
1 of 19

ality

s for Paged

, Jr.

 1969
Matrix Operations and Loc

Based on the paper

Organizing Matrices and Matrix Operation

Memory Systems

By A.C.McKellar and E.G.Coffman

Communications of the ACM March

2 of 19

70s use virtual

ata) are divided
ytes).

each capable of

s are in

ram (instruction
 containing the
f it is, the
ught from
sume that all
© 1998 David A. Padua

Virtual Memory

Most comventional computers since the mid 19
memories.

In its simplest form, programs (including their d
into pages of fixed length (usually 1024-4098 b

The main memory is divided into page frames,
holding a program page.

When the program begin execution, all its page
secondary memory (usually disk).

For each memory reference issued by the prog
or data) the computer checks whether the page
location being referenced is in main memory. I
computer fetches it. Otherwise, the page is bro
secondary memory to the main memory (we as

3 of 19

e and therefore

mory, one is

, has to be
ified by the

before the
. We will
placement
U) to select PF.
 frame
cessed by the
e is to be

e has to be
variables and arrays are initialized to some valu
reside in disk when the program starts).

If there are unused page frames in main me
chosen to place the incoming page.

Otherwise, an occupied page frame, say PF
selected. If the page occupying PF was mod
program, it would have to be written to disk
incoming page is copied into the page frame
assume that the computer follows a page re
strategy known as Least Recently Used (LR
In this strategy the system chooses the page
containing the page that was least recetly ac
program as the one where the incoming pag
placed.
We say there is a page fault whenever a pag
brought from secondary storage.

4 of 19

o hold data and
n this case,
ing the array a

 no new page
 a(1025),
sume that each
pen, the first
nd the second

 memory.
Example 1

Consider the following loop:
do i=1,4000

a(i) = a(i)+1
end do

Asume there is only one page frame available t
that pages in this system contain 4096 bytes. I
when a(1) is referenced, the first page contain
will be brought from secondary memory. Then,
will be brough until the program tries to access
the first element of the second page of a (we as
element of a is four bytes long). When this hap
page of a will be copied to secondary storage a
page will be brought to the page frame in main

5 of 19

 store data and

 the case in
 means that

 iteration of the
equence of
rms of page
mory trace) has
Example 2

Consider the loop
real a(1024,100)
...
do i=1,1024

do j=1,100
a(i,j)=a(i,j)+1

end do
end do

Assume there are two page frames available to
that pages are 4096 byles long.

Assume also that a is sorted by columns (as is
Fortran. In C, arrays are stored by rows). That
each page will contain exactly one column.

This program will cause one page fault for each
loop j. To understand why, let us analyze the s
memory references generated by the loop in te
being accessed. This sequence (known as me
the form:

6 of 19

1 a1 a2 a2 a3

olumn. Notice
 (and therefore

r follows the
ch pair aj will
(a1) will cause a
 main memory.

 fault because
this, the first
ecause the two
 aj (aj-1 and
 a99 if j=1).

2,400 page

ed, the previous
© 1998 David A. Padua

a1 a1 a2 a2 a3 a3 a4 a4 ... a100 a100 a
a3 ... a100 a100 a1 a1 a2 a2 ...

where ai represents the page containg the ith c
that each iteration accesses the same element
the same column) twice.

Notice that aj accessed by pairs. If the compute
LRU replacement policy, the first access to ea
cause a page fault. Thus, the first access of all
page fault because there will be no page of a in
The third reference (a2) will also cause a page
only t column a1 will be in main memory. After
access in each pair aj will cause a page fault b
pages residing in memory will be different from
aj-2 if j>2 -- a100 and a1 if j=2 -- a100 and

In other words, the previous loop will cause 10
faults.

On the other hand, if the loops were interchang
loop will take the form:

7 of 19

...

p causes only

cond version

evious two
 frames is less

 or more, the
ps.
real a(1024,100)
...
do j=1,100

do i=1,1024
a(i,j)=a(i,j)+1

end do
end do

The trace for this loop is:

a1 a1 ... a1 a1 a2 a2 ... a2 a2 a3 a3

It is easy to see that this second form of the loo
100 page faults.

Since each page fault takes a long time, the se
would be significantly faster than the first one.

Notice that the number of page faults for the pr
loops will be valid whenver the number of page
than 100. If the number of page frames is 100
number of page frames will be 100 for both loo

8 of 19

available for
t variable t is

hole column of
g form:

3 a1 a1023 -
 a2 a4 - ...

022 a1023 -

023 a1024
Transposing a matrix.

Now consider the loop:
do i=1,1024

do j=i+1,1024
t=a(j,i)
a(j,i)=a(i,j)
a(i,j) = t

end do
end do

Assume again that there are two page frames
data. For simplicity of analysis assume also tha
kept in a register.

Assume again that each page frame holds a w
the array a. The address trace has the followin

a1 a2 a1 a2 - a1 a3 a1 a3 - ...a1 a102
a1 a1024 a1 a1024 + a2 a3 a2 a3 - a2 a4
a2 a1024 a2 a1024 + a3 a4 a3 a4 - ...
a1021 a1024 a1021 a1024 + a1022 a1023 a1
a1022 a1024 a1022 a1024 + a1023 a1024 a1

9 of 19

nd the + the

 two page faults
his is true for

when the loop
ontain pages
for i=2 will

 i iteration will
n of the j loop

e:
Here, the - indicates the end on a j iteration, a
end of an i iteration.

Given an i iteration, the first j iteration causes
(except for i=1023 which on ly causes one). T
i=1 because there is nothing in main mamory
starts. When iteration i=2 starts, memory will c
a1 and a1024 and the first iteration of loop j
access a2 and a3.

Subsequent iteration of the j loop within a give
cause one page fault because each new iteratio
will access one new column of the array a.

Therefore, the total number of page faults will b

1023 + 1024*1023/2.

10 of 19

 be to reverse

ys cause one
otal number of

 ...a1 a3 a1
 a2 a1023 a2
 - ...

022 a1024 -

023 a1024
An alternative way of executing the loop would
the order of the inner loop:

do i=1,1024
do j=1024,i+1,-1

t=a(j,i)
a(j,i)=a(i,j)
a(i,j) = t

end do
end do

In this loop all iterations of the j loop will alwa
page fault. Therefore for this second loop the t
page faults would be 1+1023*1024/2.

To see why, consider the address trace.

a1 a1024 a1 a1024 - a1 a1023 a1 a1023 -
a3 - a1 a2 a1 a2 + a2 a1024 a2 a1024 -
a1023 - ... a2 a3 a2 a3 + a3 a1024 a3 a1024
a1021 a1022 a1021 a1022 + a1022 a1024 a1
a1022 a1023 a1022 a1023 + a1023 a1024 a1

11 of 19

 after the first
cept for a given
mns accessed
It is easy to see that for a given i, all j iterations
one cause only one page fault. Furthermore, ex
i>1, the first j iteration will reuse one of the colu
last in the i-1 iteration.

12 of 19

 32 by 32
 that):

ge at a

32 1024=
Now assume that array a is stored so that each
submatrix is stored in a page as follows (notice

Then, the following program will access one pa
time and will cause only 1024 page faults:

page

1

page

32

page

2

page

33

page

34

page

64

page

993

page

994

page

1024

...

...

...

...

13 of 19
do II=1,1024,32
do JJ=II,1024,32

do i=II, II+32
do j=i+1,JJ+32

t=a(i,j)
a(i,j)+a(j,i)
a(j,i)=t

end do
end do

end do
end do

14 of 19

three page

he

er loop for a

4 bj cj cj

 to b and c.

j) iterations.
Matrix multiplication

In this discussion, we will assume that there are
frames available for data.

Assume first, row storage. It is easy to see that t
straightforward algorithm:

do i=1,1024,
do j=1,1024

do k=1,1024
c(i,j)=a(i,k)*b(k,j)+c(i,j)

end do
end do

end do

will cause 10242*(1024+2) page faults.

To see why consider the address trace of the inn
particular i and j:

a1 bj cj cj - a2 bj cj cj - ... - a102

There will be 1024 faults due to a, but only 2 due

The result follows because there are 10242 (i,

15 of 19

call that the

 and k, is as

 bj cj cj

 this inner loop.

bj and cj will
 +2 page faults
e loop nest.
© 1998 David A. Padua

The middle product method behaves better. Re
middle product method is:

do j=1,1024,
do k=1,1024

do i=1,1024
c(i,j)=a(i,k)*b(k,j)+c(i,j)

end do
end do

end do

Now, the inner loop memory trace for a given j
follows

ak bj cj cj - ak bj cj cj - ... - ak

and, therefore, only 3 page faults take place in

For different values of k, ak will change, but
remain constant. Therefore, there will be 1024
for the k loop and 1024*(1024+2) for the whol

16 of 19

 submatrices as

)+c(i,j)

are) represent
 version is just
© 1998 David A. Padua

Finally, asume now that the matrix is stored by
depicted above.

Matrix multiplication can be done as follows:
do II=1,1024,32

do JJ=1,1024,32
do KK=1,1024,32

do i=II,II+31
do j=JJ,JJ+31

do k=KK,KK+31
c(i,j)=a(i,k)*b(k,j

end do
end do

end do
end do

end do
end do

Notice that the three inner loops (inside the squ
the product of two submatrices. Therefore, this

17 of 19

ltiplication
 page frames in
ge faults for the
one page fault
here fore, the
© 1998 David A. Padua

the well-known submatix form of the matrix mu
algorithm. Assuming again that there are three
main memory, the loop will cause just three pa
innermost three loops. The KK loop will cause
for c and 32 page faults for each of a and b. T
total number of page faults will be:
32*32*(1+2*32)=1024+10241.5*2

18 of 19

 are cache
ry hierarchy

hly corresponds
uch smaller)

me that the
rue in most real
 some cases.

icussed above,

he cache
r of blocks b,

h cache block is
 number of
ill be 102,400
 in Example 2.

er will be
r of cache
© 1998 David A. Padua

Cache memories

An important component of modern computers
memories. They are another level of the memo
which is divided into cache blocks (which roug
to the page frames in main memory although m
and are backed up to main memory.

For the purposes of this dicussion, we will assu
block replacement strategy is LRU. This is not t
machines, but is a reasonable approximation in

So, to analyze the behavior of the algorithms d
the only change will be the size of the blocks.

Consider the loop of Example 2. Assume that t
contains 64 blocks for data (in fact any numbe
with 1<b<100 would do). If we assume that eac
32 bytes long (8 array elements long), the total
cache misses for the first version of the loop w
which is the same as the number of page faults

If the loop headers are interchanged, the numb
reduced to 102,400/8 which is the total numbe
blocks in array a.

19 of 19

t the cahce can
roduce the
024/8 for b,

+1024/8).

 following cache
 1024 for b.
+10243

tion of the KK
 c and 32*1024/
cache misses
2*10242.5/8.
© 1998 David A. Padua

Now consider matrix multiplication. Assume tha
hold three columns. The simple approach will p
following cache misses for the k loop: 1 for c, 1
1024 for a. Total cache misses: 10242(1+1024

For the middle product method, thre will be the
misses for loop k: 1024/8 for c, 1024/8 for a, and
Total: 1024(1024/8+1024/8+1024) = 2*10242/8

Finally, for the submatrix product, for each itera
loop, there will be 1024/8 cache misses due to
8 for each of a and b. The resulting number of
will be: 32*32*(1024/8+2*32*1024/8)=10242/8+

	Matrix Operations and Locality
	Virtual Memory
	Example 1
	Example 2

