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Abstract

A major difference between compilers, and library generators such as ATLAS or FFTW is that compilers use

simple architectural models to determine values for code optimization parameters such as tile sizes, whereas library

generators use global search over the space of parameter values. Both ATLAS and FFTW produce better code than

state-of-the-art compilers, and it is commonly believed that this is because the architectural abstractions used in

compilers are too simplistic to permit accurate estimation of optimal values for code optimization parameters.

Recent work in the compiler community has shown that in fact, relatively simple models can be used to compute

near-optimal values for these parameters. While this is adequate for most situations, a compiler that produces near-

optimal code may not be good enough for generating libraries that must be highly tuned because they are used

extensively by a large user community. In this paper, we argue that the right solution for this context is to use a

combination of model refinement and local search. We demonstrate this by showing experimentally that a modified

ATLAS system using model refinement and local search can produce BLAS code competitive with the code produced

by the unmodified ATLAS system using global search.

1 Introduction

The compiler community has invested a lot of effort in inventing program optimization strategies which can produce

efficient code from high-level programs, and which can scale to large programs and complex architectures. In spite of

this, the quality of code produced by current compilers is abysmal compared to hand-written code, even for a simple

kernel like matrix multiplication [15].

To address the inadequacies of current compilers, it is necessary to study applications for which highly tuned

implementations are available; by comparing these implementations with compiler-generated code, we can understand

what compilers are doing wrong. Benchmark suites like the SPEC and Perfect benchmarks are not suitable in this

context, since there are no highly tuned implementations of these codes to serve as the “gold standard” for comparisons.

Fortunately, such highly tuned implementations do exist in the domain of numerical linear algebra, which is why we

have focused our efforts there.

∗This work was supported by NSF grants ACI-9870687, EIA-9972853, ACI-0085969, ACI-0090217, ACI-0103723, and ACI-012140.
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The Basic Linear Algebra Subroutines (BLAS) are a key set of codes in dense numerical linear algebra. Most

computer vendors provide carefully hand-tuned BLAS implementations, but the source code for their implementations

is usually proprietary. Fortunately, Dongarra and his co-workers have implemented a portable BLAS generator called

ATLAS [13], which is publicly available. Experiments show that the code produced by ATLAS performs nearly as well

as native BLAS on many machines, so ATLAS is an excellent object of study for researchers interested in improving

the sad state of the art of current compilers.

Why does ATLAS produce code that performs so much better than the code produced by current compilers? One

major difference between current compilers and library generators like ATLAS [13] (and FFTW [4] and Spiral [6], which

produce FFT code), is the approach they take to program optimization. Most compilers use simple architectural models

of the hardware to determine whether an optimization is useful, and to estimate values for parameters associated with

that optimization. When tiling a loop for example, a compiler may estimate the tile size using only the size of the

data cache, ignoring its associativity and line size. The approach taken by library generators is very different, and we

explain it with reference to the ATLAS system. This system has two key modules, shown in Figure 1.
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Figure 1: Empirical Optimization Architecture

1. Code Generator: For the purpose of this paper, this module generates an optimized matrix-multiplication routine,

given certain optimization parameters as input. These optimization parameters are described in more detail in

Section 2.1; intuitively, they tell the code generator what tile size to use (NB), how much to unroll certain loops

(MU ,NU ,KU ), etc.

2. Empirical Search Engine: To determine optimal values for these code optimization parameters, ATLAS employs

a global search over the space of these parameters, performed under the direction of the Empirical Search Engine.

This module enumerates each point in the parameter search space, and passes it on to the code generator, which

produces the appropriate matrix-multiplication code (shown as mini-MMM code in Figure 1). This code is run

on the actual machine, and its performance is recorded. Once the search is complete, the parameter values that

give the best performance are used to generate the library. Section 2.2 describes this search in more detail.

To finish the global search in reasonable time, it is necessary to bound the search space. When ATLAS installs

itself on a machine, it runs a set of micro-benchmarks to measure a set of hardware parameters such as the L1 data

cache capacity [5], the number of registers, etc. These hardware parameters are used by the search engine to bound

the search space for the optimization parameters. For example, the capacity of the L1 data cache is used to bound

the search for NB .

Experiments have shown that library generators produce much better code than general-purpose compilers do [4,

15]. It is commonly believed that this is because the architectural models used in compilers are too simplistic to permit

accurate estimation of optimal values for optimization parameters. However, recent results of Yotov et al [15] have cast
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doubt on this belief. To compare empirical optimization with model-based optimization, they built a modified version

of ATLAS in which the empirical search engine was replaced with a module that used simple models to estimate values

for optimization parameters. This model is described briefly in Section 3. Somewhat surprisingly, their experiments

show that on the three architectures they considered, the performance of code produced by the model-driven version

of ATLAS was within 10% to 20% of the performance of code produced by ATLAS using global search. Furthermore,

the time required by the model-driven version was a small fraction of the time required to perform global search.

These results suggest that the use of architectural abstractions in compilers need not come in the way of generating

relatively high-quality code.

In this paper, we address two problems with model-driven optimization.

The first problem is to close the performance gap between code produced by library generators and code produced

by using model-driven optimization. Although a compiler that quickly generates code that performs within 10% to

20% of highly tuned code is adequate in most situations, this performance penalty may be unacceptable for critical

applications that will be run many times. Global search on the other hand does not scale well to large programs or to

complex architectures.

The second problem is performance portability. It may seem that the use of global search ensures that library

generators will work “out of the box” on new architectures, whereas model-driven optimization may fail if the model

is a poor abstraction of the new architecture. However, global search is not a panacea. In particular, if the code

generator does not exploit aspects of an architecture that are key to performance, the resulting code may be poor

regardless of how exhaustive the search for optimal parameter values is. The methodology used in the ATLAS system

to adapt to new architectures for which search alone is not sufficient is to include a collection of user-contributed

hand-tuned kernels in the distribution; during the search process, the performance of these codes is evaluated, and if

one of them performs better than the code generated by the code generator, it is used to produce the library. This

methodology cannot be used for model-driven optimization because it runs counter to the spirit of using models to

optimize programs.

The methodology that we advocate in this paper to both problems is to use a combination of model refinement

and local search. To close the performance gap with code produced by empirical optimization, we advocate using local

search in the neighborhood of the parameter values produced by using the model. Of course local search alone may

not be adequate if the model is not a good abstraction of the architecture. In that case, we advocate using model

refinement in the same spirit as ATLAS incorporates user-contributed code - we study the new architecture and refine

the model as needed. Note that like the production of user-contributed code, model refinement must be done manually.

Intuitively, in our methodology, small performance problems are tackled using local search, while large performance

problems are tackled using model refinement.

Our experiments with ATLAS show that the combination of model refinement and local search is effective in

closing performance gaps between the model-generated code and the code generated by global search, while at the

same keeping library generation time small. However, it is important to realize that reducing library generation

time is not the primary focus of our work; rather, our goal is to find optimization strategies for generating very

high-performance code that can scale to large programs and complex architectures.

The rest of this paper is organized as follows. In Section 2, we describe how the ATLAS code generation module

uses the code optimization parameters in code generation. We also describe the global search performed by ATLAS.
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In Section 3, we briefly describe the model of Yotov et al [15] for computing values for transformation parameters. We

have compared the performance of the code generated by the two approaches on about ten machines. In Section 3.2,

we present some of these results that reveal potential for improvements both in the model and in ATLAS. In Section 4,

we describe how model refinement and local search can be used to tackle these problems in the context of model-

driven optimization. In Section 5, we present experimental results for the same machines as before, showing that

this methodology addresses the performance problems identified earlier. In some cases, we obtain better code than is

produced by the ATLAS code generator. We conclude in Section 6 with a discussion of future work.

2 Overview of ATLAS

Section 2.1 describes the code optimization parameters used by ATLAS. Section 2.2 describes the global search

performed by ATLAS to find optimal values for these parameters.

2.1 Code optimization parameters

To explain the role of the code optimization parameters, we use the framework of restructuring compilers to describe

the code generated by ATLAS (it is important to keep in mind that ATLAS is not a general-purpose restructuring

compiler). We concentrate on matrix multiplication (MMM), which is the key routine in the BLAS. Näıve MMM code

is shown in Figure 2.

for (int i = 0; i < N; i++)

for (int j = 0; j < M; j++)

for (int k = 0; k < K; k++)

C(i,j) += A(i,k) * B(k,j);

Figure 2: Näıve MMM Code

2.1.1 Memory Hierarchy Optimizations

The code shown in Figure 2 can be optimized by tiling for the L1 data cache and registers.

• Optimization for the L1 data cache:

To improve locality, ATLAS implements an MMM as a sequence of mini-MMMs, where each mini-MMM multi-

plies sub-matrices of size NB × NB . NB is an optimization parameter whose value must be chosen so that the

working set of the mini-MMM fits in the L1 cache.

In the terminology of restructuring compilers, the triply-nested loop of Figure 2 is tiled with tiles of size NB ×
NB ×NB , producing an outer and an inner loop nest. For the outer loop nest, code for both the JIK and IJK

loop orders are implemented. When the MMM library routine is called, it uses the shapes of the input arrays

to decide which version to invoke. For the inner loop nest, only the JIK loop order is used, with (j′, i′, k′) as

control variables. This inner loop nest multiplies sub-matrices of size NB ×NB , and we call this computation a

mini-MMM.

• Optimization for the register file: ATLAS converts each mini-MMM into a sequence of micro-MMMs, where

each micro-MMM multiplies an MU × 1 sub-matrix of A with a 1 × NU sub-matrix of B and accumulates the

result into an MU × NU sub-matrix of C. MU and NU are optimization parameters that must be chosen so
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that a micro-MMM can be executed out of the floating-point registers. For this to happen, it is necessary that

MU + NU + MU ×NU ≤ NR, where NR is the number of floating-point registers.

In terms of restructuring compiler terminology, the (j′, i′, k′) loops of the mini-MMM from the previous step are

tiled with tiles of size NU ×MU ×KU , producing an extra inner loop nest. The JIK loop order is chosen for the

outer loop nest after tiling, and the KJI loop order for the inner loop nest.

The resulting code after the two tiling steps is shown in Figure 3. To keep this code simple, we have assumed

that all step sizes in these loops divide the appropriate loop bounds exactly (so NB divides M , N , and K, etc.).

In reality, code should also be generated to handle the fractional tiles at the boundaries of the three arrays;

we omit this clean-up code to avoid complicating the description. Figure 4 is a pictorial view of a mini-MMM

computation within which a micro-MMM is shown using shaded rectangles.

// MMM loop nest (j, i, k)

// copy full A here

for j ∈ [1 : NB : M ]

// copy a panel of B here

for i ∈ [1 : NB : N ]

// copy a tile of C here

for k ∈ [1 : NB : K]

// mini-MMM loop nest (j′, i′, k′)
for j′ ∈ [j : NU : j + NB − 1]

for i′ ∈ [i : MU : i + NB − 1]

for k′ ∈ [k : KU : k + NB − 1]

for k′′ ∈ [k′ : 1 : k′ + KU − 1]

// micro-MMM loop nest (j′′, i′′)
for j′′ ∈ [j′ : 1 : j′ + NU − 1]

for i′′ ∈ [i′ : 1 : i′ + MU − 1]

Ci′′j′′ = Ci′′j′′ + Ai′′k′′ * Bk′′j′′

Figure 3: MMM tiled for L1 data cache and Registers
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Figure 4: mini-MMM and micro-MMM

To perform register allocation for the array variables referenced in the micro-MMM code, the micro-MMM loop

nest (j′′, i′′) in Figure 3 is fully unrolled, producing MU × NU multiply-add statements in the body of the middle

loop nest. In the unrolled loop body, each array element is accessed several times. To enable register allocation of

these array elements, ATLAS introduces a scalar temporary for each element of A, B, and C that is referenced in the

unrolled micro-MMM code, and replaces array references in the unrolled micro-MMM code with references to these

scalars. Appropriate assignment statements are introduced to initialize the scalars corresponding to A and B elements.

In addition, assignment statements are introduced before and after the k′ loop to initialize the scalars corresponding

to C elements, and to write the values back into the array respectively. It is expected that the back-end compiler will
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allocate floating-point registers for these scalars.

2.1.2 Pipeline scheduling

The resulting straight-line code in the body of the k′′ loop is scheduled to make better use of the processor pipeline.

Note that the operations in the k′′ loop are the MU +NU loads of A and B elements required for the micro-MMM, and

the corresponding MU ×NU multiplications and additions. On hardware architectures that have a fused multiply-add

instruction, the scheduling problem is much simpler because multiplies and adds are executed together. Therefore,

we only discuss the more interesting case when a multiply-add instruction is not present. An optimization parameter

FMA tells the code generator whether to assume that a fused multiply-add exists. The scheduling of operations can

be described as follows.

• Construct two sequences of length (MU × NU ), one containing the multiply operations and the other the add

operations.

• Interleave the two sequences, to create a single sequence of the form mul1 mul2 ... mulLs add1 mulLs+1 add2 ...

that is obtained by skewing the adds by a factor of Ls, where Ls is an optimization parameter. Intuitively, this

interleaving separates most dependent multiplies and adds by 2×Ls− 1 other independent instructions to avoid

stalling the processor pipeline.

• Inject the MU + NU loads of the elements of A and B into the resulting sequence of arithmetic operations by

scheduling a block of IF (Initial Fetch) loads in the beginning and blocks of NF loads thereafter as needed. IF

and NF are optimization parameters.

• Unroll the k′′ loop completely. The parameter KU must be chosen to be large enough to reduce loop overhead,

but not so large the body of the k′ loop overflows the L1 instruction cache.

• Software pipeline the k′ loop in such a way that operations from the current iteration are overlapped with

operations from the previous iteration.

Note that skewing of dependent adds and multiplies increases register pressure; in particular, the following inequal-

ity must hold to avoid register spills:

MU ×NU + MU + NU + Ls ≤ NR (1)

2.1.3 Discussion

Table 1 lists the optimization parameters for future reference.

Name Description
NB L1 data cache tile size
MU , NU Register tile size
KU Unroll factor for k′ loop
Ls Latency for computation scheduling
FMA 1 if fused multiply-add, 0 otherwise
FF , IF , NF Scheduling of loads

Table 1: Summary of optimization parameters

There are a few details that we have omitted. In particular, ATLAS copies tiles of A, B, and C into sequential

memory locations before performing the mini-MMM, if it thinks this would be profitable. The strategy for copying is
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shown in Figure 3. ATLAS also incorporates a simple form of tiling for the L2 cache, called CacheEdge; we will not

discuss this because our focus in the mini-MMM code, which is independent of CacheEdge.

It is intuitively obvious that the performance of the generated mini-MMM code suffers if the values of the optimiza-

tion parameters in Table 1 are too small or too large. For example, if MU and NU are too small, the MU ×NU block

of computation instructions might not be large enough to hide the latency of the MU + NU loads, and performance

suffers. On the other hand, if these parameters are too large, register spills will reduce performance. Similarly, if the

value of KU is too small, there is more loop overhead, but if this value is too big, the code in the body of the k′ loop

will overflow the instruction cache and performance will suffer. The goal therefore is to determine optimal values of

these parameters for obtaining the best mini-MMM code.

2.2 Global search in ATLAS

To find optimal values for the optimization parameters, ATLAS uses a global search strategy called orthogonal line

search [9]. Suppose we want to find the optimal value of a function y = f(x1, x2, ...xn). To find an approximate

solution, we reduce this n-dimensional optimization problem into a sequence of 1-dimensional optimization problems

as follows: we order these parameters in some way and optimize them one at a time, using reference values for those

that have not yet been optimized. Orthogonal line search is an approximate method in the sense that it does not

necessarily find the optimal value of a function, but it might come close.

To specify an orthogonal line search, it is necessary to specify (i) the order in which the parameters are optimized,

(ii) the range of possible values considered during the optimization of each parameter, and (iii) the reference value

used for parameter k during the optimization of parameters 1, 2, ..., k − 1.

In ATLAS, the optimization sequence is the following: (i) NB , (ii) MU and NU , (iii) KU , (iv) Ls and (v) FF , IF ,

and NF .

To find the best NB , ATLAS generates a number of mini-MMMs for matrix sizes NB ×NB where NB is a multiple

of 4 and 16 ≤ NB ≤ min(80,
√

CL1), where CL1 is the capacity of the L1 data cache. During this search, the values

of MU and NU are set to the values closest to each other that satisfy Inequality (1) with MU > NU . For each block

size, ATLAS tries two extreme cases for KU no unrolling (KU = 1) and full unrolling (KU = NB). Suitable Ls, FF ,

IF , and NF are obtained from running the micro-benchmarks. The value of NB that produces highest MFLOPS is

chosen as “best NB” value, and it is used from this point on in all experiments as well as in the final versions of the

optimized mini-MMM code.

To find the best MU and NU , ATLAS tries all combinations of MU and NU that satisfy Inequality (1). For each

combination, the value of NB from the previous step and reference values for all other parameters are used to generate

mini-MMM code; the version that performs best determines the values chosen for MU and NU .

The remaining parameters are optimized in a similar way. We omit the details because they are not relevant to

the rest of this paper.

3 Model-driven optimization

In this section, we summarize the model of Yotov et al [15] for estimating values for optimization parameters. This

model requires the following machine parameters.
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• CL1 and BL1 – capacity and line size of the L1 data cache respectively

• NR – number of floating-point registers

• Lh – latency in cycles of floating-point multiply

• |ALUFP | – number of floating-point pipes

• FMA – existence of a fused multiply-add instruction

This is a superset of the machine parameters required by the ATLAS framework. Furthermore, modelling requires

more accurate values for machine parameters than searching does; models use machine parameters to directly determine

optimal values for optimization parameters, whereas search-based techniques use them only to bound the search space.

Therefore, our system uses a more extensive and robust set of precise micro-benchmarks [1] than ATLAS does.

3.1 Estimating parameter values

3.1.1 Estimating NB

There has been a lot of work in the compiler community on estimating tile sizes for general programs [2, 10, 14, 7]. In

this section, we discuss a sequence of models of increasing accuracy for estimating tile sizes for matrix-multiplication.

If the three tiles of A, B, and C are copied into sequential memory locations, we can avoid conflict and capacity

misses if all three tiles fit in the L1 cache. This leads to the following inequality.

3×N2
B ≤ CL1 (2)

This is a simple model, but on most architectures, we can afford to tolerate some misses. If we assume that we can

tolerate some conflict misses but still disallow capacity misses, the tile size can be made larger since it is not necessary

to keep all three tiles in the cache for the duration of the mini-MMM computation. For example, for the jik loop

order, we need to keep only one element of C in cache, because C is indexed by the control variables in the outermost

two loops. For this loop order, we also need to cache the complete tile of A, since we walk the full tile for each iteration

of the j loop. Finally we need to cache a column of B, since the jth column is fully accessed for each iteration of the

i loop. Therefore, assuming that the cache has an optimal replacement policy, we obtain the following inequality:

N2
B + NB + 1 ≤ CL1 (3)

Because caches have non-unit line size, it is not possible to keep just one element of C in the cache; instead we

must store an entire line. Correcting for the line size BL1, we obtain the following inequality:

⌈
N2

B

BL1

⌉
+

⌈
NB

BL1

⌉
+ 1 ≤ CL1

BL1
(4)

The replacement policy in real caches is usually pseudo-LRU. Intuitively, in case of LRU replacement, we need

more cache so that unwanted blocks stay there until they become least recently used. This refinement leads to the

following inequality [15]:

⌈
N2

B

BL1

⌉
+ 3

⌈
NB

BL1

⌉
+ 1 ≤ CL1

BL1
(5)

Up to this point, we ignored the interaction between register tiling and L1 data cache tiling. Because of register
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tiling, we actually deal with vertical panels of register tiles rather than columns of scalar elements. This consideration

leads to the final inequality used to compute NB [15].

⌈
N2

B

BL1

⌉
+ 3

⌈
NB ×NU

BL1

⌉
+

⌈
MU

BL1

⌉
×NU ≤ CL1

BL1
(6)

Once MU and NU are computed as described next, it is easy to compute NB from this inequality.

3.1.2 Estimating MU and NU

Inequality (1), which is reproduced below for convenience, is used to determine MU and NU . To use this inequality,

we need an estimate for Ls, which is computed as described in Section 3.1.3.

MU ×NU + MU + NU + Ls ≤ NR

Initially, assume MU = NU . This leads to Inequality (7), which can be solved for MU . This value can then be

substituted into Inequality 1 to determine NU .

M2
U + 2×MU + Ls −NR ≤ 0 (7)

Finally, these values are adjusted to ensure that MU and NU are at least 1 and MU > NU .

3.1.3 Estimating Ls

From the discussion of instruction scheduling in Section 2.1, we see that a multiply operation in the innermost loop

body is separated from its dependent add by a total of 2× (Ls − 1) operations (Ls − 1 multiplies and Ls − 1 adds).

The value of Ls must be chosen so that add operations can be issued without waiting for the corresponding multiply

operations to complete. If the latency of multiplication is Lh cycles, and we have |ALUFP | floating point units, it will

take 2×(Ls−1)
|ALUF P | cycles to issue 2× (Ls − 1) floating point instructions. From this, Equation 8 follows.

Lh =
2× (Ls − 1)

|ALUFP | (8)

We therefore obtain the following estimate for Ls.

Ls =

⌈
Lh × |ALUFP |

2

⌉
+ 1 (9)

3.1.4 Estimating KU , FMA, FF , IF , and NF

The parameter KU is set so that the body of the kernel fits in the L1 instruction cache. In most cases, it is possible

to completely unroll the k′ loop (KU = NB), without overflowing the L1 instruction cache.

The optimization parameter FMA is set to the corresponding value measured by the hardware micro-benchmarks.

Finally, performance is largely insensitive to the values of the fetch parameters, so they are set to (FF , IF , NF ) =

(0, 2, 2).
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3.2 Experimental results

We compared the performance of code generated by ATLAS and by the model-driven version of ATLAS on ten different

architectures. For lack of space, in this section, we only discuss some of the more interesting performance results.

3.2.1 AMD Opteron 240

Feature Value
CPU Core Frequency 1400 MHz
L1 Data Cache 64 KB, 64 B/line
L1 Instruction Cache 64 KB, 64 B/line
L2 Unified Cache 1 MB, 64 B/line
Floating-Point Registers 8
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System SuSE 9 Linux
C Compiler GNU GCC 3.3
Fortran Compiler GNU Fortran 3.3

Table 2: AMD Opteron 240 Specifications

Table 2 shows the specifications of the AMD Opteron 240 machine we used in our experiments.

1000 2000 3000 4000 5000
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500
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Figure 5: MMM Results for AMD Opteron 240
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Figure 6: AMD Opteron 240 Sensitivity to NB

On this platform, as well as to some extent on all other x86 CISC platforms, we observed a significant performance

gap between the code generated using the model and the code generated by ATLAS (see the two lines labelled Model

and Global Search in Figure 5). To understand the problem, we studied the optimization parameter values produced
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Figure 7: AMD Opteron 240 Sensitivity to MU , NU

by the two approaches. These values are shown in Table 5. The two sets of values are quite different, but that by

itself is not necessarily significant. For example, Figure 6 shows how performance of the mini-MMM code changes as

NB is changed, keeping all other parameters fixed. It can be seen that the values chosen by Global Search (NB = 60)

and Model (NB = 88) are both good choices for that optimization parameter, even though they are quite different.

On the other hand, performance sensitivity to MU and NU , shown in Figure 7, demonstrates that the optimal

values of (MU , NU ) are (6, 1). Notice that this graph is not symmetric with respect to MU and NU , because an MU ×1

tile of C is contiguous in memory, but a 1 × NU tile is not [12]. Global Search finds (MU , NU ) = (6, 1), whereas the

model estimates (2, 1). To clinch the matter, we verified that the performance difference disappears if (MU , NU ) are

set to (6, 1), and all other optimization parameters are set to the values estimated by the model.

Since the difference in performance between the code produced by global search and the code produced by using

the model is about 40%, it is likely that there is a problem with the model presented in Section 3 for determining

(MU , NU ). Evidence for this is provided by the line labelled Local Search in Figure 5, which shows there is significant

performance gap even if we use a simple local search around the parameter values estimated by the model, which is

described in more detail in Section 4.2.

In Section 4.1.1, we show how model refinement fixes this problem.

3.2.2 SUN UltraSPARC IIIi

Feature Value
CPU Core Frequency 1060 MHz
L1 Data Cache 64 KB, 32 B/line, 4-way
L1 Instruction Cache 32 KB, 32 B/line, 4-way
L2 Unified Cache 1 MB, 32 B/line, 4-way
Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System SUN Solaris 9
C Compiler SUN C 5.5
Fortran Compiler SUN FORTRAN 95 7.1

Table 3: SUN UltraSPARC IIIi Specifications

Table 3 shows the specifications of the SUN UltraSPARC IIIi machine we used in our experiments.

The optimization parameters derived by using the model and global search are shown in Table 7. Figure 14 presents

the MMM performance results. On this machine, Model actually performs about 10% better than Global Search.
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However, this platform is one of several that highlights a deficiency of the model that afflicts ATLAS Global Search

as well. The problem lies in the choice of NB . Figure 8 shows the sensitivity of performance to NB . The values chosen

by Global Search, Model and the best value (44, 84 and 208 respectively) are denoted by vertical lines.

100 200 300 400 500 600
NB

200

400

600

800

1000

1200

MFLOPS

Figure 8: SUN UltraSPARC IIIi Sensitivity to NB

Initially, performance increases with increasing values for NB . The first, slight performance drop, at NB = 208

can be explained by applying the model in Inequality (2) but for the L2 cache (CL2 = 1MB). This is the point at

which all three tiles fit together in the L2 cache. The second, more pronounced, performance drop, at NB = 360

can be explained by applying Inequality (6) for the L2 cache. After this point, L2 capacity misses start to occur and

performance drops dramatically. Notice that there are no drops in performance around NB = 52 and NB = 88 which

are the corresponding model-predicted values for the L1 data cache.

The problem is that both Model and Global Search perform tiling for the L1 cache, but it is more beneficial to tile

for the L2 cache on this machine1. In general, this is desirable if (1) the cache miss latency for the L1 data cache is

close to that of the L2 cache, or (2) the cache miss latency of the L1 data cache is small enough that it is possible to

entirely hide almost all of the L1 data cache misses with floating point computations.

We show how model refinement solves this problem in Section 4.1.2.
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Figure 9: SUN UltraSPARC IIIi Sensitivity to MU , NU

1In general, another possibility is to do multi-level cache tiling but the ATLAS code generator provides support for a single level only.
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3.2.3 Intel Itanium 2

Feature Value
CPU Core Frequency 1500 MHz
L1 Data Cache 16 KB, 64 B/line, 4-way
L1 Instruction Cache 16 KB, 64 B/line, 4-way
L2 Unified Cache 256 KB, 128 B/line, 8-way
L3 Cache 3MB, 128B/line, 12-way
Floating-Point Registers 128
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add Yes
Operating System RedHat Linux 9
C Compiler GNU GCC 3.3
Fortran Compiler GNU Fortran 3.3

Table 4: Intel Itanium 2 Specifications

Table 4 shows the specifications of the Intel Itanium 2 machine we used in our experiments.

The values of optimization parameters estimated by using the model and global search are shown in Table 9.

Figure 15 presents the MMM results.
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Figure 10: Intel Itanium 2 Sensitivity to NB

Figure 10 shows the sensitivity of performance to NB on Intel Itanium 2. The values chosen by Model, Global

Search, and the best value (30, 80 and 360 respectively) are denoted by vertical lines.

As on the SUN UltraSPARC IIIi, tiling for the L1 data cache is not beneficial. On this platform, even the L2 cache

is “invisible” to NB sensitivity, and the drops in performance are explained by substituting the size of the L3 cache

CL3 = 3MB in Inequalities (2) and (6).
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The second part of Figure 10 zooms into the interval NB ∈ [300, 400], which contains the value that achieves

best performance (NB = 360). As we can see, there are performance spikes and dips of as much as 300 MFlops. In

particular, the value of NB = 362 obtained by using Inequality (2) for the L2 cache is not nearly as good as that for

NB = 360. Values of NB that are divisible by MU and NU usually provide slightly better performance because there

are no “edge effects”; that is, no special clean-up code needs to be executed for small left-over register tiles at the

boundary. The number of conflict misses in the L1 and L2 caches can also vary with tile size.

Refining the model to account for effects like conflict misses is not likely to be tractable in general, so we advocate

using local search around the model-predicted value, as discussed in detail in Section 4.2.1.
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Figure 11: Intel Itanium 2 Sensitivity to MU , NU

For completeness, we show the sensitivity of performance to MU and NU in Figure 11, although there is nothing

interesting in this graph. Because of the extremely large number of registers on this platform (NR = 128), the peak

of the hill is more like a plateau with a multitude of good choices for the MU and NU unroll factors. Both Model and

Global Search do well.

3.3 Summary

Our experiments point to two deficiencies with the model of Yotov et al [15]. On x86-based architectures like the

Opteron, there is only a small number of registers, and the model does not choose (MU , NU ) optimally. On machines

like the UltraSPARC IIIi and the Itanium 2, the model (and ATLAS Global Search) tile for the wrong cache level.

Finally, local improvement seems useful for some parameters such as NB on the Itanium.

4 Closing the gap

We discuss model refinement in Section 4.1, and local search in Section 4.2.
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4.1 Model refinement

4.1.1 Choosing MU and NU for small NR

Recall that in Section 2, we discussed how operations within the innermost loop of the mini-MMM code are scheduled

to obtain good performance even on machines without out-of-order execution. In particular, the separation between

multiplies and their dependent additions increases register pressure; to avoid spills, Inequality (1), reproduced below

for convenience, must hold.

MU ×NU + MU + NU + Ls ≤ NR (10)

For the Opteron, Table 5 shows that the model chose MU = 2, NU = 1, FMA = 0, while Global Search chose

MU = 6, NU = 1, FMA = 1. If instead the model had chosen, MU = 6 and FMA = 1, while keeping the rest of the

parameters the same, the mini-MMM performance rises to 2050 MFLOPS. The parameters values found by Global

Search are puzzling for several reasons. First, the Opteron does not have a FMA instruction! Second, choosing 6 and

1 for the values of MU and NU , violates Inequality (1) since the Opteron has only 8 registers. How can we explain

this?

Recall that Inequality (1) should hold because ATLAS generates code which allocates an MU × 1 vector-tile of

matrix A (which we call ā), an 1 × NU vector-tile of matrix B (which we call b̄) and a MU × NU tile of matrix C

(which we call c̄). It then performs the outer-product of ā and b̄ and accumulates the result into c̄. The outer-product

computation requires that each element of ā be multiplied by each element of b̄, and this reuse justifies storing these

vectors in registers.

Notice that if NU = 1, then b̄ is a single scalar that is multiplied by each element of ā. Therefore no reuse exists for

the elements of ā. This observation lets us generate the code in Figure 12, which uses 1 register for b̄ (rb), 6 registers

for c̄ (rc1 . . . rc6) and 1 temporary register (rt).

One might expect that this code will not perform well, as there are dependences between most of the adjacent in-

structions because of the temporary register rt. In fact the code in Figure 12 performs well because of two architectural

features of the Opteron.

1. Out-of-order execution: it is possible to schedule several multiplications in successive CPU cycles without waiting

for their corresponding adds to complete.

2. Register renaming: the single temporary register rt is renamed to a different physical register for each pair of

multiply-add instructions.

Performing instruction scheduling as described in Section 2 requires additional logical registers for temporaries,

which in turn limits the sizes of the register tiles. If an architecture has a small number of logical registers but the

processor implements out-of-order execution and register renaming, it is better to use the logical registers for allocating

larger register tiles and leave instruction scheduling to the out-of-order hardware core which can use the extra physical

registers to hold the temporaries.

These insights permit us to refine the model described in Section 3 as follows: for processors with a small number

of logical registers and register renaming, set NU = 1, MU = NR − 2, FMA = 1. Section 5 describes experimental

results that demonstrate that this strategy eliminates the performance gap between the code produced by model-driven

optimization and the code produced by ATLAS using global search.
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rc1 ← c̄1 . . . rc6 ← c̄6

...

loop k

{
rb ← b̄1

rt ← ā1

rt ← rt× rb

rc1 ← rc1 + rt

rt ← ā2

rt ← rt× rb

rc2 ← rc2 + rt

...

rt ← ā6

rt ← rt× rb

rc6 ← rc6 + rt

}
...

c̄1 ← rc1 . . . c̄6 ← rc6

Figure 12: (MU , NU ) = (6, 1) code for x86 CISC

Even if there are enough logical registers, this kind of scheduling may be beneficial if the ISA is 2-address rather

than 3-address, because one of the operands is overwritten. This is true on the Opteron when the 16 SSE vector

registers are used to hold scalar values, which is GCC’s default behavior. Even though Inequality 1 prescribes 3 × 3

register tiles, the refined model prescribes 14× 1 tiles. Experiments show that this performs better [12].

Although there is a large body of existing work on register allocation and instruction scheduling for pipelined

machines [16, 3, 8, 11], we are not aware of any prior work that has highlighted this peculiar interaction between

compile-time scheduling and register allocation, and dynamic register-renaming and out-of-order execution.

4.1.2 Multilevel Memory Hierarchy

As discussed in Section 3.2, there are some machines for which tiling for the L2 or L3 cache will give better performance

than tiling for the L1 cache. The model presented in Section 3 does not account for cache miss penalties at different

cache levels, so although we estimate tile sizes for different cache levels, we cannot determine which level to tile for.

One approach to addressing this problem in the context of model-driven optimization is to refine the model to

include miss penalties. Our experience however is that it is difficult to use micro-benchmarks to measure miss penalties

accurately for lower levels of the memory hierarchy on modern machines. Therefore, we decided to estimate tile sizes

for all the cache levels according to Inequalities (2) and (6), and then empirically determine which one gives the best

performance.

Notice that in the context of global search, the problem can be addressed by making the search space for NB large

enough. However, this would increase the search time substantially since the size of an L3 cache, which would be

used to bound the search space, is typically much larger than the size of an L1 cache. This difficulty highlights the

advantage of our approach of using model-driven optimization together with a small amount of search - we can tackle

multi-level memory hierarchies without increasing installation time significantly.
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4.2 Local search

In this section, we describe how local search can be used to improve the NB , MU , NU , and Ls optimization parameters

chosen by the model.

4.2.1 Local Search for NB

If NBM is the value of NB estimated by the model, we can refine this value by local search in the interval [NBM −
lcm(MU , NU ), NBM + lcm(MU , NU )]. This ensures that we examine the first values of NB in the neighborhood of

NBM that are divisible by both MU and NU .

4.2.2 Local Search for MU , NU , and Ls

Unlike sensitivity graphs for NB , sensitivity graphs for MU and NU tend to be convex in the neighborhood of model-

predicted values. This is probably because register allocation is under compiler control, and there are no “conflict

misses”. Therefore, we use a simple hill-climbing search strategy to improve these parameters.

We start with the model predicted values for MU , NU , and Ls and determine if performance improves by changing

each of them by +1 and −1. We continue following the path of increasing performance until we stop at a local

maximum. On platforms on which there is a Fused-Multiply-Add instruction (FMA = 1), the optimization parameter

Ls has no effect on the generated code and in that case we only consider MU and NU for the hill-climbing local search.

5 Experimental Results

We evaluated the following six approaches on a large number of modern plarforms, including DEC Alpha 21264, IBM

Power 3/4, SGI R12000, SUN UltraSPARC IIIi, Intel Pentium III/4, Intel Itanium 2, AMD Athlon MP, and AMD

Opteron 240.

1. Model: This approach uses the model of Yotov et al [15] as described in Section 3.

2. Refined Model: This approach uses the refined model for (MU , NU ) described in Section 4.1.1.

3. Local search: This approach uses local search as described in Section 4.2, in the neighborhood of parameter

values determined by Refined Model.

4. Multi-level Local Search: This approach is the same as Local Search, but it considers tiling for lower levels of

the memory hierarchy as described in Section 4.1.2.

5. Global Search: This is the ATLAS search strategy.

6. Unleashed: This is the full ATLAS distribution that includes user-contributed code, installed with accepting all

defaults that the ATLAS team have provided. As such, it usually performs optimizations which are not exposed

through the ATLAS’ Code Generator and therefore it is normally not directly comparable to our results.

For lack of space, we present results only for the machines discussed earlier in this paper.

5.1 AMD Opteron 240

Table 5 shows the values of the optimization parameters for Model, Refined Model, Local Search, Multi-Level (ML)

Local Search, Global Search, and Unleashed, along with the corresponding performance numbers for mini-MMM.
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NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
Model 88 2, 1, 88 2 0 0, 2, 2 1189
Refined Model 88 6, 1, 88 1 1 0, 2, 2 2050
Local Search 88 6, 1, 88 1 1 0, 2, 2 2050
ML Local Search 88 6, 1, 88 1 1 0, 2, 2 2050
Global Search 60 6, 1, 60 6 1 0, 6, 1 2072
Unleashed 56 2608

Table 5: Optimization Paramameters for AMD Opteron 240

Table 6 shows the times taken by our micro-benchmarks and by the ATLAS micro-benchmarks for determining

machine and optimization parameters.

Parameters Total
Machine Optimization (sec)

Model 101 2 103
Refined Model 101 2 103
Local Search 101 31 132
ML Local Search 101 126 227
Global Search 148 375 523

Table 6: Timings for AMD Opteron 240

Figure 13 shows the MMM performance for all approaches. Local Search and Multi-Level Local Search are not

plotted on this platform, because as Table 5 suggests, their performance is virtually equivalent to that of Refined

Model.

The MMM performance achieved by Model + Local Search is only marginally worse than that of Global Search,

which according to our sensitivity analysis is due to a slightly suboptimal value of NB . Had we extended the interval

in which we do local NB search by a small amount, we would have achieved the same performance.

In summary, the model refinement described in Section 4.1.1 to take into account the small number of logical

registers on this machine is sufficient to address performance problems with basic model of Yotov et al [15].
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Figure 13: MMM Results for AMD Opteron 240

5.2 SUN UltraSPARC IIIi

Table 7 shows the values of the optimization parameters for Model, Refined Model, Local Search, Multi-Level (ML)

Local Search, Global Search, and Unleashed, along with the corresponding performance numbers for mini-MMM.

Table 8 shows the times taken by our micro-benchmarks and by the ATLAS micro-benchmarks for determining

machine and optimization parameters.

Figure 14 shows the MMM performance for all approaches. Refined Model and Local Search are not plotted on

this platform, because as Table 7 suggests, their performance is virtually equivalent to that of Model.
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NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
Model 84 4, 4, 84 4 0 0, 2, 2 1120
Refined Model 84 4, 4, 84 4 0 0, 2, 2 1120
Local Search 84 4, 4, 84 4 0 0, 2, 2 1120
ML Local Search 208 4, 4, 16 4 0 0, 2, 2 1308
Global Search 44 4, 3, 44 5 0 0, 3, 2 986
Unleashed 168 1694

Table 7: Optimization Paramameters for SUN UltraSPARC IIIi

Parameters Total
Machine Optimization (sec)

Model 112 7 119
Refined Model 112 7 119
Local Search 112 127 239
ML Local Search 112 496 608
Global Search 203 1233 1436

Table 8: Timings for SUN UltraSPARC IIIi

Model performs marginally better than Global Search because the ATLAS micro-benchmarks estimated that the

L1 data cache size is 16KB, rather than 64 KB. This overly restricted the NB interval examined by Global Search,

leading to poor performance.

Multi-Level Local Search performs better than Local Search because it finds that it is better to tile for the L2

cache rather than for the L1.
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Figure 14: MMM Results for SUN UltraSPARC IIIi

5.3 Intel Itanium 2

The description of this platform was presented in Table 4.

Table 9 shows the values of the optimization parameters for Model, Refined Model, Local Search, Multi-Level (ML)

Local Search, Global Search, and Unleashed, along with the corresponding performance numbers for mini-MMM.

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
Model 30 10, 10, 4 1 1 0, 2, 2 3130
Refined Model 30 10, 10, 4 1 1 0, 2, 2 3130
Local Search 30 10, 10, 4 1 1 0, 2, 2 3130
ML Local Search 360 10, 10, 4 1 1 0, 2, 2 4602
Global Search 80 10, 10, 4 4 1 0, 19, 1 4027
Unleashed 120 4890

Table 9: Optimization Paramameters for Intel Itanium 2

Table 10 shows the times taken by our micro-benchmarks and by the ATLAS micro-benchmarks for determining

machine and optimization parameters.
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Parameters Total
Machine Optimization (sec)

Model 143 6 149
Refined Model 143 6 149
Local Search 143 162 305
ML Local Search 143 278 421
Global Search 1554 29667 31221

Table 10: Timings for Intel Itanium 2
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Figure 15: MMM Results for Intel Itanium 2

Figure 15 shows the MMM performance for all these approaches. Refined Model and Local Search are not plotted

on this platform, because as Table 9 suggests, their performance is virtually equivalent to that of Model.

Model does not perform well because it tiles for the L1 data cache. For the Itanium, ATLAS used the size of the L2

cache (256KB) to restrict NB , effectively selecting the maximum value in the search range (NB = 80). Nevertheless

this tile size is not optimal either. The Multi-level model determined that tiling for the 3 MB L3 cache is optimal,

and chooses a value of NB = 362. This is refined to NB = 360 by local search. This improves performance compared

to both Model and Global Search.

5.4 SGI R12000

Feature Value
CPU Core Frequency 270 MHz
L1 Data Cache 32 KB, 32 B/line, 2-way
L1 Instruction Cache 32 KB, 32 B/line, 2-way
L2 Unified Cache 4 MB, 32 B/line, 1-way
Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 2
Has Fused Multiply Add No
Operating System IRIX64
C Compiler SGI MIPSPro C 7.3.1.1m
Fortran Compiler SGI MIPSPro FORTRAN 7.3.1.1m

Table 11: SGI R12000 Specifications

Table 11 shows the specifications of the SGI R12000 machine we used in our experiments.

Table 12 shows the values of the optimization parameters for Model, Refined Model, Local Search, Multi-Level

(ML) Local Search, Global Search, and Unleashed, along with the corresponding performance numbers for mini-MMM.

Table 13 shows the times taken by our micro-benchmarks and by the ATLAS micro-benchmarks for determining

machine and optimization parameters.

Figure 16 shows the MMM performance on the SGI R12K. Refined Model and Local Search are not plotted on

this platform, because as Table 12 suggests, their performance is virtually equivalent to that of Model.
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NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
Model 58 5, 4, 58 1 1 0, 2, 2 440
Refined Model 58 5, 4, 58 1 1 0, 2, 2 440
Local Search 58 5, 4, 58 1 1 0, 2, 2 440
ML Local Search 418 5, 4, 16 1 1 0, 2, 2 508
Global Search 64 4, 5, 64 1 0 1, 8, 1 457
Unleashed 64 463

Table 12: Optimization Paramameters for SGI R12000

Parameters Total
Machine Optimization (sec)

Model 118 13 131
Refined Model 118 13 131
Local Search 118 457 575
ML Local Search 118 496 608
Global Search 251 2131 2382

Table 13: Timings for SGI R12000
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Figure 16: MMM Results for SGI R12000

The most interesting fact on this platform is that Multi-Level Local Search successfully finds that it is worth tiling

for the L2 cache. By doing this, it achieves better performance than even the native BLAS.

Global Search achieves slightly better performance than Model due to the minor differences in several optimization

parameters. Unleashed does fine for relatively small matrices but for large ones performs worse than Model and

Global Search. Although not entirely visible from the plot, on this platform, the native compiler (SGI MIPSPro) does

a relatively good job.

6 Conclusions and Future Work

The compiler community has invested considerable effort in inventing program optimization strategies which can

produce high-quality code from high-level programs, and which can scale to large programs and complex architectures.

In spite of this, current compilers produce very poor code even for a simple kernel like matrix multiplication. To make

progress in this area, we believe it is necessary to perform detailed case studies.

This paper reports the results of one such case study. Previously, Yotov et al [15] have shown that model-

driven optimization can produce BLAS codes with performance within 10-20% of that of code produced by empirical

optimization. We have shown that this remaining performance gap can be eliminated by a combination of model

refinement and local search. The model refinement (i) corrects the instruction scheduling strategy for machines on

which there are relatively few logical registers, and (ii) opens up the possibility of tiling for lower levels of the memory

hierarchy. On some machines, this gave better performance than both ATLAS Global Search and the native BLAS.

21



We believe that this combination of model refinement and local search is promising, and it is the corner-stone of

a system we are building for generating BLAS libraries that are optimized for many levels of the memory hierarchy, a

problem for which global search is not tractable.
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