
CS320/CSE302/ECE392 : INTRODUCTION TO PARALLEL PRO-
GRAMMING FOR SCIENTISTS AND ENGINEERS

Spring 1998

Machine Problem 1

Assigned: Feb. 8, 1999.

Due:         Feb. 15, 1999.

Objective:
To explore the vector features of Fortran 90.

In this MP you are requested to translate a Fortran 77 subroutine (listed below) into Fortran 90. The 
subroutine applies LU decomposition to a matrix.

The LU decomposition of a matrix is useful in finding the inverse of the matrix and in solving a set of
linear equations.  Given an n*n matrix A, we wish to find two other n*n matrices L and U such that
   

or

   
Here, L is a lower triangular matrix, i.e. lij = 0, i<j and U is an upper triangular matrix, i.e. uij = 0, j<i.

The algorithm given does an in-place computation of the L and U matrices, collapsing the two into a
single result matrix as follows

L U⋅ A=

l11 0 0 … 0

l21 l22 0 … 0

… … … … …
ln1 ln2 ln3 … lnn

u11 u12 u13 … u1n

0 u22 u23 … u2n

… … … … …
0 0 0 … unn

⋅

a11 a12 a13 … a1n

a21 a22 a23 … a2n

… … … … …
an1 an2 an3 … ann

=

u11 u12 u13 … u1n

l21 u22 u23 … u2n

… … … … …
ln1 ln2 ln3 … unn



matrix

 top to

roes.
The elements l ii are not explicitly stored and are assumed to be 1 for i=1,2,…,n.  The elements of this 

are computed by the subroutine one column at a time from left to right and within each column from
bottom.

The computation is stopped at the beginning of the subroutine if one of the rows of the matrix is all ze

Subroutine LUDCMP(a, n, np, indx, d)

     Given an n*n matrix a, with physical dimension np, this routine replaces it by the LU 

decomposition  of a row-wise permutation of itself.  a and n are input, a is output, 

arranged as in equation (5); indx is an output vector which records the row permutation 

effected by the partial pivoting; d is output as +1 or –1 depending on whether the number 

of row interchanges was even or odd, respectively.

Parameter (nmax=100, tiny=1.0E-20)   /*largest expected n, and a small number*/

Dimension a(np, np), indx(n), vv(nmax)  /*vv stores the implicit scaling of each row*./

d=1.0                                                    /*no row interchanges yet*/

Do i=1,n                                                /*loop over rows to get the scaling 

information*/

      aamax=0.

      Do j=1,n

            If (abs(a(i,j)) .gt. aamax) aamax=abs(a(i,j))

      Enddo

      If (aamax .eq. 0) then

Print *, ‘Singular matrix.’  /*no nonzero largest element*/

Stop

      Endif

      vv(i)=1.0/aamax                                       /*save the scaling*/

Enddo

Do j=1,n                /*this is the loop over columns of Crout’s method*/

      Do i=1, j-1     /*this is equation (3) except for i=j*/

            sum=a(i,j)

            Do k=1,i-1

                  sum=sum-a(i,k)*a(k,j)

             Enddo

             a(i,j)=sum

      Enddo

      aamax=0.     /*initialize for the search for the largest pivot element*/

      Do i=j,n       /*this is i=j for eqn  (3) and i=j+1,…,n for eqn(4)*/

            sum=a(i,j)

            Do k=1,j-1

                  sum=sum-a(i,k)*a(k,j)

            Enddo

            a(i,j)=sum

            dum=vv(i)*abs(sum)         /*figure of merit for the pivot*/

            If (dum .ge. aamax) then   /*is it better than the best so far?*/

                imax=i

                aamax=dum

            Endif

      Enddo

      If (j .ne. imax) then          /*do we need to interchange rows?*/

          Do k=1,n                    /*yes, do so…*/

                dum=a(imax,k)

                a(imax,k)=a(j,k)

                a(j,k)=dum

          Enddo



          d=-d                          /*and change the parity of d*/

          vv(imax)=vv(j)           /*also, interchange the scale factor*/

      Endif

      indx(j)=imax

      If (a(j,j) .eq. 0) a(j,j)=tiny

      If (j .ne. n) then               /*now divide by the pivot element*/

          dum=1.0/a(j,j)

          Do i=j+1,n

                a(i,j)=a(i,j)*dum

          Enddo

      Endif

 Enddo                                    /*go back for the next column in the reduction*/

 Return

 End subroutine LUDECOMPOSE

 

Rewrite the above subroutine in Fortran90 using as many vector operations as possible. 
Some of the functions you might want to keep in mind are:·
maxval, minval·

maxloc, minloc·

any, all·

spread.

Also, eliminate the third argument to the subroutine (np) which is not necessary in Fortran 90. 

General Instructions:
The machine to be used is newton.cse.uiuc.edu, and the password for your account on this machine has been 
mailed to you.  If you have not received the same, please contact the TA.
The Fortran90 compiler on that machine is located in /opt/SUNWspro/bin.  To use the compiler you simply 
have to type:
     f90 <filename.f90>
Make sure that your path variable includes the directory /opt/SUNWspro/bin.
The compiler will produce an a.out file if there are no errors, and you can execute this file by simply typing 
in its name.  Links to the Sun Fortran Manuals are available from the class webpage.
The Fortran 90 compiler in newton does not exploit the parallelism of vector operations. Therefore, your 
program will be executed sequentially. 

Leave your version of the subroutine in your home directory in a file named mp1.f90.  It will be picked up 
from there for grading.  Please make sure that your directory is group readable, and DO NOT modify the file 
after the due date because the date of  the file will be taken as the date when you submitted your solution.
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