
1 of 19

PI
A Brief Introduction to M

2 of 19

hat types of

icular
endent of the

e implemented
 help from the
plementation,

del and the

Skejellum. MIT
© 1998 David A. Padua

Parallel Computational Models

“A computational view is a conceptual view of w
operations are available to the program.

It does not include the specific syntax of a part
programming language, and it is (almost) indep
underlying hardware that supports it.

That is any of the models that we discuss can b
on any modern parallel computer, given a little
operating system. The effectiveness of such im
however, depends on the gap between the mo
machine.”

--From USING MPI, W. Gropp, E. Lusk, and A.
Press

3 of 19

rocesses that
nicate with
sages.

 model that the
ess to the local

erformed by

Skejellum. MIT
Message Passing

“The message-passing model posits a set of p
have only local memory but are able to commu
other processes by sending and receiving mes

It is a defining feature of the message-passing
data transfer from the local memory of one proc
memory of another requires operations to be p
both processes.”

--From USING MPI, W. Gropp, E. Lusk, and A.
Press

4 of 19

here
ether they are
re level, and
cal and remote
ory operation

s.”

Skejellum. MIT
Remote memory operations

“Halfway between the shared memory model, w
processes access memory without knowing wh
triggering remote communication at the hardwa
the message-passing model, where both the lo
processes must participate, is the remote mem
model.

This model is typified by put and get operation

--From USING MPI, W. Gropp, E. Lusk, and A.
Press

5 of 19

of today’s
tion networks
here the
 a share-
l can take
fer.

nd to be a
ss parallel

om the data
ind its
arallel
cheduling

e tolerant of the
ed networks.

bugging is
n in the shared-
ost common
Advantages of the message-passing model

• Universality. Matches the hardware of most
parallel supercomputers, as well as worksta
that are beginning to compete with them. W
machine supplies extra hardware to support
memory model, the message passing mode
advantage of this model to speed data trans

• Expressivity. Message-passing has been fou
useful and complete model in which to expre
algorithms. It provides the control missing fr
parallel and compiler-based models. Some f
antropomorphic flavor useful in formulating p
algorithms. It is well suited to adaptive, self s
algorithms and to programs that can be mad
unbalance in process speeds found on shar

• Ease of debugging. It can be argued that de
easier in the message-passing paradigm tha
memory model. This is because one of the m

6 of 19

 memory. The
ory references

 (only one
ation), makes it
d writes.

hat message
parallel
n on shared-
sing model can
rammer control
© 1998 David A. Padua

causes of error is unexpected overwriting of
message-passing model, by controlling mem
more explicitly than any of the other models
process has direct access to any memory loc
easier to locate erroneous memory reads an

• Performance. The most compelling reason t
padding will remain a permanent part of the
computing environment is performance. Eve
memory computers, use of the message-pas
improve performance by providing more prog
of data locality in the memory hierarchy.

7 of 19

erical

good academic

 subintervals
ctangles, each

ts height will be
 of each

 The overall
ws:

π
4

A first MPI program

This program will compute the value of πby num
integration.

Not a very effective way of computing p, but a
exercise.

The strategy is to divide the interval [0,1] into n
and approximate the integral by the sum of n re
associated to one of the subintervals.

Thus, each rectangle will have width 1/n, and i
the value of the function 1/(1+x2) in the middle
subinterval.

MPI programs usually follow the SPMD model.
organization of our example program is as follo

1

1 x
2

+
-------------- xd

0

1

∫ arc x()tan
0
1

arc 1()tan arc 0()tan–= = =

8 of 19

)

of subintervals

rocesses

Intialize
Get total number of processes (numprocs
Get the number of THIS process (myid)
The master process reads n, the number
The master process broadcasts n
h=1./n
localpi=0
do i=myid+1,n,numprocs

x = h*i-h/2
localpi = localpi + (1/(1+x**2))*h

end do
Perform a sum of all localpi from all p
The master prints the result of the sum

9 of 19

must be the first

ach program

n MPI routine
h is either
f.h file) or an
 test the error
Initialize

call MPI_INIT(ierr)

This call is required in every MPI program and
MPI call. It establishes the MPI environment.

Only one invocation of MPI_INIT can occur in e
execution.

Its only argument is an error code. Every Fortra
returns an error code in its last argument, whic
MPI_SUCCESS (a constant defined in the mpi
implementation-defined error code. We will not
codes in this example.

10 of 19

ierr)

If a group
entified within
o n-1.

communicator
and an

tor
h]) that defines
Get process number

call MPI_COMM_RANK(MPI_COMM_WORLD,myid,

In MPI, processes can be divided into groups.
contains n processes, then its processes are id
the group by ranks, which are integers from 0 t

All MPI communications are associated with a
that describes the context [to be defined later]
associated group.

In this program we use the default communica
(MPI_COMM_WORLD [defined in the file mpif.
one group containing the set of all processes.

11 of 19

ocs,ierr)
Get total number of processes

call MPI_COMM_SIZE(MPI_COMM_WORLD,numpr

12 of 19
The master process reads n

if (myid .eq. 0) then
print *, ‘enter the number of intervals: (0 quits)’
read (*,*) n

end if

13 of 19

MM_WORLD, ierr)MM_WORLD, ierr)

 associated with
nding up with a

the address (n),
r of items (1).
by the fourth

es have n and
ough
ution, mypi.
The master process broadcasts n

call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_CO

The master process broadcasts n

call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_CO

This call results in every process (in the groups
the communicator given in the fifth argument) e
copy of n.

The data to be communicated is described by
the data type (MPI_INTEGER), and the numbe
The process with the original copy is specified
argument (0).

Thus, after the call to MPI_BCAST, all process
their own identifiers (i.e. their myid) which is en
information for each one to compute its contrib

14 of 19

Sum

call ,

The ult addresses,
resp (third argument)
item ument). The
ope t), and the result of
the ith rank 0 (fifth
argu

The verlap (i.e. must be
diffe
 all localpi variables

 MPI_REDUCE(localpi,pi,1,MPI_DOUBLE_PRECISION
 MPI_SUM,0,MPI_COMM_WORLD, ierr)

 first two arguments identify the source and res
ectively. The data being collected consists of 1
 of type MPI_DOUBLE_PRECISION (fourth arg
ration is addition (MPI_SUM, the next argumen
operating is to be placed in pi on the process w
ment).

 first two arguments of MPI_Reduce must not o
rent variables or sections of an array).

15 of 19

ultiplication

ommunication,
t common
ing, or master

 parallelize this
llustrates MPI
 fundamental

s different code
A self-scheduling example: matrix-vector m

This example illustrates explicit point-to point c
and at the same time illustrates one of the mos
parallel algorithms prototypes: the self schedul
worker algorithm.

This example does not illustrate the best way to
particular numerical computation, but rather it i
send and receive operations in the context of a
type of parallel algorithm.

In this example, the master (process 0) execute
from the slaves (processes 1 to numprocs-1).

16 of 19

e to each)
The objective is to compute c = Ab
master:
broadcast vector (b) to all slaves
send first numprocs-1 rows of A to slaves (on
numsent = numprocs-1
do number of rows times

receive an element of c (from process p)
if numsent < number of rows then

send another row of A to p
else

send finish messsage to p
end if
numsent = numsent + 1

end do

slave:
receive b
top: receive row or finish message
if finish message then

finish
else

compute dot product of row time b
go to top

end if

17 of 19

master: broadcast vector b:

call MPI_BCAST(b, cols, MPI_DOUBLE_PRECISION, master,
MPI_COMM_WORLD, ierr)

Notice that cols in the number of elements of b

slave: receive vector b:
call MPI_BCAST(b, cols, MPI_DOUBLE_PRECISION, master,

MPI_COMM_WORLD, ierr)

18 of 19

master: send first numprocs-1 row of A:
do 40 i=1, numprocs-1

do 30 j=1,cols
buffer(j)=a(i,j)

30 continue
call MPI_SEND(buffer,cols, MPI_DOUBLE_PRECISION,i,

i, MPI_COMM_WORLD, ierr)
40 continue

19 of 19
© 1998 David A. Padua

	master: broadcast vector b:
	A Brief Introduction to MPI
	Parallel Computational Models
	Message Passing
	Remote memory operations
	Advantages of the message-passing model
	A first MPI program
	Initialize
	Get process number
	Get total number of processes
	The master process reads n
	The master process broadcasts n
	Sum all localpi variables
	A self-scheduling example: matrix-vector multiplication
	The master process broadcasts n

