
rocessors

ign
Cache Related Issues in Multip

Calin Cascaval
Dept. of Computer Science

Univ. of Illinois at Urbana-Champa

rence, i.e., a pro-
ove to another

cesses

ata) * 2

ory access
s

Why Caches?

Key Observation: Programs exhibit locality of refe
gram accesses a set of locations repeatedly, then m
set, and so on.

Processor

Memory

2.6 memory ac
every 10 ns:

(1 instr + 0.3 d

delivers 1 mem
every 70 n

t the same speed

ocessor

emory

ache I-Cache

aches
What are Caches?

Fast, expensive memories (SRAMs) that operate a
as the processor.

Processor

Cache

Memory

Pr

Unified Cache

M

D-CTLB

Multiple C

ser to processor
ory are bigger,

y and cache, usu-

 be accessed next is

ions in the same time

er!
About Caches

There can be hierarchies of caches, and caches clo
are smaller and faster, while caches closer to mem
slower and also cheaper.

A cache line is the unit of transfer between memor
ally a power of 2. It is based on two observations:

• spatial locality — the location most likely to
the neighboring location

• many memory chips can deliver more locat
they deliver one word.

Larger is not necessarily bett

+a(i,k)*b(k,j)

+a(i,k)*b(k,j)
Locality
do i = 1, n

do j = 1, n

c(i,j) = 0

do k = 1, n

c(i,j)=c(i,j)

A better solution:

do j = 1, n

do i = 1, n

c(i,j) = 0

do k = 1, n

c(i,j)=c(i,j)

j

i

:

 * b(k, j)

that the blocks fit
Locality (cont.)

The best solution for matrix multiplication is tiling

 do jj = 1, N, T

 do ii = 1, N, T

 do kk = 1, N, T

 do j = jj, min(jj+T-1, N)

 do i = ii, min(ii+T-1, N)

 c(i, j) = 0

 do k = kk, min(kk+T-1,N)

 c(i, j) = c(i, j) + a(i, k)

Important: T (the tile size) should be chosen such
in the cache.

sor 2

he

written by P1
written by P2
Caches in SMPs

Processor 1 Proces

cache cac

Memory

 of the memory
vate cache stor-

ated and may

system or left to
Cache Coherence

The system must provide a coherent, uniform view
to all processors, despite the presence of local, pri
age.

Options:

• Hardware cache coherence:

• snoopy protocols — require a bus;

• central directory protocols — complic
become a bottleneck;

• a combination of both;

• Software cache coherence: provided by the
the programmer

t.)

e marked “invalid”,
essor accesses an

hes that have cop-
raffic if lines are big.

he coherence!
Cache Coherence (con

Another classification:

• invalidation protocols: lines in the cache ar
without updating the data. Whenever a proc
invalid cache line, it should trigger a miss;

• update protocols: a line is “pushed” in the cac
ies of the cache line. Generates a lot more t

Smaller lines are better as units of cac

?

se they need to
 same cache

, false sharing
dations)

ocation.

ticular placement
What is False Sharing

Two processors sharing a multi-word block becau
access two different words that happen to be in the
block [Torrellas 1990]

If one of the accesses to the block is a write access
can induce a large number of cache misses (invali

False sharing is an artifact introduced by data coll

Depends on the cache block (line) size and the par
of data in memory.

 b
Example

P1

read a

...

read a

P2

...

store

...

a b

 Krishnan Rama-

d be implemented as
 block in the cache,

odified word is prop-
lock and also buffered

 in the invalidation
ue sharing miss’
Hardware Solutions

Michel Dubois, Jonas Skeppstedt, Livio Ricciulli,
murthy, and Per Stenström [Dub93]

Write-through cache

• introduce an invalidation buffer, which coul
a dirty bit associated with each word in each
and

• on a store into a block, the address of the m
agated to all processors with a copy of the b
in the invalidation buffer

• a local access to a word whose address is
buffer invalidates the block and triggers a ‘tr

P2

a bar
Example
P1

read a

read a

read b

store b, bar

a b

a b

a bar

nued)

ssing non-owned
ts words in the
Hardware Solutions (conti

Write back caches

• need to maintain ownership

• modify the algorithm such that stores acce
blocks with a pending invalidation for ANY of i
local invalidation buffer must trigger a miss

P2

a b

foo bar
Example
P1 owner

store a, foo

read a

read b

store b, bar

foo b

foo b

 Placement Optimi-
iler
ring in different cache

 lock in the same

nt processors from dif-

ber of different
imized (ALIGN)

 sharing of a cache
s can be reduced and
Software Solutions

Torrellas [Tor90] proposes the following “Data
zations”, although not implemented in a comp

• place scalar variables that exhibit false sha
blocks

• place active scalars that are protected by a
cache block as the lock

• allocate shared space requested by differe
ferent heap regions

• position an array of records so that the num
blocks that the average record spans is min

• expand records in an array to minimize the
block by different records if the cache misse
the space increase is tolerable. (PAD)

t.)

ify false sharing
formations to
e sharing misses
n of 20%-30%.

 that

e processor are

ssor locality do not
Software Solutions (con

Eggers and Jeremiassen [EJ91] measure and ident
for some applications written in C. Applying trans
eliminate false sharing they are able to reduce fals
with 40% to 75%, for a total cache misses reductio

Basic idea: data restructuring transformations such

• data that is only, or mostly, accessed by on
grouped together, and

• writable shared data objects with no proce
share cache lines

t.)

similar sharing
 vectors. Targets stati-

lly allocated
ated for each proces-
data gets a pointer to a

aced in their own
ing them on the cache
Software Solutions (con

The transformations:

• group and transpose — group objects with
properties into vectors and transpose these
cally allocated data.

• indirection — technique used for dynamica
objects, in which blocks of memory are alloc
sor and each element of the original shared
value in a block instead of the value itself.

• pad and align — shared data blocks are pl
cache blocks by padding their size and align
block boundaries.

.

.

.

Group and Transpose

. .

. .

. .

. . .

cache blocks

typeA Vect1[N]

typeB Vect2[N]

typeC Vect3[N]

struct {
 typeA Vect1;
 typeB Vect2;
 typeC Vect3;
 pad_T padding;
} GTVect[N]

P1 P2 P3 ...

Buffer N
Indirection

. . .

. . .

Buffer 0 Buffer 1 Buffer 2

. . .

Pad and Align

. . .

cache blocks

. . .

to which data

ss

ata structure

 than indirection)
Heuristics

Used to decide which transformations are applied
structures.

Factors:

• data type: scalars, vectors, lock variables

• access type: read, write, shared, per-proce

• access stride

• frequency of access to the elements of a d

• space and cost (group and transpose is cheaper

t.)

theory for elimi-

and aligning +
trained so that mini-

es that exhibit dif-
s

Software Solutions (con

Granston [Gra94] develops a loop transformation
nating false sharing

Transformations are:

• processor-page alignment — loop blocking
iteration mapping, with blocking factors cons
mize sharing

• loop distribution — move multiple referenc
ferent sharing patterns in different loop nest

aring, although

rallelizing com-
.

uces the number
Conclusions

Hardware techniques exist for eliminating false sh
nobody has implemented them in real machines.

Software techniques have been implemented in pa
pilers, but false sharing continues to be a problem

Reducing false sharing is beneficial because it red
of cache misses and also the coherence traffic.

 Data Placement
iss Rates, Inter-
), 1990

e Sharing, ICPP,

 Ricciulli, Krish-
n and Elimina-
1993

hodology for
fic in Shared Vir-
rs for Parallel Com-
References

[Tor90] J. Torrellas, M. Lam, J. Hennessy, Shared
Optimizations to Reduce Multiprocessor Cache M
national Conference on Parallel Processing (ICPP

[EJ91] S. Eggers, T. Jeremiassen, Eliminating Fals
1991

[Dub93] Michel Dubois, Jonas, Skeppstedt, Livio
nan Ramamurthy, and Per Stenström, The Detectio
tion of Useless Misses in Multiprocessors, ISCA,

[Gra94] E. Granston, Toward a Compile-Time Met
Reducing False Sharing and Communication Traf
tual Memory Systems, Languages and Compile
puting, Springer-Verlag, 1994

 on
e

Machine Problem
the WEB Sit

	Cache Related Issues in Multiprocessors
	Calin Cascaval
	Dept. of Computer Science
	Univ. of Illinois at Urbana-Champaign

	Why Caches?
	Key Observation: Programs exhibit locality of reference, i.e., a program accesses a set of locati...

	What are Caches?
	Fast, expensive memories (SRAMs) that operate at the same speed as the processor.

	About Caches
	There can be hierarchies of caches, and caches closer to processor are smaller and faster, while ...
	A cache line is the unit of transfer between memory and cache, usually a power of 2. It is based ...
	• spatial locality — the location most likely to be accessed next is the neighboring location
	• many memory chips can deliver more locations in the same time they deliver one word.

	Larger is not necessarily better!

	Locality
	do i = 1, n
	do j = 1, n
	c(i,j) = 0
	do k = 1, n
	c(i,j)=c(i,j)+a(i,k)*b(k,j)
	A better solution:
	do j = 1, n
	do i = 1, n
	c(i,j) = 0
	do k = 1, n
	c(i,j)=c(i,j)+a(i,k)*b(k,j)

	Locality (cont.)
	The best solution for matrix multiplication is tiling:
	do jj = 1, N, T
	do ii = 1, N, T
	do kk = 1, N, T
	do j = jj, min(jj+T-1, N)
	do i = ii, min(ii+T-1, N)
	c(i, j) = 0
	do k = kk, min(kk+T-1,N)
	c(i, j) = c(i, j) + a(i, k) * b(k, j)

	Important: T (the tile size) should be chosen such that the blocks fit in the cache.

	Caches in SMPs
	Cache Coherence
	The system must provide a coherent, uniform view of the memory to all processors, despite the pre...
	Options:
	• Hardware cache coherence:
	• snoopy protocols — require a bus;
	• central directory protocols — complicated and may become a bottleneck;
	• a combination of both;

	• Software cache coherence: provided by the system or left to the programmer

	Cache Coherence (cont.)
	Another classification:
	• invalidation protocols: lines in the cache are marked “invalid”, without updating the data. Whe...
	• update protocols: a line is “pushed” in the caches that have copies of the cache line. Generate...

	Smaller lines are better as units of cache coherence!

	What is False Sharing?
	Two processors sharing a multi-word block because they need to access two different words that ha...
	If one of the accesses to the block is a write access, false sharing can induce a large number of...
	False sharing is an artifact introduced by data collocation.
	Depends on the cache block (line) size and the particular placement of data in memory.

	Example
	P1
	read a
	...
	read a

	Hardware Solutions
	Michel Dubois, Jonas Skeppstedt, Livio Ricciulli, Krishnan Ramamurthy, and Per Stenström [Dub93]
	Write-through cache
	• introduce an invalidation buffer, which could be implemented as a dirty bit associated with eac...
	• on a store into a block, the address of the modified word is propagated to all processors with ...
	• a local access to a word whose address is in the invalidation buffer invalidates the block and ...

	Example
	read a
	read a
	read b

	Hardware Solutions (continued)
	Write back caches
	• need to maintain ownership
	• modify the algorithm such that stores accessing non-owned blocks with a pending invalidation fo...

	Example
	store a, foo
	read a

	Software Solutions
	Torrellas [Tor90] proposes the following “Data Placement Optimizations”, although not implemented...
	• place scalar variables that exhibit false sharing in different cache blocks
	• place active scalars that are protected by a lock in the same cache block as the lock
	• allocate shared space requested by different processors from different heap regions
	• position an array of records so that the number of different blocks that the average record spa...
	• expand records in an array to minimize the sharing of a cache block by different records if the...

	Software Solutions (cont.)
	Eggers and Jeremiassen [EJ91] measure and identify false sharing for some applications written in...
	Basic idea: data restructuring transformations such that
	• data that is only, or mostly, accessed by one processor are grouped together, and
	• writable shared data objects with no processor locality do not share cache lines

	Software Solutions (cont.)
	The transformations:
	• group and transpose — group objects with similar sharing properties into vectors and transpose ...
	• indirection — technique used for dynamically allocated objects, in which blocks of memory are a...
	• pad and align — shared data blocks are placed in their own cache blocks by padding their size a...

	Group and Transpose
	Indirection
	Pad and Align
	Heuristics
	Used to decide which transformations are applied to which data structures.
	Factors:
	• data type: scalars, vectors, lock variables
	• access type: read, write, shared, per-process
	• access stride
	• frequency of access to the elements of a data structure
	• space and cost (group and transpose is cheaper than indirection)

	Software Solutions (cont.)
	Granston [Gra94] develops a loop transformation theory for eliminating false sharing
	Transformations are:
	• processor-page alignment — loop blocking and aligning + iteration mapping, with blocking factor...
	• loop distribution — move multiple references that exhibit different sharing patterns in differe...

	Conclusions
	Hardware techniques exist for eliminating false sharing, although nobody has implemented them in ...
	Software techniques have been implemented in parallelizing compilers, but false sharing continues...
	Reducing false sharing is beneficial because it reduces the number of cache misses and also the c...

	References
	[Tor90] J. Torrellas, M. Lam, J. Hennessy, Shared Data Placement Optimizations to Reduce Multipro...
	[EJ91] S. Eggers, T. Jeremiassen, Eliminating False Sharing, ICPP, 1991
	[Dub93] Michel Dubois, Jonas, Skeppstedt, Livio Ricciulli, Krishnan Ramamurthy, and Per Stenström...
	[Gra94] E. Granston, Toward a Compile-Time Methodology for Reducing False Sharing and Communicati...
	Machine Problem on the WEB Site

