

GUIDE™ Reference Manual
(Fortran Edition)
Version 3.6
Document #9607001
Kuck & Associates, Inc.

GUIDE™ Reference Manual
Version 3.6

Revised January, 1999

Kuck & Associates, Inc.
1906 Fox Drive

Champaign, IL 61820-7345
USA

Phone: (217) 356-2288
FAX: 217-356-5199

Internet: kai@kai.com
WWW: http://www.kai.com/kpts/guide/

The information in this document is subject to change without notice. No part of this doc-
ument may be reproduced, copied or distributed in any form or by any means, electronic
or mechanical, for any purpose, without the express written consent of Kuck & Associates,
Inc.

© Copyright 1983-1999 by Kuck & Associates, Inc. All rights reserved.

KAI, KAP/Pro Toolset, Assure, and Guide are trademarks of Kuck & Associates, Inc.
Cray is a registered trademark of Cray Research, Inc.
DEC and Digital are trademarks of Digital Equipment Corp.
Java is a trademark of Sun Microsystems, Inc.
UNIX is a registered Trademark in the USA and other countries, licensed exclusively
through X/Open Company Limited.
All other brand and product names are trademarks or registered trademarks of their
respective companies.

GOVERNMENT RESTRICTED RIGHTS. Use, duplication, or disclosure by the U.S.
government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013 or subpara-
graphs (c) (1) and (2) of the Commercial Computer Software-Restricted Rights clause at
48 CFR 52.227-19, as applicable.

Printed in the United States of America.

Table of Contents

CHAPTER 1 1 Introduction

1 About Guide

2 Using this Reference Manual

2 Reference Manual Contents

3 Reference Manual Conventions

3 Guide On-line

4 Technical Support

4 Comments

CHAPTER 2 5 Using Guide

5 Parallel Processing Model

5 Overview

7 Increasing Efficiency

8 Data Sharing

9 Using Guide to Develop Parallel Programs

9 Prepare

10 Analyze

10 Restructure

10 Tune

11 Orphaned Directives

13 A Few Rules about “Orphaned” Directives

CHAPTER 3 15 OpenMP Directives

16 Parallel Directive

16 parallel

16 Worksharing Directives

16 do
17 sections
guide@kai.com i

18 single

19 Combined Parallel and Worksharing Directives

19 parallel do
20 parallel sections

21 Synchronization Directives

21 critical
21 ordered
22 master
22 atomic
23 flush
23 barrier

24 Data Scope Attribute Clauses

24 default (shared | private | none)
shared (<list>)
private (<list>)

24 firstprivate (<list>)
24 lastprivate (<list>)
25 reduction (<operator>:<list>)

reduction (<intrinsic>:<list>)
26 copyin (<list>)

26 Common Privatization Directives

26 threadprivate

26 instance parallel

27 Declaring Private Commons

27 Allocating Private Commons

28 Scheduling Options

34 Scheduling Options Using Directives

35 Scheduling Options Using Environment Variables

35 Environment Variables

35 KMP_BLOCKTIME=<>[<character>]

35 KMP_LIBRARY=<string>

36 KMP_STACKSIZE=<>[<character>]

36 KMP_STATSFILE=<file>

36 OMP_DYNAMIC=<boolean>

37 OMP_NUM_THREADS=<>

37 OMP_SCHEDULE=<>[,<>]

37 OMP_NESTED=<boolean>
ii http://www.kai.com/kpts/guide/

37 LD_LIBRARY_PATH=<path>

CHAPTER 4 39 The Guide Drivers

39 About Guidef77 and Guidef90

40 Using the Drivers

41 Driver Options

41 Displaying the Driver Usage Message

41 Displaying All Command Lines

41 Suppressing Guidef Warnings

41 Driver-Specific Options

42 WG,guide_option_1[[[,guide_option_2],guide_option_3],...]

42 WGcompiler=<path>

42 WGcpp

42 WGcpp=<path>

42 WGf77=<path>

42 WGf90=<file>

42 WGfortran=<path>

43 WGftn=<path>

43 WGkeep

43 WGkeepcpp

43 WGlibpath=<path>

43 WGnocpp

43 WGnokeep

43 WGnoprocess

44 WGnorc

44 WGnowork

44 WGonly

44 WGpath=<path>

44 WGprefix=<string>

44 WGsrcdir

44 WGstatic_library

45 WGuser
guide@kai.com iii

46 WGuser2

46 WGversion

46 Guide Options

46 General Optimization

46 Input-Output

46 Listing

47 Advanced Optimization

47 FORTRAN Dialect

47 Hardware

47 Directive Recognition

47 Guide Options Table

50 Guide Options Alphabetic Listing

50 alignmax=<integer>

50 assume=<string> or a=<string>; noassume or nas

51 blank_padding or bp; noblank_padding or nbp

51 case or case; nocase or ncase

51 chunk=<integer> or chk=<integer>

51 cmp[=<file>]

52 concurrentize, conc; noconcurrentize, noconc

52 datasave or ds; nodatasave or nds

52 directives=p or dr=p; nodirectives or ndr

52 dlines or dl; nodlines or ndl

53 heaplimit=<integer> or heap=<integer>

53 ignoreoptions or ig; noignoreoptions or nig

54 include=<directory> or inc=<directory>

54 input=<file> or i=<file>

54 integer=<integer> or int=<integer>

54 lines=<integer> or ln=<integer>

55 list[=<file>]; nolist

55 listoptions=<string> or lo=<string>

55 logical=<integer> or log=<integer>

55 minconcurrent=<integer> or mc=<integer>

56 onetrip or 1; noonetrip or n1
iv http://www.kai.com/kpts/guide/

56 optimize=<integer> or o=<integer>

57 real=<integer> or rl=<integer>

57 recursion or rc; norecursion or nrc

57 roundoff=<string> or r=<string>

58 save=<string> or sv=<string>

59 scalaropt=<integer> or so=<integer>

59 scan=<integer> or scan=<integer>

59 scheduling=<character> or schd=<character>

59 suppress=<string> or su=<string>

60 syntax=<string> or sy=<string>

60 type or ty; notype or nty

60 c*$*options Line

CHAPTER 5 63 Libraries

63 Selecting a Library

63 Serial

64 Turnaround

64 Gang

64 Throughput

65 The Guide_stats Library

65 The Guide_perview Library

66 Linking the Libraries

66 External Routines

67 mppbeg()
mppend()

67 kmp_get_blocktime

67 kmp_get_library

68 kmp_get_stacksize (<integer>)

68 kmp_set_blocktime (<integer>)

68 kmp_set_library (<integer>)

68 kmp_set_library_serial

68 kmp_set_library_throughput
guide@kai.com v

69 kmp_set_library_turnaround

69 kmp_set_stacksize (integer)

69 OMP_DESTROY_LOCK(<var>)

69 OMP_GET_MAX_THREADS()

69 OMP_GET_NUM_PROCS()

69 OMP_GET_NUM_THREADS()

70 OMP_GET_THREAD_NUM()

70 OMP_INIT_LOCK(<var>)

70 OMP_SET_LOCK(<var>)

70 Signal Handling

71 OMP_TEST_LOCK(<var>)

71 OMP_UNSET_LOCK(<var>)

CHAPTER 6 73 GuideView

73 Introduction

73 Using GuideView

74 GuideView Options

74 mhz=<integer>

75 ovh=<file>

75 jpath=<file>

75 WJ,[java_option]

75 Java Options

75 ms<integer>[{k,m}]

76 mx<integer>[{k,m}]

76 nojit

CHAPTER 7 77 PerView

77 Introduction

77 Enabling the PerView Server

78 Security

78 Running with PerView
vi http://www.kai.com/kpts/guide/

78 Starting the Server

79 kmp_http_port=<port>
79 kmp_http_home=<path>
79 kmp_http_access=<password>

79 Starting the Client

80 Using PerView

81 Performance

82 Controls

83 Status Bar

83 Minimal Monitor

84 Progress Data

84 Progress Bar

85 Progress Graph

85 Progress String

86 Extending PerView

CHAPTER 8 87 Directive Translation

88 KAP/Pro Parallel Directive to OpenMP Directive Translator

89 Cray Directive to OpenMP Directive Translator

91 Cray TASKCOMMON as opposed to OpenMP THREADPRIVATE

91 SGI Directive to OpenMP Directive Translator

93 KAP Directive to OpenMP Directive Translator

APPENDIX A 95 Examples

96 do: A Simple Difference Operator

97 do: Two Difference Operators

98 do: Reduce Fork/Join Overhead

99 sections: Two Difference Operators

100 single: Updating a Shared Scalar

101 sections: Updating a Shared Scalar

102 do: Updating a Shared Scalar

103 parallel do: A Simple Difference Operator
guide@kai.com vii

104 parallel sections: Two Difference Operators

105 Simple Reduction

106 threadprivate: Private Common

107 threadprivate: Private Common and Master Thread

108 instance parallel: As a Private Common

109 instance parallel: As a Shared and then a Private Common

110 Avoiding External Routines: Reduction

112 Avoiding External Routines: Temporary Storage

114 firstprivate: Copying in Initialization Values

115 threadprivate: Copying in Initialization Values

116 instance parallel: Copying in Initialization Values

APPENDIX B 117 Timing Guide Constructs

118 Typical Overhead
viii http://www.kai.com/kpts/guide/

About Guide Introduction • 1

In
tr

od
uc

tio
n

1

CHAPTER 1 Introduction

About Guide

The KAP/Pro Toolset is a system of tools and application accelerators for develop-
ers of large scale, parallel scientific-engineering software.

The KAP/Pro Toolset is intended for users who understand their application pro-
grams and understand parallel processing. The Guide component of the toolset
implements the OpenMP API on all popular shared memory parallel (SMP) sys-
tems that support threads. The KAP/Pro Toolset uses the de facto industry standard
OpenMP directives to express parallelism. This directive set is compatible with the
older directives from PCF, X3H5, SGI and Cray.

Throughout this manual, the term “OpenMP directives” is used to refer to the
KAP/Pro Toolset implementation of the OpenMP specification, unless stated other-
wise.

The KAP/Pro Toolset includes utilities to translate directives from older parallel
processing directives to the new OpenMP directives (c$omp).

The input to Guide is a FORTRAN program with OpenMP directives. The output of
Guide is a FORTRAN program with the directive parallelism implemented using
guide@kai.com 1

1 • Introduction Using this Reference Manual

2

threads and the Guide support libraries. This output is then compiled using your
existing FORTRAN compiler.

Guide requires the native Fortran compiler. GuideView requires a Java™ inter-
preter, which can be obtained from Sun or Microsoft via the world wide web.
Perl is required for the directive translation scripts described in Chapter 8. Links
to these packages are available on the KAI web site at
http://www.kai.com/kpts/helpers.

Using this Reference Manual

Reference Manual Contents

Chapter 2, “Using Guide,” beginning on page 5, contains the OpenMP parallel
processing model, an overview for using Guide, and an example to illustrate
how to insert OpenMP directives.

Chapter 3, “OpenMP Directives,” beginning on page 15, contains definitions for
all OpenMP directives. OpenMP directives specify the parallelism within your
code. This chapter also defines the Guide environment variables.

Chapter 4, “The Guide Drivers,” beginning on page 39, describes the Guide
drivers, and it contains descriptions of all Guide command line options. These
options allow you to alter Guide’s default behaviors.

Chapter 5, “Libraries,” beginning on page 63, explains the differences among
Guide’s several run–time libraries.

Chapter 6, “GuideView,” beginning on page 73, describes the GuideView graph-
ical performance viewer.

Chapter 7, “PerView,” beginning on page 77, describes the PerView application
manager and monitor.

Chapter 8, “Directive Translation,” beginning on page 87, describes the included
utilities that translate older directives to OpenMP directives.

Appendix A, “Examples,” beginning on page 95, contains code examples with
OpenMP directives.
http://www.kai.com/kpts/guide/

Guide On-line Introduction • 1

In
tr

od
uc

tio
n

1

Appendix B, “Timing Guide Constructs,” beginning on page 117, shows the
expense associated with using OpenMP directives.

Reference Manual Conventions

To distinguish filenames, commands, variable names, and code examples from the
remainder of the text, these terms are printed in courier typeface. Command
line options are printed in bold typeface.

With Guide’s command line options and directives, you can control a program’s
parallelization by providing information to Guide. Some of these command line
options and directives require arguments. In their descriptions, <integer> indicates
an integer number, <path> indicates a directory, <file> indicates a filename, <char-
acter> indicates a single character, and <string> indicates a string of characters.
For example, -lines=<integer> in this user’s guide indicates that an integer needs to
be provided in order to change the -lines option from the default value to a new
value (such as -lines=0).

Optional items are denoted with square brackets:

-[no]dlines

The no is optional. If -dlines is used, dlines is turned on. To turn dlines off, use
-nodlines.

To differentiate user input and code examples from descriptive text, they are pre-
sented:

In Courier typeface, indented where possible .

For brevity, throughout this manual, we use Guidef to represent Guidef77 and
Guidef90, the Guide drivers for the system FORTRAN 77 and FORTRAN 90 com-
pilers.

Guide On-line

Visit the Guide Home Page at http://www.kai.com/kpts/guide/ for the latest infor-
mation on Guide.
guide@kai.com 3

1 • Introduction Technical Support

4

Technical Support

KAI strives to produce high-quality software; however, if Guide produces a fatal
error or incorrect results, please send a copy of the source code, a list of the
switches and options used, and as much output and error information as possible
to Kuck & Associates (KAI), guide@kai.com.

Comments

If there is a way for Guide to provide more meaningful results, messages, or fea-
tures that would improve usability, let us know. Our goal is to make Guide easy
to use as you improve your productivity and the execution speed of your appli-
cations. Please send your comments to guide@kai.com.
http://www.kai.com/kpts/guide/

Parallel Processing Model Using Guide • 2

U
si

ng
 G

ui
de

2

CHAPTER 2 Using Guide

Parallel Processing Model

This section defines general parallel processing terms and explains how different
constructs affect parallel code. For exact semantics, please consult the OpenMP
Fortran API standard document available at http://www.openmp.org/ or contact KAI
at http://www.kai.com/kpts/guide/ or email KAI at guide@kai.com for more infor-
mation.

Overview

After placing OpenMP parallel processing directives in an application, and after the
application is processed with Guide and compiled, it can be executed in parallel.
When the parallel program begins execution, a single thread exists. This thread is
called the base or master thread. The master thread will continue serial processing
until it encounters a parallel region. Several OpenMP directives apply to sections,
or blocks, of source code. These OpenMP directives come in pairs and have the fol-
lowing form:

c$omp <directive>
 <structured block of code>
c$omp end <directive>
guide@kai.com 5

2 • Using Guide Parallel Processing Model

6

When the master thread enters a parallel region, a team, or group of threads, is
formed. Starting from the beginning of the parallel region, code is replicated
(executed by all team members) until a worksharing construct is encountered.
The do , sections , and single constructs are defined as worksharing con-
structs because they distribute the enclosed work among the members of the cur-
rent team. A worksharing construct is only distributed if it occurs dynamically
inside of a parallel region. If the worksharing construct occurs lexically inside of
the parallel region then it is always executed by distributing the work among the
team members. If the worksharing construct is not lexically enclosed by a paral-
lel region (i.e. it is orphaned), then the worksharing construct will be distributed
among the team members of the closest dynamically enclosing parallel region if
one exists. Otherwise, it will be executed serially.

The do directive specifies parallel execution of a do loop. The sections
directive specifies parallel execution for arbitrary blocks of sequential code, one
section per thread. The single directive defines a section of code where
exactly one thread is allowed to execute the code.

Synchronization constructs are critical , ordered , master , atomic ,
flush , and barrier . Synchronization can be specified within a parallel
region or a worksharing construct with the critical directive. Only one
thread at a time is allowed to execute the code within a critical section.
Within a do or sections construct, synchronization can be specified with an
ordered directive. This directive is used in conjunction with a do or sec-
tions construct with the ordered clause to impose an order on the execution
of a section of code. The master directive is another synchronization directive
that can be used to force execution by the master thread. Another way to specify
synchronization is with a barrier directive. A barrier directive can be
used to force all team members to gather at a particular point in code. Each team
member that executes a barrier waits at the barrier until all of the team
members have arrived. barrier s cannot occur within worksharing or synchro-
nization constructs due to the potential for deadlock.

When a thread reaches the end of a worksharing construct, it may wait until all
team members within that construct have completed their work. When all of the
work defined by the worksharing construct is completed, the team exits the
worksharing construct and continues executing the code that follows the work-
sharing construct.

At the end of the parallel region, the threads wait until all the team members
have arrived. Then the team is logically disbanded (but may be reused in the next
http://www.kai.com/kpts/guide/

Parallel Processing Model Using Guide • 2

U
si

ng
 G

ui
de

2

parallel region), and the master thread continues sequentially until it encounters the
next parallel region.

Increasing Efficiency

Scheduling options can be selected for the do worksharing construct to increase
efficiency. Scheduling options specify the way processes are assigned iterations for
a loop. A nowait option can be used to increase efficiency. The nowait option
allows processes that finish their work to continue executing code. These processes
do not wait at the end of the worksharing construct.

Enabling the option -WG,-optimize can also help increase efficiency. For example,
using -WG,-optimize=1 will perform optimizations, such as eliminating unneces-
sary barrier s. The default setting for this option is -WG,-optimize=1.
guide@kai.com 7

2 • Using Guide Parallel Processing Model

8

Figure 2-1 “Pseudo Code of the Parallel Processing Model”

program main ! Begin Serial Execution
 !
 ... ! Only the master thread executes
 !
!$omp parallel ! Begin a Parallel Construct,
 ! form a team
 !
 ... ! This is Replicated Code where each team
 ... ! member executes the same code
 !
 !$omp sections ! Begin a Worksharing Construct
 !
 !$omp section ! One unit of work
 ... !
 !$omp section ! Another unit of work
 ... !
 end sections ! Wait until both units of work complete
 !
 ... ! More Replicated Code
 !
 !$omp do ! Begin a Worksharing Construct,
 ! each iteration is a unit of work
 !
 ... ! Work is distributed among the team
 !
 end do nowait ! End of Worksharing Construct,
 ! nowait is specified
 !
 ... ! More Replicated Code
 !
 !$omp barrier ! Wait for all team members to arrive
 !
 ... ! More Replicated Code
 !
end parallel ! End of Parallel Construct, disband team
 ! continue with serial execution
 !
 ... ! Possibly more Parallel Constructs
 !
end ! End serial execution

Data Sharing

Data sharing is specified at the start of a parallel region or worksharing construct
by using the shared and private clauses. All variables in the shared
clause are shared among the members of a team. It is the programmer’s respon-
http://www.kai.com/kpts/guide/

Using Guide to Develop Parallel Programs Using Guide • 2

U
si

ng
 G

ui
de

2

sibility to synchronize access to these variables. All variables in the private
clause are private to each team member. For the entire parallel region, assuming t
team members, we have t+1 copies of all the variables in the private clause: one
global copy that is active outside parallel regions and a private copy for each team
member. Initialization of private variables at the start of a parallel region is also
the programmer’s responsibility, unless the firstprivate clause is specified. In
this case, the private copy is initialized from the global copy at the start of the
construct at which the firstprivate clause is specified. In general, updating
the global copy of a private variable at the end of a parallel region is the pro-
grammer’s responsibility. However, the lastprivate clause of a do directive
enables updating the global copy from the team member that executed the last iter-
ation of the do .

In addition to the shared and private clauses, entire COMMON blocks can be
privatized using the instance parallel directive along with new or copy
NEW directives. For instance parallel , if a new or copy new appears, then
there are t+1 copies of the COMMON block when there are t team members. This fol-
lows the same model as for private variables. If a new or copy new is not
encountered for an instance parallel common block, only one copy of the
COMMON block exists.

Another method for privatizing COMMON blocks is by using a threadprivate
directive. For compatibility with Cray TASKCOMMON directives, threadpri-
vate blocks always have t copies for t team members. The master thread uses the
global copy as its private copy for the duration of each parallel region.

Using Guide to Develop Parallel Programs

To help those familiar with parallel programming, this section contains a high-level
overview of using Guide to develop a parallel application. This manual is not
intended to be a comprehensive treatment of parallel processing. For more informa-
tion about parallel processing, consult a parallel processing text.

Prepare

• Before inserting any OpenMP parallel directives, verify that your code is safe
for parallel execution by placing local variables on the stack. Normally, an
“-automatic” compiler option or similar option achieves this. If your application
doesn’t pass tests with stack allocation of local data, you normally need to iden-
guide@kai.com 9

2 • Using Guide Using Guide to Develop Parallel Pro-

10
tify subroutines that need some variables saved across invocations. These
variables should be placed in a SAVE statement. Make a note of these vari-
ables, as SAVE statements make them shared data, and access to shared data
must generally be synchronized among threads.

Analyze

• Profile the program to find out where it spends most of its time. This is the
part of the program that needs to be parallelized.

• In this part of the program there are usually nested loops. Locate a loop that
has very few cross-iteration dependences. Work through the call tree to do
this.

Restructure

• If the loop is parallel, introduce a parallel do directive around this loop.

• List the variables that are present in the loop on the shared() , pri-
vate() , lastprivate() , or firstprivate() clauses.

• List the do index of the parallel loop as private() .

• COMMON block elements must not be placed on the private() list if their
global scope is to be preserved. The common privatization directives can be
used to privatize to a thread the COMMON containing those variables with glo-
bal scope.

• Attempt to remove cross-iteration dependencies by rewriting the algorithm.

• Synchronize the remaining cross-iteration dependences by placing criti-
cal directives around the uses and assignments to variables involved in the
dependences.

• Any I/O in the parallel region should be synchronized.

• Identify more parallel loops and restructure them.

• If possible, merge adjacent parallel dos into a single parallel region with
multiple dos to reduce execution overhead.

Tune

• Guide supports the tuning process via the guide_stats library and Guide-
View. The tuning process should include minimizing the sequential code in
critical sections and load balancing by using the scheduling options
listed in “Scheduling Options” on page 28.
http://www.kai.com/kpts/guide/

Orphaned Directives Using Guide • 2

U
si

ng
 G

ui
de

2

For parallel FORTRAN 77 programs with older parallel directives, a tool is
included with Guide to help automate the job of translating them to OpenMP paral-
lel directives. See “Directive Translation” on page 87.

Orphaned Directives

OpenMP contains a new feature, called orphaning, that dramatically increases the
expressiveness of parallel directives. While earlier models required all of the direc-
tives related to a parallel region to occur lexically within a single program unit,
OpenMP relaxes this restriction. Now, directives such as do , critical , bar-
rier , sections , single , and master can be “orphaned”. That is, they can
occur by themselves in a program unit, dynamically “binding” to the enclosing
parallel region at run time.

Orphaned directives allow parallelism to be inserted into existing code with a mini-
mum of code restructuring. Orphaning can also improve performance by allowing a
single parallel region to bind with multiple do directives located within called
subroutines. The example:

c$omp parallel private(i) shared(n)
c$omp do
 do i = 1, n
 call work(i)
 end do
c$omp end parallel

is a common programming idiom for using the do worksharing construct to con-
currentize the execution of the loop. If we had two such loops we might write:

c$omp parallel private(i,j) shared(n)
c$omp do
 do i = 1, n
 call some_work(i)
 end do
c$omp do
 do j = 1, n
 call more_work(j)
 end do
c$omp end parallel
guide@kai.com 11

2 • Using Guide Orphaned Directives

12
However, programs are sometimes naturally structured by placing each of the
major computational sections into its own program unit. For example:

subroutine phase1
 do i = 1, n
 call some_work(i)
 end do
end

subroutine phase2
 do j = 1, n
 call more_work(j)
 end do
end

With OpenMP, you can parallelize this code in a more natural manner than was
possible with previous directive sets.

 ...
c$omp parallel
 call phase1
 call phase2
c$omp end parallel
 ...

 subroutine phase1
c$omp do
 do i = 1, n
 call some_work(i)
 end do
 end

 subroutine phase2
c$omp do
 do j = 1, n
 call more_work(j)
 end do
 end

Notice in this example, the directives specifying the parallelism are divided into
three separate program units.
http://www.kai.com/kpts/guide/

Orphaned Directives Using Guide • 2

U
si

ng
 G

ui
de

2

A Few Rules about “Orphaned” Directives

1. An orphaned worksharing construct (do/section/single) that is dynami-
cally executed outside of a parallel region will be executed sequentially. In the
following example the first call to phase0 is executed serially, and the second
call is partitioned among the processors on the machine.

 ...
 call phase0(10)
c$omp parallel
 call phase0(10)
c$omp end parallel
 ...

 subroutine phase0(n)
c$omp do
 do i = 1, n
 call other_work(i)
 end do
 end

2. Any collective operation (worksharing construct or barrier) executed inside of a
worksharing construct is illegal. For example:

 ...
c$omp parallel
c$omp do
 do i = 1, n
 call bar
 end do
c$omp end parallel
 ...
 subroutine bar
c$omp barrier
 end
guide@kai.com 13

2 • Using Guide Orphaned Directives

14
3. It is illegal to execute a collective operation (worksharing or barrier) from
within a synchronization region (critical/ordered).

c$omp parallel
c$omp critical
 call test
c$omp end critical
c$omp end parallel
 ...

 subroutine test
c$omp do
 do i = 1, n
 call work(i)
 end do
 end

4. The opening and closing directives of a directive pair must occur in a single
block of the program.

5. Private scoping of a variable can be specified at a worksharing construct.
Shared scoping must be specified at the parallel region. Please consult the
OpenMP API for complete details.
http://www.kai.com/kpts/guide/

OpenMP Directives • 3

O
pe

nM
P

D
ir

ec
tiv

es

3

CHAPTER 3 OpenMP Directives

Guide uses OpenMP directives to support a single level of parallelism. Each direc-
tive begins with c$omp or !$omp . When a directive is continued on subsequent
lines, each additional line begins with c$omp& or !$omp& . Several directives
must be paired (directive and end directive). Please note that items enclosed in
square brackets ([]) are optional. The syntax of the OpenMP directives accepted
by Guide is presented below.

Many of the directives in this chapter include a reference to a <structured-
block> in their description. A structured block has a single entry point and a sin-
gle exit point. No sequence of statements is a structured block if there is a branch
into or out of that sequence. For example, goto statements and labeled statements
may not be included in structured blocks unless both the goto and its correspond-
ing labeled statement are both contained within the sequence of statements which
comprise the structured block.
guide@kai.com 15

3 • OpenMP Directives Parallel Directive

16
Parallel Directive

parallel

The parallel directive defines a parallel region.

c$omp parallel [<clause> [[,] <clause>] ...] <new-line>
 <structured-block>
c$omp end parallel <new-line>

where <clause> is one of the following:

if (<scalar-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
firstprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
copyin (<list>)

When the logical if clause exists, the <scalar-expression> is evaluated
at run time. If the logical expression evaluates to .false. , then all of the code
in the parallel region is executed by a team of one thread. If the logical expres-
sion evaluates to .true. , then the code in the parallel region may be executed
by a team of multiple threads. When the if clause is not present, it is treated as
if if (.true.) were present.

When a parallel region is encountered in the dynamic scope of another parallel
region, the inner parallel region is executed using a team of one thread. The
remaining clauses are described in “Data Scope Attribute Clauses” on page 24.

Worksharing Directives

do

The do directive states that the next statement is an iterative do loop which will
be executed using multiple threads. If the do directive is encountered in the exe-
cution of the program while a parallel region is not active, then the directive
does not cause work to be distributed, and the entire loop is executed on the
thread that encounters this construct.
http://www.kai.com/kpts/guide/

Worksharing Directives OpenMP Directives • 3

O
pe

nM
P

D
ir

ec
tiv

es

3

c$omp do [<clause> [[,] <clause>] ...] <new-line>
 <do-loop>
[c$omp end do [nowait] <new-line>]

where <clause> is one of the following:

schedule (<type>[, <chunk-size>)
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
ordered

Using the end do directive is optional. Without the nowait clause, all threads
that reach the end of the loop will wait until all iterations have been completed.
Therefore, the end do directive without the nowait clause has no effect, and the
end of the do directive is marked by the end of the do loop. Specifying the end do
nowait directive allows early finishing threads to execute code that follows the
loop. If the end do directive is used, no statements or directives may appear
between the last statement of the do loop and the end do directive.

The schedule clause is described in more detail in “Scheduling Options” on
page 28. The ordered clause is described on page 21.

sections

The sections directive delineates sections of code that can be executed on dif-
ferent threads. Each parallel section except the first must be preceded by the sec-
tion directive. If the sections directive is encountered in the execution of the
program while a parallel region is not active then the directives do not cause work
to be distributed, and all the section s are executed on the thread that encounters
this construct.

c$omp sections [<clause> [[,] <clause>] ...] <new-line>
[c$omp section <new-line>]
 <structured-block>
[c$omp section <new-line>
 <structured-block>
.
.
.]
c$omp end sections [nowait] <new-line>

where <clause> is one of the following:
guide@kai.com 17

3 • OpenMP Directives Worksharing Directives

18
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
ordered

The ordered clause is a KAP/Pro Toolset extension and is described on
page 21.

single

The single directive defines a section of code where exactly one thread is
allowed to execute the code.

c$omp single [<clause> [[,] <clause>] ...] <new-line>
 <structured-block>
c$omp end single [nowait] <new-line>

where <clause> is one of the following:

private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)

The first arriving thread is allowed to execute the <structured-block> of
code following the single directive. Other threads wait until this thread has
finished the section of code, then they continue executing with the statement
after the single block. If the nowait clause is present, then the other threads
do not wait, but instead immediately skip the <structured-block> .

The lastprivate and reduction clauses are KAP/Pro Toolset extensions.
http://www.kai.com/kpts/guide/

Combined Parallel and Worksharing Directives OpenMP Directives • 3

O
pe

nM
P

D
ir

ec
tiv

es

3

Combined Parallel and Worksharing Directives

parallel do

The parallel do directive is a short form syntax for a parallel region enclosing a
single do . The parallel do directive is used in place of the parallel and do
directives. If this directive is encountered while a parallel region is already active,
then this directive is executed by a team of one thread and the entire loop is exe-
cuted by each thread that encounters it.

c$omp parallel do [<clause> [[,] <clause>] ...] <new-line>
 <do-loop>
[c$omp end parallel do <new-line>]

where <clause> is one of the following:

if (<scalar-expression>)
default (shared | private | none)
schedule (<type>[, <chunk-size>)
shared (<list>)
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
copyin (<list>)
ordered

The parallel do construct above is equivalent to the following nested paral-
lel and do constructs:

c$omp parallel [<par-clause> [[,] <par-clause>] ...] <new-line>
c$omp do [<do-clause> [[,] <do-clause>] ...] <new-line>
 <do-loop>
c$omp end do nowait <new-line>
c$omp end parallel <new-line>

where <par-clause> is one of the following:

if (<scalar-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
copyin (<list>)

and <do-clause> is one of the following:
guide@kai.com 19

3 • OpenMP Directives Combined Parallel and Worksharing

20
schedule (<type>[, <chunk-size>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
ordered

parallel sections

The parallel sections directive is a short form for a parallel region con-
taining a single sections directive. If the parallel sections directive is
encountered in the execution of the program while a parallel region is already
active, then this directive is executed by a team of one thread and the entire con-
struct is executed by each thread that encounters it.

c$omp parallel sections [<clause> [[,] <clause>] ...] <new-
line>
[c$omp section <new-line>]
 <structured-block>
[c$omp section <new-line>
 <structured-block>
.
.
.]
c$omp end parallel sections <new-line>

where <clause> is one of the following:

if (<scalar-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
copyin (<list>)
ordered

The parallel sections construct above is equivalent to the following
nested parallel and sections constructs:

c$omp parallel [<par-clause> [[,] <par-clause>] ...] <new-line>
c$omp sections [<sec-clause> [[,] <sec-clause>] ...] <new-line>
[c$omp section <new-line>]
 <structured-block>
[c$omp section <new-line>
 <structured-block>
.
.
.]
c$omp end sections nowait <new-line>
c$omp end parallel <new-line>
http://www.kai.com/kpts/guide/

Synchronization Directives OpenMP Directives • 3

O
pe

nM
P

D
ir

ec
tiv

es

3

where <par-clause> is one of the following:

if (<scalar-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
copyin (<list>)

and <sec-clause> is one of the following:

firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
reduction (<intrinsic> : <list>)
ordered

Synchronization Directives

critical

The critical directive defines the scope of a critical section. Only one thread at
a time is allowed inside the critical section.

c$omp critical [(<name>)] <new-line>
 <structured-block>
c$omp end critical [(<name>)] <new-line>

The name has global scope. Two critical directives with the same name are
automatically mutually exclusive. All unnamed critical sections are assumed
to map to the same name.

ordered

The ordered directive defines the scope of an ordered section. Only one thread at
a time is allowed inside an ordered section of a given name.

c$omp ordered [(<name>)] <new-line>
 <structured-block>
c$omp end ordered [(<name>)] <new-line>

An optional name can be given to an ordered section. Named ordered sections are a
KAP/Pro Toolset extension to OpenMP. Ordered sections are allowed either lexi-
cally within or outside of parallel regions, but when they occur lexically outside of
a parallel region, they must be unnamed.
guide@kai.com 21

3 • OpenMP Directives Synchronization Directives

22
The ordered section must be dynamically enclosed in a do or sections con-
struct with the ordered clause. It is an error to use this directive when not
within the dynamic scope of one of the above constructs with an ordered
clause.

The semantics of an ordered section are defined in terms of the sequential order
of execution for the construct. The threads are granted permission to enter the
ordered section in the same order as the do iterations, sections would be
executed in the sequential version of the code.

Each ordered section with a given name must only be entered once or not at all
during the execution of each do iteration or section .

Only one ordered section with a given name may be encountered during the exe-
cution of each do iteration or section .

A deadlock situation can occur if these rules are not observed.

master

The section of code following a master directive is executed by the master
thread of the team.

c$omp master <new-line>
 <structured-block>
c$omp end master <new-line>

Other threads of the team skip the following section of code and continue execu-
tion. Note that there is no implied barrier on entry to or exit from the master
section.

atomic

This directive ensures atomic update of a location in memory that may otherwise
be exposed to the possibility of multiple, simultaneous, writing threads.

c$omp atomic <new-line>
 <assignment-statement>

where <assignment-statement> must have one of the following forms:

x = x <op> <expr>
x = <expr> <op> x
x = <intrinsic> (x, <expr>)
x = <intrinsic> (<expr>, x)
http://www.kai.com/kpts/guide/

Synchronization Directives OpenMP Directives • 3

O
pe

nM
P

D
ir

ec
tiv

es

3

and where:

x is a scalar variable of intrinsic type.
<expr> is a scalar expression that does not reference x .
<intrinsic> is one of max, min , iand , ior , or ieor .
<op> is one of +, - , * , / , .and. , .or. , .eqv. , or .neqv.

Correct use of this directive requires that if an object is updated using this directive,
then all references to that object must use this directive.

flush

This directive causes thread visible variables to be written back to memory and is
provided for users who wish to write their own synchronization directly through
shared memory.

c$omp flush [(<list>)] <new-line>

The optional list may be used to specify variables that need to be flushed. If the list
is absent, all variables are flushed to memory.

barrier

barrier directives are used to gather all team members to a particular point in the
code.

c$omp barrier <new-line>

barrier s force team members to wait at that point in the code until all of the
team members encounter that barrier . barrier directives are not allowed
inside of worksharing constructs or other synchronization constructs.
guide@kai.com 23

3 • OpenMP Directives Data Scope Attribute Clauses

24
Data Scope Attribute Clauses

default (shared | private | none)
shared (<list>)
private (<list>)

The shared() and private() lists in the parallel region state the explicit
forms of data sharing among the threads that execute the parallel code. When
distinct threads should reference the same variable or array, place the variable in
the shared list. When distinct threads should reference distinct instances of
variables or arrays, place the variable in the private list.

The private clause is allowed on parallel , do , sections , and single
directives. The default and shared clauses are only allowed on parallel
directives.

When a variable is not present in any list, its default sharing classification is
determined based upon the default clause. default(shared) causes
unlisted variables to be shared , default(private) causes unlisted vari-
ables to be private , and default(none) causes unlisted, but referenced,
variables to generate an error. The only exceptions to the default rules are
loop control variables (loop indices) and f90 statement scoped entities, which
are private unless explicitly overridden. The default is
default(shared) .

firstprivate (<list>)

A variable or array in a firstprivate() list is copied from the variable or
array of the same name in the enclosing context by each team member before
execution of the construct.

The firstprivate clause is allowed on parallel , do , sections and
single directives.

lastprivate (<list>)

A variable or array in a lastprivate() list is copied back into the variable
or array of the same name in the enclosing context before the execution termi-
nates for the team member that executes the final iteration of the index set for a
do , the last lexical section of a sections construct, or the code enclosed
http://www.kai.com/kpts/guide/

Data Scope Attribute Clauses OpenMP Directives • 3

O
pe

nM
P

D
ir

ec
tiv

es

3

by a single , as appropriate. If the loop is executed and the lastprivate vari-
able is not written in the final iteration of the index set for a do , or the last lexical
section in a sections construct, then the value of the shared variable is unde-
fined.

The lastprivate clause is allowed on do , sections , and single direc-
tives. The use of the lastprivate clause on a single is a KAP/Pro Toolset
extension.

reduction (<operator>:<list>)
reduction (<intrinsic>:<list>)

A variable or array element in the reduction list is treated as a reduction by cre-
ating a private temporary for that variable and updating the original variable
after the end of the construct using a critical section. The allowed operators are
+, - , * , .and. , .or. , .eqv. , and .neqv. The allowed intrinsics are max,
min , iand , ior , and ieor .

The reduction clause is allowed on parallel , do , sections , and single
directives. The use of the reduction clause on a single is a KAP/Pro Toolset
extension.

c$omp parallel do
c$omp& shared (a,n)
c$omp& private (i)
c$omp& reduction (max:maxa)
 do i = 1, n
 maxa = max (maxa, a(i))
 enddo
c$omp end parallel do

The above example is equivalent to the following:

c$omp parallel
c$omp& shared (a,n,maxa,maxa_orig)
c$omp& private (i,maxa_local)
 maxa_local = minimum_valu_for_type_of_maxa
c$omp do
 do i = 1, n
 maxa_local = max (maxa_local, a(i))
 enddo
c$omp end do nowait
c$omp critical
 maxa = max (maxa, maxa_local)
c$omp end critical
c$omp end parallel
guide@kai.com 25

3 • OpenMP Directives Common Privatization Directives

26
copyin (<list>)

The copyin() clause applies only to threadprivate common blocks and
their members. This clause provides a mechanism to copy the master thread’s
values of the listed variables to the other members of the team at the start of a
parallel region. The copyin directive is only allowed on parallel direc-
tives.

Common Privatization Directives

Globally addressable storage that is private to each thread in a computation is
useful as a place to store information needed to coordinate between different
subroutines executed by one thread in a parallel region.

This notion is supported by the following two types of private COMMON direc-
tives:

1. c$omp threadprivate , and

2. c$omp instance parallel (a KAP/Pro Toolset extension defined by
ANSI X3H5).

threadprivate

The c$omp threadprivate directive creates thread–private copies of one or
more COMMON blocks for use within parallel regions. This directive can also be
used as a migration feature for Cray’s taskcommon . The copyin clause on
parallel directives, or the c$omp copy new directive, can be used as a migra-
tion feature for SGI’s copyin directive. A threadprivate COMMON block
is always private in each parallel region of each routine where the
threadprivate directive appears.

instance parallel

The c$omp instance parallel directive is a KAP/Pro Toolset extension
that implements ANSI X3H5 semantics for private COMMON blocks. These
semantics allow private COMMON blocks to be privatized selectively in one or
more parallel regions in a routine. An instance parallel private COMMON block is
declared via a c$omp instance parallel directive, but it is not private in a
http://www.kai.com/kpts/guide/

Common Privatization Directives OpenMP Directives • 3

O
pe

nM
P

D
ir

ec
tiv

es

3

particular parallel region unless a c$omp new or c$omp copy new directive
appears at that parallel region. The absence of one of these directives means that all
threads access the same storage in a particular parallel region.

Declaring Private Commons

Private COMMON blocks are declared by the c$omp threadprivate or c$omp
instance parallel directives. The syntax for the two directives is as follows:

c$omp threadprivate ([/cmn1/ [,/cmn2/]])
c$omp instance parallel ([/cmn1/ [,/cmn2/]])

These directives are placed in the declaration section of a routine. If a COMMON
block appears in a c$omp threadprivate or c$omp instance parallel
directive in one routine, the COMMON block must appear in that same directive in all
routines where the COMMON block is used.

The c$omp threadprivate directive assigns each specified COMMON block to
the master thread and creates an uninitialized copy of the COMMON block for each
additional thread. The copyin clause can be used to initialize a threadpri-
vate COMMON block from the master's copy.

The c$omp instance parallel directive creates a copy of each specified
COMMON block for each thread, but only for parallel regions where a c$omp new
or c$omp copy new directive is encountered. The c$omp copy new directive
can be used to initialize an instance parallel COMMON block from the sequential
copy.

Allocating Private Commons

Thread–private copies for threadprivate COMMON blocks are always allo-
cated, implicitly, at each parallel region. In instance parallel COMMON
blocks, however, private allocation occurs only for parallel regions where c$omp
new or c$omp copy new directives appear. This section describes how c$omp
new and c$omp copy new are used with c$omp instance parallel . These
directives are KAP/Pro Toolset extensions to OpenMP.

The c$omp new or c$omp copy new directives associated with instance
parallel COMMON blocks must appear in the declaration section of a routine, or
immediately following the parallel directive when an instance parallel
COMMON block is used in a routine containing a parallel region.
guide@kai.com 27

3 • OpenMP Directives Scheduling Options

28
When a thread inside a parallel region encounters a c$omp new directive, the
named private COMMON blocks are allocated and initialized if they have not
already been allocated and initialized. If the thread had previously allocated and
initialized the COMMON block in a different parallel region, this space is simply
reused.

Whether a COMMON block is private to each thread for a given parallel region
depends on whether a c$omp new or c$omp copy new directive for that
COMMON block has been seen either inside the parallel region or in any of the
routines called from that parallel region. If no new directive has been seen, the
private COMMON block acts as a regular, shared COMMON block.

The syntax for using the c$omp new directive is as follows:

c$omp new ([/cmn1/ [,/cmn2/]])

The c$omp copy new directive is similar to the c$omp new directive ,
except that c$omp copy new copies the values in the original COMMON block
into the thread-private copies at the beginning of each applicable parallel region.
In contrast, the c$omp new directive only initializes the thread–private copies
for the first parallel region encountered.

The syntax for using the c$omp copy new directive is as follows:

c$omp copy new ([/cmn1/ [,/cmn2/]])

The behavior is undefined when COMMON blocks are allocated and initialized
with both a c$omp new and a c$omp copy new directive within a single par-
allel region. If any thread executes a c$omp new or c$omp copy new direc-
tive for a COMMON block, every thread must execute that directive for that
COMMON block.

Scheduling Options

Scheduling options are used to specify the iteration dispatch mechanism for
each parallel loop do construct. They can be specified in the following three
ways:
http://www.kai.com/kpts/guide/

Scheduling Options OpenMP Directives • 3

O
pe

nM
P

D
ir

ec
tiv

es

3

1. Command Line Options

2. Directives

3. Environment Variables

Command line options and directives are used to specify the default scheduling
mechanism when the source file is being processed by . For loops that are processed
with the runtime scheduling mechanism, described below, scheduling can be
changed at run time with environment variables. Loop scheduling is dependent on
the scheduling mechanism and the chunk parameter. The table below describes
each scheduling option. Assume the following: the loop has l iterations, p threads
execute the loop, and n is a positive integer specifying the chunk size.
guide@kai.com 29

3 • OpenMP Directives Scheduling Options

30

ere.
he

edul-

line

 size

E

irec-
le

fying a

EDULE

rm
ron-
speci-
Table 3-1 Scheduling Options

Scheduling
Designator Chunk Meaning

e ignored Static even scheduling. The chunk size has no effect h
l/p iterations are dispatched statically to each thread. T
same as static with a chunk size of l/p. Static even sch
ing is the default method of loop scheduling.

To specify static even scheduling from the command
use:

-WG,-scheduling=e

or

-WG,-scheduling=e -WG,-chunk=<integer>
[same as -WG,-scheduling=e, the chunk
has no effect]

To specify static even scheduling with the SCHEDUL
directive use:

schedule (static)

There is no even argument for the schedule d
tive. To perform even scheduling using the schedu
directive, use the static argument without speci
chunk size.

To specify static even scheduling with the OMP_SCH
environment variable use:

OMP_SCHEDULE = static

There is not an even argument for the
OMP_SCHEDULE environment variable. To perfo
even scheduling using the OMP_SCHEDULE envi
ment variable, use the static argument without
fying a chunk size.
http://www.kai.com/kpts/guide/

Scheduling Options OpenMP Directives • 3

O
pe

nM
P

D
ir

ec
tiv

es

3

Sc
D

s n Static scheduling with a chunk size of n. n iterations are dis-
patched statically to each thread (repeat until l iterations
have been dispatched). If n is missing, this is the same as
static even scheduling.

To specify static scheduling from the command line use:

-WG,-scheduling=s -WG,-chunk=<integer>

or

-WG,-scheduling=s [specifies even scheduling when
-WG,-chunk is not stated]

To specify static scheduling with the schedule directive
use:

schedule (static[,<integer>])

To specify static scheduling with the OMP_SCHEDULE
environment variable use:

OMP_SCHEDULE = static[,<integer>]

i ignored Static interleaved scheduling. The chunk size has no effect
here. Thread i is statically dispatched iterations i, i+p, i+2p,
…

To specify static interleaved scheduling from the command
line use:

-WG,-scheduling=i

or

-WG,-scheduling=i -WG,-chunk=<integer>
[same as -WG,-scheduling=i, the chunk size
has no effect]

To specify static interleaved scheduling with the sched-
ule directive use:

schedule (interleaved)

To specify static interleaved scheduling with the
omp_schedule environment variable use:

OMP_SCHEDULE = interleaved

Interleaved scheduling is a KAP/Pro Toolset extension to
OpenMP.

heduling
esignator Chunk Meaning
guide@kai.com 31

3 • OpenMP Directives Scheduling Options

32

ns are

e use:

direc-

DULE

n

ns are

 use:

ective

ULE
d n Dynamic scheduling with a chunk size of n. n iteratio
dispatched dynamically to each thread.

To specify dynamic scheduling from the command lin

-WG,-scheduling=d -WG,-chunk=<integer>

To specify dynamic scheduling with the schedule
tive use:

schedule (dynamic[,<integer>])

To specify dynamic scheduling with the OMP_SCHE
environment variable use:

OMP_SCHEDULE = dynamic[,<integer>]

If no chunk size is specified, a size of 1 will be used.

g n Guided scheduling with a minimum chunk size of n. A
exponentially decreasing number of iterations are dis-
patched dynamically to each thread. At least n iteratio
dispatched every time except the last.

To specify guided scheduling from the command line

-WG,-scheduling=g -WG,-chunk=<integer>

To specify guided scheduling with the schedule dir
use:

schedule (guided[,<integer>])

To specify guided scheduling with the OMP_SCHED
environment variable use:

OMP_SCHEDULE = guided[,<integer>]

If no chunk size is specified, a size of 1 will be used.

Scheduling
Designator Chunk Meaning
http://www.kai.com/kpts/guide/

Scheduling Options OpenMP Directives • 3

O
pe

nM
P

D
ir

ec
tiv

es

3

Sc
D

t n Trapezoidal scheduling with minimum chunk size of n. A
linearly decreasing number of iterations are dispatched
dynamically to each thread. At least n iterations are dis-
patched every time except the last.

To specify trapezoidal scheduling from the command line
use:

-WG,-scheduling=t -WG,-chunk=<integer>

To specify trapezoidal scheduling with the schedule
directive use:

schedule (trapezoidal,<integer>)

To specify trapezoidal scheduling with the
OMP_SCHEDULE environment variable use:

OMP_SCHEDULE = trapezoidal,<integer>

If no chunk size is specified, a size of 1 will be used.

Trapezoidal scheduling is a KAP/Pro Toolset extension to
OpenMP.

heduling
esignator Chunk Meaning
guide@kai.com 33

3 • OpenMP Directives Scheduling Options

34

eter-
 at run

m the

irec-

DULE

,
onal
atch

et,
”.
Scheduling Options Using Directives

The list below shows the syntax for specifying scheduling options with the do
and parallel do directives.

schedule (static [,<integer>])
schedule (dynamic [,<integer>])
schedule (guided [,<integer>])
schedule (trapezoidal [,<integer>])
schedule (interleaved)
schedule (runtime)

Where the <integer> parameter is a chunk size for the dispatch method. If
<integer> is not specified, it is assumed to be 1 for dynamic , guided and
trapezoidal , and assumed to be missing for static . See Table 3-1 on
page 30 for a complete description of the scheduling options.

The default is schedule (static) .

r ignored Runtime scheduling specifies the scheduling will be d
mined via the OMP_SCHEDULE environment variable
time.

To specify scheduling at runtime, use the following fro
command line:

-WG,-scheduling=r

To specify runtime scheduling with the schedule d
tive use:

schedule (runtime)

To specify runtime scheduling with the OMP_SCHE
environment variable use:

OMP_SCHEDULE = <string>[,<integer>]

Where <string> is one of static , interleaved
dynamic , guided , or trapezoidal and the opti
<integer> parameter is the chunk size for the disp
method.

If the OMP_SCHEDULE environment variable is not s
then Guide assumes a default value of “dynamic,1

Scheduling
Designator Chunk Meaning
http://www.kai.com/kpts/guide/

Environment Variables OpenMP Directives • 3

O
pe

nM
P

D
ir

ec
tiv

es

3

Scheduling Options Using Environment Variables

The OMP_SCHEDULE environment variable sets, at run time, scheduling options
for loops containing a schedule (runtime) clause. The syntax for this envi-
ronment variable is as follows:

OMP_SCHEDULE = <string>[,<integer>]

Where <string> is one of static , interleaved , dynamic , guided , or
trapezoidal and the optional <integer> parameter is a chunk size for the
dispatch method.

Environment Variables

Some environment variables may need to be set before running Guide generated
programs.

KMP_BLOCKTIME=<integer>[<character>]

This variable specifies the number of milliseconds that the libraries should wait
after completing the execution of a parallel region before putting threads to sleep.
Use the optional suffix s , m, h, or d to specify seconds, minutes, hours, or days.
The default is 1s or one second. This default may be too large if threads will be
used to execute other threaded code between parallel regions. The default may be
too small if threads are reserved solely for the use by the Guide library.

KMP_LIBRARY=<string>

This variable selects the Guide run time library. The three available options are:

• serial

• turnaround

• throughput

See Chapter 5, “Libraries,” beginning on page 63 for more information about the
Guide libraries.
guide@kai.com 35

3 • OpenMP Directives Environment Variables

36
KMP_STACKSIZE=<integer>[<character>]

This variable specifies the number of bytes, kilobytes, or megabytes that will be
allocated for each parallel thread to use as its private stack. Use the optional suf-
fix b, k, or m to specify bytes, kilobytes, or megabytes. The default is 1m or one
megabyte. This default value may be too small if many private variables are used
in the parallel regions, or the parallel region calls subroutines that have many
local variables.

KMP_STATSFILE=<file>

When this variable is used in conjunction with the guide_stats library, the statis-
tics report is written to the specified file. The default file name for the statistics
report is guide_stats .

Three metacharacter sequences can be included in the file name and will be
expanded at runtime to provide unique context sensitive information as part of
the file name. These three metacharacter sequences are:

1. This expands into the hostname of the machine running the parallel program.

2. This expands into a unique numeric identifier for this execution of the pro-
gram. It is the process identifier of the program.

3. This is replaced with the value of the OMP_NUM_THREADS environment
variable which determines the number of threads that are created by the par-
allel program.

OMP_DYNAMIC=<boolean>

The OMP_DYNAMIC environment variable enables or disables dynamic adjust-
ment of the number of threads between parallel regions. Enabling dynamic
threads allows the Guide library to adjust the number of threads in response to
system load. Such an adjustment can improve the turnaround time for all jobs on
a loaded system. A value of TRUE for <boolean> enables dynamic adjustment,
whereas a value of FALSE disables any change in the number of threads. If
dynamic adjustment is enabled, the number of threads may be adjusted only at
the beginning of each parallel region. No threads are created or destroyed during
the execution of the parallel region.

The default value is FALSE.
http://www.kai.com/kpts/guide/

Environment Variables OpenMP Directives • 3

O
pe

nM
P

D
ir

ec
tiv

es

3

OMP_NUM_THREADS=<integer>

The OMP_NUM_THREADS environment variable is used to specify the number of
threads. The <integer> is a positive number. Performance of parallel programs
usually degrades when the number of threads exceeds the number of physical pro-
cessors.

The special value ALL is also allowed. A value of ALL specifies that one thread will
be created per processor on the machine. This is the default.

OMP_SCHEDULE=<string>[,<integer>]

The OMP_SCHEDULE environment variable controls the schedule type and chunk
size for do constructs with a schedule(runtime) clause or those with no
schedule clause if the command line scheduling designator is set to r . The
schedule type is given by <string> , which is one of static , interleaved ,
dynamic , guided , or trapezoidal and the optional chunk size is given by
<integer> for those scheduling types which allow a chunk size. See “Scheduling
Options” on page 28.

OMP_NESTED=<boolean>

The OMP_NESTED environment variable controls whether nested parallelism is
enabled at run time. Nested parallelism is currently unimplemented, so this variable
has no effect. Allowed values are TRUE and FALSE, and the default value is
FALSE.

LD_LIBRARY_PATH=<path>

This variable is used to specify an alternate path for the run time libraries. You may
need to set this variable to the directory where the guide libraries were installed
when you run your application if you compile with shared objects or use dynamic
linking.
guide@kai.com 37

3 • OpenMP Directives Environment Variables

38
 http://www.kai.com/kpts/guide/

About Guidef77 and Guidef90 The Guide Drivers • 4

T
he

 G
ui

de
 D

ri
ve

rs

4

CHAPTER 4 The Guide Drivers

About Guidef77 and Guidef90

The Guide drivers, Guidef77 and Guidef90, replace the system FORTRAN 77 and
FORTRAN 90 compilers on the command line and integrate Guide instrumentation
and the compile/link step into one command line. In scripts and Makefiles, replac-
ing the standard compiler (typically f77 or f90) with guidef77 or guidef90 ,
respectively, will execute the necessary C preprocessor, Guide, and compiler com-
mands automatically.

 In addition to all of the command line options accepted by the Fortran compiler,
the Guide drivers accept prefixed forms of all Guide options as well as driver-spe-
cific options. An absence of command line arguments causes the drivers to emit a
usage message.

For brevity, throughout this manual, we will use Guidef to represent Guidef77 and
Guidef90, the Guide drivers for the system FORTRAN 77 and FORTRAN 90 com-
pilers.
guide@kai.com 39

4 • The Guide Drivers Using the Drivers

40
Using the Drivers

To run Guide, use the following command line:

guidef -WG,<option>[,<option>,…] filename <compiler_options>

where filename is the input file to Guideguidef77 or guidef90 , . The -WG
driver option specifies additional Guide arguments. For example, to change the
default scheduling designator and the chunk size from the command line, use
-WG,-scheduling=d,-chunk=4. Multiple options must be separated with a
comma.

If a list of FORTRAN source files is specified on the Guidef command line with-
out the -c compiler option, and if Guide fails to process any of the files, then the
driver will compile (but not link) all successfully processed files.

Instrumented source files (Guide output files) are removed by default after suc-
cessful Guide instrumentation and compilation. There are, however, four
instances where output files are not removed:

• When Guide fails to process a FORTRAN source file, the output files from
each failing source file are not removed, while the output files from success-
fully processed files are removed.

• If the compile/link step fails for any of the source files Guide successfully
instruments, none of the output files are removed.

• If you specify -WGkeep, none of the output files are removed.

• If the compiler debug flag (e.g. -debug) is specified on the command line,
none of the output files are removed (-WGkeep is implied). -WGnokeep
will cause output files to be deleted even in the presence of -debug or
-WGkeep.

Guide output files consist of the name of the original source file with the prefix
G_ added to the beginning of the filename. The compiler is given the names of
these output files, but creates object files without the G_ prefix.
http://www.kai.com/kpts/guide/

Driver Options The Guide Drivers • 4

T
he

 G
ui

de
 D

ri
ve

rs

4

Driver Options

The guidef driver recognizes the FORTRAN compiler options and several driver-
specific options. If Guidef fails to recognize a command line option, it is ignored
and passed directly to the compiler.

Default driver-specific options are located in a file named .guidefrc in either the
current directory or your home directory. All driver-specific options listed in this
chapter can be placed in the .guidefrc file. These options must be separated by
white space or new lines. All instances of <file> in these options must contain the
full path to the new executable, which should include the filename of the execut-
able.

In the following descriptions, <integer> indicates an integer number, <path> indi-
cates a directory, <name> indicates an argument name, <file> indicates a filename,
<character> indicates a single character, and <string> indicates a string of charac-
ters.

Displaying the Driver Usage Message

The -h option instructs the driver to print a usage message and exit.

Displaying All Command Lines

The -v option causes the driver to display all command lines executed. This flag is
passed on to the compiler.

Suppressing Guidef Warnings

Use the - w option to suppress mild guidef warnings. This flag is passed on to the
compiler.

Driver-Specific Options

The following driver-specific options are not passed on to the FORTRAN compiler.
guide@kai.com 41

4 • The Guide Drivers Driver-Specific Options

42
WG,guide_option_1[[[,guide_option_2],guide_option_3],...]

This flag prefixes any specified Guide option(s). Multiple Guide options may be
appended using commas as delimiters.

For instance, to pass the -o=1 and -onetrip options to Guide, the appropriate
guidef driver option would be -WG,-o=1,-onetrip.

WGcompiler=<path>

The -WGcompiler option allows you to specify an alternate <path> for the
FORTRAN compiler executable. This option can also be specified with the
-WGftn, -WGfortran, -WGf77, and -WGf90 arguments.

WGcpp

The -WGcpp option forces the C preprocessor to be run on all source files.

WGcpp=<path>

The -WGcpp=<path> option allows you to specify an alternate path for the C
preprocessor executable.

If no preprocessor path is specified, the -WGcpp=<path> option forces the pre-
processor to be run on all input to the compiler. Specifying a preprocessor path
does not force preprocessing. In order to force all compiler input to be processed
by another preprocessor, use the following options:

-WGcpp=/bin/cpp2 -WGcpp

WGf77=<path>

This is an alternate form of the -WGcompiler option above.

WGf90=<file>

This is an alternate form of the -WGcompiler option above.

WGfortran=<path>

This is an alternate form of the -WGcompiler option above.
http://www.kai.com/kpts/guide/

Driver-Specific Options The Guide Drivers • 4

T
he

 G
ui

de
 D

ri
ve

rs

4

WGftn=<path>

This is an alternate form of the -WGcompiler option above.

WGkeep

If -WGkeep is stated, output files generated by Guide and temporary files created
by the C preprocessor will not be removed after compilation. By default, these files
are automatically removed after a successful compilation.

WGkeepcpp

If -WGkeepcpp is stated, output files generated by the preprocessor will not be
removed after a successful compilation.

WGlibpath=<path>

This option specifies an alternate <path> in which to search for the Guide libraries
at link time. For dynamic/shared compilation, be sure to add <path> to your
LD_LIBRARY_PATH environment variable before running an executable created
by Guide.

WGnocpp

-WGnocpp prevents guidef from calling the C preprocessor for FORTRAN
source files with the .F suffix. Normally, the driver will invoke the C preprocessor
in situations where the native compiler would do the same. On most UNIX plat-
forms, the C preprocessor is invoked for files with a capital F in the extension (.F ,
.F77 , .F90).

WGnokeep

Use -WGnokeep to force output and temporary C preprocessor files to be removed.
The presence of this flag overrides any previous instance of -WGkeep on the com-
mand line, including the -WGkeep implied from -g and -WGonly.

WGnoprocess

Guide will not process any of the specified source files if -WGnoprocess is present
on the command line. This flag can be used to compile source code that has already
been processed by Guide.
guide@kai.com 43

4 • The Guide Drivers Driver-Specific Options

44
WGnorc

This flag will turn off any driver–specific options that were found in your
$HOME/.guidefrc file. Since this option will also cancel any driver-specific
options that precede it, -WGnorc should be the first driver-specific option to
appear on the command line.

WGnowork

When -WGnowork is specified, the driver shows, but does not execute, the
commands it would normally run.

WGonly

When -WGonly is used, Guide will process the source code in all specified
source files, but neither the compiler nor linker will be executed. Like
-WGkeep, this option retains output files and temporary files generated by
Guide and the C preprocessor.

WGpath=<path>

-WGpath specifies an alternate path to the Guide executable.

WGprefix=<string>

The -WGprefix option changes the prefix string added to the Guide and prepro-
cessor output files. For instance, if you specify the following:

guidef -WGprefix=qqq -WGcpp -WGkeep file1.F

the results are cppqqqfile1.f and qqqfile1.f instead of the default
cppG_file1.f and G_file1.f .

WGsrcdir

-WGsrcdir specifies that the preprocessor and Guide output files should be in
the same directory as the source file rather than the current directory.

WGstatic_library

Normally, the driver links applications against shared versions of the Guide
libraries. To specify static linking instead, supply the -WGstatic_library flag.
http://www.kai.com/kpts/guide/

Driver-Specific Options The Guide Drivers • 4

T
he

 G
ui

de
 D

ri
ve

rs

4

WGuser

The -WGuser driver option allows a string to be invoked as a command on each
source file specified on the driver command line. This command is invoked after the
C-preprocessor (cpp) but before Guide source-file processing. The syntax for
using the -WGuser driver option is as follows:

-WGuser=<cmd>[%_<options>][%_%i][%_<options>][%_%o][%_<options>]

Where <cmd> is the name of the command to be executed.

Spaces are not allowed in the command string. If a space is required then the token
%_ is used to generate a space.

The %i and %o arguments are tokens for the filenames passed to the command. The
%i refers to the input file and %o refers to output file. The order of these tokens and
the options in the command string corresponds to the order of the input/output files
and options for the command to be executed. Both filename tokens are optional and
are case-insensitive. If %i is omitted, then the input file is piped as stdin . If %o is
omitted, then the stdout output is redirected to a disk file. The output file name is
created by prepending the text usrG_ to the name of the file being processed by
Guide. For example, if the file being processed is named x.f , the output file would
be named usrA_x.f .

The return status of the command is checked, and success is assumed to be zero.
Failed files will not be processed further.

Table 4-1 gives the command that the driver will execute when x.f is the file being
processed.

Table 4-1 WGuser Examples

Switch Command Executed

-WGuser=cat cat < x.f > usrG_x.f

-WGuser=cmd1%_%i cmd1 x.f > usrG_x.f

-WGuser=cmd2%_%o cmd2 usrG_x.f < x.f

-WGuser=cmd3%_%o%_%i cmd3 usrG_x.f x.f

-WGuser=cmd4%_-G cmd4 -G < x.f > usrG_x.f
guide@kai.com 45

4 • The Guide Drivers Guide Options

46
WGuser2

This option is identical to -WGuser, except the command is run after Guide
source file processing but before the compiler.

WGversion

The guidef driver displays its internal version number and other information
to stderr when -WGversion is used. Using this option will abort execution.

Guide Options

The -WG driver option specifies additional Guide arguments. To state a Guide
option, the long (full) name, short name, or any portion of the long name, start-
ing from the beginning, that uniquely identifies the option may be used. Multiple
options must be separated by a comma. For example, to change the scheduling
designator and the chunk size, use -WG,-scheduling=d,-chunk=4.

Table 4-2 lists the Guide options. These options are grouped into the following
functional categories:

General Optimization

These options control large classes of optimizations.

Input-Output

These options affect the input file selection and output file naming, placement,
and characteristics.

Listing

Guide can generate a listing file that contains information about the transforma-
tions and optimizations it performs. The options in this category control the
information Guide includes in its listing file. When the -listoptions argument
includes “k”, Guide will itemize the values of all options in the listing file.
http://www.kai.com/kpts/guide/

Guide Options Table The Guide Drivers • 4

T
he

 G
ui

de
 D

ri
ve

rs

4

Advanced Optimization

These options customize and fine-tune the optimizer for maximum performance.

FORTRAN Dialect

These options specify the dialect of FORTRAN in use.

Hardware

These options inform Guide about your target architecture. The default settings
have been chosen to take advantage of the architecture of the target machine. In
most cases, you will not need to change the default settings.

Directive Recognition

These options enable or disable recognition and processing of directives present in
the code.

Guide Options Table

In Table 4-2, Guide options are listed alphabetically within each functional cate-
gory. The default settings are also listed. Guide options that require an argument list
the default argument. For more information on Guide options, see the section
“Guide Options Alphabetic Listing” on page 50.
guide@kai.com 47

4 • The Guide Drivers Guide Options Table

48
Table 4-2 Guide Options

Long Name Short Name Default Setting

General Optimization:

optimize=<integer> o=<integer> 1

roundoff=<integer> r=<integer> 0

scalaropt=<integer> so=<integer> 0

Input-Output:

cmp[=<file>] cmp[=<file>] G_<file>

input=<file> i=<file> <file>

[no]list=<file> [no]list=<file> nolist

Listing:

lines=<integer> ln=<integer> 55

listoptions=<string> lo=<string> ko

suppress=<string> su=<string> nosuppress

Advanced Optimization:

[no]assume [n]as=<string> cel

[no]concurrentize [no]conc noconcurrentize

minconcurrent=<integer> mc=<integer> 1000
http://www.kai.com/kpts/guide/

Guide Options Table The Guide Drivers • 4

T
he

 G
ui

de
 D

ri
ve

rs

4

The -listoptions=k command line option can be used to determine what your
default settings are. The default listing file name is G_<file>.lst .

FORTRAN Dialect:

alignmax=<integer> alignmax=<integer> platform dependent

[no]blank_padding [n]bp platform dependent

[no]case [n]case nocase

[no]datasave [n]ds datasave

[no]dlines [n]dl nodlines

include=<path> inc=<path> noinclude

integer=<integer> int=<integer> 4

logical=<integer> log=<integer> 4

[no]onetrip [n]1 noonetrip

real=<integer> rl=<integer> 4

[no]recursion [n]rc norecursion

save=<string> sv=<string> manual

scan=<integer> scan=<integer> 72

syntax=<string> sy=<string> nosyntax

[no]type [n]ty notype

Directive Recognition:

[no]directives=<string> [n]dr=<string> p

[no]ignoreoptions [n]ig noignoreoptions

[no]openmpcc_lines [no]openmpcc_lines openmpcc_lines

default=<string> default=<string> shared

Hardware:

heaplimit=<integer> heap=<integer> 500

Scheduling:

chunk=<integer> chk=<integer> 1

scheduling=<character> schd=<character> e

Table 4-2 Guide Options (Continued)

Long Name Short Name Default Setting
guide@kai.com 49

4 • The Guide Drivers Guide Options Alphabetic Listing

50
Guide Options Alphabetic Listing

This section lists the Guide options that can be specified by using the -WG
driver option. To make these options easy to find, they are listed alphabetically
rather than by functional category. The headings in the following sections list the
full and short names for each option.

alignmax=<integer>

This is an expert option that you would normally not use. The -alignmax option
tells Guide the size of the largest data type the native compiler will pad in a com-
mon block or VAX structure in order to achieve natural alignment. The default
value is platform-specific, and the driver provides an appropriate value based on
the command line switches passed to the native compiler.

assume=<string> or a=<string>
noassume or nas

The -assume option instructs Guide to make certain global assumptions about
the program being processed. The -assume option switch values are the follow-
ing:

a Different subroutine or function parameters may refer to the same object.

b Array subscripts may go outside the declared bounds.

c Constants used in subroutine or function calls will be placed in temporary
variables.

e EQUIVALENCE statements may cause different names to refer to the same
memory location.

l The ‘l ’ value applies only to parallel loops generated automatically from
array syntax by Guide, when -concurrent is specified. When ‘l ” is speci-
fied, Guide ensures the shared copy of each private variable is updated after a
parallel loop, using the value assigned in the loop’s final iteration.

This behavior is analogous to using the lastprivate() instead of pri-
vate() for all private variables. If ‘l ’ is omitted, Guide will assume private
variables do not need their final values stored in the shared copy.

The default value is -assume=cel. To disable all the above assumptions, specify
-noassume on the command line.
http://www.kai.com/kpts/guide/

Guide Options Alphabetic Listing The Guide Drivers • 4

T
he

 G
ui

de
 D

ri
ve

rs

4

blank_padding or bp
noblank_padding or nbp

The -blank_padding option instructs Guide to pad input lines with trailing blanks.
The default value of this option varies by platform and is chosen to match the
behavior of the native compiler.

case or case
nocase or ncase

The -case option instructs Guide to distinguish between upper and lowercase in
identifier names. The default -nocase instructs Guide to ignore case in variable
names.

When Guide inserts or modifies lines in a program, it usually creates the new code
in capital letters. The -case option requires Guide to preserve the original case of
variables in the new code. Making Guide case-sensitive can be important. If, for
example, there is a variable named n and a variable named N in the original source
code, Guide will change the n to a N when it optimizes the code unless -case is
specified, causing a conflict between two different variables which now have the
same name.

chunk=<integer> or chk=<integer>

This option specifies a parameter for parallel loop scheduling, and is to be used in
conjunction with the -scheduling option. Together, the -scheduling and the -chunk
options establish default scheduling for all the parallel loops for this Guide run.
Individual loops can override this default scheduling mechanism by using schedul-
ing options on the parallel do or do directive. The default chunk size is 1. See
“Scheduling Options” on page 28 for descriptions of the FORTRAN chunk
options.

cmp[=<file>]

The -cmp=<file> option instructs Guide to place the optimized FORTRAN pro-
gram in a specified file. The default name of this file is derived from the input file-
name by adding G_ to the beginning of the input filename. If -cmp=<file> is
specified, the FORTRAN output file is written to the specified file. If -cmp is speci-
fied with no argument, then the output is written to standard output.
guide@kai.com 51

4 • The Guide Drivers Guide Options Alphabetic Listing

52
concurrentize, conc
noconcurrentize, noconc

Guide uses the -concurrentize switch to enable parallelization of loops derived
from array syntax only. This option can be used to generate parallel loops from
FORTRAN 90 array syntax. Guide will only run a loop in parallel if it deter-
mines there is sufficient work to benefit from parallelism. You can adjust Guide’s
idea of sufficient work via the -minconcurrent option. The -concurrentize
option also implies -scalaropt=1.

datasave or ds
nodatasave or nds

The -datasave option instructs Guide to treat local variables in a subroutine or
function which appear in DATA statements as if they were also in SAVE state-
ments. That is, their values will be retained between invocations of the subrou-
tine or function. This is the practice of many commercial FORTRAN compilers,
and -datasave is on by default. This choice affects certain optimizations per-
formed by Guide.

The negative option, -nodatasave, complies with the FORTRAN standard. See
also the description of the -save command line option.

directives=p or dr=p
nodirectives or ndr

The -directives=p or -dr=p option enables parallel programming directives.
This option is on by default. To disable parallel programming directives, use
-nodirectives or -ndr.

dlines or dl
nodlines or ndl

The -dlines option instructs Guide to treat a D in column 1 as a space character.
The rest of that line will then be parsed as a normal FORTRAN statement. By
default, Guide treats these lines as comments. This option is useful for the inclu-
sion or exclusion of debugging lines.

In the following example, the first (default) case shows that the D line is ignored:
http://www.kai.com/kpts/guide/

Guide Options Alphabetic Listing The Guide Drivers • 4

T
he

 G
ui

de
 D

ri
ve

rs

4

 do 10 i = 1,n
 a (i) = b (i)
 d write (*,*) a (i)
 10 continue

becomes

 do 10 i=1,n
 a(i) = b(i)
 10 continue

But when -dlines is specified, Guide sees a WRITE statement:

 do 10 i=1,n
 a(i) = b(i)
 write (*, *) a(i)
 10 continue

heaplimit=<integer> or heap=<integer>

Guide may require large amounts of memory in order to process your source code.
The -heaplimit option specifies the maximum size in megabytes that the Guide
heap can grow. If this limit is breached, Guide will stop processing the source code
and try to exit gracefully with an “out of memory” error message. The default size
is 500 megabytes.

If the -heaplimit setting is greater than the amount of available memory, Guide
may run out of memory before it reaches the -heaplimit.

Guide relies upon the operating system to tell it that the OS has run out of memory
before that problem occurs. Some operating systems kill Guide without first telling
Guide that there is insufficient memory. In that case, Guide may stop processing the
code and exit in an undefined manner. Using -heaplimit makes a graceful exit more
likely.

ignoreoptions or ig
noignoreoptions or nig

The -ignoreoptions option directs Guide to ignore any c*$*options or *$*options
line that may appear at the top of the input file. Normally, Guide reads the
c*$*options or *$*options instruction for further command line options, as
explained in the description of the c*$*options line below.
guide@kai.com 53

4 • The Guide Drivers Guide Options Alphabetic Listing

54
Setting -noignoreoptions directs Guide to acknowledge the c*$*options line in
the source program. That is, Guide will accept the command line options given
on the c*$*options line. This is the default.

include=<directory> or inc=<directory>

By default, Guide looks only in the current directory to locate files specified in
INCLUDE statements. The -include option allows an alternate directory to be
specified for locating those files. An INCLUDE file whose name does not begin
with a slash (/) is sought first in the directory containing the file being processed,
then in the directory named in the -include option. Multiple -include options
may be used to specify multiple include directories. Normally, you should use
your native compiler’s include option, often -I, instead.

input=<file> or i=<file>

When running Guide in stand-alone mode on UNIX systems, simply enter the
source filename on the command line. This option is available for special cir-
cumstances and for compatibility with other operating systems.

On UNIX systems, if the -input option is specified without a filename, Guide
will read its source from standard input and write the transformed code to stan-
dard output. In this case, no listing file will be generated unless a filename is
explicitly provided with the -list option.

integer=<integer> or int=<integer>

This option specifies a size in bytes, N, for the default size of INTEGER vari-
ables. When N=2 or 4, take INTEGER*N as the default INTEGER type. When
-integer=0, Guide uses the ordinary default length for INTEGER variables. The
default is -integer=4.

lines=<integer> or ln=<integer>

The -lines option enables Guide’s listing to be paginated for printing in different
formats. The number of lines per page on the listing may be changed using the
-lines option. The setting -lines=0 instructs Guide to paginate only at subroutine
boundaries. The default setting is -lines=55.
http://www.kai.com/kpts/guide/

Guide Options Alphabetic Listing The Guide Drivers • 4

T
he

 G
ui

de
 D

ri
ve

rs

4

list[=<file>]
nolist

The -list option informs Guide where to place the listing file. When no filename is
specified, Guide derives the default name of the listing file from the input filename
by adding G_ to the beginning of the filename and changing the extension to .out .
If a filename is specified, then the listing file is written to that file. To disable gener-
ation of the listing file, enter -nolist on the command line. The default is -nolist.

listoptions=<string> or lo=<string>

The -listoptions option tells Guide what optional information to include in the list-
ing, transformed code, and error files.

Any of the following information can be selected:

To produce no listing file, enter -nolist on the command line. The default value is
-listoptions=ko.

logical=<integer> or log=<integer>

This option specifies a size in bytes, N, for the default size of LOGICAL variables.
When N=1, 2, or 4, take LOGICAL*N as the default LOGICAL type. The value
assigned to -logical should be equal to the value assigned to -integer. The default is
-logical=4.

minconcurrent=<integer> or mc=<integer>

Executing a loop in parallel incurs overhead which varies with different systems. If
a loop has little work, parallel execution may be slower than serial execution
because of the overhead. However, beyond a certain level, performance gain may be
obtained through parallel execution. This level is passed to Guide with the -min-
concurrent option.

The range of values for this option is all numbers greater than or equal to 0. The
higher the -minconcurrent value, the larger the loop body must be (have more iter-
ations, more statements, or both) to run concurrently.

Value Prints
k Guide options used, printed at the end of each program unit
o Original source program annotated listing
t Transformed program annotated listing
guide@kai.com 55

4 • The Guide Drivers Guide Options Alphabetic Listing

56
At compilation time, Guide estimates the amount of computation inside a loop
by multiplying the loop iteration count by the sum of the nonindex oper-
ands/results and the nonassignment operators and compares this value with the
-minconcurrent value. If the estimated amount of work is greater than the -min-
concurrent value, Guide generates concurrent code for the loop. Otherwise, it
leaves the loop serial. If the DO loop bounds are known at compilation time, the
exact iteration count can be computed. However, if the DO loop bounds are
unknown, Guide generates an IF expression in the directive. This is interpreted
by the compiler as a request to generate two loops, one concurrentized and one
left serial, and an IF-THEN-ELSE to make a run time check to decide whether
or not to execute the loop in parallel. (This case is called a two-version loop.)

To disable the generation of two-version loops throughout the program, use the
command line option -minconcurrent=0.

The -minconcurrent option only applies to parallel loops created by Guide
from array syntax. The -minconcurrent option implies the -concurrentize
switch.

onetrip or 1
noonetrip or n1

The -onetrip option allows one-trip DO loops to be specified. Many pre-FOR-
TRAN 77 compilers implemented DO loops which would always have at least
one iteration, even if the initial value of the loop control variable was higher than
the final value. This option informs Guide that the program being processed con-
tains loops which need the one-trip feature. This option is off by default.

optimize=<integer> or o=<integer>

The -optimize option sets the base optimization and analysis level.

The meaning of the different optimization levels is as follows:

0 Guide performs no optimizations on parallel directives.

1 Guide optimizes parallel directives.

The default is -optimize=1.
http://www.kai.com/kpts/guide/

Guide Options Alphabetic Listing The Guide Drivers • 4

T
he

 G
ui

de
 D

ri
ve

rs

4

real=<integer> or rl=<integer>

This option specifies a size in bytes, for the default size of REAL variables. When
the -real option is present, Guide uses REAL*<integer> as the default REAL
type.

The default value is -real=4.

NOTE: This option merely informs Guide about the default REAL size; it does
NOT ask Guide to convert from REAL*4 to REAL*8.

recursion or rc
norecursion or nrc

The -recursion option informs Guide that subroutines and functions in the source
program may be called recursively (that is, a subroutine or function calls itself, or it
calls another routine which calls it). Recursion affects storage allocation decisions
and the interpretation of the -save option. This option is off by default.

The -recursion option must be in force in each recursive routine that Guide pro-
cesses or unsafe transformations could result.

roundoff=<string> or r=<string>

The -roundoff option specifies the amount of change from serial roundoff error that
is tolerable in the program. If an arithmetic reduction is accumulated in a different
order in the processed program than it was in the original program, then the round-
off error is accumulated differently, and the final result may differ from that of the
original program. In most cases, the difference is insignificant. However, if the
source program is numerically unstable or if it requires extreme precision, certain
restructuring transformations performed by Guide must be disabled in order to
obtain exactly the same results as those obtained in the original program.

The -roundoff option has the values 0 or 1.

The -roundoff levels are defined as follows:

0 Guide allows no roundoff-changing transformations. When -roundoff=0, the
transformed code is in strict conformance to the FORTRAN standard. This is
the default.

1 Guide enables expression simplification and code floating.
guide@kai.com 57

4 • The Guide Drivers Guide Options Alphabetic Listing

58
save=<string> or sv=<string>

The -save option instructs Guide on how to handle the storage class of local sca-
lar variables. In particular, Guide can be instructed to perform live variable
analysis to help Guide decide whether to save the value of a local scalar variable
between invocations of a function or a routine by generating a SAVE statement.
Guide can also be instructed to treat the default storage class of all local scalar
variables as either AUTOMATIC or STATIC. In any case, Guide will not delete
or ignore a hand coded SAVE statement.

There are four possible settings for the -save option:

Specifying -save=all (-save=a) tells Guide not to perform live variable analysis.
However, all variables local to a function or a routine and COMMON blocks will
be treated as if they are saved. The -save=all option is not affected by the
-[no]recursion option.

The default -save=manual (-save=m) tells Guide not to perform live variable
analysis. Guide assumes that the necessary SAVE statements have been inserted
into the code, and it performs no corresponding analysis of its own. Hand coded
SAVE statements are assumed to be correct and sufficient. The -save=manual
setting is not affected by the -recursion option.

Specifying -save=manual_adjust (-save=ma) instructs Guide to perform live
variable analysis. The effect of -save=manual_adjust depends on the
-[no]recursion setting:

With -norecursion, SAVE statements will be added for variables that
are used before being defined on at least one path from one entry point
to the routine.

With -recursion, SAVE statements will be added for variables that are
used before being defined on all paths from all entry points to the
routine.

Specifying -save=all_adjust (-save=aa) instructs Guide to perform live variable
analysis. The effect of -save=all_adjust depends on the -[no]recursion setting:

With -norecursion, treat all local variables as saved, except those that
are defined before use in all paths from all entry points and that are not
in hand coded SAVE statements.
http://www.kai.com/kpts/guide/

Guide Options Alphabetic Listing The Guide Drivers • 4

T
he

 G
ui

de
 D

ri
ve

rs

4

With -recursion, this is the same as -save=all.

Saving local variables may be required for correct execution, but can restrict Guide
optimizations. Accordingly, -save=ma should be used with caution.

scalaropt=<integer> or so=<integer>

The -scalaropt option sets the level of scalar transformations performed. The
allowed values and their meanings are:

0 No scalar optimizations are performed. This is the default.

1 Forward substitution and backward elimination are performed.

scan=<integer> or scan=<integer>

The -scan option allows the length of the FORTRAN input lines to be set. Guide
will ignore (by treating as a comment) characters on columns beyond the value of
the -scan option. The value must be one of 72, 120, or 132. The default is -scan=72.

scheduling=<character> or schd=<character>

The -scheduling option tells Guide what kind of scheduling to use for loop itera-
tions on a multiprocessor machine. This option is used in conjunction with the
-chunk option. See “Scheduling Options” on page 28 for a description of the
-scheduling options.

suppress=<string> or su=<string>

The -suppress option disables the printing of individual classes of Guide messages.
These message classes range from syntax warning and error messages to messages
about the optimizations performed. The allowed values of the -suppress option are
as follows:

Value Disables
d Data Dependence messages
e Syntax Error messages
i Informational messages
n Not Optimized messages
q Questions
s Standardized messages
w Syntax Warning messages
guide@kai.com 59

4 • The Guide Drivers Guide Options Alphabetic Listing

60
The default instructs Guide to report all message types listed above.

syntax=<string> or sy=<string>

The -syntax option directs Guide to check for compliance with certain syntactic
rules. If you are familiar with a different implementation of FORTRAN, then
using a dialect switch can prevent a construct from being translated differently
than expected.

The default, nosyntax, instructs Guide to accept a superset FORTRAN 77 and
FORTRAN 90.

With -syntax=a, Guide checks for strict compliance with the ANSI FORTRAN
77/90 standard. Warning and error messages are issued for syntax which does
not conform to the standard.

With -syntax=v, Guide accepts the extensions and interpretations of Digital or
DEC FORTRAN 77/90.

type or ty
notype or nty

The -type option instructs Guide to issue error messages for variables not
explicitly typed. The -notype default suppresses this checking.

c*$*options Line

When a source file should always be run with the same command line options,
the first line of the file may be used to specify those options. The format of this
line is:

c*$*options option[=value] [option[=value]]...

The c*$*options (or *$*options) must appear in columns 1-11 (or 1-10) with a
character space between this command and the options that follow.

Only the first line may be used for c*$*options. Short or long option names may
be used on this line.
http://www.kai.com/kpts/guide/

Guide Options Alphabetic Listing The Guide Drivers • 4

T
he

 G
ui

de
 D

ri
ve

rs

4

Options of the form -option=<name> (e.g., -cmp or -inline) cannot be specified on
the c*$*options line of the source file. These options may be specified on the com-
mand line only.

If conflicting options are specified on the command line and on the c*$*options
line, the c*$*options line takes precedence. If additional options are specified on
the c*$*options line, these are used in addition to those specified on the command
line.

If the command line option -ignoreoptions is set, any c*$*options line in the
source file is treated as a comment.
guide@kai.com 61

4 • The Guide Drivers Guide Options Alphabetic Listing

62
 http://www.kai.com/kpts/guide/

Selecting a Library Libraries • 5

ri
es

5

CHAPTER 5 Libraries

Selecting a Library

Guide supplies three libraries, a development library, a management and monitor-
ing library, and a production library. The production library is called the guide
library. It should be used for normal or performance-critical runs on applications
that have already been tuned. The development library is guide_stats. It provides
performance information about the code, but it slightly degrades performance. It
should be used to tune the performance of applications. The management and mon-
itoring library is called the guide_perview library. It can be used to interactively and
remotely monitor and manage the parallel performance of a running application
program. This library degrades application performance slightly also. All three
libraries contain the serial, turnaround, gang, and throughput modes described
below. These modes are selected by using the KMP_LIBRARY environment vari-
able at run-time; see “KMP_LIBRARY=<string>” on page 35.

Serial

The serial mode forces parallel applications to run on a single processor.
guide@kai.com 63 L
ib

ra

5 • Libraries Selecting a Library

64
Turnaround

In a dedicated (batch or single user) parallel environment where all of the pro-
cessors for a program are exclusively allocated to the program for its entire run,
it is most important to effectively utilize all of the processors all of the time. The
turnaround mode is designed to keep all of the processors active and involved in
the parallel computation to minimize the execution time of a single job. In this
mode, the worker threads actively wait for more parallel work, without yielding
to other threads.

NOTE: Avoid over-allocating system resources. This occurs if either too many
threads have been specified, or if too few processors are available at run time. If
system resources are over-allocated, this mode will cause poor performance.
The throughput mode should be used if this occurs.

Gang

This mode is identical to the turnaround mode, except gang scheduling is
enabled on systems that support it.

Throughput

In a multi-user environment where the load on the parallel machine is not con-
stant or where the job stream is not predictable, it may be better to design and
tune for throughput. This minimizes the total time to run multiple jobs simulta-
neously. In this mode, the worker threads will yield to other threads while wait-
ing for more parallel work.

The throughput mode is designed to make the program aware of its environment
(i.e. the system load) and to adjust its resource usage to produce efficient execu-
tion in a dynamic environment.

This is the default.
http://www.kai.com/kpts/guide/

The Guide_stats Library Libraries • 5

ri
es

5

The Guide_stats Library

The guide_stats library is designed to provide you with detailed statistics about a
program’s execution. These statistics help you to “see inside” the program to ana-
lyze performance bottlenecks and to make parallel performance predictions. With
this information, it is possible to modify the program (or the execution environ-
ment) to make more efficient use of the parallel machine.

When a program is compiled with Guidef, linked with the guide_stats library, and
executed, statistics are output to the file specified with the KMP_STATSFILE envi-
ronment variable. The default file name guide_stats is used if this environment
variable is not specified. In addition, running with the guide_stats library enables
additional runtime checks that may aid in program debugging. When using the
guide_stats library, make sure that the main program and any program units that
cause program termination are compiled with Guidef.

This library may minimally degrade application performance compared to the
guide library by an amount proportional to the frequency that the OpenMP direc-
tives are encountered.

The resulting statistics are most easily viewed and analyzed by using GuideView,
discussed in Chapter 6, “GuideView,” beginning on page 73.

The Guide_perview Library

The guide_perview library is part of the interactive parallel performance monitoring
and management tool called PerView. Using PerView, application users can
remotely monitor parallel performance and application progress, modify the num-
ber of threads, switch between dynamic and static thread count, and pause or abort
parallel applications. When using the guide_perview library, make sure that the
main program and any program units that cause program termination are compiled
with guidef .

In the current version of Guide, the guide_perview library also provides all the
functionality of the guide_stats library. Future versions are not guaranteed to sup-
port the guide_stats library functionality. The guide_perview library currently
enables additional runtime checks that may aid in program debugging. Currently,
this library may minimally degrade application performance compared to the guide
guide@kai.com 65 L
ib

ra

5 • Libraries Linking the Libraries

66
library by an amount proportional to the frequency that the OpenMP directives
are encountered.

See “PerView,” beginning on page 77 for more information about the use of the
guide_perview library.

Linking the Libraries

Guide uses the guide library by default. To use the guide_stats library, use the
-WGstats command line option to guidef . For example, the following com-
mand line can be used to compile a source file with the guide_stats library:

guidef -WGstats source.f

To use the guide_perview library, use the -WGperview command line option to
guidef . To switch between the guide, guide_stats, and guide_perview librar-
ies, only relinking is necessary. Recompilation is not needed.

External Routines

The following library routines can be used for low-level debugging to verify that
the library code and application are functioning as intended.

The use of these routines is discouraged; using them requires that the application
be linked with one of the Guide libraries, even when the code is executed
sequentially. In addition, using these routines makes validating the program with
Assure more difficult or impossible.

In most cases, directives can be used in place of these routines. For example,
thread-private storage should be implemented by using the PRIVATE() clause
of the parallel directive or the threadprivate directive, rather than by
explicit expansion and indexing with omp_get_thread_num() . Appendix
A, “Examples,” beginning on page 95, contains examples of coding styles that
avoid the use of these routines.
http://www.kai.com/kpts/guide/

External Routines Libraries • 5

ri
es

5

mppbeg()
mppend()

These routines are not necessary if the main program unit and all exit points are
compiled using Guidef or Guidec, Guidef’s C language counterpart. If this isn’t the
case, you must ensure that mppbeg() is called at the beginning of the main pro-
gram and that mppend() is called at all points that cause program termination.

Calling these routines from another language requires knowledge of the cross-lan-
guage calling standards on your platform. The following convention is typically
used with the C language. An underscore is appended to names that are declared in
FORTRAN subroutines. Thus, a main program in C that can be used with Guide
FORTRAN code might look like:

void
main(int argc, char *argv[])
{
 extern mppbeg_(), mppend_();
 mppbeg_();
 work();
 mppend_();
 exit(0);
}

The call to mppbeg() must occur when the program is executing sequentially, not
when a parallel region is active.

kmp_get_blocktime

This routine returns the integer value of time, in milliseconds, that the Guide librar-
ies wait after completing the execution of a parallel region before putting threads to
sleep. This value can be changed via the kmp_set_blocktime routine or the
KMP_BLOCKTIME environment variable. See the description of the
KMP_BLOCKTIME environment variable on page 35 for more information.

kmp_get_library

This routine returns an integer value that designates the version of the Guide run
time library being used. This value can be used as the parameter to subsequent calls
to kmp_set_library . The library setting can also be changed via the
kmp_set_library_xxx calls or the KMP_LIBRARY environment variable.
guide@kai.com 67 L
ib

ra

5 • Libraries External Routines

68
kmp_get_stacksize (<integer>)

This routine returns the number of bytes that will be allocated for each parallel
thread to use as its private stack. This value can be changed via the
kmp_set_stacksize routine, prior to the first parallel region or via the
KMP_STACKSIZE environment variable. See the description of the
KMP_STACKSIZE environment variable on page 36 for more information.

kmp_set_blocktime (<integer>)

This routine sets the number of milliseconds that the Guide libraries wait after
completing the execution of a parallel region before putting threads to sleep.
This value can also be changed via the KMP_BLOCKTIME environment vari-
able. See the description of KMP_BLOCKTIME on page 35 for more informa-
tion.

In order for kmp_set_blocktime to have an effect, it must be called before
the beginning of the first (dynamically executed) parallel region in the program.

kmp_set_library (<integer>)

This routine selects the Guide run time library. The parameter value corresponds
to a value previously returned by a call to kmp_get_library . To determine
the values of this parameter that correspond to particular libraries, call the
kmp_set_library_xxx routines and then call the kmp_get_library
routine to obtain the parameter values. The library setting can also be changed
via the KMP_LIBRARY environment variable.

kmp_set_library_serial

This routine selects the Guide serial run time library. The library setting can also
be changed via the kmp_set_library call or the KMP_LIBRARY environ-
ment variable.

kmp_set_library_throughput

This routine selects the Guide throughput run time library. The library setting
can also be changed via the kmp_set_library call or the KMP_LIBRARY
environment variable.
http://www.kai.com/kpts/guide/

External Routines Libraries • 5

ri
es

5

kmp_set_library_turnaround

This routine selects the Guide turnaround run time library. The library setting can
also be changed via the kmp_set_library call or the KMP_LIBRARY environ-
ment variable.

kmp_set_stacksize (integer)

This routine sets the number of bytes that will be allocated for each parallel thread
to use as its private stack. This value can also be changed via the
KMP_STACKSIZE environment variable. See the description of
KMP_STACKSIZE on page 36 for more information.

In order for KMP_SET_STACKSIZE to have an effect, it must be called before the
beginning of the first (dynamically executed) parallel region in the program.

OMP_DESTROY_LOCK(<var>)

This routine ensures that the lock pointed to by the parameter <var> is uninitial-
ized. No thread may own the lock when this routine is called. The <var> parame-
ter must be a lock variable that was initialized by the OMP_INIT_LOCK()
routine.

OMP_GET_MAX_THREADS()

This routine returns the maximum number of threads that are available for parallel
execution. The returned value is a positive integer, and is equal to the value of the
OMP_NUM_THREADS environment variable, if set.

OMP_GET_NUM_PROCS()

This routine returns the number of processors that are available on the parallel
machine. The returned value is a positive integer.

OMP_GET_NUM_THREADS()

This routine returns the number of threads that are being used in the current parallel
region. The returned value is a positive integer.

NOTE: The number of threads used may change from one parallel region to the
next. When designing parallel programs it is best to not introduce assumptions that
the number of threads is constant across different instances of parallel regions. The
guide@kai.com 69 L
ib

ra

5 • Libraries External Routines

70
number of threads may increase or decrease between parallel regions, but will
never exceed the OMP_NUM_THREADS environment variable value.

When called outside a parallel region, this function returns 1.

OMP_GET_THREAD_NUM()

This routine returns the thread id of the calling thread. The returned value is an
integer between zero and OMP_GET_NUM_THREADS()-1.

When called from a serial region or a serialized parallel region, this function
returns 0.

OMP_INIT_LOCK(<var>)

This routine initializes a lock associated with the lock variable <var> for use
by subsequent calls. The lock variable must of integer type and of KIND large
enough to hold an address. The initial state is unlocked.

The lock variable, <var> , must only be accessed through the OpenMP library
lock routines.

OMP_SET_LOCK(<var>)

This routine forces the executing thread to wait until the specified lock is avail-
able. If the lock is not available, the thread is blocked from further execution
until the thread is granted ownership of the lock. <var> must be a lock variable
that was initialized by the OMP_INIT_LOCK() routine.

Signal Handling

In order for interrupts and runtime errors to be handled correctly during parallel
execution, the Guide libraries normally install their own handlers for interrupt
signals such as SIGHUP, SIGINT , SIGQUIT , and SIGTERM and for runtime
error signals such as SIGSEGV, SIGBUS, SIGILL , SIGABRT, SIGFPE, and
SIGSYS.

The Guide libraries normally install their handlers at the beginning of the first
(dynamically executed) parallel region in the program. These handlers remain
active until the end of program execution, throughout the parallel and remaining
serial portions of the program.
http://www.kai.com/kpts/guide/

External Routines Libraries • 5

ri
es

5

The Guide libraries provide a mechanism for allowing user–installed signal han-
dlers. If the program installs a handler for a signal before the beginning of the first
parallel region, the libraries will not install their handlers for that signal.

OMP_TEST_LOCK(<var>)

This routine tries to obtain ownership of the lock, but does not block execution of
the calling thread if the lock is not available. The routine returns .TRUE. if the
lock was successfully obtained; otherwise, it returns .FALSE. The <var> must
be a lock variable that was initialized by the OMP_INIT_LOCK() routine.

OMP_UNSET_LOCK(<var>)

This routine releases the executing thread from ownership of the lock. The behavior
is undefined if the executing thread is not the owner of the lock. <var> must be a
lock variable that was initialized by the OMP_INIT_LOCK() routine.
guide@kai.com 71 L
ib

ra

5 • Libraries External Routines

72
 http://www.kai.com/kpts/guide/

Introduction GuideView • 6

G
ui

de
V

ie
w

6

CHAPTER 6 GuideView

Introduction

GuideView is a graphical tool that presents a window into the performance details
of a program’s parallel execution. Performance anomalies can be understood at a
glance with the intuitive, color coded display of parallel performance bottlenecks.

GuideView graphically illustrates what each processor is doing at various levels of
detail by using a hierarchical summary. Statistical data are collapsed into relevant
summaries which focus on the actions to be taken.

Using GuideView

GuideView uses as input the statistics file that is output when a Guide instrumented
program is run. See “Libraries,” beginning on page 63 to learn how to build an
instrumented executable. The syntax for invoking GuideView is as follows:

guideview [<guideview_options>] <file> [<file> …]
guide@kai.com 73

6 • GuideView GuideView Options

74
The file arguments are the names of the statistics files created by Guide runs that
used the guide_stats library (see Chapter 5). Optional GuideView arguments are
the topic of the next section.

The GuideView browser looks for a configuration file named
GVproperties.txt when it starts up. It first looks in the current direc-
tory, then in your home directory, and then in each directory in turn that appears
in your CLASSPATH environment variable setting. Using this file you can con-
figure several options that control fonts, colors, window sizes, window locations,
line numbering, tab expansion in source, and other features of the GUI.

An example initialization file is provided with your Guide installation. This
example file contains comments that explain the meaning and usage of the sup-
ported options. If Guide is installed in directory <install_dir> on your
machine, the example initialization file will be in

<install_dir>/class/example.GVproperties .

The default location for this example initialization file is in the directory
/usr/local/KAI/guide/class . If the default location is different
from the installed location, then a symbolic link will be created from the default
location to the installed location if the default location is writable at install time.
The easiest way to use this file is to copy it and then edit the copy as needed,
uncommenting lines you want and/or setting the options to values you prefer or
need.

Detailed information about GuideView’s operation can be found under its Help
menu.

GuideView Options

mhz=<integer>

The -mhz=<integer> option denotes the processor rate in MHz for the machine
used for calculating statistics.
http://www.kai.com/kpts/guide/

Java Options GuideView • 6

G
ui

de
V

ie
w

6

ovh=<file>

The -ovh=<file> specifies an overheads file for the input statistics file. There are
small overheads that exist in the GuideView library. These overheads can be mea-
sured in terms of the number of cycles for each library call or event. You can over-
ride the default values to get more accurate overhead values for your machine by
using the -ovh=<file> option to create a file that contains machine-specific values.

An example overheads file is provided with your Guide installation. This example
file contains comments that explain the meaning and usage of the supported
options. If Guide was installed in directory <install_dir> on your machine,
this example file resides in <install_dir>/class/guide.ovh .

jpath=<file>

The -jpath=<file> option specifies the path to an alternate Java interpreter. This can
be used to override the Java virtual machine selected at installation or to provide a
path to the Java virtual machine if none was selected during installation.

WJ,[java_option]

The GuideView GUI is implemented in Java. The -WJ flag prefixes any Java option
that should be passed to the Java interpreter.

Any valid Java interpreter option may be used; however, the options listed in the
next section may be particularly beneficial when used with GuideView to enhance
the performance of the GUI.

Java Options

The -WJ flag must prefix Java options. For example, to pass the -ms5m option to
the Java interpreter, use -WJ,-ms5m.

ms<integer>[{k,m}]

The -ms option specifies how much memory is allocated for the heap when the
interpreter starts up. The initial memory is specified either in bytes, kilobytes (with
the suffix k), or megabytes (with the suffix m). For example, to specify one mega-
byte, use -ms1m.
guide@kai.com 75

6 • GuideView Java Options

76
mx<integer>[{k,m}]

The -mx option specifies the maximum heap size the interpreter will use for
dynamically allocated objects. The maximum heap size is specified either in
bytes, kilobytes (with the suffix k), or megabytes (with the suffix m). For exam-
ple, to specify two megabytes, use -mx2m.

nojit

The -nojit option disables the Java just-in-time compiler. This Java feature can
sometimes lead to incorrect Java behavior. Use -WJ,-nojit to disable the just-in-
time compiler if you experience problems with the AssureView GUI.
http://www.kai.com/kpts/guide/

Introduction PerView • 7

Pe
rV

ie
w

7

CHAPTER 7 PerView

Introduction

PerView is an interactive parallel performance monitoring and management tool.
With PerView, users of your application can remotely monitor parallel performance
and application progress, modify the number of threads, switch between dynamic
and static thread count, and pause or abort parallel applications.

Enabling the PerView Server

PerView makes its capabilities available through the use of a web server, embedded
in the parallel application. By default, Guide does not include the PerView server in
your application. Its functionality is only included when specifically requested.

Including the PerView server in your application is as simple as relinking your
application with the guide_perview library, introduced in “Libraries,” beginning on
page 63. To embed the PerView server in your application, add the -WGperview
flag when linking with the Guidef driver. For example, to build a PerView-enabled
application, issue the following commands:
guide@kai.com 77

7 • PerView Security

78
guidef77 –c main.f
guidef77 –WGperview main.o

Security

The PerView server provides an access control mechanism, which limits unau-
thorized access to your parallel application at run-time. Access control is speci-
fied via the KMP_HTTP_ACCESS environment variable, the value of which
behaves like a password. This variable can take on any string value, but the
string should contain no white space. The value of KMP_HTTP_ACCESS is read
once upon application execution, and the PerView server requires any connect-
ing PerView client know this value.

If KMP_HTTP_ACCESS is not specified, the server disables access control, and
clients can communicate without a password. This is the default.

Running with PerView

Using PerView is a two-step process. First, a PerView enabled parallel applica-
tion is run, which listens for PerView client requests. During the execution of the
parallel application, one or more PerView clients can connect to the server, to
remotely monitor the application.

The server and client applications can be run on the same or different hosts.

Starting the Server

The server starts when the application begins running if the environment vari-
able KMP_HTTP_PORT is set. If this variable is unset when the application
starts, the server becomes inactive for the duration of the run. Normally, the Per-
View server serves documents from and below a top-level directory. This top-
level directory is specified via the KMP_HTTP_HOME environment variable.

The following paragraphs detail the environment variables used by the PerView
server.
http://www.kai.com/kpts/guide/

Running with PerView PerView • 7

Pe
rV

ie
w

7

KMP_HTTP_PORT=<port>

This variable specifies the network port on which the server will listen. It should be
a positive integer larger than 1024.

If KMP_HTTP_PORT has value 0 or is unspecified, the PerView server is disabled.
This is the default.

KMP_HTTP_HOME=<path>

In addition to its built-in documents, the PerView server can serve documents out of
a “public_html” directory. This variable specifies the top-level directory that con-
tains the public_html directory. The default value is the current directory, “.”, so
files in ./public_html will be available through the server. If you specify a
valid directory path, the PerView server will instead serve files from
<path>/public_html .

Documents located in and below the public_html directory are accessible via a
standard Web browser, such as Netscape or Internet Explorer, via the URL
“http://<host>:<port>/ ”. If a password is specified, the URL is instead
“http://<host>:<port>/cgi-pwd/<password>/ ”.

To disable this feature, set KMP_HTTP_HOME=/dev/null or any non-existent
directory.

KMP_HTTP_ACCESS=<password>

Using this variable, you can limit access to a running parallel application to those
who know the password given in <password> . The password is an arbitrary
string containing no white space characters.

Starting the Client

The PerView client, or simply PerView, communicates with the server in the appli-
cation via a network connection, specified by two values: a host name and a port
number. The correct password must also be used if the KMP_HTTP_ACCESS vari-
able was set before running the application.

To start the PerView client, type:

perview <host> <port>
guide@kai.com 79

7 • PerView Using PerView

80
or

perview <host> <port> <password>

The following example illustrates the use of PerView on two machines, named
“server” and “desktop”. The application runs on server but is monitored from
desktop:

server % guidef77 –o mondo mondo.f -WGperview
server % setenv KMP_HTTP_PORT 8000
server % setenv KMP_HTTP_ACCESS secret
server % ./mondo

desktop % perview server 8000 secret

Multiple clients can simultaneously communicate with each PerView server, to
allow monitoring from more than one location.

Using PerView

Once PerView has started and has connected to the server, it presents its main
screen, shown in Figure 7-1. The PerView interface consists of two “views” of
displays and controls, selectable by the tabs labeled Performance and Con-
trols.
http://www.kai.com/kpts/guide/

Using PerView PerView • 7

Pe
rV

ie
w

7

Figure 7-1

Performance

The Performance view consists of three panels, displaying thread states, projected
speedup, and progress. The thread states panel shows the state of each OpenMP
thread present in the application, by displaying one stacked bar graph per thread.
The height of the bar represents 100% of each thread’s time. The bar is divided into
time spent doing productive work (green), time lost to parallel overheads and serial
waiting time (red), and time lost due to excess load on the machine (blue). Inactive
threads are shown in gray.

PerView uses this thread state data to estimate the parallel speedup of the applica-
tion. This instantaneous speedup estimate is plotted, along with its time-averaged
value and the thread count, in the center panel. PerView contacts the server at regu-
lar intervals to obtain new data. Each data set is one sample, and the speedup graph
is plotted in terms of these samples.
guide@kai.com 81

7 • PerView Using PerView

82
The bottom panel displays the progress of the application. By default, only the
elapsed time since the beginning of the application run is shown here. With the
application’s cooperation, however, PerView can display a percent completed
graph, a string representing progress, or a convergence graph. See “Progress
Data” on page 84 for details.

Controls

Using the Controls panel, shown in Figure 7-2 you can modify the parallel
behavior of the application, to respond to changing conditions on the machine
where it is running.

Figure 7-2

You might reduce the number of threads being used by an application, for exam-
ple, to make room for another application to start. To adjust the number of
threads, click on the up and down arrows in the Processor Utilization group to
set the desired number of threads. To allow an application to monitor and auto-
matically adjust its own thread count, select Use up to N threads in the top
panel.
http://www.kai.com/kpts/guide/

Using PerView PerView • 7

Pe
rV

ie
w

7

To temporarily suspend the application, click on Pause in the Program Controls
group. The button text changes to Resume once the application has been paused.
When the Resume button is pressed, the application resumes processing.

The Abort… button can be used to prematurely terminate the application.

The Perview Settings group contains a sampling interval control. This specifies
how frequently PerView contacts the server for new data. To change the sampling
interval type to a new, positive integer, then press Apply.

Status Bar

The bottom of the PerView window contains a status bar, shown in Figure 7-3. The
icons in the status bar summarize the state of the application and PerView’s connec-
tion to it.

Figure 7-3

The application status icon uses familiar symbols to represent whether the applica-
tion is running (), paused (), or complete ().

The connection icon indicates whether PerView is connected to the application.
When the connection is broken, due to application completion, network failure, or
application failure, the icon is obscured by a large, red X.

The dynamic threads icon indicates with an “S” or “D”, respectively, whether the
application’s thread count is static (fixed) or dynamic (variable).

Minimal Monitor

The rightmost icon on the status bar is the “minimize” button. Clicking this button
replaces the PerView screen with a minimal view, shown in Figure 7-4, suitable for
general performance monitoring.
guide@kai.com 83

7 • PerView Progress Data

84
Figure 7-4

This view consists of a colored button, surrounded by a “marching” segments
performance display. The colored button shows the current value of the esti-
mated speedup in its center. The button is green, yellow, or red, depending on
the value of the estimated speedup, relative to the number of threads in use.

The marching display consists of colored rays, emanating from the button and
representing the time history of the button’s color. Using this display, you can
get recent performance information at a glance. An all green display is ideal.
Occasional yellow or red rays are normal, but a display dominated by yellow or
red usually requires attention. Green indicates good projected speedup, yellow
represents marginal performance, and red indicates parallel performance prob-
lems.

Click on the colored button to return to the detailed view and, if necessary,
adjust the processor utilization.

Progress Data

By default, PerView displays the elapsed time in the bottom panel of the Perfor-
mance view. This area, however, is provided for you to communicate more
detailed information about your application’s progress to the user. Using a sim-
ple API, you can enable a progress meter, showing percent complete, an X-Y
graph, showing the evolution of a convergence variable or other data, or simply
display a string, representing the current phase of the computation.

Progress Bar

The progress bar is automatically displayed in PerView when you provide
progress information to the PerView server via the kweb_set_meter library
routine. The interface to this routine is:
http://www.kai.com/kpts/guide/

Progress Data PerView • 7

Pe
rV

ie
w

7

call kweb_set_meter(meter_name, icurrent, istart, iend)

Meter_name is a string value used to label this meter. It is unused at this time.

icurrent , istart , and iend are integer values, representing the current,
beginning, and ending values of a computation, such as a time-stepping loop.

The progress bar computes percent complete as
(icurrent-istart)/(iend-istart) .

The PerView client computes a percentage complete from these values and displays
it in a progress meter.

Progress Graph

The progress graph is automatically displayed in PerView when you provide
progress information to the PerView server via the kweb_set_residual library
routine. The interface to this routine is:

call kweb_set_residual(meter_name, current, ymin, ymax)

Meter_name is a string value used to label this meter. It is unused at this time.

current is a double precision value representing the data to be plotted as a func-
tion of time.

ymin and ymax are double precision values representing initial minimum and
maximum Y coordinate limits for the graph.

Progress String

The progress string is automatically displayed in PerView when you provide
progress information to the PerView server via the kweb_set_string library
routine. The interface to this routine is:

call kweb_set_string(meter_name, current_phase)

meter_name is a string value used to label this meter. It is unused at this time.

current_phase is a string value used to describe the current state of the appli-
cation. It could be used, for example, to present the major phases of a computation,
such as problem setup, solution, and I/O.
guide@kai.com 85

7 • PerView Progress Data

86
Extending PerView

Both the PerView server and client are extensible, to allow application-specific
data and displays. Please contact us at kpts@kai.com for more information.
http://www.kai.com/kpts/guide/

Directive Translation • 8

D
ir

ec
tiv

e
T

ra
ns

la
tio

n

8

CHAPTER 8 Directive Translation

Many programs written with older directive-based parallel programming models
can be easily moved to equivalent OpenMP implementations. While the translation
is often simple, it can also be tedious. Guide includes a number of translator scripts,
designed to automate much of the work involved in updating codes to OpenMP.

All of the translation scripts require Perl to operate. Perl is generally available on
Unix systems, but is less frequently installed on Windows NT systems. Links to
UNIX Perl source and Windows NT binaries are available from
http://www.kai.com/kpts/helpers.

Most Unix systems can run the Perl-based translators as if they were executable
files:

sgi2omp.pl program.f > program_omp.f

On NT systems, however, you may need to call the translator scripts directly from
Perl, for example:

perl c:\KAI\guide36\bin\sgi2omp.pl program.f > program_omp.f
guide@kai.com 87

8 • Directive Translation KAP/Pro Parallel Directive to OpenMP

88
KAP/Pro Parallel Directive to OpenMP Directive
Translator

Programs which have been parallelized with KAP/Pro Toolset directives can be
used as the basis for a port to the new OpenMP version of Guide. The
kpts2omp.pl program will help translate KAP/Pro Parallel directives into
OpenMP directives that Guide accepts.

The kpts2omp.pl program accepts as an argument the name of a file with
KAP/Pro Toolset directives. The translated file is written to stdout with
OpenMP directives added. The stdout can be redirected to capture the trans-
lated file. Any directives or constructs that cannot be handled automatically
cause diagnostics to be added inline in the translated output. The stderr out-
put contains a synopsis of the diagnostics.

The kpts2omp.pl translation is a totally automatic process because all of the
functionality provided by KAP/Pro Toolset directives is available in the
KAP/Pro Toolset implementation of OpenMP directives.

Table 8-1, “kpts2omp.pl Translator Options,” below lists the options that are
available when running kpts2omp.pl .

NOTE: Perl must be installed on the system to use kpts2omp.pl .

Table 8-1 kpts2omp.pl Translator Options

Option Description

 -[hH?] print usage info

 -i ifdef mode, generates ‘#ifdef _OPENMP/#endif ’ around
directives

 -I disables ifdef mode (default setting)

 -o original directives included in output

 -O original directives not included in output (default setting)

 -t <num> number of spaces for continuation directives (0 <= num <= 8,
default = 4)

 -v verbose mode, give messages about likely errors (default setting)

 -V disables verbose messages
http://www.kai.com/kpts/guide/

Cray Directive to OpenMP Directive Translator Directive Translation • 8

D
ir

ec
tiv

e
T

ra
ns

la
tio

n

8

Cray Directive to OpenMP Directive Translator

Programs which have been parallelized with Cray directives can be used as the
basis for a port to Guide. The cray2omp.pl program will help translate Cray
Autotasking directives into OpenMP directives that Guide accepts. It is assumed
that the Cray program with Autotasking directives has been ported to work on the
target machine and compiler in serial mode.

The cray2omp.pl program accepts as an argument the name of a file with Cray
Autotasking directives. The translated file is written to stdout with OpenMP
directives added. The stdout can be redirected to capture the translated file. Any
directives or constructs that cannot be handled automatically cause diagnostics to
be added inline in the translated output. The stderr output contains a synopsis of
the diagnostics.

The cray2omp.pl translation is not a totally automatic process because of some
semantic differences between the two directive sets. However, this translation per-
forms a majority of the work required for migration, and most programs will not
require manual intervention. If manual intervention is required, searching for
“cray2omp ” in the output will lead to places where cray2omp.pl had trouble
performing translations automatically.

Table 8-2, “cray2omp.pl Translator Options,” below lists the options that are avail-
able when running cray2omp.pl .

Table 8-2 cray2omp.pl Translator Options

Option Description

 -[hH?] print usage info

 -i ifdef mode, generates ‘#ifdef _OPENMP/#endif ’ around direc-
tives

 -I disables ifdef mode (default setting)

 -o original directives included in output (default setting)

 -O original directives not included in output

 -t <num> number of spaces for continuation directives (0 <= num <= 8,
default = 4)

 -v verbose mode, give messages about likely errors (default setting)

 -V disables verbose messages
guide@kai.com 89

8 • Directive Translation Cray Directive to OpenMP Directive

90
Table 8-3, “Cray to OpenMP Translations,” below lists the cray2omp.pl
translations that are performed. Many of the directives in the table have optional
clauses that are translated by cray2omp.pl when possible. A diagnostic is
produced when there is not an equivalent OpenMP directive.

Table 8-3 Cray to OpenMP Translations

Cray OpenMP

cmic$ taskcommon tcb c$omp threadprivate (/tcb/)

cdir$ taskcommon tcb c$omp threadprivate (/tcb/)

cdir$ ivdep *$* assert no recurrence

cdir$ no recurrence *$* assert no recurrence

cmic$ guard c$omp critical

cmic$ end guard c$omp end critical

cmic$ parallel c$omp parallel

First cmic$ case c$omp sections
c$omp section

Subsequent cmic$ case c$omp section

cmic$ endcase c$omp end sections

cmic$ do parallel c$omp do

cmic$ enddo c$omp barrier

cmic$ doall c$omp parallel do

single schedule(dynamic)

guided schedule(guided,64)

vector schedule(guided,64)

guided(n) schedule(guided,n)

chunksize(n) schedule(dynamic,n)
http://www.kai.com/kpts/guide/

SGI Directive to OpenMP Directive Translator Directive Translation • 8

D
ir

ec
tiv

e
T

ra
ns

la
tio

n

8

NOTE: Perl must be installed on the system to use cray2omp.pl . Please see
http://www.kai.com/kpts/helpers for links to Perl source and binaries.

Cray TASKCOMMON as opposed to OpenMP THREADPRIVATE

The tools provided with Guide perform a semi-automatic translation of Cray FOR-
TRAN prallel directives into OpenMP directives. However, some hand editing of
the resulting program may be necessary.

With Cray taskcommon , the individual elements of a taskcommon can be
placed in the private list of a parallel do . This is not supported in OpenMP.

SGI Directive to OpenMP Directive Translator

Programs which have been parallelized with SGI c$ directives can be used as the
basis for a port to Guide. The sgi2omp.pl program will help translate SGI direc-
tives into OpenMP directives.

The sgi2omp.pl program accepts as an argument the name of a file with SGI
directives. The translated file is written to stdout with OpenMP directives added.
The stdout can be redirected to capture the translated file. Any directives or con-
sutructs that cannot be handled automatically cause diagnostics to be added inline

The following directives are not directly translatable into OpenMP syntax:

cmic$ process
cmic$ also process
cmic$ end process
cmic$ stop all process
cmic$ do global
cmic$ continue
cmic$ getcpus
cmic$ numcpus
cmic$ relcpus
cmic$ soft exit
cmic$ micro

Table 8-3 Cray to OpenMP Translations (Continued)

Cray OpenMP
guide@kai.com 91

8 • Directive Translation SGI Directive to OpenMP Directive Trans-

92

S

c$

c$

c$

c$

m s-

m s-

c$ s-

c$ s-

c$ g
in the translated output. The stderr output contains the synopsis of the diag-
nostics.

Most of the common SGI directives are handled automatically by this program.
Whenever manual intervention is required, searching for “sgi2omp.pl ” in the
output will lead to places where sgi2omp.pl had trouble performing transla-
tions.

Table 8-4, “SGI to OpenMP Translations,” below lists the SGI directives and
their translations that are performed. Many of the directives in the table have
optional clauses that are translated by sgi2omp.pl when possible. A diagnos-
tic is produced when there is not an equivalent OpenMP directive.

None of the SGI scheduling keywords are automatically translated by
sgi2omp.pl . Sgi2omp.pl produces a diagnostic to assist in manually
inserting scheduling keywords into the program.

NOTE: Perl must be installed on your system to use sgi2omp.pl .

Table 8-4 SGI to OpenMP Translations

GI directive or clause or library routine KAP/Pro Translation

doacross c$omp parallel do

 call mp_barrier c$omp barrier

 call mp_setlock c$omp critical

 call mp_unsetlock c$omp end critical

p_my_threadnum Not translated automatically, but can be tran
lated using omp_get_thread_num()

p_numthreads Not translated automatically, but can be tran
lated using omp_get_num_threads()
and omp_get_max_threads()

copyin Not translated automatically, but can be tran
lated manually

 mp_schedtype clause Not translated automatically, but can be tran
lated manually

mp_schedtype directive No translation, have to propagate schedulin
type to rest of file manually
http://www.kai.com/kpts/guide/

KAP Directive to OpenMP Directive Translator Directive Translation • 8

D
ir

ec
tiv

e
T

ra
ns

la
tio

n

8

KAP Directive to OpenMP Directive Translator

Programs which contain the older PCF directives of the form *KAP* can be used as
the basis for a port to OpenMP. The kap2omp.pl program will help translate
KAP directives into OpenMP directives.

The kap2omp.pl program accepts the name of a file with KAP directives. The
translated file is written to stdout with OpenMP directives added. The stdout
can be redirected to capture the translated file. Any directives or constructs that can-
not be handled automatically cause diagnostics to be added inline in the translated
output. The stderr output contains the synopsis of the diagnostics. All
cray2omp.pl translator options given in Table 8-2, “cray2omp.pl Translator
Options,” on page 89, are also available for the kap2omp.pl program.

NOTE: Perl must be installed on the system to use kap2omp.pl .
guide@kai.com 93

8 • Directive Translation KAP Directive to OpenMP Directive

94
 http://www.kai.com/kpts/guide/

Examples • A

E
xa

m
pl

es

A

APPENDIX A Examples

The following example programs illustrate the use of OpenMP directives.
guide@kai.com 95

A • Examples do: A Simple Difference Operator

96
do: A Simple Difference Operator

This example shows a simple parallel loop where the amount of work in each
iteration is different. We used dynamic scheduling to get good load balancing.
The end do has a nowait because there is an implicit barrier at the end of
the parallel region. Alternately, using the option -optimize=1 would have also
eliminated the barrier .

 subroutine do_1 (a,b,n)
 real a(n,n), b(n,n)

c$omp parallel
c$omp& shared(a,b,n)
c$omp& private(i,j)
c$omp do schedule(dynamic,1)
 do i = 2, n
 do j = 1, i
 b(j,i) = (a(j,i) + a(j,i-1)) / 2
 enddo
 enddo
c$omp end do nowait
c$omp end parallel
 end
http://www.kai.com/kpts/guide/

do: Two Difference Operators Examples • A

E
xa

m
pl

es

A

do: Two Difference Operators

Shows two parallel regions fused to reduce fork/join overhead. The first end do
has a nowait because all the data used in the second loop is different than all the
data used in the first loop.

 subroutine do_2 (a,b,c,d,m,n)
 real a(n,n), b(n,n), c(m,m), d(m,m)

c$omp parallel
c$omp& shared(a,b,c,d,m,n)
c$omp& private(i,j)
c$omp do schedule(dynamic,1)
 do i = 2, n
 do j = 1, i
 b(j,i) = (a(j,i) + a(j,i-1)) / 2
 enddo
 enddo
c$omp end do nowait
c$omp do schedule(dynamic,1)
 do i = 2, m
 do j = 1, i
 d(j,i) = (c(j,i) + c(j,i-1)) / 2
 enddo
 enddo
c$omp end do nowait
c$omp end parallel
 end
guide@kai.com 97

A • Examples do: Reduce Fork/Join Overhead

98
do: Reduce Fork/Join Overhead

Routines do_3a and do_3b perform numerically equivalent computations, but
because the parallel directive in routine do_3b is outside the do j loop,
routine do_3b probably forms teams less often, and thus reduces overhead.

 subroutine do_3a (a,b,m,n)
 real a(n,m), b(n,m)

 do j = 2, m
c$omp parallel
c$omp& shared(a,b,n,j)
c$omp& private(i)
c$omp do
 do i = 1, n
 a(i,j) = b(i,j) / a(i,j-1)
 enddo
c$omp end do nowait
c$omp end parallel
 enddo
 end

 subroutine do_3b (a,b,m,n)
 real a(n,m), b(n,m)

c$omp parallel
c$omp& shared(a,b,m,n)
c$omp& private(i,j)
 do j = 2, m
c$omp do
 do i = 1, n
 a(i,j) = b(i,j) / a(i,j-1)
 enddo
c$omp end do nowait
 enddo
c$omp end parallel
 end
http://www.kai.com/kpts/guide/

sections: Two Difference Operators Examples • A

E
xa

m
pl

es

A

sections: Two Difference Operators

Identical to “do: Two Difference Operators” on page 97 but uses sections
instead of do . Here the speedup is limited to 2 because there are only 2 units of
work whereas in “do: Two Difference Operators” on page 97 there are n-1 + m-1
units of work.

 subroutine sections_1 (a,b,c,d,m,n)
 real a(n,n), b(n,n), c(m,m), d(m,m)

c$omp parallel
c$omp& shared(a,b,c,d,m,n)
c$omp& private(i,j)
c$omp sections
c$omp section
 do i = 2, n
 do j = 1, i
 b(j,i) = (a(j,i) + a(j,i-1)) / 2
 enddo
 enddo
c$omp section
 do i = 2, m
 do j = 1, i
 d(j,i) = (c(j,i) + c(j,i-1)) / 2
 enddo
 enddo
c$omp end sections nowait
c$omp end parallel
 end
guide@kai.com 99

A • Examples single: Updating a Shared Scalar

100
single: Updating a Shared Scalar

This example demonstrates how to use a single construct to update an ele-
ment of the shared array a. The optional nowait after the first loop is omitted
because we need to wait at the end of the loop before proceeding into the sin-
gle .

 subroutine sp_1a (a,b,n)
 real a(n), b(n)

c$omp parallel
c$omp& shared(a,b,n)
c$omp& private(i)
c$omp do
 do i = 1, n
 a(i) = 1.0 / a(i)
 enddo
c$omp single
 a(1) = min(a(1), 1.0)
c$omp end single
c$omp do
 do i = 1, n
 b(i) = b(i) / a(i)
 enddo
c$omp end do nowait
c$omp end parallel
 end
http://www.kai.com/kpts/guide/

sections: Updating a Shared Scalar Examples • A

E
xa

m
pl

es

A

sections: Updating a Shared Scalar

Identical to “single: Updating a Shared Scalar” on page 100 but using different
directives.

 subroutine psection_sp_1 (a,b,n)
 real a(n), b(n)

c$omp parallel
c$omp& shared(a,b,n)
c$omp& private(i)
c$omp do
 do i = 1, n
 a(i) = 1.0 / a(i)
 enddo
c$omp sections
 a(1) = min(a(1), 1.0)
c$omp end sections
c$omp do
 do i = 1, n
 b(i) = b(i) / a(i)
 enddo
c$omp end do nowait
c$omp end parallel
 end
guide@kai.com 101

A • Examples do: Updating a Shared Scalar

102
do: Updating a Shared Scalar

Identical to “single: Updating a Shared Scalar” on page 100 but using different
directives.

 subroutine do_sp_1 (a,b,n)
 real a(n), b(n)

c$omp parallel
c$omp& shared(a,b,n)
c$omp& private(i)
c$omp do
 do i = 1, n
 a(i) = 1.0 / a(i)
 enddo
c$omp end do
c$omp do
 do i = 1, 1
 a(1) = min(a(1), 1.0)
 enddo
c$omp end do
c$omp do
 do i = 1, n
 b(i) = b(i) / a(i)
 enddo
c$omp end do nowait
c$omp end parallel
 end
http://www.kai.com/kpts/guide/

parallel do: A Simple Difference Operator Examples • A

E
xa

m
pl

es

A

parallel do: A Simple Difference Operator

Identical to “do: A Simple Difference Operator” on page 96 but using different
directives.

 subroutine paralleldo_1 (a,b,n)
 real a(n,n), b(n,n)

c$omp parallel do
c$omp& shared(a,b,n)
c$omp& private(i,j)
c$omp& schedule(dynamic,1)
 do i = 2, n
 do j = 1, i
 b(j,i) = (a(j,i) + a(j,i-1)) / 2
 enddo
 enddo
 end
guide@kai.com 103

A • Examples parallel sections: Two Difference Opera-

104
parallel sections: Two Difference Operators

Identical to “sections: Two Difference Operators” on page 99 but using different
directives. The maximum performance improvement is limited to the number of
sections run in parallel, so this example has a maximum parallelism of 2.

 subroutine sections_2 (a,b,c,d,m,n)
 real a(n,n), b(n,n), c(m,m), d(m,m)

c$omp parallel sections
c$omp& shared(a,b,c,d,m,n)
c$omp& private(i,j)
c$omp section
 do i = 2, n
 do j = 1, i
 b(j,i) = (a(j,i) + a(j,i-1)) / 2
 enddo
 enddo
c$omp section
 do i = 2, m
 do j = 1, i
 d(j,i) = (c(j,i) + c(j,i-1)) / 2
 enddo
 enddo
c$omp end parallel sections
 end
http://www.kai.com/kpts/guide/

Simple Reduction Examples • A

E
xa

m
pl

es

A

Simple Reduction

This demonstrates how to perform a reduction using partial sums while avoiding
synchronization in the loop body.

 subroutine reduction_1 (a,m,n,sum)
 real a(m,n)

c$omp parallel
c$omp& shared(a,m,n,sum)
c$omp& private(i,j,local_sum)
 local_sum = 0.0
c$omp do
 do i = 1, n
 do j = 1, m
 local_sum = local_sum + a(j,i)
 enddo
 enddo
c$omp end do nowait
c$omp critical
 sum = sum + local_sum
c$omp end critical
c$omp end parallel
 end

The above reduction could also use the REDUCTION () clause as follows:

 subroutine reduction_2 (a,m,n,sum)
 real a(m,n)

c$omp parallel do
c$omp& shared(a,m,n)
c$omp& private(i,j)
c$omp& reduction(+:sum)
 do i = 1, n
 do j = 1, m
 sum = sum + a(j,i)
 enddo
 enddo
 end
guide@kai.com 105

A • Examples threadprivate: Private Common

106
threadprivate: Private Common

This example demonstrates the use of threadprivate privatizable common
blocks.

 subroutine tc_1 (n)
 common /shared/ a
 real a(100,100)
 common /private/ work
 real work(10000)
c$omp threadprivate (/private/) ! this privatizes the
 ! common /private/
c$omp parallel
c$omp& shared(n)
c$omp& private(i)
c$omp do
 do i = 1, n
 call construct_data() ! fills in array work()
 call use_data() ! uses array work()
 enddo
c$omp end do nowait
c$omp end parallel
 end
http://www.kai.com/kpts/guide/

threadprivate: Private Common and Master Thread Examples • A

E
xa

m
pl

es

A

threadprivate: Private Common and Master Thread

In this example, the value 2 is printed since the master thread's copy of a variable in
a threadprivate privatizable common block is accessed within a master
section or in serial code sections. If a single was used in place of the master
section, some single thread, but not necessarily the master thread, would set j to 2
and the printed result would be indeterminate.

 subroutine tc_2
 common /blk/ j
c$omp threadprivate (/blk/)

 j = 1
c$omp parallel
c$omp master
 j = 2
c$omp end master
c$omp end parallel

 print *, j
 end
guide@kai.com 107

A • Examples instance parallel: As a Private Common

108
instance parallel: As a Private Common

This demonstrates the use of instance parallel privatizable common
blocks.

 subroutine ip_1 (n)
 common /shared/ a
 real a(100,100)
 common /private/ work
 real work(10000)
c$omp instance parallel (/private/)

c$omp parallel
c$omp& shared(n)
c$omp& private(i)
c$omp new (/private/) ! this privatizes the
c$omp do ! common /private/
 do i = 1, n
 call construct_data()! fills in array work()
 call use_data() ! uses array work()
 enddo
c$omp end do nowait
c$omp end parallel
 end
http://www.kai.com/kpts/guide/

instance parallel: As a Shared and then a Private Common Examples • A

E
xa

m
pl

es

A

instance parallel: As a Shared and then a Private Common

This demonstrates the use of an instance parallel common block first as a
shared common block and then as a private common block. This would not be pos-
sible with threadprivate blocks since threadprivate blocks are always
private.

 subroutine ip_2 (n,m)
 common /shared/ a,b
 real a(100,100), b(100,100)
 common /private/ work
 real work(10000)
c$omp instance parallel (/private/)

c$omp parallel ! common /private/ is
c$omp& shared(a,b,n) ! shared here since
c$omp& private(i) ! no new appears
c$omp do
 do i = 1, n
 work(i) = b(i,i) / 4.0
 enddo
c$omp end do nowait
c$omp end parallel

 do i = 1, n
 do j = 1, m
 a(j,i) = work(i) * (a(j-1,i) + a(j+1,i)
 x + a(j,i-1) + a(j,i+1))
 enddo
 enddo

c$omp parallel
c$omp& shared(m)
c$omp& private(i)
c$omp new (/private/) ! this privatizes the
c$omp do ! common /private/
 do i = 1, m
 call construct_data() ! fills in array work()
 call use_data() ! uses array work()
 enddo
c$omp end do nowait
c$omp end parallel
 end
guide@kai.com 109

A • Examples Avoiding External Routines: Reduction

110
Avoiding External Routines: Reduction

This example demonstrates two coding styles for reductions, one using the
external routines omp_get_max_threads() and
omp_get_thread_num() and the other using only OpenMP directives.

 subroutine reduction_3a (n)
 real gx(0:7) ! assume 8 processors

 do i = 0, omp_get_max_threads()-1
 gx(i) = 0
 enddo

c$omp parallel
c$omp& shared(a)
c$omp& private(i,lx)
 lx = 0
c$omp do
 do i = 1, n
 lx = lx + a(i)
 enddo
c$omp end do nowait
 gx(omp_get_thread_num()) = lx
c$omp end parallel

 x = 0
 do i = 0, omp_get_max_threads()-1
 x = x + gx(i)
 enddo

 print *, x
 end

As shown below, this example can be written without the external routines.
http://www.kai.com/kpts/guide/

Avoiding External Routines: Reduction Examples • A

E
xa

m
pl

es

A

 subroutine reduction_3b (n)

 x = 0
c$omp parallel
c$omp& shared(a,x)
c$omp& private(i,lx)
 lx = 0
c$omp do
 do i = 1, n
 lx = lx + a(i)
 enddo
c$omp end do nowait
c$omp critical
 x = x + lx
c$omp end critical
c$omp end parallel

 print *, x
 end

This example can also be written more simply using the reduction () clause as
follows:

 subroutine reduction_3c (n)

 x = 0
c$omp parallel
c$omp& shared(a)
c$omp& private(i)
c$omp do reduction(+:x)
 do i = 1, n
 x = x + a(i)
 enddo
c$omp end do nowait
c$omp end parallel

 print *, x
 end
guide@kai.com 111

A • Examples Avoiding External Routines: Temporary

112
Avoiding External Routines: Temporary Storage

This example demonstrates three coding styles for temporary storage, one using
the external routine and omp_get_thread_num() and the other two using
only directives.

 subroutine local_1a (n)
 dimension a(100)
 common /cmn/ t(100, 0:7) ! assume 8 processors

max.
c$omp parallel do
c$omp& shared(a,t)
c$omp& private(i)
 do i = 1, n
 do j = 1, n
 t(j, omp_get_thread_num()) = a(i) ** 2
 enddo
 call work(t(1,omp_get_thread_num()))
 enddo
 end

If t is not global, then the above can be accomplished by putting t in the
private clause:

 subroutine local_1b (n)
 dimension t(100)

c$omp parallel do
c$omp& shared(a)
c$omp& private(i,t)
 do i = 1, n
 do j = 1, n
 t(j) = a(i) ** 2
 enddo
 call work(t)
 enddo
 end

If t is global, then the threadprivate directive can be used instead.
http://www.kai.com/kpts/guide/

Avoiding External Routines: Temporary Storage Examples • A

E
xa

m
pl

es

A

 subroutine local_1c (n)
 dimension t(100)
 common /cmn/ t
c$omp threadprivate (/cmn/)

c$omp parallel do
c$omp& shared(a)
c$omp& private(i)
 do i = 1, n
 do j = 1, n
 t(j) = a(i) ** 2
 enddo
 call work ! access t from common /cmn/
 enddo
 end
guide@kai.com 113

A • Examples firstprivate: Copying in Initialization Val-

114
firstprivate: Copying in Initialization Values

Not all of the values of a and b are initialized in the loop before they are used
(the rest of the values are produced by init_a and init_b). Using
firstprivate for a and b causes the initialization values produced by
init_a and init_b to be copied into private copies of a and b for use in the
loops.

 subroutine dsq3_b (c,n)
 integer n
 real a(100), b(100), c(n,n), x, y
 call init_a(a, n)
 call init_b(b, n)
c$omp parallel do shared(c,n) private(i,j,x,y)
firstprivate(a,b)
 do i = 1, n
 do j = 1, i
 a(j) = calc_a(i)
 b(j) = calc_b(i)
 enddo
 do j = 1, n
 x = a(i) - b(i)
 y = b(i) + a(i)
 c(j,i) = x * y
 enddo
 enddo
c$omp end parallel do
 print *, x, y
 end
http://www.kai.com/kpts/guide/

threadprivate: Copying in Initialization Values Examples • A

E
xa

m
pl

es

A

threadprivate: Copying in Initialization Values

Similar to “firstprivate: Copying in Initialization Values” on page 114 except using
threadprivate common blocks. For threadprivate , copyin is used
instead of firstprivate to copy initialization values from the shared (master)
copy of /blk/ to the private copies.

 subroutine dsq3_b_tc (c,n)
 integer n
 real a(100), b(100), c(n,n), x, y
 common /blk/ a,b
c$omp threadprivate (/blk/)

 call init_a(a, n)
 call init_b(b, n)
c$omp parallel do shared(c,n) private(i,j,x,y)
copyin(a,b)
 do i = 1, n
 do j = 1, i
 a(j) = calc_a(i)
 b(j) = calc_b(i)
 enddo
 do j = 1, n
 x = a(i) - b(i)
 y = b(i) + a(i)
 c(j,i) = x * y
 enddo
 enddo
c$omp end parallel do
 print *, x, y
 end
guide@kai.com 115

A • Examples instance parallel: Copying in Initializa-

116
instance parallel: Copying in Initialization Values

Similar to “firstprivate: Copying in Initialization Values” on page 114 except
using instance parallel privatizable common blocks. For instance
parallel , copy new is used instead of firstprivate to privatize the
common block and to copy initialization values from the shared (master) copy of
/blk/ to the private copies.

 subroutine dsq3_b_ip (c,n)
 integer n
 real a(100), b(100), c(n,n), x, y
 common /blk/ a,b
c$omp instance parallel (/blk/)

 call init_a(a, n)
 call init_b(b, n)
c$omp parallel do shared(c,n) private(i,j,x,y)
c$omp copy new (/blk/)
 do i = 1, n
 do j = 1, i
 a(j) = calc_a(i)
 b(j) = calc_b(i)
 enddo
 do j = 1, n
 x = a(i) - b(i)
 y = b(i) + a(i)
 c(j,i) = x * y
 enddo
 enddo
c$omp end parallel do
 print *, x, y
 end
http://www.kai.com/kpts/guide/

Timing Guide Constructs • B

 G
ui

de

ru
ct

s
B

APPENDIX B Timing Guide

Constructs

The table contained in this appendix demonstrates the amount of time expended for
OpenMP directives in comparison to a null call for a typical micro-processor based
SMP. A null call is a call to an empty function.

subroutine null
return
end

In the table below, it took about 10 cycles to call the null function. A barrier
construct is about 10 times slower for 1 processor, and about 70 times slower for 2
processors.
guide@kai.com 117

T
im

in
g

C
on

st

B • Timing Guide Constructs

118

Guide Construct X s

function call

barrier 0

single 0

critical section 0

parallel region 0
Typical Overhead

This information can be used to draw the following general conclusions:

• A barrier statement is 30 to 50 percent less expensive than a parallel
region.

• barrier s and single s have roughly the same overhead.

• After 2 processors, all the costs follow a nearly linear pattern as you add pro-
cessors.

1 processor 2 processor 3 processor 4 processor

 null call cycles X null call cycles X null call cycles X null call cycle

1 10 1 10 1 10 1 10

10 100 70 700 90 900 100 100

20 200 90 900 110 1100 130 130

30 300 70 700 150 1500 210 210

50 500 190 1900 220 2200 280 280
http://www.kai.com/kpts/guide/

Index
A
advanced optimization 47, 48

command line options 47, 48
alignmax 49, 50
all

save option 58
all_adjust

save option 58
as 48, 50
assume 48, 50
atomic 22

B
barrier 23
barrier 7
blank_padding 49, 51
bold typeface 3
bp 49, 51

C
c*$*options 53, 60
case 49, 51

chk 49, 51
chunk 30, 49, 51
cmp 48, 51
command line options 48, 57

1 49, 56
advanced optimization 47, 48
alignmax 49, 50
alphabetic listing 50–61
as 48, 50
assume 48, 50
blank_padding 49, 51
bp 49, 51
case 49, 51
chk 49, 51
chunk 49, 51
cmp 48, 51
conc 48, 52
concurrentize 48, 52
datasave 49, 52
directives 49, 52
dl 49, 52
dlines 49, 52
guide@kai.com 119

Index

120
dr 49, 52
ds 49, 52
heap 49, 53
heaplimit 49, 53
i 48, 54
ig 49, 53
ignoreoptions 49, 53
inc 49, 54
include 49, 54
input 48, 54
int 49, 54
integer 49, 54
l 48, 55
lines 48, 54
list 48, 55
listoptions 48, 55
ln 48, 54
lo 48, 55
log 49, 55
logical 49, 55
mc 48
minconcurrent 48
o 48, 56
onetrip 49, 56
optimize 48, 56
rc 49, 57
real 49, 57
recursion 49, 57
rl 49, 57
roundoff 48, 57
save 49, 58
scalaropt 48, 59
scan 49, 59
schd 49, 59
scheduling 49, 59
so 48, 59
specifying 53, 60
su 48, 59
suppress 48, 59
sv 49, 58
sy 49, 60
syntax 49, 60
ty 49, 60
type 49, 60

common blocks

allocating private 27
declaring private 27
privatizing 10

common privatization 26
allocating private commons 27
declaring private commons 27
instance parallel 26

common privatization directives
threadprivate 26

conc 48, 52
concurrentize 48, 52
control directives

do 16
parallel do 19
parallel for 19

copyin 26
courier font 3
critical 21

D
data scope attribute clauses

copyin 26
default 24
firstprivate 24
lastprivate 24
private 24
reduction 25
shared 24

datasave 49, 52
debugging code 52
dec

fortran extensions 60
default 24
digital

fortran extensions 60
directives 49, 52

atomic 22
barrier 23
critical 21
do 16
flush 23
instance parallel 26
master 22
ordered 21
parallel 16
http://www.kai.com/kpts/guide/

Index
parallel do 19
parallel for 19
parallel sections 20
recognition 52
sections 17
single 18
synchronization 21
threadprivate 26

dl 49, 52
dlines 49, 52
do 16
dr 49, 52
driver options

h 41
v 41
w 41
wauser 45, 46
wg 42
wgcompiler 42
wgcpp 42
wgf77 42
wgf90 42
wgfortran 42
wgftn 43
wgkeep 43
wgkeepcpp 43
wglibpath 43
wgnocpp 43
wgnokeep 43
wgnoprocess 43
wgnorc 44
wgonly 44
wgpath 44
wgprefix 44
wgsrcdir 44
wgversion 46

ds 49, 52

E
eliminating 7
environment variables 35, 36, 37

kmp_blocktime 35
kmp_library 35
kmp_scheduling 35
kmp_stacksize 36

kmp_statsfile 36
ld_library_path 37
omp_dynamic 36
omp_num_threads 37
omp_schedule 37
scheculing options 35

error messages 59, 60
suppressing 59

external routines 66
kmp_get_blocktime 67
kmp_get_library 67
kmp_get_stacksize 68
kmp_set_blocktime 68
kmp_set_library 68
kmp_set_library_serial 68
kmp_set_library_throughput 68
kmp_set_library_turnaround 69
kmp_set_stacksize 69
mppbeg() 67
mppend() 67
omp_destroy_lock() 69
omp_get_max_threads() 69
omp_get_num_procs() 69
omp_get_num_threads() 69
omp_get_thread_num() 70
omp_init_lock() 70
omp_set_lock() 70
omp_test_lock() 71
omp_unset_lock() 71

F
firstprivate 24
flush 23
fortran

dialects 60

G
guidefrc 41
guideview 73

H
heap 49, 53
heaplimit 49, 53
guide@kai.com 121

Index

122
I
i 48, 54
ig 49, 53
ignoreoptions 49, 53
inc 49, 54
include 49, 54
input 48, 54
instance parallel 26
int 49, 54
integer 49, 54

K
kmp_blocktime 35
kmp_get_blocktime 67
kmp_get_library 67
kmp_get_stacksize 68
kmp_library 35
kmp_scheduling 35
kmp_set_blocktime 68
kmp_set_library 68
kmp_set_library_serial 68
kmp_set_library_throughput 68
kmp_set_library_turnaround 69
kmp_set_stacksize 69
kmp_stacksize 36
kmp_statsfile 36

L
l 48, 55
lastprivate 24
ld_library_path 37
libraries 63, 66

linking 66
selecting 63

lines 48, 54
linking

libraries 66
list 48, 55
listoptions 48, 55
ln 48, 54
lo 48, 55
log 49, 55
logical 49, 55

M
manual

save option 58
manual_adjust

save option 58
master 22
mc 48
messages

suppressing 59
minconcurrent 48
mppbeg() 67
mppend() 67

O
o 48, 56
omp_destroy_lock() 69
omp_dynamic 36
omp_get_max_threads() 69
omp_get_num_procs() 69
omp_get_num_threads() 69
omp_get_thread_num() 70
omp_init_lock() 70
omp_num_threads 37
omp_schedule 37
omp_set_lock() 70
omp_test_lock() 71
omp_unset_lock() 71
onetrip 49, 56
openmp common privatization

directives 26–??
openmp environment variables 35–37

kmp_stacksize 36
ld_library_path 37
omp_dynamic 36
omp_schedule 37

optimize 48, 56
options 53, 60
ordered 21

P
parallel 16
parallel directives

parallel 16
parallel do 19
parallel for 19
http://www.kai.com/kpts/guide/

Index
parallel sections 20
perview 77–86
private 24
private commons

allocating 27
declaring 27

privatization
directives 10

R
r 48, 57
rc 49, 57
real 49, 57
recursion 49, 57
reduction 25
roundoff 48, 57

S
save 49, 58

all 58
all_adjust 58
manual 58
manual_adjust 58

scalaropt 48, 59
scan 49, 59
schd 49, 59
scheduling 49, 59
scheduling options 28

chunk size 30
environment variables 35

sections 17
shared 24
single 18
so 48, 59
su 48, 59
suppress 48, 59
sv 49, 58
sy 49, 60
synchronization directives 21, 22

atomic 22
barrier 23
critical 21
flush 23
master 22
ordered 21

syntax 49, 60

T
threadprivate 26
ty 49, 60
type 49, 60

W
warnings

suppressing 59
wauser 45, 46
wg 42
wgcompiler 42
wgcpp 42
wgf77 42
wgf90 42
wgfortran 42
wgftn 43
wgkeep 43
wgkeepcpp 43
wglibpath 43
wgnocpp 43
wgnokeep 43
wgnoprocess 43
wgnorc 44
wgonly 44
wgpath 44
wgprefix 44
wgsrcdir 44
wgversion 46
worksharing directives

parallel sections 20
sections 17
single 18
guide@kai.com 123

	Introduction
	About Guide
	Using this Reference Manual
	Reference Manual Contents
	Reference Manual Conventions

	Guide On-line
	Technical Support
	Comments

	Using Guide
	Parallel Processing Model
	Overview
	Increasing Efficiency
	Data Sharing

	Using Guide to Develop Parallel Programs
	Prepare
	Analyze
	Restructure
	Tune

	Orphaned Directives
	A Few Rules about “Orphaned” Directives

	OpenMP Directives
	Parallel Directive
	parallel

	Worksharing Directives
	do
	sections
	single

	Combined Parallel and Worksharing Directives
	parallel do
	parallel sections

	Synchronization Directives
	critical
	ordered
	master
	atomic
	flush
	barrier

	Data Scope Attribute Clauses
	default (shared | private | none) shared (<list>) private (<list>)
	firstprivate (<list>)
	lastprivate (<list>)
	reduction (<operator>:<list>) reduction (<intrinsic>:<list>)
	copyin (<list>)

	Common Privatization Directives
	threadprivate
	instance parallel
	Declaring Private Commons
	Allocating Private Commons

	Scheduling Options
	Scheduling Options Using Directives
	Scheduling Options Using Environment Variables

	Environment Variables
	KMP_BLOCKTIME=<>[<character>]
	KMP_LIBRARY=<string>
	KMP_STACKSIZE=<>[<character>]
	KMP_STATSFILE=<file>
	OMP_DYNAMIC=<boolean>
	OMP_NUM_THREADS=<>
	OMP_SCHEDULE=<>[,<>]
	OMP_NESTED=<boolean>
	LD_LIBRARY_PATH=<path>

	The Guide Drivers
	About Guidef77 and Guidef90
	Using the Drivers
	Driver Options
	Displaying the Driver Usage Message
	Displaying All Command Lines
	Suppressing Guidef Warnings

	Driver-Specific Options
	WG,guide_option_1[[[,guide_option_2],guide_option_3],...]
	WGcompiler=<path>
	WGcpp
	WGcpp=<path>
	WGf77=<path>
	WGf90=<file>
	WGfortran=<path>
	WGftn=<path>
	WGkeep
	WGkeepcpp
	WGlibpath=<path>
	WGnocpp
	WGnokeep
	WGnoprocess
	WGnorc
	WGnowork
	WGonly
	WGpath=<path>
	WGprefix=<string>
	WGsrcdir
	WGstatic_library
	WGuser
	WGuser2
	WGversion

	Guide Options
	General Optimization
	Input-Output
	Listing
	Advanced Optimization
	FORTRAN Dialect
	Hardware
	Directive Recognition

	Guide Options Table
	Guide Options Alphabetic Listing
	alignmax=<integer>
	assume=<string> or a=<string> noassume or nas
	blank_padding or bp noblank_padding or nbp
	case or case nocase or ncase
	chunk=<integer> or chk=<integer>
	cmp[=<file>]
	concurrentize, conc noconcurrentize, noconc
	datasave or ds nodatasave or nds
	directives=p or dr=p nodirectives or ndr
	dlines or dl nodlines or ndl
	heaplimit=<integer> or heap=<integer>
	ignoreoptions or ig noignoreoptions or nig
	include=<directory> or inc=<directory>
	input=<file> or i=<file>
	integer=<integer> or int=<integer>
	lines=<integer> or ln=<integer>
	list[=<file>] nolist
	listoptions=<string> or lo=<string>
	logical=<integer> or log=<integer>
	minconcurrent=<integer> or mc=<integer>
	onetrip or 1 noonetrip or n1
	optimize=<integer> or o=<integer>
	real=<integer> or rl=<integer>
	recursion or rc norecursion or nrc
	roundoff=<string> or r=<string>
	save=<string> or sv=<string>
	scalaropt=<integer> or so=<integer>
	scan=<integer> or scan=<integer>
	scheduling=<character> or schd=<character>
	suppress=<string> or su=<string>
	syntax=<string> or sy=<string>
	type or ty notype or nty
	c*$*options Line

	Libraries
	Selecting a Library
	Serial
	Turnaround
	Gang
	Throughput

	The Guide_stats Library
	The Guide_perview Library
	Linking the Libraries
	External Routines
	mppbeg() mppend()
	kmp_get_blocktime
	kmp_get_library
	kmp_get_stacksize (<integer>)
	kmp_set_blocktime (<integer>)
	kmp_set_library (<integer>)
	kmp_set_library_serial
	kmp_set_library_throughput
	kmp_set_library_turnaround
	kmp_set_stacksize (integer)
	OMP_DESTROY_LOCK(<var>)
	OMP_GET_MAX_THREADS()
	OMP_GET_NUM_PROCS()
	OMP_GET_NUM_THREADS()
	OMP_GET_THREAD_NUM()
	OMP_INIT_LOCK(<var>)
	OMP_SET_LOCK(<var>)
	Signal Handling
	OMP_TEST_LOCK(<var>)
	OMP_UNSET_LOCK(<var>)

	GuideView
	Introduction
	Using GuideView
	GuideView Options
	mhz=<integer>
	ovh=<file>
	jpath=<file>
	WJ,[java_option]

	Java Options
	ms<integer>[{k,m}]
	mx<integer>[{k,m}]
	nojit

	PerView
	Introduction
	Enabling the PerView Server
	Security
	Running with PerView
	Starting the Server
	KMP_HTTP_PORT=<port>
	KMP_HTTP_HOME=<path>
	KMP_HTTP_ACCESS=<password>

	Starting the Client

	Using PerView
	Performance
	Controls
	Status Bar
	Minimal Monitor

	Progress Data
	Progress Bar
	Progress Graph
	Progress String
	Extending PerView

	Directive Translation
	KAP/Pro Parallel Directive to OpenMP Directive Translator
	Cray Directive to OpenMP Directive Translator
	Cray TASKCOMMON as opposed to OpenMP THREADPRIVATE

	SGI Directive to OpenMP Directive Translator
	KAP Directive to OpenMP Directive Translator

	Examples
	do: A Simple Difference Operator
	do: Two Difference Operators
	do: Reduce Fork/Join Overhead
	sections: Two Difference Operators
	single: Updating a Shared Scalar
	sections: Updating a Shared Scalar
	do: Updating a Shared Scalar
	parallel do: A Simple Difference Operator
	parallel sections: Two Difference Operators
	Simple Reduction
	threadprivate: Private Common
	threadprivate: Private Common and Master Thread
	instance parallel: As a Private Common
	instance parallel: As a Shared and then a Private Common
	Avoiding External Routines: Reduction
	Avoiding External Routines: Temporary Storage
	firstprivate: Copying in Initialization Values
	threadprivate: Copying in Initialization Values
	instance parallel: Copying in Initialization Values

	Timing Guide Constructs
	Typical Overhead

