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Parallel Computational Models

“A computational view is a conceptual view of w
operations are available to the program.

It does not include the specific syntax of a part
programming language, and it is (almost) indep
underlying hardware that supports it.

That is any of the models that we discuss can b
on any modern parallel computer, given a little
operating system. The effectiveness of such im
however, depends on the gap between the mo
machine.” 

--From USING MPI, W. Gropp, E. Lusk, and A. 
Press
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Message Passing

“The message-passing model posits a set of p
have only local memory but are able to commu
other processes by sending and receiving mes

It is a defining feature of the message-passing
data transfer from the local memory of one proc
memory of another requires operations to be p
both processes.”

--From USING MPI, W. Gropp, E. Lusk, and A. 
Press
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Remote memory operations

“Halfway between the shared memory model, w
processes access memory without knowing wh
triggering remote communication at the hardwa
the message-passing model, where both the lo
processes must participate, is the remote mem
model.

This model is typified by put and get operation

--From USING MPI, W. Gropp, E. Lusk, and A. 
Press
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Advantages of the message-passing model

• Universality. Matches the hardware of most 
parallel supercomputers, as well as worksta
that are beginning to compete with them. W
machine supplies extra hardware to support
memory model, the message passing mode
advantage of this model to speed data trans

• Expressivity. Message-passing has been fou
useful and complete model in which to expre
algorithms. It provides the control missing fr
parallel and compiler-based models. Some f
antropomorphic flavor useful in formulating p
algorithms. It is well suited to adaptive, self s
algorithms and to programs that can be mad
unbalance in process speeds found on shar

• Ease of debugging. It can be argued that de
easier in the message-passing paradigm tha
memory model. This is because one of the m
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causes of error is unexpected overwriting of
message-passing model, by controlling mem
more explicitly than any of the other models
process has direct access to any memory loc
easier to locate erroneous memory reads an

• Performance. The most compelling reason t
padding will remain a permanent part of the 
computing environment is performance. Eve
memory computers, use of the message-pas
improve performance by providing more prog
of data locality in the memory hierarchy.
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A first MPI program

This program will compute the value of πby num
integration.

Not a very effective way of computing p, but a 
exercise.

The strategy is to divide the interval [0,1] into n
and approximate the integral by the sum of n re
associated to one of the subintervals.

Thus, each rectangle will have width 1/n, and i
the value of the function 1/(1+x2) in the middle
subinterval.

MPI programs usually follow the SPMD model.
organization of our example program is as follo
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rocesses
 

Intialize
Get total number of processes (numprocs
Get the number of THIS process (myid)
The master process reads n, the number 
The master process broadcasts n
h=1./n
localpi=0
do i=myid+1,n,numprocs

x = h*i-h/2
localpi = localpi + (1/(1+x**2))*h

end do
Perform a sum of all localpi from all p
The master prints the result of the sum
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Initialize

call MPI_INIT(ierr)

This call is required in every MPI program and 
MPI call. It establishes the MPI environment.

Only one invocation of MPI_INIT can occur in e
execution.

Its only argument is an error code. Every Fortra
returns an error code in its last argument, whic
MPI_SUCCESS (a constant defined in the mpi
implementation-defined error code. We will not
codes in this example.
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ierr)
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h]) that defines 
Get process number

call MPI_COMM_RANK(MPI_COMM_WORLD,myid,

In MPI, processes can be divided into groups. 
contains n processes, then its processes are id
the group by ranks, which are integers from 0 t

All MPI communications are associated with a 
that describes the context [to be defined later] 
associated group. 

In this program we use the default communica
(MPI_COMM_WORLD [defined in the file mpif.
one group containing the set of all processes.
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ocs,ierr)
Get total number of processes

call MPI_COMM_SIZE(MPI_COMM_WORLD,numpr
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The master process reads n

if (myid .eq. 0) then
print *, ‘enter the number of intervals: (0 quits)’
read (*,*) n

end if
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MM_WORLD, ierr)MM_WORLD, ierr)

 associated with 
nding up with a 
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The master process broadcasts n

call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_CO

The master process broadcasts n

call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_CO

This call results in every process (in the groups
the communicator given in the fifth argument) e
copy of n. 

The data to be communicated is described by 
the data type (MPI_INTEGER), and the numbe
The process with the original copy is specified 
argument (0).

Thus, after the call to MPI_BCAST, all process
their own identifiers (i.e. their myid) which is en
information for each one to compute its contrib
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Sum

call ,
    

The ult addresses, 
resp  (third argument) 
item ument). The 
ope t), and the result of 
the ith rank 0 (fifth 
argu

The verlap (i.e. must be 
diffe
 all localpi variables

 MPI_REDUCE(localpi,pi,1,MPI_DOUBLE_PRECISION
            MPI_SUM,0,MPI_COMM_WORLD, ierr)

 first two arguments identify the source and res
ectively. The data being collected consists of 1
 of type MPI_DOUBLE_PRECISION (fourth arg
ration is addition (MPI_SUM, the next argumen
operating is to be placed in pi on the process w
ment).

 first two arguments of MPI_Reduce must not o
rent variables or sections of an array).
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A self-scheduling example: matrix-vector m

This example illustrates explicit point-to point c
and at the same time illustrates one of the mos
parallel algorithms prototypes: the self schedul
worker algorithm.

This example does not illustrate the best way to
particular numerical computation, but rather it i
send and receive operations in the context of a
type of parallel algorithm.

In this example, the master (process 0) execute
from the slaves (processes 1 to numprocs-1).
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e to each)
The objective is to compute c = Ab
master:
broadcast vector (b) to all slaves
send  first numprocs-1 rows of A to slaves (on
numsent = numprocs-1
do number of rows times

receive an element of c (from process p)
if numsent < number of rows then 

send another row of A to p
else

send finish messsage to p
end if
numsent = numsent + 1

end do

slave:
receive b
top: receive row or finish message 
if finish message then 

finish
else

compute dot product of row time b
go to top

end if
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master: broadcast vector b:

call MPI_BCAST(b, cols, MPI_DOUBLE_PRECISION, master,
MPI_COMM_WORLD, ierr)

Notice that cols in the number of elements of b

slave: receive vector b:
call MPI_BCAST(b, cols, MPI_DOUBLE_PRECISION, master,

MPI_COMM_WORLD, ierr)
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master: send first numprocs-1 row of A:
do 40 i=1, numprocs-1

do 30 j=1,cols
buffer(j)=a(i,j)

30 continue
call MPI_SEND(buffer,cols, MPI_DOUBLE_PRECISION,i,

i, MPI_COMM_WORLD, ierr)
40 continue
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