
1 of 19

A Brief Introduction to MPI

2 of 19© 1998 David A. Padua

Parallel Computational Models

“A computational view is a conceptual view of what types of
operations are available to the program.

It does not include the specific syntax of a particular
programming language, and it is (almost) independent of the
undrlying hardware that supports it.

That is any of the models that we discuss can be implemented
on any modern parasllel computer, given a little help from the
operating system. The effectiveness of such implementation,
however, depends on the gap between the model and the
machine.”

--From USING MPI, W. Gropp, E. Lusk, and A. Skejellum. MIT
Press

3 of 19

Message Passing

“The message-passing model posits a set of processes that
have only local memory but are alble to communicate with
other processes by sending and receiving messages.

It is a defining feature of the message-passing model that the
data transfer from the local memory of one process to the local
memory of another requires operations to be performed by
both processes.”

--From USING MPI, W. Gropp, E. Lusk, and A. Skejellum. MIT
Press

4 of 19

Remote memory operations

“Halfway between the sahred memory model, where
processes access memory without knowing whether they are
triggering reemote communication at the hardware level, and
the message-passing model, where both the local and remote
processes must participate, is the remote memory operation
model.

This model is typified by put and get operations.”

--From USING MPI, W. Gropp, E. Lusk, and A. Skejellum. MIT
Press

5 of 19

Advantages of the message-passing model

• Universality. Matches the hardware of most of today’s
parallel supercomputers, as well as workstation networks
that are beginning to compete with them. Where the
machine supplies extra hardware to support a share-
memory model, the message passing model can take
advantage of this model to speed data transfer.

• Expressivity. Message-passing has been found to be a
useful and complete model in which to express parallel
algorithms. It provides the control missing from the data
parallel and compiler-based models. Some find its
atropomorphic flavor useful in formulating parallel
algorithms. It is well suited to adaptive, self scheduling
algorithms and to programs that cna be made tolerant of the
inbalance in process speeeds found on shared networks.

• Ease of debugging. It can be argued that debugging is
easier in the message-pasing paradigm than in the sahred-
memory model. This is because one of the most common

6 of 19© 1998 David A. Padua

causes of error is unexpected overwriting of memory. The
message-passing model, by controlling memory references
more explicitly than any of the other models (only one
process has direct access to any memory location), makes it
easier to locate erroneous memory reads and writes.

• Performance. The most compelling reason that message
padding will remain a permanent part of the parallel
computing environment is performance. Even on shared-
memory computers, use of the message-passing model can
improve operformance by providing more programmer
control of data locality in the memory hierarchy.

7 of 19

A first MPI program

This program will compute the value of πby numerical
integration.

Not a very effective way of computing p, but a good academic
exercise.

The strategy is to divide the interval [0,1] into n subintervals
and approximate the integral by the sum of n rectangles, each
associated to one of the subintervals.

Thus, each rectagle will have width 1/n, and its height will be
the value of the function 1/(1+x2) in the middel of each
subinterval.

MPI programs usually follow the SPMD model. The overall
organization of our example program is as follows:

1

1 x
2

+
-------------- xd

0

1

∫ arc x()tan
0
1

arc 1()tan arc 0()tan–
π
4
---= = =

8 of 19

Intialize
Get total number of processes (numprocs)
Get the number of THIS process (myid)
The master process reads n, the number of subintervals
The master process broadcasts n
h=1./n
localpi=0
do i=myid+1,n,numprocs

x = h*i-h/2
localpi = localpi + (1/(1+x**2))*h

end do
Perform a sum of all localpi from all processes
The master prints the result of the sum

9 of 19

Initialize

call MPI_INIT(ierr)

This call is required in every MPI program and must be the first
MPI call. It establishes the MPI environment.

Only one invocation of MPI_INIT can occur in each program
execution.

Its only argumetn is an error code. Every Fortran MPI routine
returns an error code in its last argument, which is either
MPI_SUCCESS (a constant defined in the mpif.h file) or an
implementation-defined error code. We will not test the error
codes in this example.

10 of 19

Get process number

call MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)

In MPI, processes can be divided into groups. If a group
contains n processes, then its processes are identified within
the group by ranks, which are integers from 0 to n-1.

All MPI communications are associated with a communicator
that describes the context [to be defined later] and an
associated group.

In this program we use the default communicator
(MPI_COMM_WORLD [defined in the file mpif.h]) that defines
one group containing the set of all processes.

11 of 19

Get total number of processes

call MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr)

12 of 19

The master process reads n

if (myid .eq. 0) then
print *, ‘enter the number of intervals: (0 quits)’
read (*,*) n

end if

13 of 19

The master process broadcasts n

call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD, ierr)

The master process broadcasts n

call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD, ierr)

This call results in every process (in the groups associated with
the communicator given in the fifth argument) ending up with a
copy of n.

The data to be communicated is decribed by the address (n),
the data type (MPI_INTEGER), and the number of items (1).
The proces with the original copy is specified by the fourth
argument (0).

Thus, after the call to MPI_BCAST, all processes have n and
their own identifiers (i.e. their myid) which is enough
information for each one to compute its contribution, mypi.

14 of 19

Sum all localpi variables

call MPI_REDUCE(localpi,pi,1,MPI_DOUBLE_PRECISION,
 MPI_SUM,0,MPI_COMM_WORLD, ierr)

The first two arguments identify the source and result addresses,
repectively. The data being collected consists of 1 (third argument) item
of type MPI_DOUBLE_PRECISION (fourth argument). The operation is
addition (MPI_SUM, the next argument), and the result of the operatin
is to bel palced in pi on the process with rank 0 (fifth argument).

The first two arguments of MPI_Reduce mut not overlap (i.e. must be
different variables or sections of an array).

15 of 19

A self-scheduling example: matrix-vector multiplication

This example illustrates explicit point-to point communication,
and at the same time illustrates one of the most common
parallel algorithms prototypes: the self scheduling, or master
worker algorithm.

This example does not illustrate the best way to parallelize this
particular numerical computation, but rather it illustrates MPI
send and receive operations in the context of a fundamental
type of parallel algorithm.

In this example, the master (process 0) executes different code
from the slaves (processes 1 to numprocs-1).

16 of 19

The objective is to compute c = Ab
master:
broadcast vector (b) to all slaves
send first numprocs-1 rows of A to slaves (one to each)
numsent = numprocs-1
do number of rows times

receive an element of c (from process p)
if numsent < number of rows then

send another row of A to p
else

send finish messsage to p
end if
numsent = numsent + 1

end do

slave:
receive b
top: receive row or finish message
if finish message then

finish
else

compute dot product of row time b
go to top

end if

17 of 19

master: broadcast vector b:

call MPI_BCAST(b, cols, MPI_DOUBLE_PRECISION, master,
MPI_COMM_WORLD, ierr)

Notice that cols in the number of elements of b

slave: receive vector b:
call MPI_BCAST(b, cols, MPI_DOUBLE_PRECISION, master,

MPI_COMM_WORLD, ierr)

18 of 19

master: send first numprocs-1 row of A:
do 40 i=1, numprocs-1

do 30 j=1,cols
buffer(j)=a(i,j)

30 continue
call MPI_SEND(buffer,cols, MPI_DOUBLE_PRECISION,i,

i, MPI_COMM_WORLD, ierr)
40 continue

19 of 19© 1998 David A. Padua

