
1

Control Flow Graphs

From Matthew S. Hetch.

Flow Analysis of Computer Programs.

North Holland. 1977.

2

Control Flow Graphs

We will now discuss flow graphs. These are used for global optimizations
(as opposed to optimizations local to basic block).

The nodes of a flow graph are basic blocks.

There is an initial node, s, in every flow graph. The node s corresponds to
the basic block whose leader is the first statement. An artificial single
entry node can be created if there are multiple entries (add an arc from
the artifical entry to every entry node)

There is an arc from node n1 to node n2 if the basic blocks associated to
n2, B2, can immediately follow at execution time the basic block
associated with n1, B1.

That is, there should be an arc from node n1 to node n2 if either
• There is a conditional or inconditional jump from B1 to (the first

statement of) B2, or
• B2 immediately follows B1 in the original order of the program and B1

does not end in an inconditional jump.

Definition. A flow graph is a triple G=(N,A,s), where (N,A) is a (finite)
directed graph, and there is a path from the intial node, s ε N, to every
node.

Any node unreachable from s can be deleted without loss of generality.

An exit node in a flow graph has no successors.

Flow graphs are usually sparse. That is, |A| = O(|N|). In fact, if only
binary branching is allowed |A| ≤ 2|N|.

Example of Control Flow Graph

A possible translation of the source code:
x=a+1
b=x+3
if b<0 then

a=3
b=a+5

else
t=b
y=a+2

end if
for i=1 to n do

m=m+i
a(m)=b+i

end for
into low-level code is:

x=a+1
b=x+3
if b>=o then go to 3
a=3
b=a+5
go to 4

3 t=b
y=a+2

4 i=1
2 if i>n go to 7

m=m+i
a(m)=b+i
i=i+1
go to 2

7

Where the basic blocks are framed and numbered.

1

2

3

4
5

6

3

The control flow graph has the following form:

1

2 3

4

5

6 7
4

5

Relations

A relation R from set A to set B is any subset of A×B: R⊆A×B. We use
aRb to denote (a,b)∈R and aRb to denote (a,b)∉R.

R is
• reflexive iff (∀x∈N)[xRx]
• antisymmetric iff (∀x,y∈N)[xRy∧yRx→x=y]
• asymmetric iff (∀x,y∈N)[xRy→yRx]
• transitive iff (∀x,y,z∈N)[xRy∧yRz→xRz]

Dominance in Control Flow Graphs

Definition 1. A node x in a flow graph G dominates node y (could be the
same as x) iff every path in G from s to y contains x.

DOM(x) denotes the set of dominators of x.

Definition 2. x properly dominates y if x dominates y and x ≠ y.

Definition 3. x directly dominates y if x properly dominates y and any
other node z that properly dominates y also properly dominates x.

Lemma 1. DOM(s) = {s}.

Lemma 2. The dominance relation of a flow graph G is a partial
ordering. That is dominance is reflexive, antisymmetric, and transitive
relation.

Proof:

It is reflexive because for any node x, x dominates x.

It is antisymmetric. If x dominates y, then y cannot dominate x. Assume
otherwise. Then in every path from s to y, x has to appear before any
occurrence of y (because x dominates y) and y before any occurrence of x
(because y dominates x). Not possible.

It is transitive. If x dominates y and y dominates z then in every path from
s to z, y has to appear before z and x before y.

Lemma 3. The initial node s of a flow graph G dominates all nodes of G.
6

Lemma 4. The dominators of a node form a chain.

Proof. Assume that two nodes, x and y, dominate node z. Then there is a
path from s to z where both x and y appear only once (if not “cut and
paste” the path). Assume that x appears first. Then if x does not dominate
y there is a path from s to y that does not include x contradicting the
assumption that x dominates z.

Lemma 5. Every node except s has a unique direct dominator.

Proof. The dominators form a chain. The last node in the chain is the
direct dominator (which clearly always exist and is unique).

Lemma 6. A graph of dominators can be created from the nodes N of G.
There is an arc from x to y iff x directly dominates y. This graph is a tree.

Algorithm DOM: Finding Dominators in A Flow Graph

Input:A Flow Graph G = (N,A.s).

Output:The sets DOM(x) for each x ε N.

DOM(s) := {s}
forall n in N - {s} do DOM(n) := N od
while changes to any DOM(n) occur do

forall n in N - {s} do
DOM(n) := {n} ∪ ∩ DOM(p)

p a prececessor of n
od

od
7

Intervals

The notion of loop in the flow graph is introduced through the concept of
interval.

Notice that notions such as cycle and strongly connected component are
not appropriate. The former is too fine and the latter too coarse. With
cycles loops are not necessarily properly nested or disjoint; and with
strongly connected components, there is no nesting.

Definition 4. The interval with node h as header, denoted I(h), is the
subset of nodes of G obtained as follows:

I(h) := {h}
while ∃ node m such that m ∉I(h) and m ≠ s and all arcs

entering m leave nodes in I(h) do
I(h) := I(h) + {m}

od

I(h) is unique and does not depend on the order of selection in the while
loop.

Lemma 7. The subgraph generated by I(h) is a flow graph.

Lemma 8.

(a) Every arc entering a node of the interval I(h) from the outside enters
the header h.

(b) h dominates every node in I(h)

(c) every cycle in I(h) includes h
8

Proof.

(a) Consider a node m ≠ h that is also an entry node of I(h). Then m could
not have been added to I(h)

(b) Consider a node m in I(h) not dominated by h. Then m could not have
been added to I(h).

(c) Suppose there is a cycle in I(h) that does not include h. Then no node
in the cycle could have been added to I(h), because before any such node
could be added the preceeding node in the cycle would have to be added.

Algorithm INT: Partitioning a Flow Graph Into Intervals

Input:
1.A Flow Graph Represented by successor lists.

Output:

A set L of disjoint intervals whose union is N.

Intermediate:

A set of potential header nodes, H.
9

10

H := {s}
L:= ∅
while H ≠ ∅ do

h from H
Compute I(h)
L := L ∪ {I(h)}
H := H ∪ { nodes with predecessors in I(h) but that are

not in H or in one of the intervals in L}
od

Theorem 1. The preceeding algorithm partitions the set of nodes of G.

Proof. If a node is added to an interval it is not added again. Also, since
all nodes are accessible from s, every node is added to H or to one
interval.

Reducibility

Definition 5. If G is a flow graph, then the derived flow graph of G, I(G)
is:

(a) The nodes of I(G) are the intervals of G

(b) The initial node of I(G) is I(s)

(c) There is an arc from node I(h) to I(k), k ≠ h, in I(G) if there is any arc
from a node in I(h) to node k in G.

Definition 6. The sequence G=G0, G1, ..., Gk is called the derived
sequence for G iff Gi+1 = I(Gi) for 0 ≤ i < k, Gk-1≠ Gk, I(Gk) = Gk. Gk is
called the limit flow graph of G.

Definition 7. A flow graph is reducible iff its limit flow graph is a single
node with no arc. Otherwise it is called irreducible.

Example of irreducible fow graph:
11

Definition 8. Interval order for a reducible flow graph is defined
recursively as follows:
1. If I(G) is a single node, then an interval order is an order in which

nodes may be added to the lone interval G.
2. If G is reducible and I(G) is not a single node, then an interval order is

formed by:
(a) Find an interval order for I(G)
(b) In the order of (a) substitute for each node of I(G) the nodes of G
that make up the corresponding interval, themselves in interval order.
12

13

Lemma 9. Interval order topsorts the dominance relation of a reducible
flow graph G.

Proof Let G=G0, G1, ...,Gk be the derived sequence of G.

We show by induction that if a node x properly dominates y, then x
precedes y in any interval order of the nodes of Gi .

For i=k it is vacuosly true because there is only one node in Gk.

Assume true for Gi+1 and consider two nodes x and y in Gi.

If x and y are in the same interval of Gi, then clearly x precedes y in any
interval order (y will not be added to the interval until x has been added).

If x and y are in different intervals of Gi, then they will be in different
nodes, say X and Y, of Gi+1. X has to dominate Y otherwise there would
be in Gi a path to y that does not include x (contradicting the assumtion
that x dominates y). By inductive hypothesis X precedes Y in any interval
order of Gi+1.

14

Depth-First Spanning Trees

Definition 9. A depth-first spanning tree of a flow graph G is an ordered
spanning tree grown by the DFS algorithm.

Algorithm DFS: Depth First Search computation of spanning tree

Input: A Flow Graph Represented by successor lists. Nodes are numbered
from 1 to n.

Output:A Depth First Spanning tree, T, and a numbering of the nodes
indicating the reverse of the order in which each node was visited by the
algorithm.

DFS(x):
Mark x “visited”
while SUC(x) ≠ ∅ do

y from SUC(x) /* SUC(x) is an ordered list
(left-to-right) of nodes */

if y is marked “unvisited” then
add (x,y) to T
DFS(y)

fi
od
order(x) = i
i=i-1

/**** Main Program Follows ****/
T=∅
mark all nodes of G as “unvisited”
i=number of nodes of G
DFS(s)

15

Definition 10. The arcs in G that are not in its depth first spanning tree
fall into three categories:

(a) Arcs that go from ancestors to descendants are called forward arcs
(advancing arcs in AHU).

(b) From descendants to ancestors or from a node to itself are called back
arcs (retreating arcs in AHU) .

(c) The other arcs are called cross arcs.

Observations:
1.Arc (x,y) is a back arc iff order(x) ≥ order(y).
2.Cross arcs go from right to left
3.Every cycle of G contains at least one back arc.

Proof of Observation 1.

Want to prove that x → y is a back edge ⇔ order(x) ≥ order(y)

⇒ x is a desdendant of y is the DFST. Therefore DFS(x) terminates
before DFS(y) and, as a result, order(x) ≥ order(y)

⇐order(x) ≥ order(y) then we have to consequences:

1. either x=y or DFS(x) terminates before DFS(y).

2. DFS(y) must have begun before DFS(x), otherwise,
the arc x → y would have been included in the DFST.

DFS(x) is active during a subinterval of the time that DFS(y) is active.
Therefore, y is an ancestor of x.

16

Graph Transformations T1 and T2

We now introduce two graph transformations T1 and T2. Reducibility by
successive application of these two transformations is equivalent to
reducibility by intervals.

The transformation T1 removes self arcs (i.e. arcs of the form (x,x)). The
transformation T2 replaces two nodes x and y connected by an arc, and x
only predecessor of y, with a single node z. Predecessors of x become
predecessors of z and successors of x or y become successors of z. (x
comsumes y).

We denote the application of one of these transformations on a graph G
as either G ⇒Ti G’ with i = 1, 2 or G ⇒G’.

Theorem 2.

⇒ can only be applied a finite number of times.

⇒° is a function. That is P ⇒° Q and P ⇒° R implies Q = R.

Note: ⇒° is the completion of ⇒. That is, P ⇒° Q means that there is a
sequence of graphs G1, G2, ..., Gk such that P = G1⇒ G2 ⇒ ... ⇒ Gk = Q,
and there is no R ≠ Qsuch that Q ⇒ R.

Lemma 10. If G is a flow graph, then G ⇒* I(G).

(⇒* is the reflexive and transitive clousure of ⇒. That is P ⇒* Q means
that either P=Q or there are G1, G2, ..., Gk such that P = G1⇒ G2 ⇒ ... ⇒
Gk = Q)

Proof It is sufficient to show that each interval of G can be transformed
using the T1 and T2 transformations.

For each interval
1.Delete self loops from header using T1
2.Apply T2 in the order in which the nodes are included in the interval. If

a self loop is generated, remove it applying T1.

Corollary 1. If a flow graph G is reducible, then G ⇒* 0 (the trivial
graph)

Proof Apply Lemma 10 iteratively.
17

Theorem 3. If G ⇒° 0, then G is reducible.

Proof Assume G ⇒° 0, but I°(G) = G’ ≠ 0.

Clearly G ⇒* G’ by Lemma 10.

Also, G’ ⇒° 0. The reason is that if G’ ⇒° G” then G ⇒° G” Now,
because ⇒° is a function and G⇒° 0, we have G” = 0.

We assume that I(G’) = G’. But since G’ ⇒° 0, either T1 or T2 can be
applied to G’. If T1 can be applied is because there is a self loop that is
also removed by the I transformation. Therefore I(G’) ≠ G’.

If T2 can be applied to (x,y), then y should be in I(x) and therefore I(G’)
≠ G’.

The (*) graph:

The lines represent disjoint paths, and nodes s and a could be the same.

s

a

cb
18

Lemma 11. The absence of a subgraph (*) in a flow graph is preserved
by the application of T1 and T2.

Proof T1 and T2 do not create new paths or make two paths disjoint.
Therefore, their application cannot create a (*) subgraph.

Theorem 4. If a flow graph is irreducible then it contains a (*) subgraph.

Proof By induction

BASIS: (n=3) For three nodes the graph is irreducible

INDUCTIVE STEP: (n>3) Now assume that the theorem is true for a
graph with n-1 or fewer nodes. Consider a graph G with n nodes. By the
previous Lemma we may assume that neither T1 nor T2 is applicable to
G (otherwise transform G⇒°G’ and if G’can be shown to include (*),
then we will also have shown that G has (*)).
19

Let T be the the Depth First Spanning Tree of G.

Let y be the rightmost child of the root of T. At least two arcs enter y
(otherwise T2 could be applied). One of them is a back arc (x,y) [cannot
be forward arc because the only predecessor is the root. Cannot be a cross
arc because they run from right to left]

Two cases
1.y does not dominate x. Then there is a path from s to x

Whether w = x or not we have the subgraph (*).

forward arc

back arc

s

y

w

x

20

2.y dominates x. Then we have the ireducible flow graph in the dotted

square which includes all nodes (other than s) from where x can be
reached (recall that T1 and T2 cannot be applied to the original graph)
with n-1 or fewer nodes. By induction it contains a (*) subgraph.

Corollary If G is a nontrivial limit flow graph, then it has a (*) subgraph
in which s=a, and the paths from a to b and from a to c are each a single
arc.

s

y

x

21

22

Question:

Is case 1 possible? In other words, wouldn’t (s,w) be a DFST arc?

Answer:

Not necessarily:

Here, w is the rightmost child of s in G, but not a child of s in the DFST.

s

y

w

x

t DFS tree arc

Theorem 5. If a flow graph contains a (*) subgraph then it is irreducible

Proof by induction.

BASIS (n=3): Same as Theorem 4.

INDUCTIVE STEP: Assume that hypothesis is true for n-1 nodes.
Assume hypthesis false for n nodes. That is there is a graph G with n
nodes that contains a (*) subgraph and is reducible.

T1 and T2 can be applied to G to get the trivial graph. The (*) subgraph
will not be removed when T2 is applied. But now we have a n-1 node
subgraph that is reducible and contains a (*) subgraph. A contradiction.
23

24

Regions and Other Concepts

Definition 11. Let G=(N,A,s) be a flow graph, let N1⊆N, let A1⊆A, and
let h be in N1. R=(N1,A1,h) is called a region of G with header h iff in
every path (x1, ..., xk), where x1=s and xk is in N1, there is some i ≤k such
that

(a) xi = h

(b) xi+1, ..., xk are in N1

(c) (xi,xi+1), (xi+1,xi+2), ..., (xk-1, xk) are in A1.

That is access to every node in the region is through the header only.

Lemma 12. A region of the flow graph is a subflowgraph

Lemma 13. The header of a region dominates all nodes in the region.

Definition 12. We say that each node and arc in the original flow graph
represents itself.

If T1 is applied to node w with arc (w,w), then the resulting node
represents what node w and arc (w,w) represented.

If T2 is applied to x and y with arc (x,y) eliminated, then the resulting
node z represents what x, y and (x,y) represented. In addition, if two arcs
(x,u) and (y,u) are replaced by a single arc (z,u), the (z,u) represents what
(x,u) and (y,u) represented.

25

Example:

Lemma 14. In a flow graph, if region R results from region R’
consuming region R”, then the header h of R’ dominates all nodes in R”.

1

2

3 3

4

1

3

5

6
T1 T2 T2

4 represents {2,b} e represents {c,d}

6 represents
{1,2,3,a,b,c,d}

a

bc

d e

5 represents {1,2,a,b}

26

Theorem 6. As we reduce a flow graph G by T1 and T2, at all times the
following conditions are true:
1.A node represents a region of G.
2.An edge from x to y represents a set of edges. Each such edge is from

some node in the region represented by x to the header of the region
represented by y.

3.Each node and edge of G is represented by exactly one node or edge of
the current graph.

Proof The theorem holds trivially for G itself. Every node is a region by
itself, and every edge represents only itself.

Whenever T1 is applied, we add a self arc to a node representing a
region. Adding the self arc does not change the fact that the node is a
region.

Assume now that T2 is applied to consume node y by node x. Let x and y
represent regions X and Y respectively. Also, let A be the set of arcs
represented by (x,y). We claim that X, Y and A together form a region
whose header is the header of X. All we need is to prove that the header
of X dominates every node in Y. But this is true because T2 was applied
and therefore all arcs entering Y come from X.

27

Definition 13. A parse π of a reducible flow graph G=(N,A,s) is a
sequence of objects of the form (T1,u,v,S) or (T2,u,v,w,S), where u, v and
w are nodes and S is a set of arcs. We define the parse of a reducible flow
graph recursively as follows:
1.The trivial flow graph has only the empty sequence as its parse.
2. If G’ (which may not be the origianl flow graph in a seqence of

reductions) is reduced to G” by an application of T1 to node u, and the
resulting node is named v in G”, then (T1,u,v,S) followed by a parse of
G” is a parse of G’, where S is the set of arcs represented by the arc
(u,u) eliminated from G’.

3. If G’ is reduced to G” by an application of T2 to nodes u and v (with u
consuming v), and the resulting node is called w, then (T2,u,v,w,S)
followed by a parse of G” is a parse of G’, where S is the set of arcs
represented by the arc (u,v) in G’.

4. In both (2) and (3) above, “representation in G’ carries over to G”.
That is, whatever an object represents in G’ is also represented by that
object in G”, except for those changes in representation caused by the
particular transformation (T1 or T2) currently being applied.

Example: The parse of the previous flow graph is:

(T1,2,4,{b}) (T2,1,4,5,{a}) (T2,5,3,6,{c,d})

28

Definition 14. Let G=(N,A,s) be a reducible flow graph and let π be a
parse of G. We say that an arc in A is a back arc with respect to π if it
appears in set S of an object (T1,u,v,S) of π and a forward arc (not to be
confused with the forward arcs of a DFST. This is the forward arc of
Definition 7’) with respect to π otherwise. Let B(G) be the set of arcs in A
that are back arcs in every parse of G.

Definition 15. A DAG of a flow graph G=(N,A,s) is an acyclic flow
graph D=(N,A’,s) such that A’ is a subset of A and for any arc e in A-A’,
(N,A’∪{e},s) is not a DAG. That is, D is a maximal acyclic subflowgraph.

Theorem 7. Let G=(N,A,s) be a RFG and let π be a parse of G. Arc (x,y)
is a back arc iff y dominates x.

Theorem 8. A flow graph is reducible iff its DAG is unique.

Corollary The DAG of a reducible flowgraph is any DFST of G plus its
forward and cross arcs. Since this DAG is unique, the arcs of the DFST,
its cross arcs and forward arcs together must be the same as the forward
arcs of a parse of G.

Corollary. The back arcs of a parse of a reducible flow graph are exactly
the back arcs of any DFST for G.

Corollary = Definition 7’. A flow graph is reducible iff we can partition
the edges into two disjoint groups, often called the forward edges (not to
be confused with the forward edges in a DFST) and the back edges, with
the following two properties:
1.The forward edges form an acyclic graph in which every node can be

reached from the initial node of G.
2.The back edges consist only of edges whose heads dominate their tails.

29

Node Splitting

How can an irreducible flow graph be transformed to an equivalent
reducible flow graph?

First, let us assume that the nodes of a flow graph have (not necessarily
distinct) labels. If P=(x1, ..., xk) is a path in a flow graph, then we define
labels(P) to be the string of labels of these nodes: (label(x1),..., label(xk)).

We say that two flow graphs G1 and G2 are equivalent iff, for each path P
in G1, there is a path Q in G2 such that labels(P)=labels(Q) and
conversely.

Let G=(N,A,s) be a flow graph. Let x (x≠s) be a node with no self loop,
predecessors w1, ..., wp (p≥2), and successors y1, ..., yt (t≥0). We define G
split x to be the flow graph resulting from the followin gprocedure:
1.Delete the arcs from the wis to x and those from x to the yis.
2.Add p copies of x (x1, ..., xp) with label(xi) = label(x). Add arcs (wi,xi)

and arcs from every xi to all yjs.

Theorem 9. Let S denote the splitting of a node. Any flow graph can be
transformed into the trivial flow graph by a transformation represented
by the regular expression T°(ST°)*. That is, first apply T°, then apply S
followed by T° zero or more times.

An Algorithm for Structured Flow Graphs

Objective: To generate “structured” code from an arbitrary flow graph.
The source program may include gotos and the flow graph may be
irreducible.

Restriction: Code duplication is not allowed.

Target Language:
1.Straight-line code
2.stop
3.go to L
4.if (p) then {S1} else {S1}

5.repeat {S}
6.break{i}
7.next{i}
30

Some requirements:
1. repeat statements must reflect iterations in the program.

An example of undesirable outcome:
repeat

{ s=1
 stop
}

Another undesirable result:
repeat

{if (p) then
{ <code segment>

stop
}
else
{ x=f(x)
}

}
A better translation of this last segment:

repeat
{ if (p) then {break(1)}

else {x=f(x) }
}

<code segment>
stop
31

2.Each if then else should reflect branching and merging of flow
of control in the program.
- A go to statement should not jump into the middle of a then or

else clause.
- A statement should appear ithin a clause if it can be reached only

from the clause and is within the innermost repeat containing the
clause.
32

33

Steps of the algorithm to structure a flow graph

1.Build DFST.
Generate a list L ordered by DFST number.
Back arcs will go “up” in L and forward and cross arcs will go “down”

2. Insert repeats at the head of back arcs.
3.Generate code without gotos, breaks, or nexts.
4. Insert gotos (all will go “down” because gotos will only be

generated for forward and cross arcs), breaks and nexts.

34

HEAD(), FOLLOW(), and REACH()

A repeat node p is the head of all loops and cycles which include p but
no nodes preceding p in the list L.

Let HEAD(q) be the repeat node immediately enclosing q.

If there are no enclosing loops, HEAD(q) is undefined. If HEAD(q) and
HEAD(p) are both undefined then HEAD(q)=HEAD(p).

FOLLOW(p):
• p is if:

{q | q is entered by two or more forward or cross arcs, p=IDOM(q), and
HEAD(p)=HEAD(q)}

• p is repeat: {q | IDOM(q) is nested within p and
HEAD(q)=HEAD(p)}

• p is slc: { q | p=IDOM(q) and HEAD(q)=HEAD(p)}

Where IDOM(q) is the immediate dominator of q.

REACH(p):

Set of all nodes q entered by arcs from p or from nodes correspoding to to
statements nested within p. Here nested has the intuitive meaning for
repeat and statements.

35

Intermediate Representations

• IR design is an art not a science.
• Most important consideration is how appropriate is a representation for

certain classes of analyses and optimizations.
For example, dependence analysis requires knowledge of subscript
expressions. Such information is not easily obtained from machine-
language (low level) representations.
Also, register allocation requires code that includes load and stores.
Thus, representation using a stack machine are not appropriate.

• Three levels discussed in the book:
High-Level IL: Usually in teh form of an AST.
Medium-Level IL: Machine-language like, but machine independent.
Low-Level IL: Very close to a particular machine although not
identical.

• Alternative

	Example of Control Flow Graph
	A possible translation of the source code:
	x=a+1
	b=x+3
	if b<0 then
	a=3
	b=a+5
	else
	t=b
	y=a+2
	end if
	for i=1 to n do
	m=m+i
	a(m)=b+i
	end for
	into low-level code is:
	x=a+1
	b=x+3
	if b>=o then go to 3
	a=3
	b=a+5
	go to 4
	3 t=b
	y=a+2
	4 i=1
	2 if i>n go to 7
	m=m+i
	a(m)=b+i
	i=i+1
	go to 2
	7
	Where the basic blocks are framed and numbered.
	The control flow graph has the following form:

	Relations
	A relation R from set A to set B is any subset of A¥B: RÕA¥B. We use aRb to denote (a,b)ŒR and aRb to denote (a,b)œR.
	R is
	. reflexive iff ("xŒN)[xRx]
	. antisymmetric iff ("x,yŒN)[xRyŸyRxÆx=y]
	. asymmetric iff ("x,yŒN)[xRyÆyRx]
	. transitive iff ("x,y,zŒN)[xRyŸyRzÆxRz]

	An Algorithm for Structured Flow Graphs
	Objective: To generate “structured” code from an arbitrary flow graph. The source program may include gotos and the flow graph may be irreducible.
	Restriction: Code duplication is not allowed.
	Target Language:
	1. Straight-line code
	2. stop
	3. go to L
	4. if (p) then {S1} else {S1}
	5. repeat {S}
	6. break{i}
	7. next{i}
	Some requirements:

	1. repeat statements must reflect iterations in the program.
	An example of undesirable outcome:
	repeat
	{ s=1
	stop
	}
	Another undesirable result:

	repeat
	{if (p) then
	{ <code segment>
	stop
	}
	else
	{ x=f(x)
	}
	}
	A better translation of this last segment:

	repeat
	{ if (p) then {break(1)}
	else {x=f(x) }
	}
	<code segment>
	stop

	2. Each if then else should reflect branching and merging of flow of control in the program.
	- A go to statement should not jump into the middle of a then or else clause.
	- A statement should appear ithin a clause if it can be reached only from the clause and is within the innermost repeat containing the clause.

	Steps of the algorithm to structure a flow graph
	1. Build DFST.
	Generate a list L ordered by DFST number.
	Back arcs will go “up” in L and forward and cross arcs will go “down”

	2. Insert repeats at the head of back arcs.
	3. Generate code without gotos, breaks, or nexts.
	4. Insert gotos (all will go “down” because gotos will only be generated for forward and cross arcs), breaks and nexts.

	HEAD(), FOLLOW(), and REACH()
	A repeat node p is the head of all loops and cycles which include p but no nodes preceding p in the list L.
	Let HEAD(q) be the repeat node immediately enclosing q.
	If there are no enclosing loops, HEAD(q) is undefined. If HEAD(q) and HEAD(p) are both undefined then HEAD(q)=HEAD(p).
	FOLLOW(p):
	. p is if:
	{q | q is entered by two or more forward or cross arcs, p=IDOM(q), and HEAD(p)=HEAD(q)}
	. p is repeat: {q | IDOM(q) is nested within p and HEAD(q)=HEAD(p)}
	. p is slc: { q | p=IDOM(q) and HEAD(q)=HEAD(p)}

	Where IDOM(q) is the immediate dominator of q.
	REACH(p):
	Set of all nodes q entered by arcs from p or from nodes correspoding to to statements nested within p. Here nested has the intuitive meaning for repeat and statements.

	Intermediate Representations
	. IR design is an art not a science.
	. Most important consideration is how appropriate is a representation for certain classes of analyses and optimizations.
	For example, dependence analysis requires knowledge of subscript expressions. Such information is not easily obtained from machine- language (low level) representations.
	Also, register allocation requires code that includes load and stores. Thus, representation using a stack machine are not appropriate.
	. Three levels discussed in the book:
	High-Level IL: Usually in teh form of an AST.
	Medium-Level IL: Machine-language like, but machine independent.
	Low-Level IL: Very close to a particular machine although not identical.
	. Alternative

	Control Flow Graphs
	We will now discuss flow graphs. These are used for global optimizations (as opposed to optimizations local to basic block).
	The nodes of a flow graph are basic blocks.
	There is an initial node, s, in every flow graph. The node s corresponds to the basic block whose leader is the first statement....
	There is an arc from node n1 to node n2 if the basic blocks associated to n2, B2, can immediately follow at execution time the basic block associated with n1, B1.
	That is, there should be an arc from node n1 to node n2 if either
	. There is a conditional or inconditional jump from B1 to (the first statement of) B2, or
	. B2 immediately follows B1 in the original order of the program and B1 does not end in an inconditional jump.

	Definition. A flow graph is a triple G=(N,A,s), where (N,A) is a (finite) directed graph, and there is a path from the intial node, s e N, to every node.
	Any node unreachable from s can be deleted without loss of generality.
	An exit node in a flow graph has no successors.
	Flow graphs are usually sparse. That is, |A| = O(|N|). In fact, if only binary branching is allowed |A| £ 2|N|.

	Dominance in Control Flow Graphs
	Definition 1. A node x in a flow graph G dominates node y (could be the same as x) iff every path in G from s to y contains x.
	DOM(x) denotes the set of dominators of x.
	Definition 2. x properly dominates y if x dominates y and x ¹ y.
	Definition 3. x directly dominates y if x properly dominates y and any other node z that properly dominates y also properly dominates x.
	Lemma 1. DOM(s) = {s}.
	Lemma 2. The dominance relation of a flow graph G is a partial ordering. That is dominance is reflexive, antisymmetric, and transitive relation.
	Proof:
	It is reflexive because for any node x, x dominates x.
	It is antisymmetric. If x dominates y, then y cannot dominate x. Assume otherwise. Then in every path from s to y, x has to appear before any occurrence of y (because x dominates y) and y before any occurrence of x (because y dominates x). Not possible.
	It is transitive. If x dominates y and y dominates z then in every path from s to z, y has to appear before z and x before y.
	Lemma 3. The initial node s of a flow graph G dominates all nodes of G.
	Lemma 4. The dominators of a node form a chain.
	Proof. Assume that two nodes, x and y, dominate node z. Then there is a path from s to z where both x and y appear only once (if...
	Lemma 5. Every node except s has a unique direct dominator.
	Proof. The dominators form a chain. The last node in the chain is the direct dominator (which clearly always exist and is unique).
	Lemma 6. A graph of dominators can be created from the nodes N of G. There is an arc from x to y iff x directly dominates y. This graph is a tree.
	Algorithm DOM: Finding Dominators in A Flow Graph
	Input:A Flow Graph G = (N,A.s).
	Output:The sets DOM(x) for each x e N.
	DOM(s) := {s}
	forall n in N - {s} do DOM(n) := N od
	while changes to any DOM(n) occur do
	forall n in N - {s} do
	DOM(n) := {n} » « DOM(p)
	p a prececessor of n
	od
	od

	Control Flow Graphs
	From Matthew S. Hetch.
	Flow Analysis of Computer Programs.
	North Holland. 1977.

	Intervals
	The notion of loop in the flow graph is introduced through the concept of interval.
	Notice that notions such as cycle and strongly connected component are not appropriate. The former is too fine and the latter to...
	Definition 4. The interval with node h as header, denoted I(h), is the subset of nodes of G obtained as follows:
	I(h) := {h}
	while $ node m such that m œI(h) and m ¹ s and all arcs entering m leave nodes in I(h) do
	I(h) := I(h) + {m}
	od
	I(h) is unique and does not depend on the order of selection in the while loop.
	Lemma 7. The subgraph generated by I(h) is a flow graph.
	Lemma 8.
	(a) Every arc entering a node of the interval I(h) from the outside enters the header h.
	(b) h dominates every node in I(h)
	(c) every cycle in I(h) includes h
	Proof.
	(a) Consider a node m ¹ h that is also an entry node of I(h). Then m could not have been added to I(h)
	(b) Consider a node m in I(h) not dominated by h. Then m could not have been added to I(h).
	(c) Suppose there is a cycle in I(h) that does not include h. Then no node in the cycle could have been added to I(h), because before any such node could be added the preceeding node in the cycle would have to be added.
	Algorithm INT: Partitioning a Flow Graph Into Intervals
	Input:
	1. A Flow Graph Represented by successor lists.
	Output:
	A set L of disjoint intervals whose union is N.
	Intermediate:
	A set of potential header nodes, H.
	H := {s}
	L:= Æ
	while H ¹ Æ do
	h from H
	Compute I(h)
	L := L » {I(h)}
	H := H » { nodes with predecessors in I(h) but that are not in H or in one of the intervals in L}
	od
	Theorem 1. The preceeding algorithm partitions the set of nodes of G.
	Proof. If a node is added to an interval it is not added again. Also, since all nodes are accessible from s, every node is added to H or to one interval.

	Reducibility
	Definition 5. If G is a flow graph, then the derived flow graph of G, I(G) is:
	(a) The nodes of I(G) are the intervals of G
	(b) The initial node of I(G) is I(s)
	(c) There is an arc from node I(h) to I(k), k ¹ h, in I(G) if there is any arc from a node in I(h) to node k in G.
	Definition 6. The sequence G=G0, G1, ..., Gk is called the derived sequence for G iff Gi+1 = I(Gi) for 0 £ i < k, Gk-1¹ Gk, I(Gk) = Gk. Gk is called the limit flow graph of G.
	Definition 7. A flow graph is reducible iff its limit flow graph is a single node with no arc. Otherwise it is called irreducible.
	Example of irreducible fow graph:
	Definition 8. Interval order for a reducible flow graph is defined recursively as follows:
	1. If I(G) is a single node, then an interval order is an order in which nodes may be added to the lone interval G.
	2. If G is reducible and I(G) is not a single node, then an interval order is formed by:
	(a) Find an interval order for I(G)
	(b) In the order of (a) substitute for each node of I(G) the nodes of G that make up the corresponding interval, themselves in interval order.
	Lemma 9. Interval order topsorts the dominance relation of a reducible flow graph G.
	Proof Let G=G0, G1, ...,Gk be the derived sequence of G.
	We show by induction that if a node x properly dominates y, then x precedes y in any interval order of the nodes of Gi .
	For i=k it is vacuosly true because there is only one node in Gk.
	Assume true for Gi+1 and consider two nodes x and y in Gi.
	If x and y are in the same interval of Gi, then clearly x precedes y in any interval order (y will not be added to the interval until x has been added).
	If x and y are in different intervals of Gi, then they will be in different nodes, say X and Y, of Gi+1. X has to dominate Y oth...

	Depth-First Spanning Trees
	Definition 9. A depth-first spanning tree of a flow graph G is an ordered spanning tree grown by the DFS algorithm.
	Algorithm DFS: Depth First Search computation of spanning tree
	Input: A Flow Graph Represented by successor lists. Nodes are numbered from 1 to n.
	Output:A Depth First Spanning tree, T, and a numbering of the nodes indicating the reverse of the order in which each node was visited by the algorithm.
	DFS(x):
	Mark x “visited”
	while SUC(x) ¹ Æ do
	y from SUC(x) /* SUC(x) is an ordered list
	(left-to-right) of nodes */
	if y is marked “unvisited” then
	add (x,y) to T
	DFS(y)
	fi
	od
	order(x) = i
	i=i-1
	/**** Main Program Follows ****/
	T=Æ
	mark all nodes of G as “unvisited”
	i=number of nodes of G
	DFS(s)
	Definition 10. The arcs in G that are not in its depth first spanning tree fall into three categories:
	(a) Arcs that go from ancestors to descendants are called forward arcs (advancing arcs in AHU).
	(b) From descendants to ancestors or from a node to itself are called back arcs (retreating arcs in AHU) .
	(c) The other arcs are called cross arcs.
	Observations:
	1. Arc (x,y) is a back arc iff order(x) ³ order(y).
	2. Cross arcs go from right to left
	3. Every cycle of G contains at least one back arc.
	Proof of Observation 1.
	Want to prove that x Æ y is a back edge ¤ order(x) ³ order(y)
	ﬁ x is a desdendant of y is the DFST. Therefore DFS(x) terminates before DFS(y) and, as a result, order(x) ³ order(y)
	‹order(x) ³ order(y) then we have to consequences:
	1. either x=y or DFS(x) terminates before DFS(y).
	2. DFS(y) must have begun before DFS(x), otherwise, the arc x Æ y would have been included in the DFST.
	DFS(x) is active during a subinterval of the time that DFS(y) is active. Therefore, y is an ancestor of x.

	Graph Transformations T1 and T2
	We now introduce two graph transformations T1 and T2. Reducibility by successive application of these two transformations is equivalent to reducibility by intervals.
	The transformation T1 removes self arcs (i.e. arcs of the form (x,x)). The transformation T2 replaces two nodes x and y connecte...
	We denote the application of one of these transformations on a graph G as either G ﬁTi G’ with i = 1, 2 or G ﬁG’.
	Theorem 2.
	ﬁ can only be applied a finite number of times.
	ﬁ° is a function. That is P ﬁ° Q and P ﬁ° R implies Q = R.
	Note: ﬁ° is the completion of ﬁ. That is, P ﬁ° Q means that there is a sequence of graphs G1, G2, ..., Gk such that P = G1ﬁ G2 ﬁ ... ﬁ Gk = Q, and there is no R ¹ Qsuch that Q ﬁ R.
	Lemma 10. If G is a flow graph, then G ﬁ* I(G).
	(ﬁ* is the reflexive and transitive clousure of ﬁ. That is P ﬁ* Q means that either P=Q or there are G1, G2, ..., Gk such that P = G1ﬁ G2 ﬁ ... ﬁ Gk = Q)
	Proof It is sufficient to show that each interval of G can be transformed using the T1 and T2 transformations.
	For each interval
	1. Delete self loops from header using T1
	2. Apply T2 in the order in which the nodes are included in the interval. If a self loop is generated, remove it applying T1.
	Corollary 1. If a flow graph G is reducible, then G ﬁ* 0 (the trivial graph)
	Proof Apply Lemma 10 iteratively.
	Theorem 3. If G ﬁ° 0, then G is reducible.
	Proof Assume G ﬁ° 0, but I°(G) = G’ ¹ 0.
	Clearly G ﬁ* G’ by Lemma 10.
	Also, G’ ﬁ° 0. The reason is that if G’ ﬁ° G” then G ﬁ° G” Now, because ﬁ° is a function and Gﬁ° 0, we have G” = 0.
	We assume that I(G’) = G’. But since G’ ﬁ° 0, either T1 or T2 can be applied to G’. If T1 can be applied is because there is a self loop that is also removed by the I transformation. Therefore I(G’) ¹ G’.
	If T2 can be applied to (x,y), then y should be in I(x) and therefore I(G’) ¹ G’.
	The (*) graph:
	The lines represent disjoint paths, and nodes s and a could be the same.
	Lemma 11. The absence of a subgraph (*) in a flow graph is preserved by the application of T1 and T2.
	Proof T1 and T2 do not create new paths or make two paths disjoint. Therefore, their application cannot create a (*) subgraph.
	Theorem 4. If a flow graph is irreducible then it contains a (*) subgraph.
	Proof By induction
	BASIS: (n=3) For three nodes the graph is irreducible
	INDUCTIVE STEP: (n>3) Now assume that the theorem is true for a graph with n-1 or fewer nodes. Consider a graph G with n nodes. ...
	Let T be the the Depth First Spanning Tree of G.
	Let y be the rightmost child of the root of T. At least two arcs enter y (otherwise T2 could be applied). One of them is a back ...
	Two cases

	1. y does not dominate x. Then there is a path from s to x
	Whether w = x or not we have the subgraph (*).

	2. y dominates x. Then we have the ireducible flow graph in the dotted square which includes all nodes (other than s) from where...
	Corollary If G is a nontrivial limit flow graph, then it has a (*) subgraph in which s=a, and the paths from a to b and from a to c are each a single arc.
	Theorem 5. If a flow graph contains a (*) subgraph then it is irreducible
	Proof by induction.
	BASIS (n=3): Same as Theorem 4.
	INDUCTIVE STEP: Assume that hypothesis is true for n-1 nodes. Assume hypthesis false for n nodes. That is there is a graph G with n nodes that contains a (*) subgraph and is reducible.
	T1 and T2 can be applied to G to get the trivial graph. The (*) subgraph will not be removed when T2 is applied. But now we have a n-1 node subgraph that is reducible and contains a (*) subgraph. A contradiction.

	Node Splitting
	How can an irreducible flow graph be transformed to an equivalent reducible flow graph?
	First, let us assume that the nodes of a flow graph have (not necessarily distinct) labels. If P=(x1, ..., xk) is a path in a flow graph, then we define labels(P) to be the string of labels of these nodes: (label(x1),..., label(xk)).
	We say that two flow graphs G1 and G2 are equivalent iff, for each path P in G1, there is a path Q in G2 such that labels(P)=labels(Q) and conversely.
	Let G=(N,A,s) be a flow graph. Let x (x¹s) be a node with no self loop, predecessors w1, ..., wp (p³2), and successors y1, ..., yt (t³0). We define G split x to be the flow graph resulting from the followin gprocedure:
	1. Delete the arcs from the wis to x and those from x to the yis.
	2. Add p copies of x (x1, ..., xp) with label(xi) = label(x). Add arcs (wi,xi) and arcs from every xi to all yjs.
	Theorem 9. Let S denote the splitting of a node. Any flow graph can be transformed into the trivial flow graph by a transformation represented by the regular expression T°(ST°)*. That is, first apply T°, then apply S followed by T° zero or more times.

	Regions and Other Concepts
	Definition 11. Let G=(N,A,s) be a flow graph, let N1ÕN, let A1ÕA, and let h be in N1. R=(N1,A1,h) is called a region of G with header h iff in every path (x1, ..., xk), where x1=s and xk is in N1, there is some i £k such that
	(a) xi = h
	(b) xi+1, ..., xk are in N1
	(c) (xi,xi+1), (xi+1,xi+2), ..., (xk-1, xk) are in A1.
	That is access to every node in the region is through the header only.
	Lemma 12. A region of the flow graph is a subflowgraph
	Lemma 13. The header of a region dominates all nodes in the region.
	Definition 12. We say that each node and arc in the original flow graph represents itself.
	If T1 is applied to node w with arc (w,w), then the resulting node represents what node w and arc (w,w) represented.
	If T2 is applied to x and y with arc (x,y) eliminated, then the resulting node z represents what x, y and (x,y) represented. In ...
	Theorem 6. As we reduce a flow graph G by T1 and T2, at all times the following conditions are true:
	1. A node represents a region of G.
	2. An edge from x to y represents a set of edges. Each such edge is from some node in the region represented by x to the header of the region represented by y.
	3. Each node and edge of G is represented by exactly one node or edge of the current graph.
	Proof The theorem holds trivially for G itself. Every node is a region by itself, and every edge represents only itself.
	Whenever T1 is applied, we add a self arc to a node representing a region. Adding the self arc does not change the fact that the node is a region.
	Assume now that T2 is applied to consume node y by node x. Let x and y represent regions X and Y respectively. Also, let A be th...
	Definition 13. A parse p of a reducible flow graph G=(N,A,s) is a sequence of objects of the form (T1,u,v,S) or (T2,u,v,w,S), where u, v and w are nodes and S is a set of arcs. We define the parse of a reducible flow graph recursively as follows:

	1. The trivial flow graph has only the empty sequence as its parse.
	2. If G’ (which may not be the origianl flow graph in a seqence of reductions) is reduced to G” by an application of T1 to node ...
	3. If G’ is reduced to G” by an application of T2 to nodes u and v (with u consuming v), and the resulting node is called w, then (T2,u,v,w,S) followed by a parse of G” is a parse of G’, where S is the set of arcs represented by the arc (u,v) in G’.
	4. In both (2) and (3) above, “representation in G’ carries over to G”. That is, whatever an object represents in G’ is also rep...
	Example: The parse of the previous flow graph is:
	(T1,2,4,{b}) (T2,1,4,5,{a}) (T2,5,3,6,{c,d})
	Definition 14. Let G=(N,A,s) be a reducible flow graph and let p be a parse of G. We say that an arc in A is a back arc with res...
	Definition 15. A DAG of a flow graph G=(N,A,s) is an acyclic flow graph D=(N,A’,s) such that A’ is a subset of A and for any arc e in A-A’, (N,A’»{e},s) is not a DAG. That is, D is a maximal acyclic subflowgraph.
	Theorem 7. Let G=(N,A,s) be a RFG and let p be a parse of G. Arc (x,y) is a back arc iff y dominates x.
	Theorem 8. A flow graph is reducible iff its DAG is unique.
	Corollary The DAG of a reducible flowgraph is any DFST of G plus its forward and cross arcs. Since this DAG is unique, the arcs of the DFST, its cross arcs and forward arcs together must be the same as the forward arcs of a parse of G.
	Corollary. The back arcs of a parse of a reducible flow graph are exactly the back arcs of any DFST for G.
	Corollary = Definition 7’. A flow graph is reducible iff we can partition the edges into two disjoint groups, often called the forward edges (not to be confused with the forward edges in a DFST) and the back edges, with the following two properties:

	1. The forward edges form an acyclic graph in which every node can be reached from the initial node of G.
	2. The back edges consist only of edges whose heads dominate their tails.
	Question:
	Is case 1 possible? In other words, wouldn’t (s,w) be a DFST arc?
	Answer:
	Not necessarily:
	Here, w is the rightmost child of s in G, but not a child of s in the DFST.
	Example:
	Lemma 14. In a flow graph, if region R results from region R’ consuming region R”, then the header h of R’ dominates all nodes in R”.

