
Example of Global Data-Flow Analysis

Reaching Definitions

We will illustrate global data-flow analysis with the computation of
reaching definition for a very simple and structured programming
language.

We want to compute for each block b of the program the set REACHES(b)
of the statements that compute values which are available on entry to b.

An assignment statement of the form x:=E or a read statement of the
form read x must define x.

A call statement call sub(x) where x is passed by reference or an
assignment of the form *q:= y where nothing is known about pointer q,
may define x.

We say that a statement s that must or may define a variable x reaches a
block b if there is a path from s to b such that there is no statement t in the
path that kills s, that is there is no statement t that must define x. A block
may be reached by more than one statement in a path: a must define
statement s and one or more may define statements on the same variable
that appears after s in a path to b.

We must be conservative to guarantee correct transformations. In the case
of reaching definitions conservative is to assume that a definition can
reach a point even if it might not whenever the compiler cannot guarantee
that this is not the case.
1

Data-Flow Equations

Consider the following language:

S ::= id:=expression | S;S | if expression then S else S | do S while expression

We define the following equations to compute reaching definitions. In these
equations we compute reaching definitions for statements instead of blocks.
We use the following terms:

• gen[S] is the set of definitions “generated by S”.

• kill[S] is the set of definitions “killed” by S.

• in[S] is the set of definitions reaching S (or the top of S)

• out[S] is the set of definitions that reach the bottom of S.

1.When S has the form a :=expression and label d:
gen[S] = {d}
kill[S] = Da-{d}. Da is the set of all definitions of a.

out[S] = gen[S] + (in[S]-kill[S])

2.When S is of the form S1; S2:
gen[S] = gen[S2]+(gen[S1]-kill[S2])
kill[S] = kill[S2]+(kill[S1]-gen[S2])

in[S1] = in[S]
in[S2] = out[S1]
out[S] = out[S2]
2

3.When S is of the form if ... then S1 else S2

gen[S]=gen[S1]+gen[S2]
kill[S]=kill[S1]kill[S2]

in[S1] = in[S]
in[S2] = in[S]
out[S] = out[S1]+out[S2]

4.When S is of the form do S1 while ...:
gen[S] = gen[S1]
kill[S] = kill[S1]

in[S1] = in[S]+gen[S1]
out[S] = out[S1]

For this problem we don’t use a control flow graph. We use an abstract
syntax tree for simplicity. Gen[S] and kill[S] are computed bottom up on
that tree.

Notice that the real gen[S] is always a subset of the computed gen[S]. For
example when S is an if statement that always takes the “true” branch,
gen[S1]+gen[S2] is bigger than the real gen[S]=gen[S1]. At the same
time, the real kill[S] is a superset of the computed kill[S].

Notice that out[S] is not the same as gen[S]. The former contains all the
definitions that reach the bottom of S while the latter includes only those
definitions within S that reach the bottom of S.
3

In[S] and out[S] are computed starting at the statement S0 representing
the whole program.

Algorithm IN-OUT: Compute in[S] and out[S] for all
statements S

Input: An abstract syntax tree of program S0 and the gen and kill sets for
all the statements within the program.

Output:in[S] and out[S] for all statements within the program
4

compute_out(S):
case S

a := ... : return(out[S]=gen[S]+(in[S]-kill[S]))

S1;S2 : in[S1]=in[S]
in[S2],out[S1]=compute_out(S1)
return(out[S2]=compute_out(S2))

if ...
then S1
else S2 : in[S1], in[S2] = in[S]

 return(out[S]=compute_out(S1)
+ compute_out(S2))

do S1
while ... : in[S1] = in[S]+gen[S1]

return(out[S1]=compute_out(S1))

end case
end

in[S0] = 
compute_out(S0)
5

The sets of statements can be represented with bit vectors. Then unions
and intersections take the form of or and and operations. Only the
statements that assign values to program variables have to be taken into
account. That is statements (or instructions) assigning to compiler-
generated temporaries can be ignored.

In an implementation it is better to do the computations for the basic
blocks only. The reaching sets for each statement can be then obtained by
applying rule for “S1;S2” above.
6

Use-definition chains

Data interconnections may be expressed in a pure form which directly
links instructions that produce values to instructions that use them. This
may take the following form:

1.For each statement S with input variable v,

2.DEFS(v,S) = in{S}Dv. If v is not input to S, DEFS(v,S) is the empty
set.

3.For each definition S with output variable v, USES(S) ={T| S is in
DEFS(v,T)}.

Once DEFS is computed, USES can be computed by simple inversion

Algorithm US: USES Computation

Input: DEFS

Output: USES

Method:
begin

USES(:):=
for each statement T in the program do

for each input variable v of T do
for each statement S in DEFS(v,T) do

USES(S) += {T}
od

od
od
7

8

Three applications of the use-definition chains

(From: Kennedy, K. A survey of dataflow analysis techniques. In
Muchnick S, and N. Jones. Program Flow Analysis: Theory and
Applications, prentice-Hall, N.J.)

Algorithm MK: Mark Useful Definitions

Input:

1.DEFS

2.Set of critical statements, CRIT, which are useful by definition (e.g
writes)

Output: For each definition S, MARK(S) = true iff S is useful

Method:
begin

MARK(:) = false
PILE=CRIT
while PILE   do

S from PILE
MARK(S)=true
for each T in do

if MARK(T) then PILE +={T} fi
od

od
end

DEFS v S 
v


9

Algorithm CP: Constant Propagation

Input:

1.A program PROG

2.A flag CONST(v,S) for each statement S and input variable v of S.
Also, CONST(S) for the output variable of S. Initially, CONST(S) is
true only if the rhs of S is a constant. CONST(v,S) is false for all v and
S.

3.USES and DEFS

Output:

1.The modified CONST flags

2.The mapping VAL(v,S) which provides the run-time constant value of
input variable v at statement S. VAL(v,S) is defined only if
CONST(v,S) is true. VAL(S) is the value of the output of S. VAL(S) is
defined only if CONST(S) is true.

end

Method:
begin /*start with the trivially constant statements */

PILE = {S in PROG | the rhs of S is a constant}
while PILE do

T from PILE
v = output(T)
for each S in USES(T) do

/*check for constant inputs */
for each U in DEFS(v,S)-{T} do

if CONST(U) or VAL(U)VAL(T)
then next(2)

od
/* If it is a constant */
CONST(v,S)=true
VAL(v,S)=VAL(T)
/* is the instruction now constant? */
if CONST(w,S) true for all inputs w of S then

CONST(S) = true
VAL(S) = compute(S)
PILE += {S}

fi
od

od
end
10

The third example is type analysis. This is important in very high level
languages such as SETL where there are no declarations. A statement of
the form x:=y+z could mean in SETL union of sets or of tuples, integer
addition, real addition, etc. A run-time check is needed unless it can be
determined at comp[ile time the type of the operands.

We assume that there is a number of atomic type symbols such as I
(integer), R (real), N (number, i.e. real or integer), UD (undefined), NS
(set of arbitrary elements), S (sets), Z (error), etc.

We also assume an algebra of types encoded in a transition function F
which, for each operation op and input types t1, t2, ..., tn of the operands,
produces t0=Fop(t1, t2, ..., tn). e.g. real+real is real, real + integer is also
real, integer + integer is integer.

Algorithm TA: Type Analysis

Input:

1.A program PROG

2.A mapping TYPE, such that TYPE(v,S) is the best inital estimate of the
type of the variable v at the input of S (for most variables this is ‘UD’).
Also, TYPE(S) is the type of the output (lhs) of S.

3.DEFS and USES

Output: For each instruction S and input or output variable v, Type(v,S), a
conservative approximation to the most specific type information
provably true at S.
11

begin
PILE={S in PROG | no variable in the rhs is of type ‘UD’}
while PILE  do

S from PILE
v = output (S)
for each T in USES(S) do

/* recompute type */
oldtype = TYPE(v,T)
TYPE(v,T) =

if TYPE(v,T)  oldtype then
/* a type refinement */
TYPE(T) = Fop(T) (input types of T)

PILE += {T}
fi

od
end

TYPE U 
U DEFS v T 



12

Some simple iterative algorithms for data flow analysis

The data flow analysis above was done assuming a structured program
and operated on an abstract syntax tree.

One simple approach that works even when the flow graph is not
reducible is to use iterative algorithms.

These algorithms try to find a solution to a system of equations. For
example, for the reaching definitions problem, we have the following
equations defined on each node B (a basic block) of the flow graph:

or, in terms of in alone:

Notice that gen and kill are defined for basic blocks. Also, in[S] is
assumed to be the empty set. S is the source node of the flow graph.

These equations do not have a unique solution. What we want is the
smallest solution. Otherwise the result would not be as accurate as
possible.

in B  out C 

C PREDECESSOR B 
=

in B  gen C  in C  kill C – 

C PRED B 
=

out B  gen B  in B  kill B – =
13

There are other important problems that can also be expressed as systems
of equations.

The available expressions problem is used to do global common
subexpression elimination. An expression x+y is available at a point p if
every path from the initial node to p evaluates x+y and after the last such
evaluation before reaching p, there are no subsequent assignments to
either operand.

A block kills expression x+y if it assigns (or may assign) x or y and does
not subsequently recompute x+y. A block generates expression x+y if it
definitely evaluates x+y and does not subsequently redefine xor y.

The equations are (Here in is the set of expressions available at the top of
a basic block):

or in terms of in alone:

out B  egen B  in B  ekill B – =

in B  out C 

C PRED B 
=

in B  egen C  in C  ekill C – 

C PRED B 
=
14

In this case, we want the largest solution to the system of equations.
Consider for example, the following flow graph:

where ekill[B2] = and egen[B2] =Also, out[B1] is {x+y}. By
applying the previous equations we can see that {x+y} and  are both
solutions to the system of equations. Clearly {x+y} is more accurate.

Again in this case we assume that in[S] is the empty set.

Another interesting problem is live variable analysis. This is computed
in the direction opposite to the flow of control. In live variable analysis
we wish to know for variable x and point p whether the value of x at p
could be used along some path in the flow graph starting at p. If so, x is
live at p; otherwise is dead at p.

After a value is computed in a register within a block, it is not necessary
to store that value if it is dead at the end of the block. Also, if all registers
are full and we need another register, we should favor using a register
with a dead value, since that value does not have to be stored.

B1

B2
15

Let def[B] be the set of variables definitively assigned values in B prior
to any use of the variable in B, and let use[B] be the set of variables
whose values may be used in B prior to any definition of the variable.

The equations are (Here out[B] are the variables live at the end of the
block, and in[B], the variables live just before block B.

or in terms of out alone:

The final problem we will mention is very busy expressions. An
expression that is evaluated regardless of the path taken from a given
point is said to be very busy at that point. Such expressions could be
moved to the earliest point beyond which they would always be
evaluated. It is a transformation that almost always reduces the space
occupied by a program but that may affect its execution positively,
negatively, or not at all. we define eval[B] as the set of expressions that
are evaluated in basic block B before any of the operands are assigned to
it in the block. We define kill[B] to be the set of expressions killed by

in B  use B  out B  def B – =

out B  in C 

C SUCESSOR B 
=

out B  use C  out C  def C – 

C SUC B 
=
16

block B. An expression is killed by a basis block if one of its operands is
assigned to in the block.

Observation 1. A top-down (respectively bottom-up) problem defined
on a single-exit flow graph G can be transformed into a bottom-up
(respectively top-down) problem on the reverse graph of G (reverse the
arcs) such that a solution to the modified problem gives an almost
immediate solution to the original problem.

Observation 2. A set intersection (respectively set union) problem can
be transformed into a set union (respectively set intersection) problem
such that a solution to the modified problem gives a solution to the
original problem. (By DeMorgan’s Laws).

The four types of bit vector frameworks

Set Intersection,
“and”, -problems

Set Union, “or”, -
problems

Top-down problems

(operation over prede-
cessors)

Available expressions Reaching definitions

Bottom-up problems
(operations over suc-
cessors)

Very busy expressions Live variables

in B  eval B  out B  kill B – =

out B  in B 

C SUCESSOR B 
=
17

Two simple iterative algorithms for the available expressions
problem

We will now use the available expressions problem to illustrate two simple
iterative algorithms to compute the in[B] sets. We will use a matrix in[B,e], that
will be one iff an expression e is in in[B]. Similar matrices for egen and ekill will
be used (but not necessarily implemented). To understand the algorithm,
consider again the equation:

We can rewrite it as a boolean equation:

or

Note here the and the symbols stand for logical OR and AND respectively.

in B  egen C  in C  ekill C – 

C PRED B 
=

in B e  egen C e  in C e  ekill C e  

C PRED B 
=

in B e  in C e  egen C e   ekill C e  egen C e   
C PRED B 

=
18

begin
PILE = 
for each expression e in PROG do

for each basic block B of PROG do
if B is S or there is C in PRED(B) such that

ekill[C,e] egen[C,e]) then
/* By second term of equation */
in[B,e] = 0
PILE += {B}

else
in[B,e]=1

fi
od
while PILE  do

C from PILE
if egen[C,e] then

for each B in SUC(C) do
if in[B,e]=1 then

/* By first term */
in[B,e]=0
PILE += {B}

fi
od

fi
od
19

20

Theorem. The previous algorithm terminates and is correct.

Proof

Termination. For each expression e, no node is placed in PILE more than
once and each iteration of the while loop removes an entry from PILE.

Correctness. in[B,e] should be 0 iff either:

1.There is a path from S to B such that e is not generated in any node
preceding B on this path or

2. there is a path to B such that e is killed in the first node of this path and
not subsequently generated.

If in[B,e] is set to zero because of the second term of the equation clearly
either 1 or 2 hold. A straightforward induction on the number of
iterations of the while loop shows that if in[B,e] is set to zero because of
the first term of the equation, then 1 or 2 must hold.

Conversely if 1 or 2 hold, then a straightforward induction shows that
in[B,e] is eventually set to 0.

Theorem The algorithm requires at most O(mr) elementary steps, where
m is the number of expressions and r is the number of arcs.

Proof The “for each basic block” loop takes O(n) steps. The while loop
considers each arc once. Therefore O(r). Outermost loop is m iterations
and r n-1. Therefore O(mr)

21

Here is another algorithm (Kildall’s):

begin
in[1]=0m

in[2:n]=1m

for each C in SUC(1) do
PILE += {(C,egen[1,:])}

od
for each node C do

T(:) = egen[C,:] or  ekill[C,:]
for each B in SUC(C) do

PILE += {B,T}
od

od
while PILE do

(C,T) from PILE
if (T and in[C])  0m then

in[C,:] = in[C,:] and T(:)
T(:)=(in[C,:] and ekill[C,:]) or egen[C,:]
PILE += {(D,T) | D in SUC(C)}

fi
od

end

22

Round-Robin Version of the Algorithm

This is the most straightforward version:

begin
in[S] = 
out[S] = egen[S]
for each block B  S do

out[B] = U - ekill[B]
od
chage = true
while change do

change = false
for each block B  S do /* in rPOSTORDER */

in[B] =

oldout= out[B]
out[B] = egen[B]  (in[B]- ekill[B])
if out[B]  oldout then

change = true
fi

od
od

end

out C 

C PRED B 


23

In bit notation

begin
in[S,:] = 0m

for each block B  S do
in[B,:] = 1m

od
change = true
while change do

change = false
for each block B  S in rPOSTORDER do

new = egen[C,:]  (in[C,:]   ekill[C,:])

if new in[B,:] then
in[B,:] = new
change = true

fi
od

od
end

C  PRED[B]

24

To study the complexity of the above algorithm we need the following
definition.

Definition Loop-connectedness of a reducible flow graph is the largest
number of back arcs on any cycle- free path of the graph.

Lemma Any cycle-free path in a reducible flow graph beginning with the
initial node is monotonically increasing in rPOSTORDER.

Lemma The while loop in the above algorithm is executed at most d+2
times for a reducible flow graph, where d is the loop connectedness of the
graph.

Proof A 0 propagates from its point of origin (either from the initial node
or from a “kill”) to the place where it is needed in d+1 iterations if it
must propagate along a path P of d back arcs. One more iteration is
needed to detect that there are no further changes.

Theorem If we ignore initialization, the previous algorithm takes at most
(d+2)(r+n) bit vector steps; that is O(dr) or O(r2) bit vector steps.

25

Global Common Subexpression Elimination

A very simple algorithm is presented in the book by Aho Sethi and
Ullman:

Algorithm GCSE: Global Common Subexpression Elimination

Input: A flow Graph with available expression information.

Output: A revised Flow graph

Method:

begin
for each block B do

for each statement r in B of the form x=y op z
with y op z available at the beginning of B and
neither y nor z defined before r in B do

for each block C computing the expression
y op z reaching B do

let t be the last statement in C of the
form w=y op z
replace t with the pair

u=y op z
w=u

od
Replace t with x = u

od
od

end

26

To find the statements t, the algorithm searches backwards in the flow
graph. We could compute something equivalent to use-definitions chains
for expressions, but this may produce too much useless information.

Copy propagation can be applied to the program to eliminate the w = u
statement.

The algorithm can be applied several times to remove complex redundant
expressions.

27

Copy propagation

To eliminate copy statements introduced by the previous algorithm we
first need to solve a data flow analysis problem.

Let cin[B] be the set of copy statements that (1) dominate B, and (2) their
rhss are not rewritten before B.

out[B] is the same, but with respect to the end of B.

cgen[B] is the set of copy statements whose rhss are not rewritten before
the end of B.

ckill[B] is the set of copy statements not in B whose rhs or lhs are
rewritten in B.

We have the following equation:

Here we assume that cin[S]=

Using the solution to this system of equations we can do copy
propagation as follows:

cin B  cgen C  cin C  ckill C – 

C PRED B 
=

28

Algorithm CP: Copy Propagation

Input: A flow Graph with use-definiton chains, and cin[B] computed as just
discussed above.

Output: A revised Flow graph

Method:

begin
for each copy statement t: x=y do

if for every use of x, B:
t is in cin[B] and
neither x nor y are redefined within B before the use
then

remove t and
replace all uses of x by y.

fi
od

end

29

Detection of Loop-Invariant Computation

Input. A loop L. Use-definition chains

Output. The set of statements in L that compute the same value every
time they are executed

Method
begin

Mark “invariant” those statements whose operands are
all either constant or have their reaching definitions
outside L
while at least one statement is marked invariant do

mark invariant those statements with the following
property: Each operand is either (1) constant, or
(2) have all their reaching definitions outside L, or
(3) have exactly one reaching definition, and that
definition is a statement in L marked invariant.

od
end

Once the “invariant” marking is completed statements can be moved out
of the loop. The statements should be moved in the order in which they
were marked by the previous algorithm. These statements should satisfy
the following conditions:

1.All their definition statements that were within L should have been
moved outside L.

2.The statement should dominate all exits of L

3. the lhs of the statement is not defined elsewhere in L, and

4.All uses in L of the lhs of the statement can only be reached by the
statement.

	Example of Global Data-Flow Analysis
	Reaching Definitions
	We will illustrate global data-flow analysis with the computation of reaching definition for a very simple and structured programming language.
	We want to compute for each block b of the program the set REACHES(b) of the statements that compute values which are available on entry to b.
	An assignment statement of the form x:=E or a read statement of the form read x must define x.
	A call statement call sub(x) where x is passed by reference or an assignment of the form *q:= y where nothing is known about pointer q, may define x.
	We say that a statement s that must or may define a variable x reaches a block b if there is a path from s to b such that there is no statement t in the path that kills s, that is there is no statement t that must define x. A block may be reached by ...
	We must be conservative to guarantee correct transformations. In the case of reaching definitions conservative is to assume that a definition can reach a point even if it might not whenever the compiler cannot guarantee that this is not the case.
	The sets of statements can be represented with bit vectors. Then unions and intersections take the form of or and and operations. Only the statements that assign values to program variables have to be taken into account. That is statements (or instru...
	In an implementation it is better to do the computations for the basic blocks only. The reaching sets for each statement can be then obtained by applying rule for “S1;S2” above.

	Data-Flow Equations
	Consider the following language:
	S ::= id:=expression | S;S | if expression then S else S | do S while expression
	We define the following equations to compute reaching definitions. In these equations we compute reaching definitions for statements instead of blocks. We use the following terms:
	• gen[S] is the set of definitions “generated by S”.
	• kill[S] is the set of definitions “killed” by S.
	• in[S] is the set of definitions reaching S (or the top of S)
	• out[S] is the set of definitions that reach the bottom of S.

	1. When S has the form a :=expression and label d:
	gen[S] = {d}
	kill[S] = Da-{d}. Da is the set of all definitions of a.
	out[S] = gen[S] + (in[S]-kill[S])

	2. When S is of the form S1; S2:
	gen[S] = gen[S2]+(gen[S1]-kill[S2])
	kill[S] = kill[S2]+(kill[S1]-gen[S2])
	in[S1] = in[S]
	in[S2] = out[S1]
	out[S] = out[S2]

	3. When S is of the form if ... then S1 else S2
	gen[S]=gen[S1]+gen[S2]
	kill[S]=kill[S1]Çkill[S2]
	in[S1] = in[S]
	in[S2] = in[S]
	out[S] = out[S1]+out[S2]

	4. When S is of the form do S1 while ...:
	gen[S] = gen[S1]
	kill[S] = kill[S1]
	in[S1] = in[S]+gen[S1]
	out[S] = out[S1]
	For this problem we don’t use a control flow graph. We use an abstract syntax tree for simplicity. Gen[S] and kill[S] are computed bottom up on that tree.
	Notice that the real gen[S] is always a subset of the computed gen[S]. For example when S is an if statement that always takes the “true” branch, gen[S1]+gen[S2] is bigger than the real gen[S]=gen[S1]. At the same time, the real kill[S] is a supe...
	Notice that out[S] is not the same as gen[S]. The former contains all the definitions that reach the bottom of S while the latter includes only those definitions within S that reach the bottom of S.
	In[S] and out[S] are computed starting at the statement S0 representing the whole program.
	Algorithm IN-OUT: Compute in[S] and out[S] for all statements S
	Input: An abstract syntax tree of program S0 and the gen and kill sets for all the statements within the program.
	Output:in[S] and out[S] for all statements within the program
	compute_out(S):
	case S
	a := ... : return(out[S]=gen[S]+(in[S]-kill[S]))
	S1;S2 : in[S1]=in[S]
	in[S2],out[S1]=compute_out(S1)
	return(out[S2]=compute_out(S2))
	if ...
	then S1
	else S2 : in[S1], in[S2] = in[S]
	return(out[S]=compute_out(S1)
	+ compute_out(S2))
	do S1
	while ... : in[S1] = in[S]+gen[S1]
	return(out[S1]=compute_out(S1))
	end case
	end
	in[S0] = Æ
	compute_out(S0)

	Use-definition chains
	Data interconnections may be expressed in a pure form which directly links instructions that produce values to instructions that use them. This may take the following form:
	1. For each statement S with input variable v,
	2. DEFS(v,S) = in{S}ÇDv. If v is not input to S, DEFS(v,S) is the empty set.
	3. For each definition S with output variable v, USES(S) ={T| S is in DEFS(v,T)}.
	Once DEFS is computed, USES can be computed by simple inversion
	Algorithm US: USES Computation
	Input: DEFS
	Output: USES
	Method:
	begin
	USES(:):=Æ
	for each statement T in the program do
	for each input variable v of T do
	for each statement S in DEFS(v,T) do
	USES(S) += {T}
	od
	od
	od
	end
	Method:
	begin /*start with the trivially constant statements */
	PILE = {S in PROG | the rhs of S is a constant}
	while PILE ¹ Æ do
	T from PILE
	v = output(T)
	for each S in USES(T) do
	/*check for constant inputs */
	for each U in DEFS(v,S)-{T} do
	if ØCONST(U) or VAL(U)¹VAL(T)
	then next(2)
	od
	/* If it is a constant */
	CONST(v,S)=true
	VAL(v,S)=VAL(T)
	/* is the instruction now constant? */
	if CONST(w,S) true for all inputs w of S then
	CONST(S) = true
	VAL(S) = compute(S)
	PILE += {S}
	fi
	od
	od
	end

	Three applications of the use-definition chains
	(From: Kennedy, K. A survey of dataflow analysis techniques. In Muchnick S, and N. Jones. Program Flow Analysis: Theory and Applications, prentice-Hall, N.J.)
	Algorithm MK: Mark Useful Definitions
	Input:
	1. DEFS
	2. Set of critical statements, CRIT, which are useful by definition (e.g writes)
	Output: For each definition S, MARK(S) = true iff S is useful
	Method:
	begin
	MARK(:) = false
	PILE=CRIT
	while PILE ¹ Æ do
	S from PILE
	MARK(S)=true
	for each T in do
	if ØMARK(T) then PILE +={T} fi
	od
	od
	end
	Algorithm CP: Constant Propagation
	Input:

	1. A program PROG
	2. A flag CONST(v,S) for each statement S and input variable v of S. Also, CONST(S) for the output variable of S. Initially, CONST(S) is true only if the rhs of S is a constant. CONST(v,S) is false for all v and S.
	3. USES and DEFS
	Output:

	1. The modified CONST flags
	2. The mapping VAL(v,S) which provides the run-time constant value of input variable v at statement S. VAL(v,S) is defined only if CONST(v,S) is true. VAL(S) is the value of the output of S. VAL(S) is defined only if CONST(S) is true.
	The third example is type analysis. This is important in very high level languages such as SETL where there are no declarations. A statement of the form x:=y+z could mean in SETL union of sets or of tuples, integer addition, real addition, etc. A run...
	We assume that there is a number of atomic type symbols such as I (integer), R (real), N (number, i.e. real or integer), UD (undefined), NS (set of arbitrary elements), S (sets), Z (error), etc.
	We also assume an algebra of types encoded in a transition function F which, for each operation op and input types t1, t2, ..., tn of the operands, produces t0=Fop(t1, t2, ..., tn). e.g. real+real is real, real + integer is also real, integer + integ...
	Algorithm TA: Type Analysis
	Input:

	1. A program PROG
	2. A mapping TYPE, such that TYPE(v,S) is the best inital estimate of the type of the variable v at the input of S (for most variables this is ‘UD’). Also, TYPE(S) is the type of the output (lhs) of S.
	3. DEFS and USES
	Output: For each instruction S and input or output variable v, Type(v,S), a conservative approximation to the most specific type information provably true at S.
	begin
	PILE={S in PROG | no variable in the rhs is of type ‘UD’}
	while PILE ¹ Æ do
	S from PILE
	v = output (S)
	for each T in USES(S) do
	/* recompute type */
	oldtype = TYPE(v,T)
	TYPE(v,T) =
	if TYPE(v,T) ¹ oldtype then
	/* a type refinement */
	TYPE(T) = Fop(T) (input types of T)
	PILE += {T}
	fi
	od
	end

	Some simple iterative algorithms for data flow analysis
	The data flow analysis above was done assuming a structured program and operated on an abstract syntax tree.
	One simple approach that works even when the flow graph is not reducible is to use iterative algorithms.
	These algorithms try to find a solution to a system of equations. For example, for the reaching definitions problem, we have the following equations defined on each node B (a basic block) of the flow graph:
	or, in terms of in alone:
	Notice that gen and kill are defined for basic blocks. Also, in[S] is assumed to be the empty set. S is the source node of the flow graph.
	These equations do not have a unique solution. What we want is the smallest solution. Otherwise the result would not be as accurate as possible.
	There are other important problems that can also be expressed as systems of equations.
	The available expressions problem is used to do global common subexpression elimination. An expression x+y is available at a point p if every path from the initial node to p evaluates x+y and after the last such evaluation before reaching p, there ar...
	A block kills expression x+y if it assigns (or may assign) x or y and does not subsequently recompute x+y. A block generates expression x+y if it definitely evaluates x+y and does not subsequently redefine xor y.
	The equations are (Here in is the set of expressions available at the top of a basic block):
	or in terms of in alone:
	In this case, we want the largest solution to the system of equations. Consider for example, the following flow graph:
	where ekill[B2] = Æ and egen[B2] = Æ. Also, out[B1] is {x+y}. By applying the previous equations we can see that {x+y} and Æ are both solutions to the system of equations. Clearly {x+y} is more accurate.
	Again in this case we assume that in[S] is the empty set.
	Another interesting problem is live variable analysis. This is computed in the direction opposite to the flow of control. In live variable analysis we wish to know for variable x and point p whether the value of x at p could be used along some path i...
	After a value is computed in a register within a block, it is not necessary to store that value if it is dead at the end of the block. Also, if all registers are full and we need another register, we should favor using a register with a dead value, s...
	Let def[B] be the set of variables definitively assigned values in B prior to any use of the variable in B, and let use[B] be the set of variables whose values may be used in B prior to any definition of the variable.
	The equations are (Here out[B] are the variables live at the end of the block, and in[B], the variables live just before block B.
	or in terms of out alone:
	The final problem we will mention is very busy expressions. An expression that is evaluated regardless of the path taken from a given point is said to be very busy at that point. Such expressions could be moved to the earliest point beyond which they...
	The four types of bit vector frameworks
	Top-down problems
	(operation over predecessors)
	Available expressions
	Reaching definitions
	Bottom-up problems (operations over successors)
	Very busy expressions
	Live variables

	Observation 1. A top-down (respectively bottom-up) problem defined on a single-exit flow graph G can be transformed into a bottom-up (respectively top-down) problem on the reverse graph of G (reverse the arcs) such that a solution to the modified pro...
	Observation 2. A set intersection (respectively set union) problem can be transformed into a set union (respectively set intersection) problem such that a solution to the modified problem gives a solution to the original problem. (By DeMorgan’s Laws).

	Two simple iterative algorithms for the available expressions problem
	We will now use the available expressions problem to illustrate two simple iterative algorithms to compute the in[B] sets. We will use a matrix in[B,e], that will be one iff an expression e is in in[B]. Similar matrices for egen and ekill will be use...
	We can rewrite it as a boolean equation:
	or
	Note here the å and the Õ symbols stand for logical OR and AND respectively.
	begin
	PILE = Æ
	for each expression e in PROG do
	for each basic block B of PROG do
	if B is S or there is C in PRED(B) such that ekill[C,e]Ù(Ø egen[C,e]) then
	/* By second term of equation */
	in[B,e] = 0
	PILE += {B}
	else
	in[B,e]=1
	fi
	od
	while PILE ¹ Æ do
	C from PILE
	if Øegen[C,e] then
	for each B in SUC(C) do
	if in[B,e]=1 then
	/* By first term */
	in[B,e]=0
	PILE += {B}
	fi
	od
	fi
	od
	Theorem. The previous algorithm terminates and is correct.
	Proof
	Termination. For each expression e, no node is placed in PILE more than once and each iteration of the while loop removes an entry from PILE.
	Correctness. in[B,e] should be 0 iff either:
	1. There is a path from S to B such that e is not generated in any node preceding B on this path or
	2. there is a path to B such that e is killed in the first node of this path and not subsequently generated.
	If in[B,e] is set to zero because of the second term of the equation clearly either 1 or 2 hold. A straightforward induction on the number of iterations of the while loop shows that if in[B,e] is set to zero because of the first term of the equation,...
	Conversely if 1 or 2 hold, then a straightforward induction shows that in[B,e] is eventually set to 0.
	Theorem The algorithm requires at most O(mr) elementary steps, where m is the number of expressions and r is the number of arcs.
	Proof The “for each basic block” loop takes O(n) steps. The while loop considers each arc once. Therefore O(r). Outermost loop is m iterations and r ³ n-1. Therefore O(mr)
	Here is another algorithm (Kildall’s):
	begin
	in[1]=0m
	in[2:n]=1m
	for each C in SUC(1) do
	PILE += {(C,egen[1,:])}
	od
	for each node C do
	T(:) = egen[C,:] or Ø ekill[C,:]
	for each B in SUC(C) do
	PILE += {B,T}
	od
	od
	while PILE ¹ Æ do
	(C,T) from PILE
	if (ØT and in[C]) ¹ 0m then
	in[C,:] = in[C,:] and T(:)
	T(:)=(in[C,:] and Øekill[C,:]) or egen[C,:]
	PILE += {(D,T) | D in SUC(C)}
	fi
	od
	end

	Round-Robin Version of the Algorithm
	This is the most straightforward version:
	begin
	in[S] = Æ
	out[S] = egen[S]
	for each block B ¹ S do
	out[B] = U - ekill[B]
	od
	chage = true
	while change do
	change = false
	for each block B ¹ S do /* in rPOSTORDER */
	in[B] =
	oldout= out[B]
	out[B] = egen[B] È (in[B]- ekill[B])
	if out[B] ¹ oldout then
	change = true
	fi
	od
	od
	end
	In bit notation
	begin
	in[S,:] = 0m
	for each block B ¹ S do
	in[B,:] = 1m
	od
	change = true
	while change do
	change = false
	for each block B ¹ S in rPOSTORDER do
	new = Ù egen[C,:] Ú (in[C,:] Ù Ø ekill[C,:])
	if new ¹ in[B,:] then
	in[B,:] = new
	change = true
	fi
	od
	od
	end
	To study the complexity of the above algorithm we need the following definition.
	Definition Loop-connectedness of a reducible flow graph is the largest number of back arcs on any cycle- free path of the graph.
	Lemma Any cycle-free path in a reducible flow graph beginning with the initial node is monotonically increasing in rPOSTORDER.
	Lemma The while loop in the above algorithm is executed at most d+2 times for a reducible flow graph, where d is the loop connectedness of the graph.
	Proof A 0 propagates from its point of origin (either from the initial node or from a “kill”) to the place where it is needed in d+1 iterations if it must propagate along a path P of d back arcs. One more iteration is needed to detect that there ...
	Theorem If we ignore initialization, the previous algorithm takes at most (d+2)(r+n) bit vector steps; that is O(dr) or O(r2) bit vector steps.

	Global Common Subexpression Elimination
	A very simple algorithm is presented in the book by Aho Sethi and Ullman:
	Algorithm GCSE: Global Common Subexpression Elimination
	Input: A flow Graph with available expression information.
	Output: A revised Flow graph
	Method:
	begin
	for each block B do
	for each statement r in B of the form x=y op z with y op z available at the beginning of B and neither y nor z defined before r in B do
	for each block C computing the expression y op z reaching B do
	let t be the last statement in C of the form w=y op z
	replace t with the pair
	u=y op z
	w=u
	od
	Replace t with x = u
	od
	od
	end
	To find the statements t, the algorithm searches backwards in the flow graph. We could compute something equivalent to use-definitions chains for expressions, but this may produce too much useless information.
	Copy propagation can be applied to the program to eliminate the w = u statement.
	The algorithm can be applied several times to remove complex redundant expressions.

	Copy propagation
	To eliminate copy statements introduced by the previous algorithm we first need to solve a data flow analysis problem.
	Let cin[B] be the set of copy statements that (1) dominate B, and (2) their rhss are not rewritten before B.
	out[B] is the same, but with respect to the end of B.
	cgen[B] is the set of copy statements whose rhss are not rewritten before the end of B.
	ckill[B] is the set of copy statements not in B whose rhs or lhs are rewritten in B.
	We have the following equation:
	Here we assume that cin[S]=Æ
	Using the solution to this system of equations we can do copy propagation as follows:
	Algorithm CP: Copy Propagation
	Input: A flow Graph with use-definiton chains, and cin[B] computed as just discussed above.
	Output: A revised Flow graph
	Method:
	begin
	for each copy statement t: x=y do
	if for every use of x, B:
	t is in cin[B] and
	neither x nor y are redefined within B before the use
	then
	remove t and
	replace all uses of x by y.
	fi
	od
	end

	Detection of Loop-Invariant Computation
	Input. A loop L. Use-definition chains
	Output. The set of statements in L that compute the same value every time they are executed
	Method
	begin
	Mark “invariant” those statements whose operands are all either constant or have their reaching definitions outside L
	while at least one statement is marked invariant do
	mark invariant those statements with the following property: Each operand is either (1) constant, or (2) have all their reaching definitions outside L, or (3) have exactly one reaching definition, and that definition is a statement in L marked invariant
	od
	end
	Once the “invariant” marking is completed statements can be moved out of the loop. The statements should be moved in the order in which they were marked by the previous algorithm. These statements should satisfy the following conditions:
	1. All their definition statements that were within L should have been moved outside L.
	2. The statement should dominate all exits of L
	3. the lhs of the statement is not defined elsewhere in L, and
	4. All uses in L of the lhs of the statement can only be reached by the statement.

