
Runtime Environments I

Basilio B. Fraguela



Runtime Environments 2

Runtime System Responsibilities

• Allocation of storage for program data
• Sometimes also deallocation

– Garbage collection
• Management of data structures the 

compiled program uses to access data



Runtime Environments 3

Data Storage Allocation

• Mostly dynamic
– Some things can be done statically

• Main dynamic allocation possibilities:
– Stack: data that do not outlive the procedure 

where it is declared
– Heap: remaining data



Runtime Environments 4

From Names to Values

• Environment: mapping from (variable) 
names to store addresses

• State: mapping from addresses to their 
values

• Both mappings can be static or dynamic
• Declaration vs Definition

– Declarations specify types, interfaces
– Definitions provide values, implementations



Runtime Environments 5

Scope of a Declaration

• The scope of a declaration of x is the context 
in which uses of x refer to this declaration
– Static or lexical scope: identifiable from 

program source code
• Usually relies on code block structure

– Dynamic scope: otherwise



Runtime Environments 6

Static Scope based on Block Structure

DECL A

DECL A

A

A



Runtime Environments 7

Explicit Access Control

• Specify who can access fields in a 
record/class

• Accessible members are usable in any 
subclass unless it redefines the member

• Encapsulation through explicit control 
using keywords
– E.g: C++’s public, private and protected



Runtime Environments 8

Dynamic Scope

• Name resolution depends on most recently 
called function, without there being a 
redeclaration
– Macro expansion
– Polymorphic methods 



Runtime Environments 9

Stack Management
• Used for data whose usage is restricted to the 

procedure where it is declared or procedures it 
calls

• Each time a procedure is invoked, it reserves 
its space at the top of the stack

• When the procedure returns, its space is 
popped off the stack

• The stack structure is adequate because 
procedure calls (activations) nest in time
– If p calls q, q must finish before p can call another 

procedure or finish



Runtime Environments 10

Activation Tree

• Represents the activation of procedures 
during the execution of the program

• Activations happen top-to-bottom and left-
to-right (preorder traversal)

• Returns happen bottom-to-top and left-to-
right (postorder traversal)

• The activations open when control reaches 
a node of the tree are its ancestors



Runtime Environments 11

Activation Records (or Frames)
• Stack space allocated for an activation of 

a procedure in the (control) stack
• Traditional representation:

Root Activation Record

Proc1 Activation Record

Proc2 Activation Record

Bottom of the stack

Top of the stack



Runtime Environments 12

What’s Inside an Activation Record



Runtime Environments 13

Procedure Call/Return 
Implementation

• The calling sequence fills in the activation 
record of the procedure called

• The return sequence restore the state upon 
return using the activation record

• Both can be a shared responsibility of the 
calling procedure (caller) and the called 
procedure (callee)
– In general it is better the callee does most work



Runtime Environments 14

Usual Disposition of Data in the 
Activation Record

• Values communicated between caller and 
calle are usually put at the beginning

• Fields with a fixed width come in the middle
• Variable length data usually go at the end 

(top) of the record
– Dynamically sized arrays

• Top-of-stack pointer usually points to the 
end of the fixed-length fields



Runtime Environments 15

Example



Runtime Environments 16

Parameter Passing Mechanisms

• Association of formal and actual 
parameters policies:
– Call-by-value
– Call-by-reference
– Call-by-name (obsolete)



Runtime Environments 17

Access to non-local data

• Simple for languages that do not allow nested 
procedure declarations:
– Variables are either local to the procedure
– Or globally/statically declared

• In languages with nested procedures
– the declaration for a non-local name can be found 

statically, but
– dynamic mechanisms are needed to find the relevant 

activation record of the caller that contains the data



Runtime Environments 18

Access Link

• Points to most recent activation record for 
immediately enclosing function.

• Access links form a chain from the current 
(highest) nesting level activation record to 
the lowest one

• All accessible activation records are in the 
chain
– N hops to reach activation record with nesting 

depth current-N



Runtime Environments 19

Access Link Calculation

• When q calls p:
– depth p > depth q ⇒q immediately encloses p

• Access link for p points to q’s activation record
– depth p = depth q ⇒ (mutually) recursive call

• Access link for p = Access link for q
– depth p > depth q ⇒ both are nested inside a 

common procedure r
• depth(p) – depth(q) hops to find access link for p



Runtime Environments 20

Access Link Illustration
Function s (depth 1)

Function q (depth 2)

Function p (depth 3)

Function e (depth 2)



Runtime Environments 21

Display

• Array d with one pointer per nesting depth
– d[i] points to highest activation record for any 

procedure at nesting level i
• Any variable defined in a procedure at 

nesting level i, can be found through d[i]
– No need to follow a chain of access links

• When a procedure overwrites d[i], it must 
first save it, then restore it when it returns



Runtime Environments 22

Example of Display Evolution
Function s (depth 1)

Function q (depth 2)

Function p (depth 3)

Function e (depth 2)


