaching Definitions Using T1 & T2

T1 and T2 generate regions possibly nested within each other.

To compute the reaching definitions proceed as follows:

For each region and basic block B compute from the inside-out 

gen[R,B] and kill[R,B] 

which correspond to the definitions generated and killed, respectively, 
along paths within the region from the header to the end of block B.

Start with: gen[B,B] = gen[B] and kill[B,B]=kill[B]

Every time that T2 is applied to have region R1 consume region R2 we 
have:

• If B is in R1, then gen[R,B]=gen[R1,B] and kill[R,B]=kill[R1,B]

• If B is in R2 then 

gen R B,[ ] gen R2 B,[ ] gen R1 C,[ ]
C PRED head R2( )( )∈

∪ 
 
 

kill R2 B,[ ]–
 
 
 

∪=

kill R B,[ ] kill R2 B,[ ] kill R1 C,[ ]
C PRED head R2( )( )∈

∩ 
 
 

gen R2 B,[ ]–
 
 
 

∪=
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Every time that T1 is applied to transform region R1 with a self loop 
into region R we have:

Once the process terminates with the trivial graph, U and

gen R B,[ ] gen R1 B,[ ] gen R1 C,[ ]
C PRED head R1( )( )∈

∪ 
 
 

kill R1 B,[ ]–∪=

kill R B,[ ] kill R1 B,[ ]=

out B[ ] gen U B,[ ]=

in B[ ] gen U C,[ ]
C PRED B[ ]∈

∪=
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Computing Reaching Definitions with Interval 
Analysis

As in the case of live variables, we proceed in two passes. Again, the 
result will be in in[x] the set of all definitions reaching block x.

Algorithm RDIA-2:Reaching Definitions with interval analysis-
Pass 2.

Input: The derived sequence of control flow graphs G0, G1, ..., Gm. 
Where G0 is the original graph, and Gm is the trivial graph.

The set notkill[x,y] of definitions not necessarily killed when block x is 
traversed towards y.

The set gen[x,y] of definitions generated when block x is traversed 
towards y.

Output: in[x] the set of all definitions reaching block x.
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begin
in[N] = Φ
for each G= Gm-1, ... G0 do

for each interval I of G do
in[head(I)] = in [I] 
/* in [I] is available from the previous iteration */
for each x in I - head(I) in interval order do

od
od

end

in x[ ] in y[ ] notkill y x,[ ] gen y x,[ ]∪∩
y PRED x( )∈

∪=
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To compute gen[x,y] and notkill[x,y] we apply the following algorithm:

Algorithm RDIA-1: Reaching Definitions with interval 
analysis-Pass 1.

Input: The derived sequence of control flow graphs G0, G1, ..., Gm. 
Where G0 is the original graph, and Gm is the trivial graph.

The set notkill[x]=U-kill[x] of definitions not necessarily killed in basic 
block x of graph G0. Notice that, since x is a basic block, 
notkill[x,y]=notkill[x] for all y in SUCC(x).

The set gen[x] of definitions generated in basic block x of graph G0. 
Notice that, since x is a basic block, gen[x,y]=gen[x] for all y in 
SUCC(x).

Intermediate: For each x in interval I, path[x], the set of variables V for 
which there is a clear path (not containing a store into V) from the entry 
of I to the entry of x.

For each block x, rdtop[x], the set of defintions that reach the top of x 
from nodes within the interval.

Output: notkill[x,y] and gen[x,y].

Method:

begin
for each G= G0, ... Gm-1 do
35



for each interval I of G do
rdtop[head(I)] = Φ
path[head(I)] = U /* U is the set of all variables */
for each x in I - head(I) in interval order do

od
for each J in SUCC(I) do

od
od

od
end

path x[ ] path y[ ] notkill y x,[ ]∩( )
y PRED x( )∈

∪=

rdtop x[ ] rdtop y[ ] notkill y x,[ ] gen y x,[ ]∪∩
y PRED x( )∈

∪=

notkill I J,[ ] path y[ ] notkill y head J( ),[ ]∩( )
y PRED head J( )( ) I∩∈

∪=

gen I J,[ ] A y J,( ) B I J,( )∪
y PRED head J( )( ) I∩∈

∪=

A y J,( ) rdtop y[ ] notkill y head J( ),[ ] gen y head J( ),[ ]∪∩=
Where

B I J,( ) rdtop z[ ] notkill z head I( ),[ ]∩( ) gen z head I( ),[ ]∪( ) notkill I J,[ ]∩

z PRED head I( )( ) I∩∈
∪=

and 
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	Another Strength-Reduction Algorithm
	Candidates for strength reduction
	1. Multiplication by a constant
	loop
	n=i*a
	...
	i=i+b
	after strength reduction
	loop
	n=t1
	...
	i=i+b
	t1=t1+a*b
	after loop invariant removal (b is a constant because i is an induction variable)
	c= a * b
	loop
	n=t1
	...
	i=i+b
	t1=t1+c

	2. Multiplication by a constant plus a term
	loop
	n=i*a+c
	...
	i=i+b
	after strength reduction
	loop
	n=t1
	...
	i=i+b
	t1=t1+a*b
	Notice that the update to t1 does not change by the addition of the contant. However, the initial...

	3. Two induction variables multiplied by a constant and added
	loop
	n=i*a+j*b
	...
	i=i+c
	...
	j=j+d
	after strength reduction
	loop
	n=t1
	...
	i=i+c
	t1=t1+a*c
	j=j+d
	t1=t1+b*d

	4. Multiplication of one induction variable by another
	loop
	n=i*j
	...
	i=i+a
	...
	j=j+b
	After strength reduction of i*j
	loop
	n=t1
	...
	--------- t1=i*j
	i=i+a
	--------- new t1 should be (i+a)*j=t1+a*j
	t1=t1+a*j
	...
	j=j+b
	-------- new t1 should be i*(j+b)=t1+b*i
	t1=t1+b*i
	After strength reduction of a*j
	loop
	n=t1
	...
	i=i+a
	t1=t1+t2
	...
	j=j+b
	t1=t1+b*i
	t2=t2+a*b
	b*i is handled similarly.

	5. Multiplication of an induction variable by itself
	loop
	n=i*i
	...
	i=i+a
	After strength reduction
	loop
	n=t1
	...
	i=i+a
	-------- new t1 should be (i+a)*(i+a)=t1+2*a*i+a*a
	t1=t1+2*a*i+a*a
	Now strength reduce 2*a*i+a*a
	loop
	n=t1
	...
	i=i+a
	t1=t1+t2
	-------- new t2 should be 2*a*(i+a)+a*a=t2+2*a*a
	t2=t2+2*a*a


	Computing Live Variable Using Interval Analysis
	Let in[x] be the live definitions at the beginning of block x. This block could be a basic block ...
	Live variable will be computed in two phases. First, we will present the second phase.
	Algorithm LVIA-2:Live variable using interval analysis-Pass 2.
	Input: The derived sequence of control flow graphs G0, G1, ..., Gm. Where G0 is the original grap...
	The set use[x] of variables with upwardly exposed uses in block x. Block x could be a basic block...
	The set notdef[x,y] of variables not necessarily defined when block x is traversed towards y.
	Output: in[x] the set of live definitions for all blocks x.
	Method:
	begin
	in[N] = use[N] /* N is the single node in Gm */
	for each G= Gm-1, ... G0 do
	for each interval I of G do
	in[head(I)] = in [I]
	for each J in SUCC(I) do
	in [head(J)] = in [J]
	od
	/* in [I] and in[J] are available from the previous iteration */
	for each x in I - head(I) in reverse interval order do
	od
	od
	od
	end
	To compute use[x] and notdef[x,y] we apply the following algorithm:
	Algorithm LVIA-1:Live variable using interval analysis-Pass 1.
	Input: The derived sequence of control flow graphs G0, G1, ..., Gm. Where G0 is the original grap...
	The set use[x] of variables with upwardly exposed uses in basic block x of graph G0.
	The set notdef[x]=U-def[x] of variables not necessarily defined in basic block x of graph G0. Not...
	Intermediate: For each x in interval I, path[x], the set of variables V for which there is a clea...
	Output: use[x] for all blocks x in graphs G1, ..., Gm. notdef[x,y] for all pairs of connected blo...
	Method:
	begin
	for each G= G0, ... Gm-1 do
	for each interval I of G do
	use[I] = use[head(I)]
	path[head(I)] = U /* U is the set of all variables */
	/*use[head(I)] is available from the previous iteration */
	for each x in I - head(I) in interval order do
	od
	for each J in SUCC(I) do
	od
	od
	od
	end

	Reaching Definitions Using T1 & T2
	T1 and T2 generate regions possibly nested within each other.
	To compute the reaching definitions proceed as follows:
	For each region and basic block B compute from the inside-out
	gen[R,B] and kill[R,B]
	which correspond to the definitions generated and killed, respectively, along paths within the re...
	Start with: gen[B,B] = gen[B] and kill[B,B]=kill[B]
	Every time that T2 is applied to have region R1 consume region R2 we have:
	• If B is in R1, then gen[R,B]=gen[R1,B] and kill[R,B]=kill[R1,B]
	• If B is in R2 then

	Every time that T1 is applied to transform region R1 with a self loop into region R we have:
	Once the process terminates with the trivial graph, U and

	Computing Reaching Definitions with Interval Analysis
	As in the case of live variables, we proceed in two passes. Again, the result will be in in[x] th...
	Algorithm RDIA-2:Reaching Definitions with interval analysis- Pass 2.
	Input: The derived sequence of control flow graphs G0, G1, ..., Gm. Where G0 is the original grap...
	The set notkill[x,y] of definitions not necessarily killed when block x is traversed towards y.
	The set gen[x,y] of definitions generated when block x is traversed towards y.
	Output: in[x] the set of all definitions reaching block x.
	begin
	in[N] = F
	for each G= Gm-1, ... G0 do
	for each interval I of G do
	in[head(I)] = in [I]
	/* in [I] is available from the previous iteration */
	for each x in I - head(I) in interval order do
	od
	od
	end
	To compute gen[x,y] and notkill[x,y] we apply the following algorithm:
	Algorithm RDIA-1: Reaching Definitions with interval analysis-Pass 1.
	Input: The derived sequence of control flow graphs G0, G1, ..., Gm. Where G0 is the original grap...
	The set notkill[x]=U-kill[x] of definitions not necessarily killed in basic block x of graph G0. ...
	The set gen[x] of definitions generated in basic block x of graph G0. Notice that, since x is a b...
	Intermediate: For each x in interval I, path[x], the set of variables V for which there is a clea...
	For each block x, rdtop[x], the set of defintions that reach the top of x from nodes within the i...
	Output: notkill[x,y] and gen[x,y].
	Method:
	begin
	for each G= G0, ... Gm-1 do
	for each interval I of G do
	rdtop[head(I)] = F
	path[head(I)] = U /* U is the set of all variables */
	for each x in I - head(I) in interval order do
	od
	for each J in SUCC(I) do
	od
	od
	od
	end

	Induction variable elimination
	Algorithm DIV: Detection of Induction Variables
	Our objective here is to associate with each induction variable, j, a triple (i,c,d) where i is a...
	We define as basic induction variables those scalar variables whose only assignments in loop L ha...
	begin
	Find the basic induction variables. Associate with each basic induction variable i, the triple (i...
	for each variable k with a single assignment to k within L of the form k = j ± b or k = j * b whe...
	if j is a basic i.v. then
	associate to k, the triple (j,1,±b) in the first case and (j,b,0) in the second case.
	else
	let j be associated with the triple (i,c,d)
	if
	there is no assignment to i from the lone point of definition of j to the assignment of k and
	no definition of j from outside L reaches k then
	associate (i,c,d±b) with k in the first case and (i,b*c,b*d) in the second case
	fi
	fi
	od
	end

	Strength Reduction
	The purpose of strength reduction is to replace multiplications inside a loop by additions.
	begin
	for each basic induction variable i do
	for each non-basic i.v. j associated with a triple of the form (i,c,d) do
	Create a new variable s (unless another i.v., say m, associated with the same triple was processe...
	Replace the assignment to j with j=s
	after each assignment i = i + n append s=s+c*n (notice that c*n is a constant).
	Insert s=c*i+d just before the loop.
	od
	od
	end

	Another definition of basic induction variable
	The previous discussion does not deal with some important cases. for example, coupled induction v...
	An alternative approach introduced by Cocke and Kennedy (CACM Nov. 1977) is to define as inductio...
	i = j ± k
	i = ± j
	where j and k a re either induction variables or region constants
	These induction variables can be detected by the following algorithm
	Algorithm A2DIV: Another Algorithm for the Detection of Basic Induction Variables
	Input:
	1. A strongly connected region R of the flow graph
	2. The set RC of constants within the region (see loop-invariant detection above)
	Output: The set IV of basic induction variables
	Method:
	begin
	IV = Æ
	for each instruction I in R do
	if I is of the form i=j±k or i=±j then
	IV += {i}
	fi
	od
	change = true
	while change do
	change = false
	for each instruction I in R whose lhs is in IV do
	if I is not of the form i=j±k or i=±j or any operand œIV » RC then
	remove i from IV
	change = true
	fi
	od
	od
	end
	This is based on the following observations

	1. It is simpler to define what is not an induction variable than is to define what is
	2. if x= op(x,z) and op is not one of store, negative, add or subtract, then x is not an inductio...
	3. if x = op(y,z) and y and z are not both elements of IV » RC, then x is not an induction variable
	begin
	PILE={S| rhs of S is i*x with iŒ IV and x Œ IV»RC}
	while PILE ¹Æ do
	S from PILE (e=i*x)
	if e is of the form vix then
	delete S
	else
	create a new variable vix
	replace S with e = vix
	fi
	for each T in DEFS(i,S) » DEFS(x,S) do
	if there is a definition of vix in T then
	next
	elseif T is outside the loop then
	insert vix=i * x just before the loop
	elseif T is of the form i = k then
	replace T with the sequence
	[R: vix = k*x,
	i = k]
	PILE += {R}
	elseif T is of the form i=k+l and x ¹ i then
	replace T with the sequence
	[R1: vkx=k*x,
	R2: vlx=l*x,
	vix=vkx+vlx,
	i=k+l]
	PILE += {R1,R2}
	elseif xºi and T is of the form i=k+l then
	replace T with the sequence
	R1: vkk=k*k
	R2: vll= l*l
	R3: vlk=l*k
	R4: v2lk=2*vlk
	v2lk+ll=v2lk+vll
	vii= vkk+ v2lk+ll
	i=k+l
	PILE+={R1,R2,R3,R4}
	fi
	od
	od
	end


	Aliasing and Pointers
	When assignments of the form *p=a or of the form x=*p are found in a block the analysis algorithm...
	In the case of reaching definitions, the most naive (conservative) approach is to assume that *p=...
	In the case of live variable analysis, the most naive (conservative) approach is to assume that *...
	We show next a simple algorithm to improve the accuracy of the analysis in the presence of pointe...
	With this information, we can compute the set S of possible values of a pointer at a particular s...
	1. For reaching definitions *p=a will generate a definition of every variable b such that (p,b) i...
	2. For live variable analysis, *p=a uses only a and p. It may also be assumed to define b if b is...

	Computing the effect of pointer assignments
	The algorithm assumes that only additions and subtractions of constant are valid operations on po...
	Also, if a pointer points to an array, say a, adding or subtracting a constant will not change th...
	However, adding or subtracting a constant is not valid for the case of scalars.
	A function (transI(S)) is defined that defines the effect of an instruction I on the set S of pos...
	transI(S) is computed as follows:
	1. if I is p=&a or p=&a+c where a is an array, then the result is
	(S-{(p,b)|(p,b) is in S}) + {(p,a)}

	2. If I is p=q±c for pointer q and nonzero constant c, then the result is
	(S-{(p,b)|(p,b) is in S}) + {(p,b)|(q,b) is in S and b is an array)}

	3. If I is p=q, the the result is
	(S-{(p,b)|(p,b) is in S}) + {(p,b)|(q,b) is in S)}

	4. If I assigns to pointer p any other expression, then the result is
	(S-{(p,b)|(p,b) is in S})

	5. If I does not assign to a pointer, then the result is
	S (i.e. there is no change)
	If a block B consists of the instructions I1, I2, ...,In, then transB(S) is defined as transIn(.....
	Now, we define out[B] = transB(in[B]) and
	This can be solved iteratively.


	Interprocedural Data Flow Analysis
	The objective here is to determine how each procedure influences the sets gen, kill, use, and def...
	Consider
	subroutine p(x,y)
	...
	a=b+x
	...
	y=c
	...
	d=b+x
	...
	end
	Is b+x available at the last statement? It will depend on whether y=c kills the expression or not...
	subroutine q(u,v)
	...
	call p(u,v)
	...
	end
	...
	call q(z,z)
	The y=c would kill the expression b+x

	Alias Computation
	In some situations it is conservative not to regard variables as aliases of one another. For exam...
	We will assume that the language has global variables and parameters, and that a global variable ...
	Algorithm AC: Alias Computation.
	Input: A collection of procedures and global variables
	Output: An equivalence relation with the property that whenever there is a position in the progra...
	Method:
	begin
	Rename variables v local to each procedure p (including formal parameters) as p$v.
	For each call p(y1,y2,..yn) to procedure p(x1,x2,...,xn) set xi R yi.
	Take the transitive and reflexive closure of R
	end

	The change[p] set
	We now compute change[p], the set of globals or formal parameters that can be changed by calling p.
	Let def(p) the set of formal parameters and globals changed within p itself.
	for each procedure p do change[p]=def(p) od
	while changes to any change[p] occur do
	for each procedure q called by p do
	add any global variables in change[q] to change[p]
	for each call to q add to change[p] the actual parameters whose formal equivalents are in change[q].
	od
	od
	The change information, together with the alias information can be sued to do data flow analysis....

	Monotone Data Flow Analysis Framework
	Definition. A relation R on a set S is
	(a) reflexive iff (" x Œ S)[xRx],
	(b) antisymmetric iff [xRy Ÿ yRx Æ x=y]
	(c) transitive iff (" x,y,z Œ S) [xRy Ÿ yRz Æ xRz]
	Definition. A partial ordering on a set S, which we denote by the symbol £, is a reflexive, antis...
	We write x < y iff x £ y and x ¹ y.
	Definition. Let (S, £) be a partially ordered set, and let a and b be elements of S. A join (AKA ...
	A meet (AKA greatest lower bound, glb) of a and b (denoted a Ÿ b) is an element d Œ S such that [...
	A minimal element of a partially ordered set, T, is an element aŒT such that there is no xŒT for ...
	The bottom (AKA zero, minimum, least) element of S is an element ^ŒS such that ^ £ x for all xŒS....
	Observation. Both meet and join are idempotent xŸx=x,x⁄x=x
	Definition A lattice is a partially ordered set, any two elements of which have a unique join and...
	Definition A semilattice is a pair (S,*) where S is a nonempty set and * is a binary operation on...
	A data flow analysis framework consists of:
	1. A semilattice (L,Ÿ). Where L is a nonempty set, and Ÿ is a binary operation on L. Ÿ represents...
	2. A set F of transfer functions fŒF, f:LÆL.
	The elements of L are the values at the top of the nodes of a flow graph. For example, the in[B] ...
	The transfer functions define the effect of a node of the flow graph on the elements of L. In the...
	For available expressions, L=2E where E is the set of expressions computed by the program. F has ...
	For constant propagation each element of L is a function (or table)
	y:V Æ R » {nonconstant, undefined}.
	Where V is the set of variables in the program.
	The transfer functions are created from the type of operation in the flowgraph:
	(a) if no definitions then f is the identity.
	(b)if x=c then f(m)=n with n(w)=m(w) " w ¹ x and n(x) = c.
	(c)if x=y+z then f(m)=n with n(w)=m(w) " w ¹ x n(x)=m(y)+m(z)
	[where
	nonconstant+a=nonconstant,
	undefined + a=undefined,
	noncontant+undefined=noncontant]
	(d) if read(x) then f(m)=n with n(w)=m(w) " w ¹ x. n(x)=nonconstant...
	The meet operation of two tables m and n is defined with the following table
	nc
	nc
	nc
	nc
	c
	nc
	if c=d then c else nc
	c
	undef
	nc
	d
	undef


	Basic assumptions
	Definition. Given a semilattice (L,Ÿ) of finite length with a top element, a set of operations F ...
	1. Each fŒF is monotonic. That is
	("fŒF)("x,yŒL) [x£yÆf(x)£f(y)].
	This is equivalent to:
	("fŒF)("x,yŒL)[f(xŸy)£f(x)Ÿf(y)]
	2. There is I Œ F such that " x Œ L, I(x)=x
	3."f,g Œ F there is fg ŒF such that "xŒL fg(x)=f(g(x))
	4. For each x Œ L there exists f Œ F such that x=f(^)
	Definition Given a semilattice (L,Ÿ) with a top element T in L (i.e., and element T such that TŸm...
	Recall that Ÿ is associative, commutative, and idempotent.
	Definition. Distributivity: f(mŸn)=f(m)Ÿf(n)
	In semilattices: m £ n iff m Ÿ n = m.
	Also: m Ÿ n £ m and m Ÿ n £ n
	Thus, in reaching definitions, x £ y is equivalent to y Õ x.
	In available expressions x £ y is equivalent to x Õ y.

	The Meet-Over-All-Paths Solution to Data-Flow Problems
	Consider a monotone dataflow framework (L,Ÿ,F). Assume that the functions fB Œ F represent the ef...
	Let fP(x)=fBk-1(... fB1(fB0(x) ...) for a path P = (B0, B1, ..., Bk-1)
	The solution to the dataflow problem is
	mop(B) = Ÿ(over all paths from B0 to B) fp(T), where T ³ s for all elements of the semilattice L.
	When the fB are montone and distributive, the mop can be computed as follows
	foreach node B do
	out[B] = fB[T]
	od
	while changes to any out occur do
	foreach block B in depth-first order do
	in[B] = Ÿ (over all predecessors P of B) out[P]
	out[B]=fB(in[B])
	od
	od
	Avaialble expressions, live analysis, reaching definitions have monotone distributive f’s.
	Constant propagation is not distributive.


