
1 of 10© 1998 David A. Padua

Chapter 2: designing Parallel Algorithms

A four-part strategy:

• Partition

• Identify communication links

• Agglomerate

• Map onto computer

Not necessarily to be performed linearly or in this order.

2 of 10

2.1 Partitioning

• Expose potential parallelism -- finegrained decomposistion
fo the problem

• Divide both computation and data:

1. Domain decomposistion: partition data, associate
operations (data parallel)

2. Functional decomposition: partition computations that
need to be performed, and identify data transfer (MIMD).

• A natural approach for some problems: functional
decomposition first and then domain decomposition.

3 of 10

trategies is
cussed
2.1 Partitioning (Cont.)

A very simple illustration of the two partitioning s
presented by the two parallel loop techniques dis
earlier:

Consider the loop:
do i=1,n

a(i)=b(i)+1
c(i)=c(i-1)+a(i)
d(i)=c(i)+e(i)

end do

Functional decomposition (dopipe):
cobegin

do i=1,n
a(i)=b(i)+1
post e(i)

end do
//

do i=1,n
wait e(i)
c(i) = c(i-1)+a(i)

end do
...

4 of 10

red...

d oredered

er(c,a)
© 1998 David A. Padua

Domain decomposition:
1. Doacross

doacross i=1,n
a(i)=..
wait e(i-1)! alterntively c$omp orde

c(i)=c(i-1) ...
post e(i) ! alternatively c$omp en
...

2. Doall

doall i=1,n
a(i)=..

end do
call parallel_linear_recurrence_solv
doall i=1,n

d(i) = ...
end do

5 of 10

2.2 Communication.

Once the problem has been partitioned, we need to investigate
the communication needs between subparts. Communication
is critical in the design of parallel algoritms.

• Try to minimize communication (trade off with parallelism)

• Local vs. Global communication

• Structured vs. Unstructured communication

• Static vs. Dynamic communication

• Synchronous vs. Asynchronous communication.

6 of 10

2.2 Communication (Cont.)

In shared memory, communication is implicit.

However, it is usually important to be aware of communication
costs.

However, determining costs could be quite complex depending
on the cache coherency protocol.

Some suggest that parallel shared-memory programs should
be designed as message-passing programs and then
translated into shared-memory form (by replacing send/
receives with assignments).

7 of 10

2.3 Agglomeration

Once the problem has been partitioned, and the
communication need determined, it sometimes help to
combine tasks in order to reduce communication requirements.

• Costs associated with message size, message creation,
synchronization operations, and task creation.

• Agglomeration increases granularity and thus reduces
communication.

• However, it is advisable to have high granularity in order to
maintain flexibility.

8 of 10

 to different

ssor

 structured
ng.

ing, and the
d balancing.
2.4 Mapping

• The general problem is NP-complete

• Rules of Thumb:

1. Tasks that can execute concurrently mapped
processors.

2. Tasks that communicate a lot on same proce

• Some domain decomposition tasks result in
communication and a straightforward mappi

• More complex problems require load balanc
most complex problems require dynamic loa

9 of 10

chunk_size>)
<chunk_size>)
chunk_size>)

ations are
until all
sing, it is
erations and p

iterations are
s missing, it is

is dynamically

umber of
© 1998 David A. Padua

Scheduling options in OpenMP

C$OMP PARALLEL DO ... SCHEDULE(STATIC,<
C$OMP PARALLEL DO ... SCHEDULE(DYNAMIC,
C$OMP PARALLEL DO ... SCHEDULE(GUIDED,<

• Static scheduling with chunk size of n. n iter
dispatched statically to each thread (repeat
iterations have been dispatched). If n is mis
assumed l/p where l is the total number of it
the number of threads.

• Dynamic scheduling with chunk size of n. n
dispatched dynamically to each thread. If n i
assumed 1.

• In Guided Self-Scheduling, each processor

allocated loop iterations where Ri is the n

iteration remaining at time ti.

Ri

P

10 of 10

heduling
 processor
 by (atomically)

oad balancing
ish within the

ishes last.

) reduces the
cks of iterations
shed to iwthin
tions to be

tions in the
d, while
ovides good
© 1998 David A. Padua

• The simplest scheduling algorithm is self-sc
(DYNAMIC with chunk 1)and consist of each
fetching an iteration of the loop one at a time
incrementing a shared conunter variable.

Self scheduling performs the best possible l
because all processors are guaranteed to fin
execution period of the loop iteration that fin

• Block-scheduling (DYNAMIC with chunk n>1
overhead by having processors scheudle blo
at once. But load balancing is only accompli
the execution time of the chunk of loop itera
completed last.

• In GUIDED, scheduling large chunks of itera
beginning results in low scheduling overhea
scheduling small chunks towards the end pr
load balancing.

	Scheduling options in OpenMP

