$q'_0 = \{0, 1, 2, 3, 7\}$
move(q'_0, a) = $\{4, 8\}$
move(q'_0, b) = $\{5\}$
ε-closure is $\{1, 2, 3, 4, 6, 7, 8\} = q'_1$

$q'_1 = \{1, 2, 3, 4, 6, 7, 8\}$
move(q'_1, a) = $\{4, 8\}$
move(q'_1, b) = $\{5, 9\}$
ε-closure is $\{1, 2, 3, 5, 6, 7, 9\} = q'_2$

$q'_2 = \{1, 2, 3, 5, 6, 7\}$
move(q'_2, a) = $\{4, 8\}$
move(q'_2, b) = $\{5\}$
ε-closure is $\{1, 2, 3, 4, 6, 7, 8\} = q'_1$

$q'_3 = \{1, 2, 3, 5, 6, 7, 9\}$
move(q'_3, a) = $\{4, 8\}$
move(q'_3, b) = $\{6, 10\}$
ε-closure is $\{1, 2, 3, 4, 6, 7, 8\} = q'_1$
ε-closure is $\{1, 2, 3, 5, 6, 7, 10\} = q'_4$

$q'_4 = \{1, 2, 3, 5, 6, 7, 10\}$
move(q'_4, a) = $\{4, 8\}$
move(q'_4, b) = $\{5\}$
ε-closure is $\{1, 2, 3, 4, 6, 7, 8\} = q'_1$
ε-closure is $\{1, 2, 3, 5, 6, 7\} = q'_2$
$q'_1 = \{1, 4, 9, 14\}$

- move($q'_1, [i]$) = $\{2, 5, 15\}$
- ε-closure is $\{2, 5, 6, 8, 15\}$ = q'_2
- move($q'_1, [a-hj-z]$) = $\{5, 15\}$
- ε-closure is $\{5, 6, 8, 15\}$ = q'_3
- move($q'_1, [0-9]$) = $\{10, 15\}$
- ε-closure is $\{10, 11, 13, 15\}$ = q'_4
- move($q'_1, \text{all other}$) = $\{15\}$
- ε-closure is $\{15\}$ = q'_5

$q'_2 = \{2, 5, 6, 8, 15\}$

- move($q'_1, [a-eg-z]$) = $\{7\}$
- ε-closure is $\{6, 7, 8\}$ = q'_6
- move($q'_1, [0-9]$) = $\{7\}$
- ε-closure is $\{6, 7, 8\}$ = q'_6
- move($q'_1, [f]$) = $\{3, 7\}$
- ε-closure is $\{3, 6, 7, 8\}$ = q'_7
- move($q'_1, \text{all other}$) = $\{\}$
- ε-closure is $\{\}$

$q'_3 = \{5, 6, 8, 15\}$

- move($q'_3, [a-z0-9]$) = $\{7\}$
- ε-closure is $\{6, 7, 8\}$ = q'_6

$q'_4 = \{10, 11, 13, 15\}$

- move($q'_4, [0-9]$) = $\{12\}$
- ε-closure is $\{11, 12, 13\}$ = q'_8

$q'_5 = \{15\}$

$q'_6 = \{6, 7, 8\}$

- move($q'_6, [a-z0-9]$) = $\{7\}$
- ε-closure is $\{6, 7, 8\}$ = q'_6

$q'_7 = \{3, 6, 7, 8\}$

- move($q'_7, [a-z0-9]$) = $\{7\}$
- ε-closure is $\{6, 7, 8\}$ = q'_6

$q'_8 = \{11, 12, 13\}$

- move($q'_7, [0-9]$) = $\{12\}$
- ε-closure is $\{11, 12, 13\}$ = q'_6