Runtime Environments |

Basilio B. Fraguela

Runtime System Responsibllities

 Allocation of storage for program data

e Sometimes also deallocation
— Garbage collection

« Management of data structures the
compiled program uses to access data

Runtime Environments

Data Storage Allocation

 Mostly dynamic
— Some things can be done statically

e Main dynamic allocation possibilities:

— Stack: data that do not outlive the procedure
where it Is declared

— Heap: remaining data

Runtime Environments

From Names to Values

Environment. mapping from (variable)
names to store addresses

State: mapping from addresses to their
values

Both mappings can be static or dynamic

Declaration vs Definition
— Declarations specify types, interfaces
— Definitions provide values, implementations

Runtime Environments

Scope of a Declaration

* The scope of a declaration of X IS the context
INn which uses of x refer to this declaration

— Static or lexical scope: identifiable from
program source code

« Usually relies on code block structure
— Dynamic scope: otherwise

Runtime Environments

Static Scope based on Block Structure

Runtime Environments 6

Explicit Access Control

e Specify who can access fields in a
record/class

* Accessible members are usable in any
subclass unless it redefines the member

* Encapsulation through explicit control
using keywords

— E.g: C++’s public, private and protected

Runtime Environments

Dynamic Scope

 Name resolution depends on most recently
called function, without there being a
redeclaration

— Macro expansion
— Polymorphic methods

Runtime Environments 8

Stack Management

Used for data whose usage Is restricted to the
procedure where it is declared or procedures it
calls

Each time a procedure Is invoked, it reserves
Its space at the top of the stack

When the procedure returns, its space Is
popped off the stack

The stack structure is adequate because
procedure calls (activations) nest in time

— If p calls g, g must finish before p can call another
procedure or finish

Runtime Environments

Activation Tree

Represents the activation of procedures
during the execution of the program

Activations happen top-to-bottom and left-
to-right (preorder traversal)

Returns happen bottom-to-top and left-to-
right (postorder traversal)

The activations open when control reaches
a node of the tree are Iits ancestors

Runtime Environments 10

Activation Records (or Frames)

o Stack space allocated for an activation of
a procedure in the (control) stack

 Traditional representation:

Root Activation Record

Procl Activation Record

Proc2 Activation Record

|

Runtime Environments

Bottom of the stack

Top of the stack

11

What's Inside an Activation Record

Actual parameters

Returned values

Clontrol link

Access link

Saved machine status

Local data

lemporaries

Runtime Environments

12

Procedure Call/Return
Implementation

e The calling sequence fills in the activation
record of the procedure called

* The return sequence restore the state upon
return using the activation record

* Both can be a shared responsibility of the
calling procedure (caller) and the called
procedure (callee)

— In general it is better the callee does most work

Runtime Environments 13

Usual Disposition of Data In the
Activation Record

e Values communicated between caller and
calle are usually put at the beginning

e Fields with a fixed width come in the middle

e Variable length data usually go at the end
(top) of the record

— Dynamically sized arrays

* Top-of-stack pointer usually points to the
end of the fixed-length fields

Runtime Environments 14

Example

FParameters and returned value

[~ Condvol link

Links and saved status

Temporaries and local data

FParameters and returned value

"~ Control link

Links and saved status

top_sp —™

Temporaries and local dava

Runtime Environments

|

Caller’s
activation

record
Caller's
responsibility 1
Callea’s
T activation

: . record
Callee's
responsibility

15

Parameter Passing Mechanisms

e Assoclation of formal and actual
parameters policies:
— Call-by-value
— Call-by-reference
— Call-by-name (obsolete)

Runtime Environments

Access to non-local data

« Simple for languages that do not allow nested
procedure declarations:
— Variables are either local to the procedure
— Or globally/statically declared

* In languages with nested procedures

— the declaration for a non-local name can be found
statically, but

— dynamic mechanisms are needed to find the relevant
activation record of the caller that contains the data

Runtime Environments 17

Access Link

 Points to most recent activation record for
iImmediately enclosing function.

e Access links form a chain from the current
(highest) nesting level activation record to
the lowest one

e All accessible activation records are In the

chain
— N hops to reach activation record with nesting
depth current-N

Runtime Environments 18

Access Link Calculation

 \When g calls p:

— depth p > depth g =g immediately encloses p
» Access link for p points to g's activation record

— depth p = depth g = (mutually) recursive call
» Access link for p = Access link for g

— depth p > depth g = both are nested inside a
common procedure r

» depth(p) — depth(g) hops to find access link for p

Runtime Environments 19

5

Access Link lllustration

pecess link

5

i1

g(1,9)

access ink

il

pecess link

gl 1, 9]

aceess link

]

(a)

&

g(l,3)

access link

H

i
._I'.-'_.

5

pecess link

L
(1, 9) '

E‘I— L
aecess link { ‘
i I
a1,3) |/

i
aecess ink f

v N

I
p(1,3) |)

pecess ink ©

(c)

L]

access ik

a %
g(l.9) ||

access link \

g(l1,3) /

access fink "Jf

]

p(l, 3) I.l

aceess [ink

e(1,3)

access [ink

(d)

Runtime Environments

{4
o

Function s (depth 1)

Function e (depth 2)

Function g (depth 2)

Function p (depth 3)

20

Display

o Array d with one pointer per nesting depth

— d[i] points to highest activation record for any
procedure at nesting level |

* Any variable defined in a procedure at
nesting level I, can be found through d]i]

— No need to follow a chain of access links

 \When a procedure overwrites d[i], it must
first save It, then restore it when It returns

Runtime Environments 21

Example of Display Evolution

d|1]
2]

rl'[l]
d[2]
|3

-

g1, 9)
saved d[2]

a(1,3)

- caued rf:"ﬁ]

pll,3)
= saved d |3

d[1

r a I] \
o 2] '--,,\" L
() |
|
\
'\\\ -
rf:_l_: —
d 2 ~ p—
d[3 1\

(d) | |

5

saved rf:'l]

g(l,3)
T saved o[2]

q(1,9)
saved d[2]

sated ffé.]

g1, 3)

g(1,9) |

\"n
|
|

™

|/I
»

pl(1,3)

saved d|3]

el(1,3)

soved d]2]

Runtime Environments

Function s (depth 1)

Function e (depth 2)

Function g (depth 2)

Function p (depth 3)

22

