

GUIDE™ Reference Manual
(C/C++ Edition)
Version 3.6
Document #9607001
Kuck & Associates, Inc.

GUIDE™ Reference Manual
Version 3.6

Revised October, 1998

Kuck & Associates, Inc.
1906 Fox Drive

Champaign, IL 61820-7345
USA

Phone: (217) 356-2288
FAX: 217-356-5199

Internet: kai@kai.com
WWW: http://www.kai.com/kpts/guide/

The information in this document is subject to change without notice. No part of this
document may be reproduced, copied or distributed in any form or by any means,
electronic or mechanical, for any purpose, without the express written consent of Kuck &
Associates, Inc.

© Copyright 1983-1998 by Kuck & Associates, Inc. All rights reserved.

KAI, KAP/Pro Toolset, Assure, and Guide are trademarks of Kuck & Associates, Inc.
Cray is a registered trademark of Cray Research, Inc.
DEC and Digital are trademarks of Digital Equipment Corp.
Java is a trademark of Sun Microsystems, Inc.
UNIX is a registered Trademark in the USA and other countries, licensed exclusively
through X/Open Company Limited.
All other brand and product names are trademarks or registered trademarks of their
respective companies.

GOVERNMENT RESTRICTED RIGHTS. Use, duplication, or disclosure by the U.S.
government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs (c) (1) and (2) of the Commercial Computer Software-Restricted Rights
clause at 48 CFR 52.227-19, as applicable.

Printed in the United States of America.

Table of Contents

CHAPTER 1 1 Introduction

1 About Guide

2 Using this Reference Manual

2 Reference Manual Contents

3 Reference Manual Conventions

3 Guide On-line

3 Technical Support

4 Comments

CHAPTER 2 5 Using Guide

5 Parallel Processing Model

5 Overview

7 Increasing Efficiency

9 Data Sharing

9 Using Guide to Develop Parallel Programs

9 Analyze

10 Restructure

10 Tune

10 Orphaned Pragmas

12 A Few Rules about “Orphaned” Pragmas

CHAPTER 3 15 The Guide Driver

15 About Guidec

16 Using the Driver

16 Driver Options

17 Driver-specific Options
guide@kai.com i

CHAPTER 4 23 OpenMP Pragmas

24 Parallel Pragma

24 Worksharing Pragmas

27 Workqueuing Pragmas

28 The Taskq Model

29 Data Privatization

31 Examples

31 Combined Parallel and Worksharing/Workqueuing Pragmas

35 Synchronization Pragmas

37 Data Scope Attribute Clauses

39 Privatization of Global Variables

40 Initializing Threadprivate Variables

40 Persistence of Threadprivate Variables

41 Scheduling Options

43 Scheduling Options Using Pragmas

44 Scheduling Options Using Environment Variables

44 Environment Variables

44 KMP_BLOCKTIME=<integer>[<character>]

44 KMP_LIBRARY=<string>

45 KMP_STACKSIZE=<integer>[<character>]

45 KMP_STATSFILE=<file>

45 OMP_DYNAMIC=<boolean>

46 OMP_NUM_THREADS=<integer>

46 OMP_SCHEDULE=<string>[,<integer>]

46 OMP_NESTED=<boolean>

47 LD_LIBRARY_PATH=<path>

CHAPTER 5 49 Libraries

49 Selecting a Library

49 Serial

50 Turnaround

50 Gang
ii http://www.kai.com/kpts/guide/

50 Throughput

51 The Guide_stats Library

51 The Guide_perview Library

52 Linking the Libraries

52 External Routines

53 void mppbeg(void)
void mppend(void)

53 kmp_get_blocktime

54 kmp_get_library

54 kmp_get_stacksize (<integer>)

54 kmp_set_blocktime (<integer>)

54 kmp_set_library (<integer>)

54 kmp_set_library_serial

55 kmp_set_library_throughput

55 kmp_set_library_turnaround

55 kmp_set_stacksize (integer)

55 void omp_destroy_lock(omp_lock_t *lock);

55 int omp_get_max_threads(void)

55 int omp_get_num_procs(void)

56 int omp_get_num_threads(void)

56 int omp_get_thread_num(void)

56 void omp_init_lock(omp_lock_t *lock);

56 void omp_set_lock(omp_lock_t *lock);

57 Signal Handling

57 int omp_test_lock(omp_lock_t *lock);

57 void omp_unset_lock(omp_lock_t *lock);

CHAPTER 6 59 GuideView

59 Introduction

59 Using GuideView

60 GuideView Options

60 mhz=<integer>
guide@kai.com iii

61 ovh=<file>

61 jpath=<file>

61 WJ,[java_option]

61 Java Options

61 ms<integer>[{k,m}]

62 mx<integer>[{k,m}]

CHAPTER 7 63 PerView

63 Introduction

63 Enabling the PerView Server

64 Security

64 Running with PerView

64 Starting the Server

65 Starting the Client

66 Using PerView

67 Performance

68 Controls

69 Status Bar

69 Minimal Monitor

70 Progress Data

70 Progress Bar

71 Progress Graph

71 Progress String

72 Extending PerView

APPENDIX A 73 Examples

74 for: A Simple Difference Operator

75 for: Two Difference Operators

76 for: Reduce Fork/Join Overhead

77 sections: Two Difference Operators

78 single: Updating a Shared Scalar
iv http://www.kai.com/kpts/guide/

79 sections: Updating a Shared Scalar

80 for: Updating a Shared Scalar

81 parallel for: A Simple Difference Operator

82 parallel sections: Two Difference Operators

83 Simple Reduction

84 threadprivate: Private File-Scope Variable

85 threadprivate: Private File-Scope Variable and Master Thread

86 Avoiding External Routines: Reduction

88 Avoiding External Routines: Temporary Storage

89 firstprivate: Copying in Initialization Values

90 threadprivate: Copying in Initialization Values

91 taskq: Parallelizing across Loop Nests

APPENDIX B 93 Timing Guide Constructs

94 Typical Overhead
guide@kai.com v

vi http://www.kai.com/kpts/guide/

About Guide Introduction

•

 1

In
tr

od
uc

tio
n

1

CHAPTER 1 Introduction

About Guide

The KAP/Pro Toolset is a system of tools and application accelerators for develop-
ers of large scale, parallel scientific-engineering software.

The KAP/Pro Toolset is intended for users who understand their application pro-
grams and understand parallel processing. The Guide component of the toolset
implements the OpenMP API on all popular shared memory parallel (SMP) sys-
tems that support threads. The KAP/Pro Toolset uses the de facto industry standard
OpenMP pragmas to express parallelism. This pragma set is compatible with the
older pragmas from PCF, X3H5, SGI and Cray.

Throughout this manual, the term “OpenMP pragmas” is used to refer to the
KAP/Pro Toolset implementation of the OpenMP specification, unless stated other-
wise.

The input to Guide is a C program with OpenMP pragmas. The output of Guide is a
C program with the pragma parallelism implemented using threads and the Guide
support libraries. This output is then compiled using your existing C compiler.
guide@kai.com 1

1

•

 Introduction Using this Reference Manual

2

Guide requires the native cc compiler. GuideView requires a Java™ interpreter,
which can be obtained from Sun or Microsoft via the world wide web. Links to
these packages are available on the KAI web site at
http://www.kai.com/kpts/helpers.

Using this Reference Manual

Reference Manual Contents

Chapter 2, “Using Guide,” beginning on page 5, contains the OpenMP parallel
processing model, an overview for using Guide, and an example to illustrate
how to insert OpenMP pragmas.

Chapter 3, “The Guide Driver,” beginning on page 15, describes the Guide driv-
ers, and it contains descriptions of all Guide command line options. These
options allow you to alter Guide’s default behaviors.

Chapter 4, “OpenMP Pragmas,” beginning on page 23, contains definitions for
all OpenMP pragmas. OpenMP pragmas specify the parallelism within your
code. This chapter also defines the Guide environment variables.

Chapter 5, “Libraries,” beginning on page 49, explains the differences among
Guide’s several run–time libraries.

Chapter 6, “GuideView,” beginning on page 59, describes the GuideView graph-
ical performance viewer.

Chapter 7, “PerView,” beginning on page 63, describes the PerView application
manager and monitor.

Appendix A, “Examples,” beginning on page 89, contains code examples with
OpenMP pragmas.

Appendix B, “Timing Guide Constructs,” beginning on page 93, shows the
expense associated with using OpenMP pragmas.
http://www.kai.com/kpts/guide/

Guide On-line Introduction

•

 1

In
tr

od
uc

tio
n

1

Reference Manual Conventions

To distinguish filenames, commands, variable names, and code examples from the
remainder of the text, these terms are printed in courier typeface. Command
line options are printed in bold typeface.

With Guide’s command line options and pragmas, you can control a program’s par-
allelization by providing information to Guide. Some of these command line
options and pragmas require arguments. In their descriptions, <integer> indicates
an integer number, <path> indicates a directory, <file> indicates a filename, <char-
acter> indicates a single character, and <string> indicates a string of characters.
For example, -WGdefault=<string> in this user’s guide indicates that a string
needs to be provided in order to change the -WGdefault option from the default
value to a new value (such as -WGdefault=private).

To differentiate user input and code examples from descriptive text, they are pre-
sented:

In Courier typeface, indented where possible .

Guide On-line

Visit the Guide Home Page at http://www.kai.com/kpts/guide/ for the latest infor-
mation on Guide.

Technical Support

KAI strives to produce high-quality software; however, if Guide produces a fatal
error or incorrect results, please send a copy of the source code, a list of the
switches and options used, and as much output and error information as possible to
Kuck & Associates (KAI), guide@kai.com.
guide@kai.com 3

1 • Introduction Comments

4

Comments

If there is a way for Guide to provide more meaningful results, messages, or fea-
tures that would improve usability, let us know. Our goal is to make Guide easy
to use as you improve your productivity and the execution speed of your appli-
cations. Please send your comments to guide@kai.com.
http://www.kai.com/kpts/guide/

Parallel Processing Model Using Guide • 2

U
si

ng
 G

ui
de

2

CHAPTER 2 Using Guide

Parallel Processing Model

This section defines general parallel processing terms and explains how different
constructs affect parallel code. For exact semantics, please consult the OpenMP
C/C++ API standard document available at http://www.openmp.org/ or contact KAI
at http://www.kai.com/kpts/guide/ or email KAI at guide@kai.com for more infor-
mation.

Overview

After placing OpenMP parallel processing pragmas in an application, and after the
application is processed with Guide and compiled, it can be executed in parallel.
When the parallel program begins execution, a single thread exists. This thread is
called the base or master thread. The master thread will continue serial processing
until it encounters a parallel region. Several OpenMP pragmas apply to sections, or
blocks, of source code. A structured block can be a single statement or several state-
ments, delineated by a “{“ “}” pair. See the OpenMP C/C++ API for other rules on
structured blocks.

When the master thread enters a parallel region, a team, or group of threads, is
formed. Starting from the beginning of the parallel region, code is replicated (exe-
cuted by all team members) until a worksharing construct is encountered. The for ,
guide@kai.com 5

2 • Using Guide Parallel Processing Model

6

sections , and single constructs are defined as worksharing constructs
because they distribute the enclosed work among the members of the current
team. A worksharing construct is only distributed if it occurs dynamically inside
of a parallel region. If the worksharing construct occurs lexically inside of the
parallel region then it is always executed by distributing the work among the
team members. If the worksharing construct is not lexically enclosed by a paral-
lel region (i.e. it is orphaned), then the worksharing construct will be distributed
among the team members of the closest dynamically enclosing parallel region if
one exists. Otherwise, it will be executed serially.

The for pragma specifies parallel execution of a for loop. The sections
pragma specifies parallel execution for arbitrary blocks of sequential code, one
section per thread. The single pragma defines a section of code where exactly
one thread is allowed to execute the code.

Synchronization constructs are critical , ordered , master , atomic ,
flush , and barrier . Synchronization can be specified within a parallel
region or a worksharing construct with the critical pragma. Only one thread
at a time is allowed to execute the code within a critical section. Within a
for or sections construct, synchronization can be specified with an
ordered pragma. This pragma is used in conjunction with a for or sec-
tions construct with the ordered clause to impose an order on the execution
of a section of code. The master pragma is another synchronization pragma
that can be used to force execution by the master thread. Another way to specify
synchronization is with a barrier pragma. A barrier pragma can be used
to force all team members to gather at a particular point in code. Each team
member that executes a barrier waits at the barrier until all of the team
members have arrived. barrier s cannot occur within worksharing or synchro-
nization constructs due to the potential for deadlock.

When a thread reaches the end of a worksharing construct, it may wait until all
team members within that construct have completed their work. When all of the
work defined by the worksharing construct is completed, the team exits the
worksharing construct and continues executing the code that follows the work-
sharing construct.

At the end of the parallel region, the threads wait until all the team members
have arrived. Then the team is logically disbanded (but may be reused in the next
parallel region), and the master thread continues sequentially until it encounters
the next parallel region.
http://www.kai.com/kpts/guide/

Parallel Processing Model Using Guide • 2

U
si

ng
 G

ui
de

2

Increasing Efficiency

Scheduling options can be selected for the for worksharing construct to increase
efficiency. Scheduling options specify the way processes are assigned iterations for
a loop. A nowait option can be used to increase efficiency. The nowait option
allows processes that finish their work to continue executing code. These processes
do not wait at the end of the worksharing or workqueuing construct.

Enabling the option -WGopt can also help increase efficiency. For example, using
-WGopt=3 will perform optimizations, such as eliminating unnecessary barri-
er s. The default setting for this option is -WGopt=3.
guide@kai.com 7

2 • Using Guide Parallel Processing Model

8

Figure 2-1 “Pseudo Code of the Parallel Processing Model”

main() { // Begin serial execution
 ... // Only the master thread executes
 //
omp parallel // Begin a parallel construct,
 { // form a team
 //
 ... // This is Replicated Code where each
 ... // team member executes the same code
 //
 omp sections // Begin a Worksharing Construct
 { //
 omp section // One unit of work
 {...} //
 omp section // Another unit of work
 {...} //
 } // Wait until both units of work complete
 //
 ... // More Replicated Code
 //
 omp for nowait// Begin a Worksharing Construct;
 for(...) { // each iteration is a unit of work
 //
 ... // Work is distributed among the
 // team members
 //
 } // End of Worksharing Construct; nowait
 // was specified, so no barrier
 //
 omp critical // Begin a Critical Section
 { //
 ... // Replicated Code, but only one thread
 } // can execute it at a given time
 //
 ... // More Replicated Code
 //
 omp barrier // Wait for all team members to arrive
 //
 ... // More Replicated Code
 //
 } // End of Parallel Construct; disband team
 // and continue serial execution
 //
... // Possibly more Parallel Constructs
 //
} // End serial execution
http://www.kai.com/kpts/guide/

Using Guide to Develop Parallel Programs Using Guide • 2

U
si

ng
 G

ui
de

2

Data Sharing

Data sharing is specified at the start of a parallel region or worksharing construct by
using the shared and private clauses. All variables in the shared clause are
shared among the members of a team. It is the programmer’s responsibility to syn-
chronize access to these variables. All variables in the private clause are private
to each team member. For the entire parallel region, assuming t team members, we
have t+1 copies of all the variables in the private clause: one global copy that is
active outside parallel regions and a private copy for each team member. Initializa-
tion of private variables at the start of a parallel region is also the programmer’s
responsibility, unless the firstprivate clause is specified. In this case, the
private copy is initialized from the global copy at the start of the construct at
which the firstprivate clause is specified. In general, updating the global
copy of a private variable at the end of a parallel region is the programmer’s
responsibility. However, the lastprivate clause of a for pragma enables
updating the global copy from the team member that executed the last iteration of
the for .

In addition to the shared and private clauses, file-scope and namespace-scope
variables can be made private to a thread using the threadprivate pragma.
Threadprivate variables always have t copies for t team members. The master thread
uses the global copy as its private copy for the duration of each parallel region.

Using Guide to Develop Parallel Programs

To help those familiar with parallel programming, this section contains a high-level
overview of using Guide to develop a parallel application. This manual is not
intended to be a comprehensive treatment of parallel processing. For more informa-
tion about parallel processing, consult a parallel processing text.

Analyze

• Profile the program to find out where it spends most of its time. This is the part
of the program that needs to be parallelized.

• In this part of the program there are usually nested loops. Locate a loop that has
very few cross-iteration dependences. Work through the call tree to do this.
guide@kai.com 9

2 • Using Guide Orphaned Pragmas

10
Restructure

• If the loop is parallel, introduce a parallel for pragma around this loop.

• List the variables that are present in the loop on the shared() , pri-
vate() , lastprivate() , or firstprivate() clauses.

• List the for index of the parallel loop as private() .

• File-scope variables must not be placed on the private() list if their file-
scope visibility is to be preserved. Instead, use the threadprivate
pragma to make a variable private to a thread while preserving its file-scope
visibility.

• Attempt to remove cross-iteration dependencies by rewriting the algorithm.

• Synchronize the remaining cross-iteration dependences by placing criti-
cal pragmas around the uses and assignments to variables involved in the
dependences.

• Any I/O in the parallel region should be synchronized.

• Identify more parallel loops and restructure them.

• If possible, merge adjacent parallel for s into a single parallel region
with multiple for s to reduce execution overhead.

Tune

• Guide supports the tuning process via the guide_stats library and Guide-
View. The tuning process should include minimizing the sequential code in
critical sections and load balancing by using the scheduling options
listed in “Scheduling Options” on page 41.

Orphaned Pragmas

OpenMP contains a new feature, called orphaning, that dramatically increases
the expressiveness of parallel pragmas. While earlier models required all of the
pragmas related to a parallel region to occur lexically within a single program
unit, OpenMP relaxes this restriction. Now, pragmas such as for , critical ,
barrier , sections , single , and master can be “orphaned”. That is,
they can occur by themselves in a program unit, dynamically “binding” to the
enclosing parallel region at run time.
http://www.kai.com/kpts/guide/

Orphaned Pragmas Using Guide • 2

U
si

ng
 G

ui
de

2

Orphaned pragmas allow parallelism to be inserted into existing code with a mini-
mum of code restructuring. Orphaning can also improve performance by allowing a
single parallel region to bind with multiple for pragmas located within called
subroutines. The example:

#pragma omp parallel private(i) shared(n)
 {
 #pragma omp for
 for(i=0; i < n; i++) {
 work(i);
 }
 }

is a common programming idiom for using the for worksharing construct to con-
currentize the execution of the loop. If we had two such loops we might write:

#pragma omp parallel private(i,j) shared(n)
 {
 #pragma omp for
 for(i=0; i < n; i++) {
 some_work(i);
 }
 #pragma omp for
 for(j=0; j < n; j++) {
 more_work(j);
 }
 }

However, programs are sometimes naturally structured by placing each of the major
computational sections into its own program unit. For example:

void phase1(void) {
 for(i=0; i < n; i++) {
 some_work(i);
 }
}

void phase2(void) {
 for(j=0; j < n; j++) {
 more_work(j);
 }
}

guide@kai.com 11

2 • Using Guide Orphaned Pragmas

12
With OpenMP, you can parallelize this code in a more natural manner than was
possible with previous pragma sets.

void main() {
 #pragma omp parallel
 {
 phase1();
 phase2();
 }
}

void phase1(void) {
 ...
 #pragma omp for
 for(i=0; i < n; i++) {
 some_work(i);
 }
}

void phase2(void) {
 ...
 #pragma omp for
 for(j=0; j < n; j++) {
 more_work(j);
 }
}

Notice in this example, the pragmas specifying the parallelism are divided into
three separate program units.

A Few Rules about “Orphaned” Pragmas

1. An orphaned worksharing construct (for/section/single) or work-
queuing construct (taskq) that is dynamically executed outside of a parallel
region will be executed sequentially. In the following example the first call to
phase0 is executed serially, and the second call is partitioned among the
processors on the machine.
http://www.kai.com/kpts/guide/

Orphaned Pragmas Using Guide • 2

U
si

ng
 G

ui
de

2

void main(...) {
 ...
 phase0();
 #pragma omp parallel
 {
 phase0();
 }
 ...
}

void phase0(void) {
 ...
 #pragma omp for
 for(i=0; i < n; i++) {
 other_work(i);
 }
}

2. Any collective operation (worksharing construct, workqueuing construct, or
barrier) executed inside of a worksharing construct is illegal. For example:

void main(...) {
 ...
#pragma omp parallel
 {
 #pragma omp for
 for(i=0; i < n; i++) {
 bar(i);
 }
 }
 ...
}

void bar(void) {
 #pragma omp barrier
}

guide@kai.com 13

2 • Using Guide Orphaned Pragmas

14
3. It is illegal to execute a collective operation (worksharing, workqueuing, or
barrier) from within a synchronization region (critical/ordered).

void main(...) {
 ...
 #pragma omp parallel
 {
 #pragma omp critical
 test(i);
 ...
 }
}

void test(void) {
 #pragma omp for
 for(i=0; i < n; i++) {
 work(i);
 }
}

4. Private scoping of a variable can be specified at a worksharing construct.
Shared scoping must be specified at the parallel region. Please consult the
OpenMP API for complete details.
http://www.kai.com/kpts/guide/

About Guidec The Guide Driver • 3

T
he

 G
ui

de
 D

ri
ve

r

3

CHAPTER 3 The Guide Driver

About Guidec

The Guide driver, guidec , replaces native compiler drivers, such as cc . It com-
bines Guide instrumentation and the compile/link step into one command line. In
scripts and Makefiles, replacing the compiler with guidec will execute the neces-
sary C preprocessor, Guide, and compiler commands automatically.

Guidec is based on KAI C++, a high-performance, ISO standard-compliant C and
C++ compiler. This reference manual documents only the places where Guidec’s
default behavior differs from or extends upon KAI C++. Documentation for KAI
C++ is located under the Guidec installation directory, in:

<install-dir>/KCC_docs/.

Guidec’s default language settings differ from those of KAI C++ in two ways.
Guidec’s default language is ANSI C, rather than C++. To enable C++, use the
-c++ command line switch or the guidec++ driver. To improve performance,
Guidec disables C++ exceptions by default. Exceptions can be enabled via the
-exceptions command line switch.
guide@kai.com 15

3 • The Guide Driver Using the Driver

16
Using the Driver

To run Guide, use the following command line:

guidec [<Guide options>] [<KAI C++ options>] <filenames>

where filenames is one or more input files to Guide.

If a list of C or C++ source files is specified on the guidec command line with-
out the -c compiler option, and if Guide fails to process any of the files, then the
driver will compile but not link all successfully processed files.

Instrumented source files (Guide output files) are removed by default after suc-
cessful Guide instrumentation and compilation. If the -WGkeep option is speci-
fied, however, Guide’s output file is not removed.

Guide’s output filename is derived from the input filename by removing the file
extension and adding the extension .int.c . The object file created by the
driver does not have this suffix. For example, Guide would generate a file called
foo.int.c from a file called foo.c , but the object file would be called
foo.o .

Driver Options

The guidec driver recognizes the same options as the KAI C++ compiler, but
adds several OpenMP-related options. If guidec fails to recognize a command
line option, it simply ignores it and passes it directly to KAI C++. Documenta-
tion for the KAI C++ command line options is available in the directory
<install-dir>/KCC_docs/ .

In the following descriptions, <integer> indicates an integer number, <path>
indicates a directory name, and <file> indicates a file name.

Displaying all Command Lines

The -v option causes the driver to display all command lines executed. This flag
is passed on to the compiler.
http://www.kai.com/kpts/guide/

Driver-specific Options The Guide Driver • 3

T
he

 G
ui

de
 D

ri
ve

r

3

Driver-specific Options

WGhelp

This option directs the driver to print a usage message and exit.

WGversion

When this option is present, guidec displays its version number to stderr . A
source file must be supplied on the command line for version information to be
printed.

WGperview

This option causes the driver to use the application management and monitoring
version of Guide’s run–time library. See Chapter 7, “PerView,” beginning on
page 63 for a complete description of this library.

WGnoperview

This option causes the driver to use the optimized version of the Guide’s run-time
library. This is the default. See also “WGnostats” on page 17.

WGstats

This option causes the driver to use the statistics version of Guide’s run-time
library. See Chapter 3, “GuideView,” beginning on page 59 for more information on
this option.

WGnostats

This option causes the driver to use the optimized version of the Guide’s run-time
library. This is the default.

WGstrict

This option puts Guide in strict mode, in which it flags non-standard usage of
OpenMP pragmas as errors.
guide@kai.com 17

3 • The Guide Driver Driver-specific Options

18
WGnostrict

This option instructs Guide to allow KAP/Pro Toolset extensions to OpenMP
pragmas. KAP/Pro Toolset’s OpenMP extensions include:

• psingle , psections , and pfor are accepted as synonyms for the sin-
gle , sections , and for pragmas, respectively.

• ordered clause is allowed on the sections pragma and ordered prag-
mas are allowed within section blocks.

• The lastprivate and reduction clauses are allowed on single
pragma.

• A default(private) clause is allowed on the parallel pragma.

• The taskq model of unstructured parallelism is enabled.

• A variable may be listed on the reduction clauses of both a parallel
pragma and an enclosed worksharing or workqueuing construct.

• The curly braces may be omitted for the sections pragma if it contains
only a single section .

This is the default.

WGdefault=<class>

This option specifies the default classification of unlisted variables in OpenMP
parallel pragmas. Its effect is as if default(<class>) were placed on
every parallel pragma without an explicit default(…) clause. Allowed values
of <class> are shared and none. When not in strict OpenMP mode, the value
private is also allowed. The default value is shared.

WGsched=<type>[,<chunk>]

This option specifies the default scheduling type and chunk size for OpenMP
for pragmas. Its effect is as if schedule(<type>[,<chunk>]) were
placed on every parallel for and for pragma without an explicit sched-
ule(…) clause. Allowed values of <type> are static , dynamic ,
guided , and runtime . Valid values of the optional <chunk> are positive
integers. The default value is static , with no chunk size. For dynamic and
guided , the default chunk size is 1.
http://www.kai.com/kpts/guide/

Driver-specific Options The Guide Driver • 3

T
he

 G
ui

de
 D

ri
ve

r

3

WGopt=<integer>

This option sets the optimization level for OpenMP pragmas. Valid values are the
integers 0 through 3.

Level 0 optimization disables all pragma optimizations.

Level 1 optimization attempts to remove unnecessary barrier pragmas from the
code.

Level 2 includes level 1 optimizations and is reserved for future use.

Level 3 includes level 1 and 2 optimizations and adds parallel region merging.

The default value is 3.

WGprocess

The -WGprocess option instructs Guide to process OpenMP pragmas into parallel
code. This is the default.

WGnoprocess

This is the opposite of -WGprocess and instructs Guide to ignore OpenMP prag-
mas but otherwise process files as usual.

WGonly

This option instructs the driver to process source files with Guide but not compile
them. The default is to compile Guide-processed source files.

WGkeep

Normally, the guidec driver removes intermediate files created while processing
source files. This option instructs the driver to leave these intermediate files intact.

WGnokeep

This is the opposite of -WGkeep. It forces the removal of intermediate files after
successful processing. This is the default.
guide@kai.com 19

3 • The Guide Driver Driver-specific Options

20
WGnowork

This option tells the driver to simply print the commands it would normally exe-
cute.

WGcritname=<pattern>

This option applies to mixed language programs to allow matching of named
and unnamed critical and ordered pragmas in C to their Fortran counter-
parts. Valid values are lower, upper, _lower, _upper, lower_, upper_, _lower_,
and _upper_. The default value is chosen to match the default behavior of the
native Fortran compiler.

WGstatic_library

By default, guidec links using shared libraries where possible. This option
instructs the driver to statically link the Guide libraries into the generated exe-
cutable.

WGpath=<path>

This advanced option is used to specify an alternate path to the Guide execut-
able. The default is determined at the time Guide is installed.

WGcompiler=<path>

This option specifies an alternative path to the native C compiler chosen when
Guide was installed.

WGcc=<path>

This is an alternate form of the -WGcompiler option.

WGlibpath=<directory>

This option instructs guidec to find the Guide libraries in a different location
than the default installation directory.
http://www.kai.com/kpts/guide/

Driver-specific Options The Guide Driver • 3

T
he

 G
ui

de
 D

ri
ve

r

3

WGnorpath

Normally, guidec encodes the location of shared libraries into an executable. This
option instructs it to omit the path to shared Guide libraries. Often, when this option
is used, the LD_LIBRARY_PATH variable must be set at run-time to locate the
Guide libraries.
guide@kai.com 21

3 • The Guide Driver Driver-specific Options

22
 http://www.kai.com/kpts/guide/

OpenMP Pragmas • 4

O
pe

nM
P

Pr
ag

m
as

4

CHAPTER 4 OpenMP Pragmas

Guide uses OpenMP pragmas to support a single level of parallelism. Each pragma
begins with #pragma omp. Please note that items enclosed in square brackets
([]) are optional. The syntax of the OpenMP pragmas accepted by Guide is pre-
sented below.

Many of the pragmas in this chapter include a reference to a <structured-
block> in their description. A structured block has a single entry point and a sin-
gle exit point. No statement is a structured block if there is a jump into or out of that
statement (including a call to longjmp() or a use of throw , but a call to exit is
permitted). A compound statement is a structured block if its execution always
begins at the opening curly brace and always ends at the closing curly brace. An
expression statement, selection statement, or iteration statement is a structured
block if the corresponding statement obtained by enclosing it in curly braces would
be a structured block. For example, jump statements and labeled statements are not
structured blocks.
guide@kai.com 23

4 • OpenMP Pragmas Parallel Pragma

24
Parallel Pragma

parallel

The parallel pragma defines a parallel region.

#pragma omp parallel [<clause> [<clause>] ...] <new-line>
 <structured-block>

where <clause> is one of the following:

if (<scalar-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
firstprivate (<list>)
reduction (<operator> : <list>)
copyin (<list>)

When the logical if clause exists, the <scalar-expression> is evaluated
at run time. If the logical expression evaluates to 0, then all of the code in the
parallel region is executed by a team of one thread. If the logical expression
evaluates to non-zero, then the code in the parallel region may be executed by a
team of multiple threads. When the if clause is not present, it is treated as if
if (1) were present.

When a parallel region is encountered in the dynamic scope of another parallel
region, the inner parallel region is executed using a team of one thread. The
remaining clauses are described in “Data Scope Attribute Clauses” on page 37.

Worksharing Pragmas

for

The for pragma states that the next statement is an iterative for loop which
will be executed using multiple threads. If the for pragma is encountered in the
execution of the program while a parallel region is not active, then the pragma
does not cause work to be distributed, and the entire loop is executed on the
thread that encounters this construct.

#pragma omp for [<clause> [<clause>] ...] <new-line>
 <for-loop>
http://www.kai.com/kpts/guide/

Worksharing Pragmas OpenMP Pragmas • 4

O
pe

nM
P

Pr
ag

m
as

4

where <clause> is one of the following:

schedule (<type>[, <chunk-size>)
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
ordered
nowait

and the <for-loop> header must have the following form:

for (<var> = <lb>; <var> <logic-op> <ub>; <incr-expr>)

where <incr-expr> is one of the following:

++<var>
<var>++
--<var>
<var>--
<var> += <incr>
<var> -= <incr>
<var> = <var> + <incr>
<var> = <incr> + <var>
<var> = <var> - <incr>

<var> is a signed integer variable that must not be modified in the body of the
for statement.

<logic-op> is one of <, <=, >, or >= .

<lb> , <ub> , and <incr> are loop invariant integer expressions. Any side effects
in these expressions may produce indeterminate results.

Without the nowait clause, all threads that reach the end of the loop will wait
until all iterations have been completed. Specifying nowait allows early finishing
threads to execute code that follows the loop. The schedule clause is described
in more detail in “Scheduling Options” on page 41. The ordered clause is
described on page 35.

sections

The sections pragma delineates sections of code that can be executed on differ-
ent threads. Each parallel section except the first must be enclosed by the section
pragma. If the sections pragma is encountered in the execution of the program
guide@kai.com 25

4 • OpenMP Pragmas Worksharing Pragmas

26
while a parallel region is not active then the pragmas do not cause work to be
distributed, and all the section s are executed on the thread that encounters
this construct.

#pragma omp sections [<clause> [<clause>] ...] <new-line>
{
[#pragma omp section <new-line>]
 <structured-block>
[#pragma omp section <new-line>
 <structured-block>
 .
 .
 .]
}

or,

#pragma omp sections [<clause> [<clause>] ...] <new-line>
 <structured-block>

where <clause> is one of the following:

private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
ordered
nowait

The ordered clause is a KAP/Pro Toolset extension and is described on
page 35.

single

The single pragma defines a section of code where exactly one thread is
allowed to execute the code.

#pragma omp single [<clause> [<clause>] ...] <new-line>
 <structured-block>

where <clause> is one of the following:

private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
nowait

The first arriving thread is allowed to execute the <structured-block> of
code following the single pragma. Other threads wait until this thread has fin-
http://www.kai.com/kpts/guide/

Workqueuing Pragmas OpenMP Pragmas • 4

O
pe

nM
P

Pr
ag

m
as

4

ished the section of code, then they continue executing with the statement after the
single block. If the nowait clause is present, then the other threads do not wait,
but instead immediately skip the <structured-block> .

The lastprivate and reduction clauses are KAP/Pro Toolset extensions.

Workqueuing Pragmas

While the OpenMP worksharing constructs (for , sections , single) are use-
ful for single loops and statically defined parallel sections, they cannot easily han-
dle the more general cases of recursive and list structured data and complicated
control structures. The KAP/Pro Toolset addresses this limitation by introducing
the concept of workqueuing.

Workqueuing is a new construct type that supplements the existing OpenMP con-
struct types (parallel, worksharing, and synchronization). Workqueuing constructs
are similar to worksharing constructs but are distinguished by the following fea-
tures:

• Workqueuing constructs may be nested inside one other. (But they may not be
nested inside worksharing constructs and vice-versa.)

• Re-privatization of variables is allowed at Workqueuing constructs. That is,
variables made private at the dynamically enclosing parallel pragma can
also be made private to a taskq and/or task .

The taskq and task pragmas are very similar to the sections and section
pragmas but offer more flexibility:

• A task pragma may be placed anywhere lexically inside a taskq . task s
cannot be orphaned.

• The number of task pragmas inside a taskq is determined at run time. For
example, a task can occur inside a loop contained in a taskq .

• taskq pragmas can be recursively nested to support, e.g., parallelism in multi-
dimensional loops, across linked lists, and over tree-based data.
guide@kai.com 27

4 • OpenMP Pragmas Workqueuing Pragmas

28
The Taskq Model

taskq

The workqueuing model centers on the concept of a task queue (taskq). A
taskq contains task s that can be executed concurrently. A taskq can also
contain another taskq , to allow multi-level parallelism.

#pragma omp taskq [<clause> [<clause>] ...] <new-line>
 <structured-block>

where <clause> is one of the following:

private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
ordered
nowait

When a team of OpenMP threads encounters a taskq pragma, the behavior is
as if a single thread first creates an empty queue and then executes the structured
block that follows. (In fact, execution of the taskq block can be and often is
transferred from one thread to another, so assignment to data indexed by
omp_get_thread_num() should be avoided.) When the controlling thread
encounters a task pragma inside the taskq block, the work in the task
block is enqueued, but not immediately executed. Available worker threads then
begin to dequeue and execute these tasks.

A taskq pragma is legal when a team of threads is executing redundant code in
a parallel construct or a single thread is executing a task or taskq con-
struct. In either case, the code in a taskq construct is always executed in sin-
gle-threaded fashion. The enqueued tasks are themselves executed concurrently
across available threads.

By default, no worker thread may exit a taskq construct until the thread exe-
cuting the taskq construct exits. Likewise, the thread executing the taskq
construct cannot exit that construct until all enqueued work is complete. When
the nowait clause is present on a taskq construct, however, a thread may
proceed past the end of the taskq construct, once all the enclosed tasks, includ-
ing those recursively queued, have been dequeued.
http://www.kai.com/kpts/guide/

Workqueuing Pragmas OpenMP Pragmas • 4

O
pe

nM
P

Pr
ag

m
as

4

When a thread is already inside a taskq or task construct and encounters a
taskq pragma, it forms another queue and executes the taskq construct to insert
work in the new queue.

Tasks may contain ordered sections, provided the enclosing taskq contains an
ordered clause. The ordered sections of code are executed in the same order the
tasks were enqueued.

task

#pragma omp task [<clause> [<clause>] ...] <new-line>
 <structured-block>

where <clause> is the following:

private (<list>)

A task pragma must be lexically enclosed within the structured block following a
taskq pragma. The task pragma is said to bind to the lexically enclosing
taskq .

When a thread encounters a task pragma, the work in the block following the
task pragma is enqueued on the queue associated with the binding taskq . Any
thread, including that which enqueued the work, can dequeue and execute this
work.

Data Privatization

Like OpenMP worksharing constructs, taskq and task constructs can classify
variables as private. An important distinction, however, is that such variables
become private to the task queue and task, respectively, rather than to a thread.

Variables are privatized at a taskq via the private() , firstprivate() ,
and lastprivate() clauses. When a task is enqueued, it receives a “snapshot”
of the current state of all variables private to the taskq . Variables classified as
private are uninitialized upon entry to the taskq block. Variables classified as
firstprivate are initialized from the same-named variable in the enclosing
context. The values of lastprivate variables are copied from the final values in
the last enqueued task to the same-named variables in the enclosing context.

In addition, variables can be privatized at the task itself. Private variables of this
type provide uninitialized private storage to each task .
guide@kai.com 29

4 • OpenMP Pragmas Workqueuing Pragmas

30
The following example illustrates use of the data privatization rules (the ordered
clause enforces correct order for the printf output):

#include <omp.h>

main() {
 int me, i, temp, out, three=3, four=4, five=5;
 #pragma omp parallel private(me)
 {
 me = omp_get_thread_num();
 #pragma omp taskq private(i,four) firstprivate(five) \
 lastprivate(out) ordered
 {
 printf(“1: me=%d\n”, me);
 for(i = 0; i < 3; i++) {
 #pragma omp task private(temp)
 {
 temp = i*2;
 out = temp*2;
 #pragma omp ordered
 printf(“2: me=%d i=%d three=%d four=%d five=%d\n”, \
 me, i, three, four, five);
 }
 }
 }
 #pragma omp single
 printf(“3: out=%d temp=%d\n”, out);
 }
}

The output of this program is:

1: me=0
2: me=2 i=0 three=3 four=0 five=5
2: me=1 i=1 three=3 four=0 five=5
2: me=3 i=2 three=3 four=0 five=5
3: out=8 temp=536877680

Line “1: ” is executed by only one thread, in this case thread zero. The output of
this is indeterminate, since any thread can execute the taskq . Lines “2: ” show
the correct values of “me”, since data made private at a parallel pragma remains
private to each thread. The variable ‘i ’ has the same value as when the task
was enqueued, because it is private to the taskq . The variable “three ” is cor-
rect, because shared variables remain visible to tasks. The value of ‘four ’ is
undefined but uniform across tasks, since it is private to the taskq but was not
initialized. The value of ‘five ’ is correct, since it was privatized with a
firstprivate clause. In line “3: ”, the value of ‘out ’ is obtained from the
http://www.kai.com/kpts/guide/

Combined Parallel and Worksharing/Workqueuing Pragmas OpenMP Pragmas • 4

O
pe

nM
P

Pr
ag

m
as

4

last task enqueued, in which i==2 . The value of ‘temp ’ is undefined, since it was
assigned only inside the tasks, where it was private.

Examples

The examples directory in the Guide installation includes taskq examples,
which may serve to clarify the workqueuing model and illustrate its possible uses.

Combined Parallel and Worksharing/Workqueuing
Pragmas

parallel for

The parallel for pragma is a short form syntax for a parallel region enclosing
a single for . The parallel for pragma is used in place of the parallel and
for pragmas. If this pragma is encountered while a parallel region is already
active, then this pragma is executed by a team of one thread and the entire loop is
executed by each thread that encounters it.

#pragma omp parallel for [<clause> [<clause>] ...] <new-line>
 <for-loop>

where <clause> is one of the following:

if (<scalar-expression>)
default (shared | private | none)
schedule (<type>[, <chunk-size>)
shared (<list>)
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
copyin (<list>)
ordered

The parallel for construct above is equivalent to the following nested par-
allel and for constructs:
guide@kai.com 31

4 • OpenMP Pragmas Combined Parallel and Workshar-

32
#pragma omp parallel [<par-clause> \
 [<par-clause>] ...] <new-line>
{
 #pragma omp for nowait [<for-clause> \
 [<for-clause>] ...] <new-line>
 <for-loop>
}

where <par-clause> is one of the following:

if (<scalar-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
copyin (<list>)

and <for-clause> is one of the following:

schedule (<type>[, <chunk-size>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
ordered

parallel sections

The parallel sections pragma is a short form for a parallel region con-
taining a single sections pragma. If the parallel sections pragma is
encountered in the execution of the program while a parallel region is already
active, then this pragma is executed by a team of one thread and the entire con-
struct is executed by each thread that encounters it.

#pragma omp parallel sections [<clause> \
 [<clause>] ...] <new-line>
{
[#pragma omp section <new-line>]
 <structured-block>
[#pragma omp section <new-line>
 <structured-block>
 .
 .
 .]
}

or,

#pragma omp parallel sections [<clause> \
 [<clause>] ...] <new-line>
 <structured-block>

where <clause> is one of the following:
http://www.kai.com/kpts/guide/

Combined Parallel and Worksharing/Workqueuing Pragmas OpenMP Pragmas • 4

O
pe

nM
P

Pr
ag

m
as

4

if (<scalar-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
copyin (<list>)
ordered

The parallel sections construct above is equivalent to the following nested
parallel and sections constructs:

#pragma omp parallel [<par-clause> [\
 <par-clause>] ...] <new-line>
{
 #pragma omp sections nowait [<sec-clause> \
 [<sec-clause>] ...] <new-line>
 {
 [#pragma omp section <new-line>]
 <structured-block>
 [#pragma omp section <new-line>
 <structured-block>
 .
 .
 .]
 }
}

or,

#pragma omp parallel [<par-clause> \
 [<par-clause>] ...] <new-line>
{
 #pragma omp sections nowait [<sec-clause> \
 [<sec-clause>] ...] <new-line>
 <structured-block>
}

where <par-clause> is one of the following:

if (<scalar-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
copyin (<list>)

and <sec-clause> is one of the following:

firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
ordered
guide@kai.com 33

4 • OpenMP Pragmas Combined Parallel and Workshar-

34
parallel taskq
#pragma omp parallel taskq [<clause> \
 [<clause>] ...] <new-line>
 <structured-block>

where <clause> is one of the following:

if (<scalar-expression>)
default (shared | private | none)
shared (<list>)
private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
copyin (<list>)
ordered

The parallel taskq construct above is equivalent to the following nested
parallel and taskq constructs:

#pragma omp parallel [<par-clause> \
 [<par-clause>] ...] <new-line>
{
 #pragma omp taskq nowait [<taskq-clause> \
 [<taskq-clause>] ...] <new-line>
 <structured-block>
}

where <par-clause> is one of the following:

if (<scalar-expression>)
default (shared | private | none)
shared (<list>)
copyin (<list>)

and <taskq-clause> is one of the following:

private (<list>)
firstprivate (<list>)
lastprivate (<list>)
reduction (<operator> : <list>)
ordered
http://www.kai.com/kpts/guide/

Synchronization Pragmas OpenMP Pragmas • 4

O
pe

nM
P

Pr
ag

m
as

4

Synchronization Pragmas

critical

The critical pragma defines the scope of a critical section. Only one thread at a
time is allowed inside the critical section.

#pragma omp critical [(<name>)] <new-line>
 <structured-block>

The name has global scope. Two critical pragmas with the same name are
automatically mutually exclusive. All unnamed critical sections are assumed
to map to the same name.

ordered

The ordered pragma defines the scope of an ordered section. Only one thread at a
time is allowed inside an ordered section of a given name.

#pragma omp ordered <new-line>
 <structured-block>

The ordered section must be dynamically enclosed in a for , sections , or
taskq construct with the ordered clause. It is an error to use this pragma when
not within the dynamic scope of one of the above constructs with an ordered
clause.

The semantics of an ordered section are defined in terms of the sequential order of
execution for the construct. The threads are granted permission to enter the ordered
section in the same order as the for iterations, sections , or task s would be
executed in the sequential version of the code.

Each ordered section must only be entered once or not at all during the execution of
each for iteration, section , or task .

Only one ordered section may be encountered during the execution of each for
iteration, section , or task .

A deadlock situation can occur if these rules are not observed.
guide@kai.com 35

4 • OpenMP Pragmas Synchronization Pragmas

36
master

The section of code following a master pragma is executed by the master
thread of the team.

#pragma omp master <new-line>
 <structured-block>

Other threads of the team skip the following section of code and continue execu-
tion. Note that there is no implied barrier on entry to or exit from the master
section.

atomic

This pragma ensures atomic update of a location in memory that may otherwise
be exposed to the possibility of multiple, simultaneous, writing threads.

#pragma omp atomic <new-line>
 <expression-statement>

where <expression-statement> must have one of the following forms:

x <binary-op> = <expr>;
x++;
++x;
x--;
--x;

and where:

x is an lvalue expression with scalar type and without side effects.
<expr> is a scalar expression without side effects that does not reference x .
<binary-op> is one of +, - , * , / , &, ^ , | , <<, or >>.

Correct use of this pragma requires that if an object is updated using this
pragma, then all references to that object must use this pragma.

flush

This pragma causes thread visible variables to be written back to memory and is
provided for users who wish to write their own synchronization directly through
shared memory.

#pragma omp flush [(<list>)] <new-line>
http://www.kai.com/kpts/guide/

Data Scope Attribute Clauses OpenMP Pragmas • 4

O
pe

nM
P

Pr
ag

m
as

4

The optional list may be used to specify variables that need to be flushed. If the list
is absent, all variables are flushed to memory.

barrier

barrier pragmas are used to gather all team members to a particular point in the
code.

#pragma omp barrier <new-line>

barrier s force team members to wait at that point in the code until all of the
team members encounter that barrier . barrier pragmas are not allowed
inside of worksharing constructs, workqueuing constructs, or other synchronization
constructs.

Data Scope Attribute Clauses

default (shared | private | none)
shared (<list>)
private (<list>)

The shared() and private() lists in the parallel region state the explicit
forms of data sharing among the threads that execute the parallel code. When dis-
tinct threads should reference the same variable, place the variable in the shared
list. When distinct threads should reference distinct instances of variables, place the
variable in the private list.

The private clause is allowed on parallel , for , sections , taskq and
task pragmas. The default and shared clauses are only allowed on paral-
lel pragmas.

When a variable is not present in any list, its default sharing classification is deter-
mined based upon the default clause. default(shared) causes unlisted
variables to be shared , default(private) causes unlisted variables to be
private , and default(none) causes unlisted, but referenced, variables to
generate an error. The only exceptions to the default() rules are loop control
variables (loop indicies) of for pragmas, threadprivate variables, and const-quali-
fied variables. The first two are private, and the latter is shared, unless explicitly
overridden. The default is default(shared) .
guide@kai.com 37

4 • OpenMP Pragmas Data Scope Attribute Clauses

38
Note that default(private) is a KAP/Pro Toolset extension to OpenMP.

firstprivate (<list>)

A variable in a firstprivate() list is copied from the variable of the same
name in the enclosing context by each team member before execution of the
construct.

The firstprivate clause is allowed on parallel , taskq , for , sec-
tions and single pragmas.

lastprivate (<list>)

A variable in a lastprivate() list is copied back into the variable of the
same name in the enclosing context before the execution terminates for the team
member that executes the last dynamically encountered task of a taskq con-
struct, the final iteration of the index set for a for , the last lexical section of
a sections construct, or the code enclosed by a single , as appropriate. If
the loop is executed and the lastprivate variable is not written in the last
encountered task of a taskq , in the final iteration of the index set for a for ,
or the last lexical section in a sections construct, then the value of the
shared variable is undefined.

The lastprivate clause is allowed on taskq , for , sections , and sin-
gle pragmas. The use of the lastprivate clause on a single or taskq is
a KAP/Pro Toolset extension.

reduction (<operator>:<list>)

A variable or array element in the reduction list is treated as a reduction by
creating a private temporary for that variable and updating the original vari-
able after the end of the construct using a critical section. The allowed
operators are +, - , * , &, ^ , | , &&, and || .

The reduction clause is allowed on parallel , taskq , for , sections ,
and single pragmas. The use of the reduction clause on a single or
taskq is a KAP/Pro Toolset extension.
http://www.kai.com/kpts/guide/

Privatization of Global Variables OpenMP Pragmas • 4

O
pe

nM
P

Pr
ag

m
as

4

#pragma omp parallel for shared(a,t,n) \
 private(i) reduction(+:sum) \
 reduction(&&:truth)

 for(i=0; i < n; i++) {
 sum += a[i];
 truth = truth && t[i];
 }

The above example is equivalent to the following:

#pragma omp parallel shared(a,t,n) private(i)
{
 int sum_local = 0;
 int truth_local = 1;

 #pragma omp for nowait
 for(i=0; i < n; i++) {
 sum_local += a[i];
 truth_local = truth_local && t[i];
 }

 #pragma omp critical
 {
 sum += sum_local;
 truth = truth && truth_local;
 }
}

copyin (<list>)

The copyin() clause applies only to threadprivate variables. This clause
provides a mechanism to copy the master thread’s values of the listed variables to
the other members of the team at the start of a parallel region. The copyin pragma
is only allowed on parallel pragmas.

Privatization of Global Variables

OpenMP provides privatization of file-scope and namespace-scope variables via the
threadprivate pragma. Threadprivate variables become private to each thread
but retain their file-scope or namespace-scope visibility within each thread.

The syntax of the threadprivate pragma is:

#pragma omp threadprivate(list)
guide@kai.com 39

4 • OpenMP Pragmas Privatization of Global Variables

40
where list is a comma-separated list of one or more file-scope or namespace-
scope variables. The threadprivate pragma must follow the declaration of
the listed variables and appear in the same scope. The following example is ille-
gal:

main() {
 extern int x;
 #pragma omp threadprivate(x)
}

while the following is legal:

extern int x;
#pragma omp threadprivate(x)

namespace foo {
 int me;
 #pragma omp threadprivate(me)
};

Initializing Threadprivate Variables

When a team consists of t threads, there are exactly t copies of each
threadprivate variable. The master thread uses the global copy of each
variable as its private copy. Each threadprivate variable is initialized once
before its first use. If an explicit initializer is present, then each thread’s copy is
suitably initialized. If no explicit initializer is present, then each thread’s copy is
zero-initialized.

threadprivate variables can also be initialized upon entry to a parallel
region via the copyin clause on the parallel pragma. When this clause is
present, each thread’s copy of each listed threadprivate variable is copied,
as if by assignment, from the master’s copy upon each entry to the parallel
region. The copyin is executed each time the associated parallel region executes.

Persistence of Threadprivate Variables

After the first parallel region executes, the data in the threadprivate vari-
ables is guaranteed to persist only if the dynamic threads mechanism is disabled.
Dynamic threads is disabled by default, but can be enabled via the
OMP_DYNAMIC environment variable and the omp_set_dynamic() library
call.
http://www.kai.com/kpts/guide/

Scheduling Options OpenMP Pragmas • 4

O
pe

nM
P

Pr
ag

m
as

4

Scheduling Options

Scheduling options are used to specify the iteration dispatch mechanism for each
parallel loop for construct. They can be specified in the following three ways:

1. Command Line Options

2. Pragmas

3. Environment Variables

Command line options and pragmas are used to specify the default scheduling
mechanism when the source file is being processed by Guide. For loops that are
processed with the runtime scheduling mechanism, described below, scheduling
can be changed at run time with environment variables. Loop scheduling is depen-
dent on the scheduling mechanism and the chunk parameter. The table below
describes each scheduling option. Assume the following: the loop has l iterations, p
threads execute the loop, and n is a positive integer specifying the chunk size.
guide@kai.com 41

4 • OpenMP Pragmas Scheduling Options

42

Scheduling
Type

static ally
ing,
ets

ble

dynamic

ari-
Table 4-1 Scheduling Options

Chunk Meaning

n Static scheduling with a chunk size of n. n iterations are dispatched static
to each thread (repeat until l iterations have been dispatched). If n is miss
l/p iterations are dispatched statically to each thread so that each thread g
only a single chunk p of the iteration space.

To specify static scheduling from the command line use:

-WGsched=static[,<integer>]

or

-WGsched=static [specifies even scheduling]

To specify static scheduling with the schedule pragma use:

schedule (static[,<integer>])

To specify static scheduling with the OMP_SCHEDULE environment varia
use:

OMP_SCHEDULE = static[,<integer>]

n Dynamic scheduling with a chunk size of n. n iterations are dispatched
dynamically to each thread.

To specify dynamic scheduling from the command line use:

-WGsched=dynamic[,<integer>]

To specify dynamic scheduling with the schedule pragma use:

schedule (dynamic[,<integer>])

To specify dynamic scheduling with the OMP_SCHEDULE environment v
able use:

OMP_SCHEDULE = dynamic[,<integer>]

If no chunk size is specified, a size of 1 will be used.
http://www.kai.com/kpts/guide/

Scheduling Options OpenMP Pragmas • 4

O
pe

nM
P

Pr
ag

m
as

4

guided n

runtime ignor

Scheduling
Type Chu
Scheduling Options Using Pragmas

The list below shows the syntax for specifying scheduling options with the for and
parallel for pragmas.

schedule (static [,<integer>])
schedule (dynamic [,<integer>])
schedule (guided [,<integer>])
schedule (runtime)

Guided scheduling with a minimum chunk size of n. An exponentially
decreasing number of iterations are dispatched dynamically to each thread. At
least n iterations are dispatched every time except the last.

To specify guided scheduling from the command line use:

-WGsched=dynamic[,<integer>]

To specify guided scheduling with the schedule pragma use:

schedule (guided[,<integer>])

To specify guided scheduling with the OMP_SCHEDULE environment variable
use:

OMP_SCHEDULE = guided[,<integer>]

If no chunk size is specified, a size of 1 will be used.

ed Runtime scheduling specifies the scheduling will be determined via the
OMP_SCHEDULE environment variable at run time.

To specify scheduling at runtime, use the following from the command line:

-WGsched=runtime

To specify runtime scheduling with the schedule pragma use:

schedule (runtime)

To specify runtime scheduling with the OMP_SCHEDULE environment vari-
able use:

OMP_SCHEDULE = <string>[,<integer>]

Where <string> is one of static , dynamic , or guided and the
optional <integer> parameter is the chunk size for the dispatch method.

If the OMP_SCHEDULE environment variable is not set, then Guide assumes a
default value of “dynamic,1 ”.

nk Meaning
guide@kai.com 43

4 • OpenMP Pragmas Environment Variables

44
Where the <integer> parameter is a chunk size for the dispatch method. If
<integer> is not specified, it is assumed to be 1 for dynamic and guided ,
and assumed to be missing for static . See Table 4-1 on page 42 for a com-
plete description of the scheduling options.

schedule (static) is the default.

Scheduling Options Using Environment Variables

The OMP_SCHEDULE environment variable sets, at run time, scheduling
options for loops containing a schedule (runtime) clause. The syntax for
this environment variable is as follows:

OMP_SCHEDULE = <string>[,<integer>]

Where <string> is one of static , dynamic , or guided and the optional
<integer> parameter is a chunk size for the dispatch method.

Environment Variables

Some environment variables may need to be set before running Guide generated
programs.

KMP_BLOCKTIME=<integer>[<character>]

This variable specifies the number of milliseconds that the Guide libraries
should wait after completing the execution of a parallel region before putting
threads to sleep. Use the optional suffix s , m, h, or d to specify seconds, min-
utes, hours, or days. The default is 1s or one second. This default may be too
large if threads will be used to execute other threaded code between parallel
regions. The default may be too small if threads are reserved solely for the use
by the Guide library.

KMP_LIBRARY=<string>

This variable selects the Guide run time library. The three available options are:
http://www.kai.com/kpts/guide/

Environment Variables OpenMP Pragmas • 4

O
pe

nM
P

Pr
ag

m
as

4

• serial

• turnaround

• throughput

See Chapter 5, “Libraries,” beginning on page 49 for more information about the
Guide libraries.

KMP_STACKSIZE=<integer>[<character>]

This variable specifies the number of bytes, kilobytes, or megabytes that will be
allocated for each parallel thread to use as its private stack. Use the optional suffix
b, k, or m to specify bytes, kilobytes, or megabytes. The default is 1m or one mega-
byte. This default value may be too small if many private variables are used in the
parallel regions, or the parallel region calls subroutines that have many local vari-
ables.

KMP_STATSFILE=<file>

When this variable is used in conjunction with the guide_stats library, the statistics
report is written to the specified file. The default file name for the statistics report is
guide_stats .

Three metacharacter sequences can be included in the file name and will be
expanded at runtime to provide unique context sensitive information as part of the
file name. These three metacharacter sequences are:

%H:This expands into the hostname of the machine running the parallel program.

%I: This expands into a unique numeric identifier for this execution of the pro-
gram. It is the process identifier of the program.

%P:This is replaced with the value of the OMP_NUM_THREADS environment vari-
able which determines the number of threads that are created by the parallel
program.

OMP_DYNAMIC=<boolean>

The OMP_DYNAMIC environment variable enables or disables dynamic adjustment
of the number of threads between parallel regions. Enabling dynamic threads
allows the Guide library to adjust the number of threads in response to system load.
Such an adjustment can improve the turnaround time for all jobs on a loaded sys-
tem. A value of TRUE for <boolean> enables dynamic adjustment, whereas a
guide@kai.com 45

4 • OpenMP Pragmas Environment Variables

46
value of FALSE disables any change in the number of threads. If dynamic
adjustment is enabled, the number of threads may be adjusted only at the begin-
ning of each parallel region. No threads are created or destroyed during the exe-
cution of the parallel region.

The default value is FALSE.

OMP_NUM_THREADS=<integer>

The OMP_NUM_THREADS environment variable is used to specify the number
of threads. The <integer> is a positive number. Performance of parallel pro-
grams usually degrades when the number of threads exceeds the number of
physical processors.

The special value ALL is also allowed. A value of ALL specifies that one thread
will be created per processor on the machine. This is the default.

OMP_SCHEDULE=<string>[,<integer>]

The OMP_SCHEDULE environment variable controls the schedule type and
chunk size for for constructs with a schedule(runtime) clause or those
with no schedule clause if the command line scheduling designator is set to
runtime . The schedule type is given by <string> , which is one of
static , dynamic , or guided and the optional chunk size is given by
<integer> for those scheduling types which allow a chunk size. See “Sched-
uling Options” on page 41.

OMP_NESTED=<boolean>

The OMP_NESTED environment variable controls whether nested parallelism is
enabled at run time. Nested parallelism with nested parallel pragmas is cur-
rently unimplemented, so this variable has no effect. This environment variable
does not affect nested parallelism implemented via nested taskq pragmas
within a single parallel pragma. Allowed values are TRUE and FALSE, and
the default value is FALSE.
http://www.kai.com/kpts/guide/

Environment Variables OpenMP Pragmas • 4

O
pe

nM
P

Pr
ag

m
as

4

LD_LIBRARY_PATH=<path>

This variable is used to specify an alternate path for the run time libraries. You may
need to set this variable to the directory where the guide libraries were installed
when you run your application if you compile with shared objects or use dynamic
linking.
guide@kai.com 47

4 • OpenMP Pragmas Environment Variables

48
 http://www.kai.com/kpts/guide/

Selecting a Library Libraries • 5

ri
es

5

CHAPTER 5 Libraries

Selecting a Library

Guide supplies three libraries, a development library, a management and monitor-
ing library, and a production library. The production library is called the guide
library. It should be used for normal or performance-critical runs on applications
that have already been tuned. The development library is guide_stats. It provides
performance information about the code, but it slightly degrades performance. It
should be used to tune the performance of applications. The management and mon-
itoring library is called the guide_perview library. It can be used to interactively and
remotely monitor and manage the parallel performance of a running application
program. This library degrades application performance slightly also. All three
libraries contain the serial, turnaround, gang, and throughput modes described
below. These modes are selected by using the KMP_LIBRARY environment vari-
able at run-time; see “KMP_LIBRARY=<string>” on page 44.

Serial

The serial mode forces parallel applications to run on a single processor.
guide@kai.com 49 L
ib

ra

5 • Libraries Selecting a Library

50
Turnaround

In a dedicated (batch or single user) parallel environment where all of the pro-
cessors for a program are exclusively allocated to the program for its entire run,
it is most important to effectively utilize all of the processors all of the time. The
turnaround mode is designed to keep all of the processors active and involved in
the parallel computation to minimize the execution time of a single job. In this
mode, the worker threads actively wait for more parallel work, without yielding
to other threads.

NOTE: Avoid over-allocating system resources. This occurs if either too many
threads have been specified, or if too few processors are available at run time. If
system resources are over-allocated, this mode will cause poor performance.
The throughput mode should be used if this occurs.

Gang

This mode is identical to the turnaround mode, except gang scheduling is
enabled on systems that support it.

Throughput

In a multi-user environment where the load on the parallel machine is not con-
stant or where the job stream is not predictable, it may be better to design and
tune for throughput. This minimizes the total time to run multiple jobs simulta-
neously. In this mode, the worker threads will yield to other threads while wait-
ing for more parallel work.

The throughput mode is designed to make the program aware of its environment
(i.e. the system load) and to adjust its resource usage to produce efficient execu-
tion in a dynamic environment.

This is the default.
http://www.kai.com/kpts/guide/

The Guide_stats Library Libraries • 5

ri
es

5

The Guide_stats Library

The guide_stats library is designed to provide you with detailed statistics about a
program’s execution. These statistics help you to “see inside” the program to ana-
lyze performance bottlenecks and to make parallel performance predictions. With
this information, it is possible to modify the program (or the execution environ-
ment) to make more efficient use of the parallel machine.

When a program is compiled with Guidec, linked with the guide_stats library, and
executed, statistics are output to the file specified with the KMP_STATSFILE envi-
ronment variable. The default file name guide_stats is used if this environment
variable is not specified. In addition, running with the guide_stats library enables
additional runtime checks that may aid in program debugging. When using the
guide_stats library, make sure that the main program and any program units that
cause program termination are compiled with Guidec.

This library may minimally degrade application performance compared to the
guide library by an amount proportional to the frequency that the OpenMP pragmas
are encountered.

The resulting statistics are most easily viewed and analyzed by using GuideView,
discussed in Chapter 6, “GuideView,” beginning on page 59.

The Guide_perview Library

The guide_perview library is part of the interactive parallel performance monitoring
and management tool called PerView. Using PerView, application users can
remotely monitor parallel performance and application progress, modify the num-
ber of threads, switch between dynamic and static thread count, and pause or abort
parallel applications. When using the guide_perview library, make sure that the
main program and any program units that cause program termination are compiled
with guidec .

In the current version of Guide, the guide_perview library also provides all the
functionality of the guide_stats library. Future versions are not guaranteed to sup-
port the guide_stats library functionality. The guide_perview library currently
enables additional runtime checks that may aid in program debugging. Currently,
this library may minimally degrade application performance compared to the guide
guide@kai.com 51 L
ib

ra

5 • Libraries Linking the Libraries

52
library by an amount proportional to the frequency that the OpenMP pragmas
are encountered.

See “PerView,” beginning on page 63 for more information about the use of the
guide_perview library.

Linking the Libraries

Guide uses the guide library by default. To use the guide_stats library, use the
-WGstats command line option to guidec . For example, the following com-
mand line can be used to compile a source file with the guide_stats library:

guidec -WGstats source.c

To use the guide_perview library, use the -WGperview command line option to
guidec . To switch between the guide, guide_stats, and guide_perview librar-
ies, only relinking is necessary. Recompilation is not needed.

External Routines

The following library routines can be used for low-level debugging to verify that
the library code and application are functioning as intended.

The use of these routines is discouraged; using them requires that the application
be linked with one of the Guide libraries, even when the code is executed
sequentially. In addition, using these routines makes validating the program with
Assure more difficult or impossible.

In most cases, pragmas can be used in place of these routines. For example,
thread-private storage should be implemented by using the PRIVATE() clause
of the parallel pragma or the threadprivate pragma, rather than by
explicit expansion and indexing with omp_get_thread_num() . Appendix
A, “Examples,” beginning on page 89, contains examples of coding styles that
avoid the use of these routines.
http://www.kai.com/kpts/guide/

External Routines Libraries • 5

ri
es

5

To use these functions, include

#include <omp.h>

in your source.

void mppbeg(void)
void mppend(void)

These routines are not necessary if the main program unit and all exit points are
compiled using Guidec’s Fortran language counterpart. If this isn’t the case, you
must ensure that mppbeg() is called at the beginning of the main program and
that mppend() is called at all points that cause program termination.

Calling these routines from another language requires knowledge of the cross-lan-
guage calling conventions on your platform. A main program written in FORTRAN
might look like:

program main
call mppbeg
call work
call mppend
end

In other languages, you may need to append an underscore to the routine names to
successfully link: e.g., mppbeg_ and mppend_.

The call to mppbeg() must occur when the program is executing sequentially, not
when a parallel region is active.

kmp_get_blocktime

This routine returns the integer value of time, in milliseconds, that the Guide librar-
ies wait after completing the execution of a parallel region before putting threads to
sleep. This value can be changed via the kmp_set_blocktime routine or the
KMP_BLOCKTIME environment variable. See the description of the
KMP_BLOCKTIME environment variable on page 44 for more information.
guide@kai.com 53 L
ib

ra

5 • Libraries External Routines

54
kmp_get_library

This routine returns an integer value that designates the version of the Guide run
time library being used. This value can be used as the parameter to subsequent
calls to kmp_set_library . The library setting can also be changed via the
kmp_set_library_xxx calls or the KMP_LIBRARY environment variable.

kmp_get_stacksize (<integer>)

This routine returns the number of bytes that will be allocated for each parallel
thread to use as its private stack. This value can be changed via the
kmp_set_stacksize routine, prior to the first parallel region or via the
KMP_STACKSIZE environment variable. See the description of the
KMP_STACKSIZE environment variable on page 45 for more information.

kmp_set_blocktime (<integer>)

This routine sets the number of milliseconds that the Guide libraries wait after
completing the execution of a parallel region before putting threads to sleep.
This value can also be changed via the KMP_BLOCKTIME environment vari-
able. See the description of KMP_BLOCKTIME on page 44 for more informa-
tion.

In order for kmp_set_blocktime to have an effect, it must be called before
the beginning of the first (dynamically executed) parallel region in the program.

kmp_set_library (<integer>)

This routine selects the Guide run time library. The parameter value corresponds
to a value previously returned by a call to kmp_get_library . To determine
the values of this parameter that correspond to particular libraries, call the
kmp_set_library_xxx routines and then call the kmp_get_library
routine to obtain the parameter values. The library setting can also be changed
via the KMP_LIBRARY environment variable.

kmp_set_library_serial

This routine selects the Guide serial run time library. The library setting can also
be changed via the kmp_set_library call or the KMP_LIBRARY environ-
ment variable.
http://www.kai.com/kpts/guide/

External Routines Libraries • 5

ri
es

5

kmp_set_library_throughput

This routine selects the Guide throughput run time library. The library setting can
also be changed via the kmp_set_library call or the KMP_LIBRARY environ-
ment variable.

kmp_set_library_turnaround

This routine selects the Guide turnaround run time library. The library setting can
also be changed via the kmp_set_library call or the KMP_LIBRARY environ-
ment variable.

kmp_set_stacksize (integer)

This routine sets the number of bytes that will be allocated for each parallel thread
to use as its private stack. This value can also be changed via the
KMP_STACKSIZE environment variable. See the description of
KMP_STACKSIZE on page 45 for more information.

In order for KMP_SET_STACKSIZE to have an effect, it must be called before the
beginning of the first (dynamically executed) parallel region in the program.

void omp_destroy_lock(omp_lock_t *lock);

This routine ensures that the lock pointed to by the parameter lock is uninitialized.
No thread may own the lock when this routine is called. The lock parameter must
be a pointer to a lock variable that was initialized by the omp_init_lock() rou-
tine.

int omp_get_max_threads(void)

This routine returns the maximum number of threads that are available for parallel
execution. The returned value is a positive integer, and is equal to the value of the
OMP_NUM_THREADS environment variable, if set.

int omp_get_num_procs(void)

This routine returns the number of processors that are available on the parallel
machine. The returned value is a positive integer.
guide@kai.com 55 L
ib

ra

5 • Libraries External Routines

56
int omp_get_num_threads(void)

This routine returns the number of threads that are being used in the current par-
allel region. The returned value is a positive integer.

NOTE: The number of threads used may change from one parallel region to the
next. When designing parallel programs it is best to not introduce assumptions
that the number of threads is constant across different instances of parallel
regions. The number of threads may increase or decrease between parallel
regions, but will never exceed the OMP_NUM_THREADS environment variable
value.

When called outside a parallel region, this function returns 1.

int omp_get_thread_num(void)

This routine returns the thread id of the calling thread. The returned value is an
integer between zero and omp_get_num_threads()-1 .

When called from a serial region or a serialized parallel region, this function
returns 0.

void omp_init_lock(omp_lock_t *lock);

This routine initializes a lock associated with the parameter lock for use by
subsequent calls. The lock parameter must be a pointer to type omp_lock_t
defined in the header file omp.h . The initial state is unlocked. The lock vari-
able must only be accessed through the OpenMP library lock routines.

void omp_set_lock(omp_lock_t *lock);

This routine forces the executing thread to wait until the specified lock is avail-
able. If the lock is not available, the thread is blocked from further execution
until the thread is granted ownership of the lock. The lock parameter must be a
pointer to a lock variable that was initialized by the omp_init_lock() rou-
tine.
http://www.kai.com/kpts/guide/

External Routines Libraries • 5

ri
es

5

Signal Handling

In order for interrupts and runtime errors to be handled correctly during parallel
execution, the Guide libraries normally install their own handlers for interrupt sig-
nals such as SIGHUP, SIGINT , SIGQUIT , and SIGTERM and for runtime error
signals such as SIGSEGV, SIGBUS, SIGILL , SIGABRT, SIGFPE, and SIGSYS.

The Guide libraries normally install their handlers at the beginning of the first
(dynamically executed) parallel region in the program. These handlers remain
active until the end of program execution, throughout the parallel and remaining
serial portions of the program.

The Guide libraries provide a mechanism for allowing user–installed signal han-
dlers. If the program installs a handler for a signal before the beginning of the first
parallel region, the libraries will not install their handlers for that signal.

int omp_test_lock(omp_lock_t *lock);

This routine tries to obtain ownership of the lock, but does not block execution of
the calling thread if the lock is not available. The routine returns a non-zero value if
the lock was successfully obtained; otherwise, it returns zero. The lock parameter
must be a pointer to a lock variable that was initialized by the
omp_init_lock() routine.

void omp_unset_lock(omp_lock_t *lock);

This routine releases the executing thread from ownership of the lock. The behavior
is undefined if the executing thread is not the owner of the lock. The lock parame-
ter must be a pointer to a lock variable that was initialized by the
omp_init_lock() routine.
guide@kai.com 57 L
ib

ra

5 • Libraries External Routines

58
 http://www.kai.com/kpts/guide/

Introduction GuideView • 6

G
ui

de
V

ie
w

6

CHAPTER 6 GuideView

Introduction

GuideView is a graphical tool that presents a window into the performance details
of a program’s parallel execution. Performance anomalies can be understood at a
glance with the intuitive, color coded display of parallel performance bottlenecks.

GuideView graphically illustrates what each processor is doing at various levels of
detail by using a hierarchical summary. Statistical data are collapsed into relevant
summaries which focus on the actions to be taken.

Using GuideView

GuideView uses as input the statistics file that is output when a Guide instrumented
program is run. See “Libraries,” beginning on page 49 to learn how to build an
instrumented executable. The syntax for invoking GuideView is as follows:

guideview [<guideview_options>] <file> [<file> …]
guide@kai.com 59

6 • GuideView GuideView Options

60
The file arguments are the names of the statistics files created by Guide runs that
used the guide_stats library (see Chapter 5). Optional GuideView arguments are
the topic of the next section.

The GuideView browser looks for a configuration file named
GVproperties.txt when it starts up. It first looks in the current direc-
tory, then in your home directory, and then in each directory in turn that appears
in your CLASSPATH environment variable setting. Using this file you can con-
figure several options that control fonts, colors, window sizes, window locations,
line numbering, tab expansion in source, and other features of the GUI.

An example initialization file is provided with your Guide installation. This
example file contains comments that explain the meaning and usage of the sup-
ported options. If Guide is installed in directory <install_dir> on your
machine, the example initialization file will be in

<install_dir>/class/example.GVproperties .

The default location for this example initialization file is in the directory
/usr/local/KAI/guide/class . If the default location is different
from the installed location, then a symbolic link will be created from the default
location to the installed location if the default location is writable at install time.
The easiest way to use this file is to copy it and then edit the copy as needed,
uncommenting lines you want and/or setting the options to values you prefer or
need.

Detailed information about GuideView’s operation can be found under its Help
menu.

GuideView Options

mhz=<integer>

The -mhz=<integer> option denotes the processor rate in MHz for the machine
used for calculating statistics.
http://www.kai.com/kpts/guide/

Java Options GuideView • 6

G
ui

de
V

ie
w

6

ovh=<file>

The -ovh=<file> specifies an overheads file for the input statistics file. There are
small overheads that exist in the GuideView library. These overheads can be mea-
sured in terms of the number of cycles for each library call or event. You can over-
ride the default values to get more accurate overhead values for your machine by
using the -ovh=<file> option to create a file that contains machine-specific values.

An example overheads file is provided with your Guide installation. This example
file contains comments that explain the meaning and usage of the supported
options. If Guide was installed in directory <install_dir> on your machine,
this example file resides in <install_dir>/class/guide.ovh .

jpath=<file>

The -jpath=<file> option specifies the path to an alternate Java interpreter. This can
be used to override the Java virtual machine selected at installation or to provide a
path to the Java virtual machine if none was selected during installation.

WJ,[java_option]

The GuideView GUI is implemented in Java. The -WJ flag prefixes any Java option
that should be passed to the Java interpreter.

Any valid Java interpreter option may be used; however, the options listed in the
next section may be particularly beneficial when used with GuideView to enhance
the performance of the GUI.

Java Options

The -WJ flag must prefix Java options. For example, to pass the -ms5m option to
the Java interpreter, use -WJ,-ms5m.

ms<integer>[{k,m}]

The -ms option specifies how much memory is allocated for the heap when the
interpreter starts up. The initial memory is specified either in bytes, kilobytes (with
the suffix k), or megabytes (with the suffix m). For example, to specify one mega-
byte, use -ms1m.
guide@kai.com 61

6 • GuideView Java Options

62
mx<integer>[{k,m}]

The -mx option specifies the maximum heap size the interpreter will use for
dynamically allocated objects. The maximum heap size is specified either in
bytes, kilobytes (with the suffix k), or megabytes (with the suffix m). For exam-
ple, to specify two megabytes, use -mx2m.
http://www.kai.com/kpts/guide/

Introduction PerView • 7

Pe
rV

ie
w

7

CHAPTER 7 PerView

Introduction

PerView is an interactive parallel performance monitoring and management tool.
With PerView, users of your application can remotely monitor parallel performance
and application progress, modify the number of threads, switch between dynamic
and static thread count, and pause or abort parallel applications.

Enabling the PerView Server

PerView makes its capabilities available through the use of a web server, embedded
in the parallel application. By default, Guide does not include the PerView server in
your application. Its functionality is only included when specifically requested.

Including the PerView server in your application is as simple as relinking your
application with the guide_perview library, introduced in “Libraries,” beginning on
page 49. To embed the PerView server in your application, add the -WGperview
flag when linking with the Guidec driver. For example, to build a PerView-enabled
application, issue the following commands:
guide@kai.com 63

7 • PerView Security

64
guidec –c main.f
guidec –WGperview main.o

Security

The PerView server provides an access control mechanism, which limits unau-
thorized access to your parallel application at run-time. Access control is speci-
fied via the KMP_HTTP_ACCESS environment variable, the value of which
behaves like a password. This variable can take on any string value, but the
string should contain no white space. The value of KMP_HTTP_ACCESS is read
once upon application execution, and the PerView server requires any connect-
ing PerView client know this value.

If KMP_HTTP_ACCESS is not specified, the server disables access control, and
clients can communicate without a password. This is the default.

Running with PerView

Using PerView is a two-step process. First, a PerView enabled parallel applica-
tion is run, which listens for PerView client requests. During the execution of the
parallel application, one or more PerView clients can connect to the server, to
remotely monitor the application.

The server and client applications can be run on the same or different hosts.

Starting the Server

The server starts when the application begins running if the environment vari-
able KMP_HTTP_PORT is set. If this variable is unset when the application
starts, the server becomes inactive for the duration of the run. Normally, the Per-
View server serves documents from and below a top-level directory. This top-
level directory is specified via the KMP_HTTP_HOME environment variable.

The following paragraphs detail the environment variables used by the PerView
server.
http://www.kai.com/kpts/guide/

Running with PerView PerView • 7

Pe
rV

ie
w

7

KMP_HTTP_PORT=<port>

This variable specifies the network port on which the server will listen. It should be
a positive integer larger than 1024.

If KMP_HTTP_PORT has value 0 or is unspecified, the PerView server is disabled.
This is the default.

KMP_HTTP_HOME=<path>

In addition to its built-in documents, the PerView server can serve documents out of
a “public_html” directory. This variable specifies the top-level directory that con-
tains the public_html directory. The default value is the current directory, “.”, so
files in ./public_html will be available through the server. If you specify a
valid directory path, the PerView server will instead serve files from
<path>/public_html .

Documents located in and below the public_html directory are accessible via a
standard Web browser, such as Netscape or Internet Explorer, via the URL
“http://<host>:<port>/ ”. If a password is specified, the URL is instead
“http://<host>:<port>/cgi-pwd/<password>/ ”.

To disable this feature, set KMP_HTTP_HOME=/dev/null or any non-existent
directory.

KMP_HTTP_ACCESS=<password>

Using this variable, you can limit access to a running parallel application to those
who know the password given in <password> . The password is an arbitrary
string containing no white space characters.

Starting the Client

The PerView client, or simply PerView, communicates with the server in the appli-
cation via a network connection, specified by two values: a host name and a port
number. The correct password must also be used if the KMP_HTTP_ACCESS vari-
able was set before running the application.

To start the PerView client, type:

perview <host> <port>
guide@kai.com 65

7 • PerView Using PerView

66
or

perview <host> <port> <password>

The following example illustrates the use of PerView on two machines, named
“server” and “desktop”. The application runs on server but is monitored from
desktop:

server % guidec –o mondo mondo.c -WGperview
server % setenv KMP_HTTP_PORT 8000
server % setenv KMP_HTTP_ACCESS secret
server % ./mondo

desktop % perview server 8000 secret

Multiple clients can simultaneously communicate with each PerView server, to
allow monitoring from more than one location.

Using PerView

Once PerView has started and has connected to the server, it presents its main
screen, shown in Figure 7-1. The PerView interface consists of two “views” of
displays and controls, selectable by the tabs labeled Performance and Con-
trols.
http://www.kai.com/kpts/guide/

Using PerView PerView • 7

Pe
rV

ie
w

7

Figure 7-1

Performance

The Performance view consists of three panels, displaying thread states, projected
speedup, and progress. The thread states panel shows the state of each OpenMP
thread present in the application, by displaying one stacked bar graph per thread.
The height of the bar represents 100% of each thread’s time. The bar is divided into
time spent doing productive work (green), time lost to parallel overheads and serial
waiting time (red), and time lost due to excess load on the machine (blue). Inactive
threads are shown in gray.

PerView uses this thread state data to estimate the parallel speedup of the applica-
tion. This instantaneous speedup estimate is plotted, along with its time-averaged
value and the thread count, in the center panel. PerView contacts the server at regu-
lar intervals to obtain new data. Each data set is one sample, and the speedup graph
is plotted in terms of these samples.
guide@kai.com 67

7 • PerView Using PerView

68
The bottom panel displays the progress of the application. By default, only the
elapsed time since the beginning of the application run is shown here. With the
application’s cooperation, however, PerView can display a percent completed
graph, a string representing progress, or a convergence graph. See “Progress
Data” on page 70 for details.

Controls

Using the Controls panel, shown in Figure 7-2 you can modify the parallel
behavior of the application, to respond to changing conditions on the machine
where it is running.

Figure 7-2

You might reduce the number of threads being used by an application, for exam-
ple, to make room for another application to start. To adjust the number of
threads, click on the up and down arrows in the Processor Utilization group to
set the desired number of threads. To allow an application to monitor and auto-
matically adjust its own thread count, select Use up to N threads in the top
panel.
http://www.kai.com/kpts/guide/

Using PerView PerView • 7

Pe
rV

ie
w

7

To temporarily suspend the application, click on Pause in the Program Controls
group. The button text changes to Resume once the application has been paused.
When the Resume button is pressed, the application resumes processing.

The Abort… button can be used to prematurely terminate the application.

The Perview Settings group contains a sampling interval control. This specifies
how frequently PerView contacts the server for new data. To change the sampling
interval type to a new, positive integer, then press Apply.

Status Bar

The bottom of the PerView window contains a status bar, shown in Figure 7-3. The
icons in the status bar summarize the state of the application and PerView’s connec-
tion to it.

Figure 7-3

The application status icon uses familiar symbols to represent whether the applica-
tion is running (), paused (), or complete ().

The connection icon indicates whether PerView is connected to the application.
When the connection is broken, due to application completion, network failure, or
application failure, the icon is obscured by a large, red X.

The dynamic threads icon indicates with an “S” or “D”, respectively, whether the
application’s thread count is static (fixed) or dynamic (variable).

Minimal Monitor

The rightmost icon on the status bar is the “minimize” button. Clicking this button
replaces the PerView screen with a minimal view, shown in Figure 7-4, suitable for
general performance monitoring.
guide@kai.com 69

7 • PerView Progress Data

70
Figure 7-4

This view consists of a colored button, surrounded by a “marching” segments
performance display. The colored button shows the current value of the esti-
mated speedup in its center. The button is green, yellow, or red, depending on
the value of the estimated speedup, relative to the number of threads in use.

The marching display consists of colored rays, emanating from the button and
representing the time history of the button’s color. Using this display, you can
get recent performance information at a glance. An all green display is ideal.
Occasional yellow or red rays are normal, but a display dominated by yellow or
red usually requires attention. Green indicates good projected speedup, yellow
represents marginal performance, and red indicates parallel performance prob-
lems.

Click on the colored button to return to the detailed view and, if necessary,
adjust the processor utilization.

Progress Data

By default, PerView displays the elapsed time in the bottom panel of the Perfor-
mance view. This area, however, is provided for you to communicate more
detailed information about your application’s progress to the user. Using a sim-
ple API, you can enable a progress meter, showing percent complete, an X-Y
graph, showing the evolution of a convergence variable or other data, or simply
display a string, representing the current phase of the computation.

Progress Bar

The progress bar is automatically displayed in PerView when you provide
progress information to the PerView server via the kwebc_set_meter
library routine. The interface to this routine is:
http://www.kai.com/kpts/guide/

Progress Data PerView • 7

Pe
rV

ie
w

7

void kwebc_set_meter(char* meter_name, int icurrent, int istart, int iend);

Meter_name is a string value used to label this meter. It is unused at this time.

icurrent , istart , and iend are integer values, representing the current,
beginning, and ending values of a computation, such as a time-stepping loop.

The progress bar computes percent complete as
(icurrent-istart)/(iend-istart) .

The PerView client computes a percentage complete from these values and displays
it in a progress meter.

Progress Graph

The progress graph is automatically displayed in PerView when you provide
progress information to the PerView server via the kwebc_set_residual
library routine. The interface to this routine is:

void kwebc_set_residual(char* meter_name, int current, int ymin, int ymax);

Meter_name is a string value used to label this meter. It is unused at this time.

current is a double precision value representing the data to be plotted as a func-
tion of time.

ymin and ymax are double precision values representing initial minimum and
maximum Y coordinate limits for the graph.

Progress String

The progress string is automatically displayed in PerView when you provide
progress information to the PerView server via the kwebc_set_string library
routine. The interface to this routine is:

void kwebc_set_string(char* meter_name, char* current_phase);

meter_name is a string value used to label this meter. It is unused at this time.

current_phase is a string value used to describe the current state of the appli-
cation. It could be used, for example, to present the major phases of a computation,
such as problem setup, solution, and I/O.
guide@kai.com 71

7 • PerView Progress Data

72
Extending PerView

Both the PerView server and client are extensible, to allow application-specific
data and displays. Please contact us at kpts@kai.com for more information.
http://www.kai.com/kpts/guide/

Examples • A

E
xa

m
pl

es

A

APPENDIX A Examples

The following example programs illustrate the use of OpenMP pragmas.
guide@kai.com 73

A • Examples

74
for: A Simple Difference Operator

This example shows a simple parallel loop where the amount of work in each
iteration is different. We used dynamic scheduling to get good load balancing.
The for has a nowait because there is an implicit barrier at the end of the
parallel region. Alternately, using the option -WGopt=1 would have also elimi-
nated the barrier .

void for_1 (float a[], float b[], int n)
{
 int i, j;

 #pragma omp parallel shared(a,b,n) private(i,j)
 {
 #pragma omp for schedule(dynamic,1) nowait
 for(i = 1; i < n; i++) {
 for(j = 0; j <= i; j++)
 b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)]) / 2.0;
 }
 }
}

http://www.kai.com/kpts/guide/

Examples • A

E
xa

m
pl

es

A

for: Two Difference Operators

Shows two parallel loops fused to reduce fork/join overhead. The first for has a
nowait because all the data used in the second loop is different than all the data
used in the first loop.

void for_2 (float a[], float b[], float c[], float d[], int n, int m)
{
 int i, j;

 #pragma omp parallel shared(a,b,c,d,n,m) private(i,j)
 {
 #pragma omp for schedule(dynamic,1) nowait
 for(i = 1; i < n; i++) {
 for(j = 0; j <= i; j++)
 b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)]) / 2.0;
 }

 #pragma omp for schedule(dynamic,1) nowait
 for(i = 1; i < m; i++) {
 for(j = 0; j <= i; j++)
 d[j + m*i] = (c[j + m*i] + c[j + m*(i-1)]) / 2.0;
 }
 }
}

guide@kai.com 75

A • Examples

76
for: Reduce Fork/Join Overhead

Routines for_3a and for_3b perform numerically equivalent computations,
but because the parallel pragma in routine for_3b is outside the loop, rou-
tine for_3b probably forms teams less often, and thus reduces overhead.

void for_3a (float a[], float b[], int n, int m)
{
 int i, j;

 for(j = 0; j < m; j++) {
 #pragma omp parallel shared(a,b,n,j) private(i)
 {
 #pragma omp for nowait
 for(i = 0; i < n; i++)
 a[i + n*j] = b[i + n*] / a[i + n*(j-1)];
 }
 }
}

void for_3b (float a[], float b[], int n, int m)
{
 int i, j;

 #pragma omp parallel shared(a,b,n) private(i,j)
 {
 for(j = 0; j < m; j++) {
 #pragma omp for nowait
 for(i = 0; i < n; i++)
 a[i + n*j] = b[i + n*j] / a[i + n*(j-1)];
 }
 }
}

http://www.kai.com/kpts/guide/

Examples • A

E
xa

m
pl

es

A

sections: Two Difference Operators

Identical to “for: Two Difference Operators” on page 75 but uses sections
instead of for . Here the speedup is limited to 2 because there are only 2 units of
work whereas in “for: Two Difference Operators” on page 75 there are n-1 + m-1
units of work.

void sections_1 (float a[], float b[], float c[], float d[], \
 int n, int m)
{
 int i, j;

 #pragma omp parallel shared(a,b,c,d,n,m) private(i,j)
 {
 #pragma omp sections nowait
 {
 #pragma omp section
 for(i = 1; i < n; i++) {
 for(j = 0; j <= i; j++)
 b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)]) / 2.0;
 }

 #pragma omp section
 for(i = 1; i < m; i++) {
 for(j = 0; j <= i; j++)
 d[j + m*i] = (c[j + m*i] + c[j + m*(i-1)]) / 2.0;
 }
 }
 }
}

guide@kai.com 77

A • Examples

78
single: Updating a Shared Scalar

This example demonstrates how to use a single construct to update an ele-
ment of the shared array a. The optional nowait after the first loop is omitted
because we need to wait at the end of the loop before proceeding into the
single .

void single_sp_1a (float a[], float b[], int n)
{
 int i;

 #pragma omp parallel shared(a,b,n) private(i)
 {
 #pragma omp for
 for(i = 0; i < n; i++)
 a[i] = 1.0 / a[i] ;

 #pragma omp single nowait
 a[0] = min(a[0], 1.0) ;

 #pragma omp for nowait
 for(i = 0; i < n; i++)
 b[i] = b[i] / b[i] ;
 }
}

http://www.kai.com/kpts/guide/

Examples • A

E
xa

m
pl

es

A

sections: Updating a Shared Scalar

Identical to “single: Updating a Shared Scalar” on page 78 but using different prag-
mas.

void sections_sp_1 (float a[], float b[], int n)
{
 int i;

 #pragma omp parallel shared(a,b,n) private(i)
 {
 #pragma omp for
 for(i = 0; i < n; i++)
 a[i] = 1.0 / a[i] ;

 #pragma omp sections nowait
 a[0] = min(a[0], 1.0) ;

 #pragma omp for nowait
 for(i = 0; i < n; i++)
 b[i] = b[i] / b[i] ;
 }
}

guide@kai.com 79

A • Examples

80
for: Updating a Shared Scalar

Identical to “single: Updating a Shared Scalar” on page 78 but using different
pragmas.

void for_sp_1 (float a[], float b[], int n)
{
 int i;

 #pragma omp parallel shared(a,b,n) private(i)
 {
 #pragma omp for
 for(i = 0; i < n; i++)
 a[i] = 1.0 / a[i] ;

 #pragma omp for nowait
 for(i = 0; i < 1; i++)
 a[i] = min(a[i], 1.0) ;

 #pragma omp for nowait
 for(i = 0; i < n; i++)
 b[i] = b[i] / b[i] ;
 }
}

http://www.kai.com/kpts/guide/

Examples • A

E
xa

m
pl

es

A

parallel for: A Simple Difference Operator

Identical to “for: A Simple Difference Operator” on page 74 but using different
pragmas.

void parallelfor_1 (float a[], float b[], int n)
{
 int i, j;

 #pragma omp parallel for shared(a,b,n) \
 private(i,j) schedule(dynamic,1)
 for(i = 1; i < n; i++) {
 for(j = 0; j <= i; j++)
 b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)]) / 2.0;
 }
}

guide@kai.com 81

A • Examples

82
parallel sections: Two Difference Operators

Identical to “sections: Two Difference Operators” on page 77 but using different
pragmas.

void sections_2 (float a[], float b[], float c[], float d[], \
 int n, int m)
{
 int i, j;

 #pragma omp parallel sections shared(a,b,c,d,n,m) private(i,j)
 {
 #pragma omp section
 for(i = 1; i < n; i++) {
 for(j = 0; j <= i; j++)
 b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)]) / 2.0;
 }

 #pragma omp section
 for(i = 1; i < m; i++) {
 for(j = 0; j <= i; j++)
 d[j + m*i] = (c[j + m*i] + c[j + m*(i-1)]) / 2.0;
 }
 }
}

http://www.kai.com/kpts/guide/

Examples • A

E
xa

m
pl

es

A

Simple Reduction

This demonstrates how to perform a reduction using partial sums while avoiding
synchronization in the loop body.

void reduction_1 (float a[], int m, int n, float sum)
{
 int i, j;
 float local_sum;

 #pragma omp parallel shared(a,m,n,sum) \
 private(i,j,local_sum)
 {
 local_sum = 0.0;
 #pragma omp for nowait
 for(i = 0; i < n; i++) {
 for(j = 0; j < m; j++)
 local_sum = local_sum + a[j + i*m];
 }
 #pragma omp critical
 sum = sum + local_sum;
 }
}

The above reduction could also use the reduction() clause as follows:

void reduction_2 (float a[], int m, int n, float sum)
{
 int i, j;

 #pragma omp parallel for shared(a,m,n) \
 private(i,j) reduction(+:sum)
 for(i = 0; i < n; i++) {
 for(j = 0; j < m; j++)
 sum = sum + a[j + i*m];
 }
}

guide@kai.com 83

A • Examples

84
threadprivate: Private File-Scope Variable

This example demonstrates the use of threadprivate file-scope variables.

float work[10000];
#pragma omp threadprivate(work)

extern void construct_data() ;
extern void use_data() ;

void tc_1(int n)
{
 int i;

 #pragma omp parallel shared(n) private(i)
 {
 #pragma omp for
 for(i = 0; i < n; i++) {
 construct_data(); /* fills in array work() */
 use_data(); /* uses array work() */
 }
 }
}

http://www.kai.com/kpts/guide/

Examples • A

E
xa

m
pl

es

A

threadprivate: Private File-Scope Variable and
Master Thread

In this example, the value 2 is printed since the master thread's copy of
threadprivate variable is accessed within a master section or in serial code
sections. If a single was used in place of the master section, some single
thread, but not necessarily the master thread, would set j to 2 and the printed result
would be indeterminate.

#include <stdio.h>

int j;
#pragma omp threadprivate(j)

int main()
{
 j = 1;

 #pragma omp parallel copyin(j)
 {
 #pragma omp master
 j = 2;
 }

 printf(“j = %d\n”, j);
}

guide@kai.com 85

A • Examples

86
Avoiding External Routines: Reduction

This example demonstrates two coding styles for reductions, one using the
external routines omp_get_max_threads() and
omp_get_thread_num() and the other using only OpenMP pragmas.

#include <stdio.h>
#include <omp.h>

void reduction_3a (int n, float a[])
{
 int i;
 float gx[8], lx, x; /* assume 8 processors */

 x = 0.0 ;
 for(i = 0; i < omp_get_max_threads(); i++)
 gx[i] = 0.0;

 #pragma omp parallel shared(a,n,g) private(i,lx)
 {
 lx = 0.0;
 #pragma omp for nowait
 for(i = 0; i < n; i++)
 lx = lx + a[i];

 gx[omp_get_thread_num()] = lx;
 }

 for(i = 0; i < omp_get_max_threads(); i++)
 x = x + gx[i];

 printf(“x = %f\n”, x);
}

As shown below, this example can be written without the external routines.

#include <stdio.h>
void reduction_3b (int n, float a[])
{
 int i;
 float lx, x;

 x = 0.0;

 #pragma omp parallel shared(a,n) private(i,lx)
 {
 lx = 0.0;
 #pragma omp for nowait
 for(i = 0; i < n; i++)
 lx = lx + a[i];

 #pragma omp critical
 x = x + lx;
 }

 printf(“x = %f\n”, x);
}

http://www.kai.com/kpts/guide/

Examples • A

E
xa

m
pl

es

A

This example can also be written more simply using the reduction() clause as
follows:

#include <stdio.h>
void reduction_3c (int n, float a[])
{
 int i;
 float x;

 x = 0.0 ;

 #pragma omp parallel for shared(a,n) private(i) reduction(+:x)
 for(i = 0; i < n; i++)
 x = x + a[i];

 printf(“x = %f\n”, x) ;
}

guide@kai.com 87

A • Examples

88
Avoiding External Routines: Temporary Storage

This example demonstrates three coding styles for temporary storage, one using
the external routine and omp_get_thread_num() and the other two using
only pragmas.

#include <omp.h>

void local_1a (int n, float a[])
{
 int i, j;
 extern float t[8] [100]; /* assume 8 processors max. */
 #pragma omp parallel for shared(a,t,n) private(i,j)
 for(i = 0; i < n; i++) {
 for(j = 0; j < n; j++)
 t[omp_get_thread_num()][j] = a[i] * a[i];
 work(&(t[omp_get_thread_num()][0]));
 }
}

If t is not global, then the above can be accomplished by putting t in the
private clause:

void local_1b (int n, float a[])
{
 int i, j;
 float t[100];

 #pragma omp parallel for shared(a,n) private(i,t,j)
 for(i = 0; i < n; i++) {
 for(j = 0; j < n; j++)
 t[j] = a[i] * a[i];
 work(t);
 }
}

If t is global, then the threadprivate pragma can be used instead.

float t[100];
#pragma omp threadprivate(t)

void local_1c (int n, float a[])
{
 int i, j;

 #pragma omp parallel for shared(a,n) private(i,j)
 for(i = 0; i < n; i++) {
 for(j = 0; j < n; j++)
 t[j] = a[i] * a[i];
 work(t);
 }
}

http://www.kai.com/kpts/guide/

Examples • A

E
xa

m
pl

es

A

firstprivate: Copying in Initialization Values

Not all of the values of a and b are initialized in the loop before they are used. (The
rest of the values are produced by init_a and init_b .) Using firstprivate
for a and b causes the initialization values produced by init_a and init_b to
be copied into private copies of a and b for use in the loops.

#include <stdio.h>

void dsq3_b (float c[], int n)
{
 int i, j;
 float a[100], b[100], x, y;
 init_a(a, n);
 init_b(b, n);
 #pragma omp parallel for shared(c,n) \
 private(i,j,x,y) firstprivate(a,b)
 for(i = 0; i < n; i++) {
 for(j = 0; j <= i; j++) {
 a[j] = calc_a(i);
 b[j] = calc_b(i);
 }
 for(j = 0; j < n; j++) {
 x = a[i] - b[i];
 y = b[i] + a[i];
 c[j + n*i] = x*y;
 }
 }
 printf(“x, y = %f, %f\n”, x, y);
}

guide@kai.com 89

A • Examples

90
threadprivate: Copying in Initialization Values

Similar to “firstprivate: Copying in Initialization Values” on page 89 except
using threadprivate variables. For threadprivate , copyin is used
instead of firstprivate to copy initialization values from the shared (mas-
ter) copies of a and b to the private copies.

float a[100], b[100];
#pragma omp threadprivate(a,b)

void dsq3_b_tc (float c[], int n) {
 int i, j;
 float x, y;

 init_a(a, n);
 init_b(b, n);

 #pragma omp parallel for shared(c,n) \
 private(i,j,x,y) copyin(a,b)
 for(i = 0; i < n; i++) {
 for(j = 0; j <= i; j++) {
 a[j] = calc_a(i);
 b[j] = calc_b(i);
 }
 for(j = 0; j < n; j++) {
 x = a[i] - b[i];
 y = b[i] + a[i];
 c[i+n*j] = x*y;
 }
 }
 printf(“x, y = %f, %f\n”, x, y);
}

http://www.kai.com/kpts/guide/

Examples • A

E
xa

m
pl

es

A

taskq: Parallelizing across Loop Nests

The OpenMP for pragma is limited in that it can only parallelize on a single for
loop at a time. Using taskq , nested loops can be parallelized. Each iteration of the
loop is independent and is enqueued as a task.

void multiple_doalls(int m, int n, int* sum_p) {
 int i, j;
 int sum = 0;
 #pragma omp parallel taskq shared(n,m) private(i) \
 lastprivate(j) reduction(+:sum)
 for(i = 0; i < n; ++i) {
 for(j = 0; j < m; ++j) {
 partial_sum(&sum);
 #pragma omp task
 do_work(i, j, &sum);
 }
 }
 *sum_p += sum;
 foo(&j);
}

guide@kai.com 91

A • Examples

92
 http://www.kai.com/kpts/guide/

Timing Guide Constructs • B

T
im

in
g

G
ui

de

C
on

st
ru

ct
s

B

APPENDIX B Timing Guide

Constructs

The table contained in this appendix demonstrates the amount of time expended for
OpenMP pragmas in comparison to a null call for a typical micro-processor based
SMP. A null call is a call to an empty function.

void null(){};

In the table below, it took about 10 cycles to call the null function. A barrier
construct is about 10 times slower for 1 processor, and about 70 times slower for 2
processors.
guide@kai.com 93

B • Timing Guide Constructs

94

Guide Construct X s

function call

barrier 0

single 0

critical section 0

parallel region 0
Typical Overhead

This information can be used to draw the following general conclusions:

• A barrier statement is 30 to 50 percent less expensive than a parallel
region.

• barrier s and single s have roughly the same overhead.

• After 2 processors, all the costs follow a nearly linear pattern as you add pro-
cessors.

1 processor 2 processor 3 processor 4 processor

 null call cycles X null call cycles X null call cycles X null call cycle

1 10 1 10 1 10 1 10

10 100 70 700 90 900 100 100

20 200 90 900 110 1100 130 130

30 300 70 700 150 1500 210 210

50 500 190 1900 220 2200 280 280
http://www.kai.com/kpts/guide/

Index
A
atomic 36

B
barrier 37
barrier 7
bold typeface 3

C
chunk 42
copyin 39
courier font 3
critical 35

D
data scope attribute clauses

copyin 39
default 37
firstprivate 38
lastprivate 38
private 37
reduction 38

shared 37
default 37
directives

atomic 36
barrier 37
critical 35
flush 36
for 24
master 36
ordered 35
parallel 24
parallel for 31
parallel sections 32
parallel taskq 34
sections 25
single 26
synchronization 35
task 29
taskq 28

E
eliminating 7
guide@kai.com 95

Index

96
environment variables 44, 45, 46, 47
kmp_blocktime 44
kmp_library 44
kmp_scheduling 44
kmp_stacksize 45
kmp_statsfile 45
ld_library_path 47
omp_dynamic 45
omp_num_threads 46
omp_schedule 46
scheculing options 44

external routines 52
kmp_get_blocktime 53
kmp_get_library 54
kmp_get_stacksize 54
kmp_set_blocktime 54
kmp_set_library 54
kmp_set_library_serial 54
kmp_set_library_throughput 55
kmp_set_library_turnaround 55
kmp_set_stacksize 55
mppbeg() 53
mppend() 53
omp_destroy_lock() 55
omp_get_max_threads() 55
omp_get_num_procs() 55
omp_get_num_threads() 56
omp_get_thread_num() 56
omp_init_lock() 56
omp_set_lock() 56
omp_test_lock() 57
omp_unset_lock() 57

F
firstprivate 38
flush 36
for 24

G
guideview 59

K
kmp_blocktime 44
kmp_get_blocktime 53
kmp_get_library 54

kmp_get_stacksize 54
kmp_library 44
kmp_scheduling 44
kmp_set_blocktime 54
kmp_set_library 54
kmp_set_library_serial 54
kmp_set_library_throughput 55
kmp_set_library_turnaround 55
kmp_set_stacksize 55
kmp_stacksize 45
kmp_statsfile 45

L
lastprivate 38
ld_library_path 47
libraries 49, 52

linking 52
selecting 49

linking
libraries 52

M
master 36
mppbeg() 53
mppend() 53

O
omp_destroy_lock() 55
omp_dynamic 45
omp_get_max_threads() 55
omp_get_num_procs() 55
omp_get_num_threads() 56
omp_get_thread_num() 56
omp_init_lock() 56
omp_num_threads 46
omp_schedule 46
omp_set_lock() 56
omp_test_lock() 57
omp_unset_lock() 57
openmp environment variables 44–46

kmp_stacksize 45
ld_library_path 47
omp_dynamic 45
omp_schedule 46

ordered 35
http://www.kai.com/kpts/guide/

Index
P
parallel 24
parallel directives

parallel 24
parallel for 31
parallel sections 32
parallel taskq 34
perview 63–72
private 37

R
reduction 38

S
scheduling options 41

chunk size 42
environment variables 44

sections 25
shared 37
single 26
synchronization directives 35, 36

atomic 36
barrier 37
critical 35
flush 36
master 36
ordered 35

T
task 29
taskq 28

W
workqueuing directives

task 29
taskq 28

worksharing directives
for 24
parallel for 31
parallel sections 32
parallel taskq 34
sections 25
single 26
guide@kai.com 97

	Table of Contents
	Introduction
	About Guide
	Using this Reference Manual
	Reference Manual Contents
	Reference Manual Conventions

	Guide On-line
	Technical Support
	Comments

	Using Guide
	Parallel Processing Model
	Overview
	Increasing Efficiency
	Data Sharing

	Using Guide to Develop Parallel Programs
	Analyze
	Restructure
	Tune

	Orphaned Pragmas
	A Few Rules about “Orphaned” Pragmas

	The Guide Driver
	About Guidec
	Using the Driver
	Driver Options
	Driver-specific Options

	OpenMP Pragmas
	Parallel Pragma
	parallel

	Worksharing Pragmas
	for
	sections
	single

	Workqueuing Pragmas
	The Taskq Model
	taskq
	task

	Data Privatization
	Examples

	Combined Parallel and Worksharing/Workqueuing Pragmas
	parallel for
	parallel sections
	parallel taskq

	Synchronization Pragmas
	critical
	ordered
	master
	atomic
	flush
	barrier

	Data Scope Attribute Clauses
	default (shared | private | none) shared (<list>) private (<list>)
	firstprivate (<list>)
	lastprivate (<list>)
	reduction (<operator>:<list>)
	copyin (<list>)

	Privatization of Global Variables
	Initializing Threadprivate Variables
	Persistence of Threadprivate Variables

	Scheduling Options
	Scheduling Options Using Pragmas
	Scheduling Options Using Environment Variables

	Environment Variables
	KMP_BLOCKTIME=<integer>[<character>]
	KMP_LIBRARY=<string>
	KMP_STACKSIZE=<integer>[<character>]
	KMP_STATSFILE=<file>
	OMP_DYNAMIC=<boolean>
	OMP_NUM_THREADS=<integer>
	OMP_SCHEDULE=<string>[,<integer>]
	OMP_NESTED=<boolean>
	LD_LIBRARY_PATH=<path>

	Libraries
	Selecting a Library
	Serial
	Turnaround
	Gang
	Throughput

	The Guide_stats Library
	The Guide_perview Library
	Linking the Libraries
	External Routines
	void mppbeg(void) void mppend(void)
	kmp_get_blocktime
	kmp_get_library
	kmp_get_stacksize (<integer>)
	kmp_set_blocktime (<integer>)
	kmp_set_library (<integer>)
	kmp_set_library_serial
	kmp_set_library_throughput
	kmp_set_library_turnaround
	kmp_set_stacksize (integer)
	void omp_destroy_lock(omp_lock_t *lock);
	int omp_get_max_threads(void)
	int omp_get_num_procs(void)
	int omp_get_num_threads(void)
	int omp_get_thread_num(void)
	void omp_init_lock(omp_lock_t *lock);
	void omp_set_lock(omp_lock_t *lock);
	Signal Handling
	int omp_test_lock(omp_lock_t *lock);
	void omp_unset_lock(omp_lock_t *lock);

	GuideView
	Introduction
	Using GuideView
	GuideView Options
	mhz=<integer>
	ovh=<file>
	jpath=<file>
	WJ,[java_option]

	Java Options
	ms<integer>[{k,m}]
	mx<integer>[{k,m}]

	PerView
	Introduction
	Enabling the PerView Server
	Security
	Running with PerView
	Starting the Server
	KMP_HTTP_PORT=<port>
	KMP_HTTP_HOME=<path>
	KMP_HTTP_ACCESS=<password>

	Starting the Client

	Using PerView
	Performance
	Controls
	Status Bar
	Minimal Monitor

	Progress Data
	Progress Bar
	Progress Graph
	Progress String
	Extending PerView

	Examples
	for: A Simple Difference Operator
	for: Two Difference Operators
	for: Reduce Fork/Join Overhead
	sections: Two Difference Operators
	single: Updating a Shared Scalar
	sections: Updating a Shared Scalar
	for: Updating a Shared Scalar
	parallel for: A Simple Difference Operator
	parallel sections: Two Difference Operators
	Simple Reduction
	threadprivate: Private File-Scope Variable
	threadprivate: Private File-Scope Variable and Master Thread
	Avoiding External Routines: Reduction
	Avoiding External Routines: Temporary Storage
	firstprivate: Copying in Initialization Values
	threadprivate: Copying in Initialization Values
	taskq: Parallelizing across Loop Nests

	Timing Guide Constructs
	Typical Overhead

	Index

