
SvPablo: A Multi-Language Architecture-Independent

Performance Analysis System

Luiz De Rose and Daniel A. Reed �

fderose,reedg@cs.uiuc.edu

Department of Computer Science

University of Illinois

Urbana, Illinois 61801 USA

Abstract

In this paper we present the design of SvPablo, a language independent perfor-

mance analysis and visualization system that can be easily extended to new contexts

with minimal changes to the software infrastructure. At present, SvPablo supports

analysis of applications written in C, Fortran 77, Fortran 90, and HPF on a variety of

sequential and parallel systems. In addition to capturing application data via software

instrumentation, SvPablo also exploits hardware performance counters to capture the

interaction of software and hardware. Both hardware and software performance data

are summarized during program execution, enabling measurement of programs that

execute for hours or days on hundreds of processors. This performance data is stored

in a format designed to be language transparent and portable. We demonstrate the

usefulness of SvPablo for tuning application programs with a case study running on an

SGI Origin 2000.

Keywords: Performance analysis and visualization; Parallel and distributed systems; Soft-
ware instrumentation; Hardware monitoring; Run-time summarization; SDDF Meta-format.

Technical area: Software Tools.

�This work was supported in part by the Defense Advanced Research Projects Agency under DARPA

contracts DABT63-94-C0049, F30602-96-C-0161, DABT63-96-C-0027, and N66001-97-C-8532; by the Na-

tional Science Foundation under grants NSF CDA 94-01124 and ASC 97-20202; and by the Department of

Energy under contracts DOE B-341494, W-7405-ENG-48, and 1-B-333164.

1

1 Introduction

Developing applications that achieve high performance on current parallel and distributed

systems requires multiple iterations of performance analysis and re�nement. In each cycle,

analysts �rst identify the key program components responsible for the bulk of the program's

execution time and then modify the program to improve its performance.

For this methodology to be e�ective, not only must performance data be accurate, it must

be directly tied to the source program and to the underlying architecture. Without such ties,

application developers must deduce the e�ects of compiler transformations on source code

and the interactions of compiled code with architectural features and runtime systems. This

is especially diÆcult when data parallel source code is aggressively transformed to message

passing or shared memory compiled code [1].

The complexity of new parallel architectures further exacerbates performance analysis

problems | new distributed shared memory (DSM) systems have multilevel memory hi-

erarchies managed by distributed cache coherence protocols, all accessed by superscalar

processors that speculatively execute instructions. Understanding the execution behavior of

application code in such environments requires access to hardware performance counters and

careful mapping of the resulting data to source code constructs.

Correlating data parallel source code with dynamic performance data from both software

and hardware measurements, while still providing a portable, intuitive, and easily used in-

terface, is a challenging task [9]. However, without such tools, the use of high-performance

parallel systems will remain limited to a small cadre of application developers willing to mas-

2

ter the arcane details of processor architecture, system software, and compilation systems.

To provide a language and architecture independent mechanism for performance analysis,

we developed SvPablo (source view Pablo), a graphical environment for instrumenting appli-

cation source code and browsing dynamic performance data. SvPablo supports performance

data capture, analysis, and presentation for applications written in a variety of languages and

executing on both sequential and parallel systems. In addition, SvPablo exploits hardware

support of performance counters.

During the execution of instrumented code, the SvPablo library captures data and com-

putes performance metrics on the execution dynamics of each instrumented construct on

each processor. Because only statistics, rather than detailed event traces, are maintained,

the SvPablo library can capture the execution behavior of codes that execute for hours or

days on hundreds of processors.

Following execution, performance data from each processor is integrated, additional

statistics are computed, and the resulting metrics are correlated with application source

code, creating a performance �le that is represented via the Pablo self-describing data for-

mat (SDDF) [11, 3]. This performance �le is the speci�cation used by the SvPablo browser

to display application source code and correlated performance metrics.

Use of the Pablo SDDF meta-format has enabled us to develop a user interface that

is both portable and language independent. Moreover, because all performance metrics

are de�ned in SDDF, the interface is also performance metric independent, allowing us to

introduce new metrics or support new languages without change to the user interface code.

3

The remainder of this paper is organized as follows. In x2, we begin by describing the

SvPablo interactive and automatic source code instrumentation system, followed in x3 by

a discussion of support for hardware performance counters, and in x4, by a description of

the SvPablo performance visualization interface. Following this, we describe use of SDDF to

facilitate language and metric independence in x5. Building on this base, x6 demonstrates

application of SvPablo to several large scienti�c applications. Finally, x7{x8 discuss related

work and summarize our conclusions.

2 Performance Instrumentation

Interactive instrumentation provides detailed control, allowing users to specify precise points

at which data should be captured, albeit at the possible expense of excessive perturbation

and inhibition of compiler optimizations. In contrast, automatic instrumentation relies on

the compiler or runtime system to insert measurement probes in compiler-synthesized code.

Although this reduces the probability of excessive instrumentation perturbation, it sacri�ces

user control over instrumentation points. Because each is appropriate in di�erent circum-

stances, SvPablo supports both interactive and automatic instrumentation.

The current version of SvPablo supports interactive instrumentation of C, Fortran 77,

and Fortran 90 and automatic instrumentation of data parallel High Performance Fortran

(HPF). As described below, these choices were driven by experience with earlier generations

of instrumentation systems [11, 1] and analysis of common compiler transformations on

current parallel systems.

4

2.1 Automatic Instrumentation

To support analysis of codes written in data parallel HPF, SvPablo is integrated with the

commercial HPF compiler [10] from the Portland Group (PGI). The PGI HPF compiler

emits message passing code with embedded calls to the SvPablo data capture library. This

instrumentation captures data for each executable line in the original HPF source code. In

addition, the compiler synthesizes instrumentation for every procedure entry and exit and

for each message exchange among tasks.

Using these instrumentation points, the SvPablo data capture library automatically com-

putes performance metrics for all procedures and source code lines. In addition, as de-

scribed in x3, this library can also capture hardware performance events [7, 14] via the MIPS

R10000 [8] performance counters1.

The desire to capture performance data for data parallel code via compiler-synthesized

instrumentation is based on the results of our collaboration with the Rice Fortran D project

[1, 2]. The D system, a precursor to current HPF compilers, supports a large set of aggressive

optimizations, including procedure inlining, loop distribution, software pipelining, and global

code motion. Collectively, these optimizations result in executable code that di�ers markedly

from the original source.

Instrumenting the data parallel source code can potentially inhibit any or all of these

optimizations, dramatically reducing performance and, equally importantly, resulting in per-

formance measurements that are not typical of normal execution. Hence, SvPablo relies on

1The hardware instrumentation interface is readily extensible to other microprocessors.

5

the data parallel HPF compiler to emit instrumented code.

2.2 Interactive Instrumentation

In contrast to the high-level optimizations often supported by data parallel compilers, most

compilers for sequential languages focus primarily on local optimizations (e.g., register reuse,

common subexpression elimination, and strength reduction). Hence, SvPablo supports the

interactive instrumentation of ANSI C, Fortran 77, and Fortran 90 codes via instrument-

ing parsers2, since source code instrumentation in these languages tends to have far less

pernicious e�ects.

For each source �le the user wishes to instrument, SvPablo parses the �le and marks all

instrumentable constructs. In a compromise between instrumentation detail and perturba-

tion, SvPablo restricts these constructs to outer loops and procedure calls. This restriction

draws on our earlier experience with the Pablo interactive instrumentation interface [11]. We

observed that naive users tended to instrument everything, resulting in prodigious volumes

of performance data, high perturbations, and little insight.

After the instrumentation is complete, the SvPablo parser generates a copy of the source

code �le with calls to the data capture library. During execution, the SvPablo library

accumulates execution counts and durations for all instrumented constructs. As we shall

see in x4, performance metrics are shown beside each instrumentable construct. This allows

users to instrument an application, examine the correlation of performance metrics and

2Programs written in these languages can also be semi-automatically instrumented via command line

options.

6

source code, and re-instrument the application using the knowledge obtained.

3 Hardware Performance Integration

Although software instrumentation can capture the interaction of compiler-synthesized code

with runtime libraries and system software, understanding the e�ects of superscalar instruc-

tion execution and caching requires concurrent capture of both software and hardware per-

formance metrics. This is especially true when such processors are combined to form parallel

systems with hardware-managed memory hierarchies that interact with compiler-synthesized

application data movement. Fortunately, new microprocessors commonly provide a set of

performance registers for low overhead access to hardware performance data. For example,

the MIPS R10000 includes registers that count cycles, level one and level two cache misses,

oating point instructions, and branch mispredictions. Similar counters exist on the SUN

UltraSPARC, Intel Pentium Pro, and IBM Power2.

The SvPablo instrumentation library includes a standard interface for augmenting soft-

ware performance data with hardware metrics retrieved from special-purpose processor reg-

isters. We have exploited this interface to capture hardware performance data on the MIPS

R10000 and SGI Origin 2000.

The MIPS R10000 microprocessor includes two hardware performance counters, each

able to track one of 16 di�erent events. To capture more than two events during program

execution the operating system maintains a set of 32 virtual counters, multiplexing the phys-

ical counters across these. When N events are selected, the SGI operating system switches

7

events every cycle, counting each event every N clock cycles. Although this multiplexing

sacri�ces accuracy, it increases coverage, allowing a single program execution to acquire data

for all the desired hardware events. Within SvPablo, a user can select any desired set of

hardware events by specifying an ASCII �le that contains the virtual counters of interest.

The interface with the hardware counters is done through the SvPablo data capture library,

so the user does not need to re-compile the program to use a di�erent set of hardware events.

During program execution, the SvPablo data capture library queries the virtual counters

and records the data with extant application measurements. In addition to presenting the

raw counter data, the SvPablo library also computes derived metrics for each source code

line (e.g., MFLOPS and branch misprediction percentages).

After program execution, the SvPablo data capture library records its statistical analyses

in a set of summary �les, one for each executing process. A post-mortem utility program

then merges the summary �les, computing new global statistics and correlating metrics across

processors. The resulting summary �le is then input to the analysis graphical interface.

Taken together, the application and hardware performance measurements provide a rich

set of metrics for program analysis. Moreover, the SvPablo interface allows users to iden-

tify high-level bottlenecks (e.g., procedures), then explore increasingly levels of detail (e.g.,

identifying the speci�c cause of poor performance at a source code line executed on one of

many processors).

8

4 Performance Visualization

As noted at the outset, one of the design goals for SvPablo was to create an intuitive, cross-

architecture, language independent performance analysis interface. Realizing such a design

would allow users and performance analysts to learn a single set of software navigation

skills and then apply those skills to application codes written in a variety of languages and

executing on a diverse set of sequential and parallel architectures.

Hence, the SvPablo implementation relies on a single interface for performance instru-

mentation and visualization. If the program was interactively instrumented, the user can

re�ne the performance analysis by re-instrumenting the source code while visualizing perfor-

mance data from earlier executions. Regardless of the instrumentation mode, one can access

and load performance data from multiple prior executions, including di�erent numbers of

processors and hardware platforms. This allows one to compare executions to understand

hardware and software interactions.

As an example, Figure 1 shows the SvPablo interface, together with code and perfor-

mance data from an HPF program. As the �gure suggests, the SvPablo interface supports a

hierarchy of performance displays, ranging from color-coded routine pro�les to detailed data

on the behavior of a source code line on a single processor.

In the �gure, the leftmost scrollbox shows the set of �les comprising the HPF program,

with all previously measured executions of this code shown in the scrollbox to the right.

Here, the user has loaded a performance data context (i.e., a measured execution) for an eight

processor SGI Origin 2000. After selecting a performance context, the list of procedures in

9

the application code, together with two color coded metrics, is shown below the performance

contexts scrollbox in the area labeled Routines in Performance Data. The two colored

columns summarize, over all processes, the average number of calls and average cumulative

time for the routines.

Clicking on a routine name loads the associated source code in the bottom pane of

Figure 1, together with color-coded metrics beside each source code line. By default, the

SvPablo interface displays one column for each metric. However, the user can select only a

subset of the metrics to appear in the color coded columns. Clicking the mouse on a colored

box, either in the routine list or beside a source code line, creates a dialog box displaying

the maximum value associated with the selected metric.

In addition, pop-up dialogs showing other statistics and detailed information about a

particular routine or a particular source code line, including individual processor metrics,

can be obtained by clicking the mouse on the routine name or the source code line.

5 Language and Architecture Transparency

Developing a user interface that separates performance data presentation from language and

architecture idiosyncrasies requires a
exible speci�cation mechanism for both instrumenta-

tion points and performance metrics. Only with this separation can one readily add new

metrics and support new languages, compilers, and architectures without requiring extensive

modi�cations to the user interface code.

In SvPablo, the Pablo self-de�ning data format (SDDF) [11, 3] provides this separation.

10

Figure 1: Baseline Performance Data (MSTFLOW HPF Code)

11

SDDF de�nes data streams that consist of a group of record descriptors and record instances.

Much as structure declarations in the C programming language specify templates for storage

allocation, SDDF descriptors de�ne the structure for record instances. The data following the

descriptors consists of a stream of descriptor tag and data record pairs. Each tag identi�es

the descriptor that de�nes the juxtaposed data. By separating the structure of data from

its semantics, the Pablo SDDF library permits the construction of tools that can extract

and process SDDF records and record �elds with minimal knowledge of the data's deeper

semantics.

The SDDF meta-format provides the generality and extensibility necessary to represent

a diverse set of performance metrics and measurement points. Because this data may vary

across languages or even across executions of the same program (e.g., when instrumentation

points are changed interactively or when a di�erent set of hardware metrics is captured),

the performance data �les that de�ne execution contexts rely on SDDF speci�cations that

include both mandatory and optional data �elds.

As an example, consider the C code fragment

for (i = loopStart(p1); i < loopEnd(p2); i++) f A[i] = f(i); g

containing four instrumentable constructs: the for loop and three function calls (loopStart,

loopEnd, and f). Multiple performance metrics (e.g., elapsed time and hardware metrics)

may be associated with each of these instrumentable constructs. Similarly, automatic in-

strumentation of an HPF statement may result in multiple communication time and data

volume metrics.

12

To isolate such language di�erences from the user interface, the performance metrics

associated with each procedure and source line are organized as a hierarchy de�ned by a set

of SDDF records. As Figure 2 shows, this meta-meta-format hierarchy contains three groups

of SDDF record descriptors: mapping, con�guration and statistic.

Mapping records de�ne the set of statistics associated with each instrumentable construct.

In turn, con�guration records indicate the statistic record names and allow the SvPablo

interface to extract the base names of all performance metrics before reading the statistics

records, which de�ne the actual performance metrics.

This meta-con�guration is the key to SvPablo's extensibility. Tool developers can add

new metrics to SvPablo simply by updating the mapping and con�guration records and then

generating the desired set of statistic records. Below, we describe the meta-format for both

event (line) and procedure statistics.

5.1 Event Statistics

The performance data associated with an instrumentable construct is represented by a sin-

gle SDDF Event Statistics Mapping record and by a set of Statistics records, one for each

associated performance metric. The mapping record de�nes the general information about

the instrumentation point (e.g., its source code location) and speci�es a group of pointers to

statistics records for the actual performance metrics.

As an example, consider the mapping for event 70, shown in Figure 2. The event mapping

record indicates two types of associated con�guration and statistic records: \LOOP" and

13

...

...

...

...

InstrGrad:
InstrGrad Max:

InstrGrad Mean:
 ...

DcacheMiss:
DcacheMiss Max:
 ...
DcacheMiss Mean:

ID: 122

Type: R10K
 LOOP

Event Mapping

ID: 70

File: prbsor.c

Proc: main

Line: 119 Type: R10K

Record Name: R10K Statistics

Record Name: R10K Statistics

Record Name: Loop Statistics

Record Name: Loop Statistics

ID: 70

Count:
Count Max:

Count Mean:
 ...

IncSeconds:
IncSeconds Max:
 ...
IncSeconds Mean:

InstrGrad:
InstrGrad Max:

InstrGrad Mean:
 ...

DcacheMiss:
DcacheMiss Max:
 ...
DcacheMiss Mean:

ID: 70

Procedur Statistics

ID: 17

File: prbsor.c

Name: main

Line: 98

Count:
Count Max:

Count Mean:
 ...

ExcSeconds Max:

ExcSeconds Mean:

ExcSeconds:

IncSeconds Max:

IncSeconds Mean:

IncSeconds:

 CALL

Event Mapping

ID: 122

File: prbsor.c

Proc: main

Type: R10K

Base Name: IncSeconds

Procedure Configuration

Event Configuration

Event Configuration

Event Configuration

Event Configuration

Base Name: InstrGrad

Type: R10K

Base Name: DcacheMiss

Base Name: Count

Type: LOOP

Type: LOOP

Base Name: IncSeconds

 ...

 ...

R10K Statistics

Loop Statistics

R10K Statistics

Line: 235

Figure 2: SvPablo SDDF Record Hierarchy

14

// "description" "Performance Statistics Based On Event ID"

"R10K stats" f
int "Event ID";

// "InstrGrad" "Instructions Graduated"

double "InstrGrad"[];

double "InstrGrad Max";

int "InstrGrad Max Node";

double "InstrGrad Min";

int "InstrGrad Min Node";

double "InstrGrad Mean";

double "InstrGrad Std Dev";

// "DcacheMiss" "Data Cache Misses"

int "DcacheMiss"[];

int "DcacheMiss Max";

int "DcacheMiss Max Node";

int "DcacheMiss Min";

int "DcacheMiss Min Node";

double "DcacheMiss Mean";

double "DcacheMiss Std Dev";

g;;

Figure 3: R10000 Hardware Performance Counters Record Descriptor

\R10K." The con�guration records then de�ne the base names for all statistics associated

with the \LOOP" and \R10K" metrics. In turn, Figure 3 shows the SDDF statistics record

descriptor for the MIPS R10000 counter data for this example. The event identi�er speci�es

the source code location by correlating it to parent mapping record.

Each metric (e.g., data cache misses) includes data for each process as a vector, together

with standard statistics (i.e., minima, maxima, mean, and standard deviation). SvPablo

uses the vector to present performance data for each process and the statistics to present

data for each source code line. For each metric in the statistics record descriptor, there is an

event con�guration record which speci�es the base name of the metric. These base names

are used by SvPablo to read the corresponding performance data.

15

5.2 Procedure Statistics

Finally, a separate set of SDDF procedure statistics records de�ne the performance met-

rics associated with all procedures. These records contain both mandatory and optional

�elds. The mandatory �elds include procedure mapping information and two metric �elds

| the number of calls to the procedure and the exclusive duration of the procedure (i.e., its

execution time excluding all descendent procedures).

As illustrated in Figure 2, the mapping information is provided by the procedure statis-

tics record and includes: a unique procedure identi�er, the name of the �le containing the

procedure, the procedure name, and the procedure's �rst source code line. The SvPablo in-

terface uses these �elds to display the list of procedures and their metrics, shown in Figure 1,

and the associated performance pop-up dialogs.

Finally, the remaining, optional �elds de�ne the data needed for the detailed performance

metric displays. As illustrated in Figure 2, the base names of these additional metrics are

speci�ed in the procedure con�guration records.

6 Application Tuning Example

The true test of any performance tool is its e�ectiveness when applied to poorly performing

applications in a realistic context. To assess the utility of SvPablo and the possible usability

penalties induced by our design's emphasis on language independence and portability, we

worked with application developers from the National Center for Supercomputing Applica-

16

Exclusive Send Message Receive Message

Statement Seconds MFLOPS Duration Duration

loop 10 6.1 0.25 5.71
(73) 91.3 0.04 5.61 84.00
(82) 94.8 0.04 5.94 86.95

Table 1: Average Metric Values (Array \fs" in Baseline Code)

tions (NCSA). Based on this experience, we present a case study on the SGI Origin 2000

that demonstrate SvPablo's e�ectiveness when analyzing performance and tuning codes.

This case study explores the performance of a numerical model simulating cloud and

density current dynamics [5]. The code is a three-dimensional, non-hydrostatic, �nite di�er-

ence, convective cloud model that utilizes a quasi-compressible version of the Navier-Stokes

equations. Originally written in CM Fortran for the CM5, the code was later translated to

High-Performance Fortran, yielding approximately 9000 lines of HPF code. We executed

two versions of the program (baseline and modi�ed), using 8 processors.

Figure 1 shows the SvPablo interface displaying the execution behavior of the original

code on eight processors of an SGI Origin. The pane Routines in Performance Data,

which is sorted by routine duration, indicates that the main bottleneck in the program is the

routine \s mix", which had a cumulative time of 197.20 seconds. Via SvPablo, we identi�ed

the computation of \X - Mixing" and \Y - Mixing" in the routine \s mix" as the primary

bottleneck. The average metric values for the two most time consuming statements in the

code and the enclosing loop, summarized in Table 1, indicate that the bottleneck was caused

by communication inside the loop.

Three pertinent observations are revealed by the data shown in Figure 1:

17

� The compiler-synthesized communication required by the circular shift (\cshift")

on the array \flx" is primary cause of the poor performance observed for this HPF

statement. This is denoted by the dark color bars for the communication metric.

� The previous assignment also contains circular shifts and would expect compiler-

synthesized communication as well. However, SvPablo shows that no communication

occurred (indicated by the absence of communication metric data in the associated

columns).

� SvPablo assigns communication costs to a loop, rather than to its component state-

ments, if some loop-related communication occurs prior to execution of the loop body.

For this loop, no loop-related communication should be necessary. However, SvPablo

shows that the HPF compiler did synthesize some communication prior to the loop

body.

Based on these observations, one can deduce the cause for the performance di�erence

between the two circular shifts. Succinctly, the arrays \kmh" and \s", which must be shifted

for the computation of \flx," are loop independent. Hence, the HPF compiler can prefetch

the necessary data before loop execution begins. However, the array \flx" is computed in

the �rst statement of the loop and used in the second. Hence, the data must be circularly

shifted during each loop iteration.

To improve the performance of this routine, we split the original loop, forming four loops,

one for each statement inside the original loop, as shown in Figure 4. By splitting the loop,

we expected the HPF compiler to begin migrating data as soon as an iteration of the previous

18

Exclusive Send Message Receive Message

Statement Seconds MFLOPS Duration Duration
P

four loops 10.54 0.50 9.38
(73) 0.23 16.3
(82) 0.28 14.0

Table 2: Average Metric Values (Array \fs" in Modi�ed Code)

loop is completed, overlapping computation and communication.

After splitting the original loop, we again executed the code and measured its perfor-

mance with SvPablo. As expected, communication occurred between loops, reducing the

subroutine's execution time by an order of magnitude, from 197.2 seconds to 14.5 seconds.

Table 2 shows the average metric values for the same two statements and for the sum of

the execution times of the four loops. Clearly, the additional overhead of the loops is very

small compared to the performance gained by overlapped communication. Moreover, the

mean MFLOPS rate for each processor increased by four orders of magnitude.

7 Related Work

Performance Evaluation tools can normally be classi�ed into two major categories, the ones

that try to predict performance (see for example P3T [4]) and the ones that measure the

performance of a program during run-time. SvPablo falls into the latter category, which

has been employed by several e�orts described in the literature, targeting both sequential

and parallel systems | far more than can be discussed here. Notable examples include

Paradyn [6], developed at the University of Wisconsin, the Pablo Performance Analysis En-

vironment [11], developed at the University of Illinois, and the Automated Instrumentation

19

Figure 4: Performance Data (MSTFLOW HPF Modi�ed Code)

20

and Monitoring System (AIMS) [13], developed at NASA Ames Research Center.

Paradyn is a tool for measuring the performance of large-scale parallel programs. It per-

forms dynamic instrumentation on long-running programs, in search of performance prob-

lems. Its main di�erence from SvPablo and other performance measurements tools is that

instrumentation and visualization is performed during run-time.

The Pablo Performance Analysis Environment consists of several components for instru-

menting and tracing parallel programs and for analyzing the trace �les produced by the

instrumented programs. SvPablo used and extended some of these components, such as

the SDDF library [3] and the C parser and GUI from iPablo [12]. However, it di�ers from

the Pablo Environment in that it performs run-time summarization instead of collecting

trace data, and the data capture and presentation components are integrated into the same

graphical performance browser.

A work closely related to the Pablo Environment, is AIMS, a software toolkit for perfor-

mance evaluation of parallel applications on multiprocessors. AIMS accepts Fortran and C

parallel programs written using two message passing libraries: MPI and PVM. It has three

major software components: a source code instrumentor, a run-time performance-monitoring

library, and a suite of tools that process and display execution data. SvPablo di�ers from

AIMS in that SvPablo performs run-time summarization and has the instrumentation and

visualization components integrated.

In general, the majority of the performance measurement tools focus on particular pro-

gramming models (e.g., message passing or data parallel) or speci�c hardware/software plat-

21

forms. In contrast, SvPablo is designed to be independent of both programming model and

architecture, allowing developers to re-target the performance analysis infrastructure simply

by changing SvPablo's meta-data speci�cation of performance metrics.

8 Conclusions

In this paper, we described the design of SvPablo, a toolkit for instrumentation, data capture

and analysis of sequential and parallel codes. SvPablo supports both software performance

measurement and low overhead access to hardware performance counters, summarizing the

performance data during program execution. Working with a group of large-scale application

developers, we observed that SvPablo enabled us to rapidly identify and correct performance

bottlenecks.

However, the key feature of SvPablo is its language and architecture transparency,

achieved by representing performance data via a meta-meta-format presentation of events

from di�erent languages using the same graphical interface. The
exible structure of the

performance �le also permits the ready introduction of new metrics and support of new

languages without requiring modi�cations to the graphical user interface.

References

[1] Adve, V., Mellor-Crummey, J., Wang, J.-C., and Reed, D. Integrating Com-
pilation and Performance Analysis for Data-Parallel Programs. In Proceedings of Su-

percomputing'95 (November 1995).

[2] Adve, V. S., Mellor-Crummey, J., Anderson, M., Kennedy, K., Wang, J.,
and Reed, D. A. Integrating Compilation and Performance Analysis for Data-Parallel
Programs. In Proceedings of the Workshop on Debugging and Performance Tuning for

22

Parallel Computing Systems, M. L. Simmons, A. H. Hayes, D. A. Reed, and J. Brown,
Eds. IEEE Computer Society Press, 1994.

[3] Aydt, R. The Pablo Self-De�ning Data Format. Tech. rep., Department of Computer
Science at the University of Illinois at Urbana-Champaign, April 1994.

[4] Fahringer, T. Estimating and Optimizing Performance for Parallel programs. IEEE
Computer 28, 11 (November 1995), 47{56.

[5] Lee, B. D., and Wilhelmson, R. B. The Numerical Simulation of Non-Supercell
Tornadogenesis. In 18th Conference on Severe Local Storms (February 1996).

[6] Miller, B. P., Callaghan, M. D., Cargille, J. M., Hollingsworth, J. K.,
Irvin, R. B., Karavanic, K. L., Kunchithapadam, K., and Newhall, T. The
Paradyn Parallel Performance Measurement Tools. IEEE Computer 28, 11 (November
1995), 37{46.

[7] MIPS Technologies Inc. De�nition of MIPS R10000 Performance Counters, 1996.
http://www.sgi.com/MIPS/products/r10k/Perf Cnt/R10K PF Count.doc.html.

[8] MIPS Technologies Inc. MIPS R10000 Microprocessor User's Manual, version
2.0 ed. 2011 N Shoreline Blvd; PO Box 7311; Mountain View, CA 94039-7311, October
1996. http://www.sgi.com/MIPS/products/r10k/UMan V2.0/R10K UM.cv.html.

[9] Pancake, C. M., Simmons, M. L., and Yan, J. C. Performance Evaluation Tools
for Parallel and Distributed Systems. IEEE Computer 28, 11 (November 1995), 16{19.

[10] The Portland Group, Inc. PGHPF User's Guide, 1994.

[11] Reed, D. A., Aydt, R. A., Noe, R. J., Roth, P. C., Shields, K. A., Schwartz,
B., and Tavera, L. F. Scalable Performance Analysis: The Pablo Performance
Analysis Environment. In Proceedings of the Scalable Parallel Libraries Conference

(1993), A. Skjellum, Ed., IEEE Computer Society.

[12] Shields, K. A. iPablo User's Guide. Tech. rep., Department of Computer Science at
the University of Illinois at Urbana-Champaign, December 1994.

[13] Yan, J. C., Sarukkai, S. R., and Mehra, P. Performance Measurement, Visu-
alization and Modeling of Parallel and Distributed Programs using the AIMS Toolkit.
Software Practice & Experience 25, 4 (April 1995), 429{461.

[14] Zagha, M., Larson, B., Turner, S., and Itzkowitz, M. Performance Analysis
Using the MIPS R10000 Performance Counters. In Proceedings of Supercomputing'96

(November 1996).

23

