
Chapter 9:

DEPENDENCE-DRIVEN LOOP
MANIPULATION
© David A. Padua, 1998 1

9.1 DEPENDENCES

Flow Dependence (True Dependence)

S1 X=A+B

S2 C=X+1

Anti Dependence

S1 A=X+B

S2 X=C+D

Output Dependence

S1 X=A+B

. . .

S2 X=C+D

S1

S2

S1

S2

S1

S2
© David A. Padua, 1998 2

S1

S2

S3

S7

S4

S5

S6

S8

S9

S10

S11

9.2 DEPENDENCE AND
PARALLELIZATION (SPREADING)

S1; S2; S3 can execute in parallel with S4; S5; S6

S8; S9 “ “ “ “ “ S10; S11
© David A. Padua, 1998 3

C$OMP PSECTIONS

C$OMP SECTION

S1

S2

S3

C$OMP SECTION

S4

S5

S6

C$OMP END PSECTIONS

S7

C$OMP PSECTIONS

C$OMP SECTION

S8

S9

C$OMP SECTION

S10

S11

C$OMP END PSECTIONS
© David A. Padua, 1998 4

9.3 RENAMING

(To remove memory-related
dependences)

S1 A=X+B

S2 X=Y+1

S3 C=X+B

S4 X=Z+B

S5 D=X+1

Use renaming.

S1 A=X+B

S2 X1=Y+1

S3 C=X1+B

S4 X2=Z+B

S5 D=X2+1

S3

S4

S5

S2

S1

S3

S4

S5

S2

S1
© David A. Padua, 1998 5

9.4 DEPENDENCES IN LOOPS

DO I=1,N

S1 A=B(I)+1

S2 C(I)=A+2

END DO

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

...
© David A. Padua, 1998 6

9.5 DEPENDENCES IN LOOPS (Cont.)

DO I =1,N

S1 X(I+1)=B(I)+1

S2 A(I)=X(I)

END DO

DO I=1,N

S1 X(I)=B(I)+1

S2 A(I)=X(I+1)+1

END DO

S1

S2

S1

S2
© David A. Padua, 1998 7

9.6 DEPENDENCE ANALYSIS

DO I=1,N

S1 X(F(I)) = B(I)+1

S2 A(I) = X(G(I))+2

END DO

We say that IFF ∃ I1 ≤ I2

∋ F (I1)=G(I2)

[ALSO I1,I2ε[1,N]]

We say that IFF ∃ I1 < I2

∋ F (I2)=G(I1)

S1

S2

S1

S2
© David A. Padua, 1998 8

ence
.

9.7 LOOP PARALLELIZATION
AND VECTORIZATION

• A loop whose dependence graph is cycle-free can be
parallelized or vectorized.
e.g.

DO I=1,N

X(I)=B(I)+1

A(I)=X(I)+1

END DO

X(1:N)=B(1:N)+1 PARALLEL DO I=1,N

A(1:N)=X(1:N)+1 X(I)=B(I)+1

A(I)=X(I)+1

END PARALLEL DO

• The reason is that if there are no cycles in the depend
graph, then there will be no races in the parallel loop

S1

S2
© David A. Padua, 1998 9

.
9.8 ALGORITHM REPLACEMENT

• Some program patterns occur frequently in programs
They can be replaced with a parallel algorithm.
e.g.

DO I=1,N

A(I)=A(I-1)+B(I)
END DO

A(1:N)=REC1N(B(1:N),A(0),N)

X=A(1)

DO I=2,N

IF(X.GT.A(I))X=A(I)
END DO

X=MIN(A(1:N))
© David A. Padua, 1998 10

 into
9.9 LOOP DISTRIBUTION

• To insulate these patterns, we can decompose loops
several loops, one for each strongly-connected
component (π-block)in the dependence graph.

DO I=1,N

S1: A(I)-B(I)+C(I)

S2: D(I)=D(I-1)+A(I)

S3: IF(X.GT.A(I))THEN

S4 X=A(I)

ENDIF

END DO

⇓
DO I=1,N

A(I)=B(I)+C(I)

END DO

DO I=1,N

D(I)=D(I-1)+A(I)

END DO

DO I=1,N

IF (X.GT.A(I) THEN

X=A(I)

END IF

END DO

S3

S4

S1

S2
© David A. Padua, 1998 11

not

9.10 LOOP INTERCHANGING

• The dependence information detremines whether or
the loop headers can be interchanged.

• For example, the following loop headers can be
interchanged

do i=1,n
do j=1,n

a(i,j) = a(i,j-1) + a(i-1,j)
end do

end do

• However, the headers in the following loop cannot be
interchanged
© David A. Padua, 1998 12

do i=1,n
do j=1,n

a(i,j) = a(i,j-1) + a(i-1,j+1)
end do

end do
© David A. Padua, 1998 13

ated
9.11 DEPENDENCE REMOVAL

• Some cycles in the dependence graph can be elimin
by using elementary transformations.

Scalar Expansion:

DO I=1,N

S1: A=B(I)+1

S2: C(I)=A+D(I)

END DO

DO I=1,N

S1: A1(I)=B(I)+1

S2: C(I)=A1(I)+D(I)

END DO

A=A1(N)

S1

S2

S1

S2
© David A. Padua, 1998 14

9.12 Induction variable recognition

DO I=1,N

S1: J=J+2

S2: X(I)=X(I)+J

END DO

DO I=1,N

S1: J1=J+2*I

S2: X(I)=X(I)+J1

END DO

DO I=1,N

S1: J1(I)=J+2*I

S2: X(I)=X(I)+J1(I)

END DO S1

S2

S1

S2
© David A. Padua, 1998 15

o
to a
9.13 More about the DO to
PARALLEL DO transformation

• When the dependence graph inside a DO loop has n
cross-iteration dependences, it can be transformed in
PARALLEL DO.

Example 1:

do i=1,n
S

1
: a(i) = b(i) + c(i)

S
2
: d(i) = x(i) + 1

end do

Example 2:

do i=1,n
S

1
: a(i) = b(i) + c(i)

S
2
: d(i) = a(i) + 1

end do

S
1

S
2

S
1

S
2

© David A. Padua, 1998 16

Example 3:

do i=1,n
S

1
: b(i) = a(i)

S
2
: do while b(i)**2-a(i).gt.epsilon

S
3
: b(i)=(b(i)+a(i)/b(i))/2.0

end do while
end do

• When there are cross iteration dependences, but no
cycles, do loops can be aligned to be transformed into
DOALLs

Example 1:

do i=1,n
S

1
: a(i) = b(i) + 1

S
2
: c(i) = a(i-1)**2

end do

 ↓

S
1

S
1

S
2

S
3

S
2

S
3

© David A. Padua, 1998 17

t

do i=0,n
S

1
: if i>0 then a(i) = b(i) + 1

S
2
: if i<n then c(i+1) = a(i)**2

end do

• Sometimes we have to replicate to achieve alignmen

Example 2:

do i=1,n
a(i) = b(i) + c(i)
d(i) = a(i) + a(i-1)

end do

 ↓

do i=1,n
a(i) = b(i) + c(i)
a1(i) = b(i) + c(i)
d(i) = a1(i) + a(i-1)

end do

 ↓

S
1

S
2

0

S
1

S
2

1

© David A. Padua, 1998 18

do i=0,n
if i>0 then a(i) =b(i) + c(i)
if i<n then a1(i+1)=b(i+1)+c(i+1)
 d(i+1)=a1(i+1)+a(i)

end do

• Need for replication could propagate.

Example 3:

do i=1,n
c(i) = 2 * f(i)
a(i) = c(i) + c(i-1)
d(i) = a(i) + a(i-1)

end do

 ↓

do i=1,n
c(i) = 2 * f(i)
c1(i) = 2 * f(i)
c2(i) = 2 * f(i)
a(i) = c(i) + c1(i-1)
a1(i) = c1(i) + c2(i-1)
d(i) = a(i) + a1(i-1)

end do
© David A. Padua, 1998 19

 of
 the
• The problem of finding the minimum amount of code
replication sufficient to align a loop is NP-hard in the
size of the input loop (Allen et al 1987)

• To do alignment, we may need to do topological sort
the statements according to the partial order given by
dependence graph.

Example 4:

do i=1,n
S

1
: a(i) = b(i) + c(i-1)

S
2
: c(i) = d(i)

end do

• Performing alignment without sorting first will clearly
be incorrect in this case

S
1

S
2

1

© David A. Padua, 1998 20

• Another method for eliminating cross-iteration
dependences is to perform loop distribution.

Example:

do i=1,n
a(i) = b(i) + 1
c(i) = a(i-1) + 2

end do

 ↓

do i=1,n
a(i) = b(i) + 1

end do
do i=1,n

c(i) = a(i-1) + 2
end do

p

in
9.14 Loop Coalescing for DOALL loops

• A perfectly nested DOALL loop such as

doall i=1,n1
doall j=1,n2

doall k=1,n3
...

end doall
end doall

end doall

could be trivially transformed into a singly-nested loo
with a tuple of variables as index:

doall (i,j,k) = (1..n1).c.(1..n2).c.(1..n3)
...

end doall

This coalescing transformation is convenient for
scheduling and could reduce the overhead involved
starting DOALL loops.
© David A. Padua, 1998 22

If the loop construct has only one dimension, coalescing can
be done by creating a mapping from a single index, say x into
a multimensional index.

 do
9.15 Cyclic Dependences -- DOPIPE

• Assume a loop with two or more dependence cycles
(strongly connected components or π-blocks)

• The first approach developed for concurrentization of
loops is illustrated below:

do i=1,n
a(i) = b(i) + a(i-1)
c(i) = a(i) + c(i-1)

end do
 ↓
cobegin

do i=1,n
a(i) = b(i) + a(i-1)
post(s)

end do
//

do i=1,n
wait(s)
c(i) = a(i) + c(i-1)

end do
coend

i.e. to take a loop with two or more π-blocks such as:
© David A. Padua, 1998 24

a

b

c

and execute collections of π-blocks on separate
processors in a pipelined fashion:

ba ba ba

c c c
© David A. Padua, 1998 25

© David A. Padua, 1998 26

9.15.1 Execution time of DOPIPE

• Assume the dependence graph shown to
the right. Assume also that
T(c)=max(T(a),T(b),T(c),T(d),T(e))
Then the execution time of the DOPIPE
on 4 processors is
T(a)+T(b)+nT(c)+T(d)+T(e)

a

b

c

d

e

a a a a

b b b b

c c c c

d d d d

e e e e

c

d

e

• • •

• • •

• • •

• • •

• • •

T(a)+T(b) nT(c) T(d)+T(e)

© David A. Padua, 1998 27

9.15.2 DOPIPE and Loop
Distribution

Assume a loop with the dependence graph
shown on the right

The loop could be distributed to produce:
do i=1,n

a
b

end do
do i=1,n

c
d

end do

The first loop could be transformed into a
DOALL, and the second into a DOPIPE.
The resulting time lines would be:

a

b

c

d

© David A. Padua, 1998 28

a

d

c

a

a

b

a

b

b

b

c c c

d d d

•••

•••

••• •••

However, executing the
original loop as a DOPIPE
produces the same
execution time with fewer
processor
(if max(T(a), T(b))≤
max(T(c),T(d)) and the
number of iterations >4):

a a a a

b b b b

c c c c

d d d d

•••

•••

•••

•••

© David A. Padua, 1998 29

9.15.3 Problems with DOPIPE

1. Processor allocation is fixed at compile-time, i.e. loops
are compiled for a fixed number of processors.

a

b

c

d

Example 1: A loop with the
dependence graph shown to the
right, could be compiled for three
processors as:

cobegin
do i=1,n

a
end do

//
do i=1,n

b
c

end do
//

do i=1,n
d

end do
coend

c

d d

a a a

b c b b c

d

© David A. Padua, 1998 30

but for two processors it should be compiled as

cobegin
do i=1,n

a
b

end do
//

do i=1,n
c
d

end do
coend

cd d d

a a ab

c

b b

c

© David A. Padua, 1998 31

Example 2: The loop

can be translated into

cobegin
do i=1,n

a
end do

//
do i=1,n

b
end do

//
do i=1,n

c
end do

coend

a

b

c

b

a

c

a a a

b b b

c c c

© David A. Padua, 1998 32

or into

cobegin
do i=1,n

a
coend

//
do i=1,n,2

cobegin
b

//
b

coend
end do

//
do i=1,n

c
end do

coend

• If the execution time of b is unknown, (e.g. it includes a
while loop), it is not possible to decide at compile-time
how many copies of b to do in parallel.

a

b

a a a

b

b

b

c c c c

© David A. Padua, 1998 33

2. Cycles force sequential execution

Example 3

do i=3,n
S: a(i)=b(i-2)-1
T: b(i)=a(i-3)*k
end do

Example 4

do i=1,n
do j=1,n

S: a(i,j)=a(i-1,j)+a(i,j-1)
end do

end do

S

T

S

© David A. Padua, 1998 34

9.16 Cyclic dependences -- DOACROSS

A loop with cyclic dependences can be transformed into
DOACROSS as shown next:

do i=1,n
a(i) = b(i) + a(i-1)
c(i) = a(i) + c(i-1)

end do
 ↓

c$doacross order(aa,bb),share(a,b,c)
do i=1,n

c$order aa
a(i) = b(i) + a(i-1)

c$endorder aa
c$order cc

c(i) = a(i) + c(i-1)
c$endorder cc

end do

DOACROSS has the advantage that all implicit tasks
esecute the same code. This facilitates code assignment.

Other advantage of the DOACROSS construct over the
DOPIPE construct are illustrated in the following
examples.

An alternative form of the doacross loop is:

do i=1,n
a(i) = b(i) + a(i-1)
c(i) = a(i) + c(i-1)

end do
 ↓

 post [s1(0)]
 post [s2(0)]
c$ parallel do

do i=1,n
wait [s1(i-1)]
a(i) = b(i) + a(i-1)
post [s1(i)]
wait [s2(i-1)]
c(i) = a(i) + c(i-1)
post [s2(i)]

end do

© David A. Padua, 1998 36

Example 1:

a

b

c

d

a

a

b c d

b c d

a b c d

a b c d

a b c d

a b c d

a b c d a b c d

a b c d a b c d

a b c d a b c d

Two processors

Three processors

The same translation works for two or trhee processors

© David A. Padua, 1998 37

a

b

c

a b c a b c

a b c a b c

a b c

a b c

a b c

a b c

Example 2:

• Increasing the number of processors improve performance

© David A. Padua, 1998 38

Example 3

When the following loop is executed as a doacross on
two processors

do i=1,n
S: a(i) = b(i-2) -1
T: b(i) = a(i-3) * k
end do

we get the following time lines (S
i
 stands for statement

S in iteration i)

S
1

S
1

S
1

S
2

T
2

T
1

S
3

S
4

T
3

T
4

• • •

Cycle shrinking takes place automatically.

This is also true in the case of multiply-nested loops
where all what is needed is to use a tuple as the loop
index as in

doacross (i,j,k)=[1..n
1
].c.[1..n

2
].c.[1..n

3
]

Proc.

1

2

© David A. Padua, 1998 39

Example 4:

The following loop

do i=1,n
do j=1,n

S: a(i,j) = a(i-1,j) + a(i.j-1)
end do

end do

can be translated into the following doacross loop:

c$ parallel do
do i=1,n

do j=1,n
wait (ev(i-1,j)

S: a(i,j) = a(i-1,j) + a(i.j-1)
post (ev(i,j))

end do
end do

© David A. Padua, 1998 40

The iteration space of the previous loop is:

S
1,1

S
1,2

S
1,3

S
1,4

S
2,1

S
3,1

S
4,1

S
2,2

S
3,2

S
4,2

S
2,3

S
3,3

S
4,3

S
2,4

S
3,4

S
4,4

and its time lines when executed on n processors are:

S
3,1

S
3,2

S
3,3

S
1,1

S
1,2

S
1,3

S
2,1

S
2,2

S
2,3

9.17 Stripmining

A common transformation is the following:

do i=1,n
...

end do
 ↓

 do I=1,n,P
do i=i,min(n,i+P-1)

...
end do

end do

This transformation is always correct.

It has several uses. One of them is to reduce synchronization

costs (at the expense of parallelism) in dopipe and doacross

loops.

Reduction of synchonization costs with dopipe is clear from the

following example:

 do i=1,n
a(i) = b(i) + a(i-1)
c(i) = a(i) + c(i-1)

end do
 ↓
cobegin

do I=1,n,P
do i=I,min(I+P-1,n)

a(i) = b(i) + a(i-1)
end do
Post(σ)

end do
//

do i=1,n
Wait(σ)
do i=I,min(I+P-1,n)

c(i) = a(i) + c(i-1)
end do

end do
coend

9.18 Run-time decisions

Sometimes all what is needed for translation into DOALL is
a critical section.

The following loop has a cyclic dependence graph (output
dependences)

do i=1,n
a(k(i)) = a(k(i)) + 1

end do

This loop can be transformed into DOALL by just inserting
a critical section as shown next:

do i=1,n
critical a(k(i)) do

a(k(i)) = a(k(i)) + 1
end critical

end do

9.18.1 Handling Output Dependences at
Run-Time

do i=1,n
a(k(i)) = c(i) + 1

end do

To parallelize the following loop we create a structure for
each a(i) with two components %sync and %data and
translate into:

a(k(:))%sync = 0

doall i=1,n
critical a(k(i))

if a(b(i))%sync < i then
a(k(i))%data = c(i) + 1
a(k(i))%sync = i

end if
end critical

end doall

Assume k(i) has the following values

i = 1 2 3 4 5 6 7 8 9 10

k(i) = 3 5 7 3 4 5 6 9 10 3

The critical section will be reached by all iterations. Let us
assume the following order of arrival among the conflicting
ones:

for a(3): 4 1 10

for a(5): 6 2

In the previous loop a(k(i))%data will be assigned only
once for i=3, 5, 7, 8, 9, 10

a(5) will be assigned once since when iteration 2 enters the
critical section after iteration 6 leaves, a(5)%sync will be 6,
and the boolean function inside the if will be false.

a(3) will be assigned twice. Once for iteration 4 and once for
iteration 10. No assignment takes place when iteration 1
enters the critical section after iteration 4 leaves.

9.18.2 Handling flow dependences at Run-
Time

do i=1,n
a(k(i)) = ...
... = a(j(i))

end do
 ↓

repeat until all(done)
doall i=1,n

if (.not.done(i)) then
a(k(i))%sync = ∞

 a(j(i))%sync = ∞
end if

end doall
doall i=1,n

if (.not.done(i)) then
critical a(k(i))

if a(k(i))%sync > i then a(k(i))%sync=i
 if a(j(i))%sync > i then a(j(i))%sync=i

end critical
end if

end doall
doall i=1,n

if (.not.done(i)) then
if (a(k(i))%sync = i & a(j(i))%sync = i) then

a(k(i)) = ...
... = a(j(i))
done(i) = .true.

end if
end if

end doall
end repeat

On each iteration of the repeat, the second doall selects
those iterations not processed, and for a collection of
iterations i

1
, i

2
, ...i

K
 with k(i

1
)=k(i

2
)= ...=k(i

K
)=K

a(K)%sync gets the value min(i
1
, i

2
, ... i

K
).

The third doall computes only those pairs where both
a(k(i))%sync and a(j(i))%sync have the same value. The
reason these iterations can be executed is that either no
previous iterations of the original do loop reference the same
array elements or earlier iterations referring to the same
elements of a have already been executed in previous
iterations of the repeat.

	Chapter 9:
	DEPENDENCE-DRIVEN LOOP MANIPULATION
	9.1 DEPENDENCES
	Flow Dependence (True Dependence)
	Anti Dependence
	Output Dependence

	9.2 DEPENDENCE AND PARALLELIZATION (SPREADING)
	9.3 RENAMING
	(To remove memory-related dependences)
	Use renaming.

	9.4 DEPENDENCES�IN� LOOPS
	9.5 DEPENDENCES IN LOOPS�(Cont.)
	9.6 DEPENDENCE �ANALYSIS
	We say that IFF $ I1 £ I2 ' F (I1)=G(I 2) [ALSO I1,I2e[1,N]]
	We say that IFF $ I1 < I2 ' F (I2)=G(I1)

	9.7 LOOP PARALLELIZATION AND�VECTORIZATION
	• A loop whose dependence graph is cycle-free can be parallelized or vectorized. e.g.
	• The reason is that if there are no cycles in the dependence graph, then there will be no races ...

	9.8 ALGORITHM REPLACEMENT
	• Some program patterns occur frequently in programs. They can be replaced with a parallel algori...

	9.9 LOOP�DISTRIBUTION
	• To insulate these patterns, we can decompose loops into several loops, one for each strongly-co...

	9.10 LOOP�INTERCHANGING
	• The dependence information detremines whether or not the loop headers can be interchanged.
	• For example, the following loop headers can be interchanged
	do i=1,n
	do j=1,n
	a(i,j) = a(i,j-1) + a(i-1,j)
	end do
	end do
	• However, the headers in the following loop cannot be interchanged
	do i=1,n
	do j=1,n
	a(i,j) = a(i,j-1) + a(i-1,j+1)
	end do
	end do

	9.11 DEPENDENCE�REMOVAL
	• Some cycles in the dependence graph can be eliminated by using elementary transformations.
	Scalar Expansion:

	9.12 Induction variable recognition
	9.13 More about the DO to PARALLEL DO transformation
	• When the dependence graph inside a DO loop has no cross-iteration dependences, it can be transf...
	Example 1:
	do i=1,n
	S1: a(i) = b(i) + c(i)
	S2: d(i) = x(i) + 1
	end do
	Example 2:
	do i=1,n
	S1: a(i) = b(i) + c(i)
	S2: d(i) = a(i) + 1
	end do
	Example 3:
	do i=1,n
	S1: b(i) = a(i)
	S2: do while b(i)**2-a(i).gt.epsilon
	S3: b(i)=(b(i)+a(i)/b(i))/2.0
	end do while
	end do
	• When there are cross iteration dependences, but no cycles, do loops can be aligned to be transf...
	Example 1:
	do i=1,n
	S1: a(i) = b(i) + 1
	S2: c(i) = a(i-1)**2
	end do
	Ø
	do i=0,n
	S1: if i>0 then a(i) = b(i) + 1
	S2: if i<n then c(i+1) = a(i)**2
	end do
	• Sometimes we have to replicate to achieve alignment
	Example 2:
	do i=1,n
	a(i) = b(i) + c(i)
	d(i) = a(i) + a(i-1)
	end do
	óØ
	do i=1,n
	a(i) = b(i) + c(i)
	a1(i) = b(i) + c(i)
	d(i) = a1(i) + a(i-1)
	end do
	óØ
	do i=0,n
	if i>0 then a(i) =b(i) + c(i)
	if i<n then a1(i+1)=b(i+1)+c(i+1)
	d(i+1)=a1(i+1)+a(i)
	end do
	• Need for replication could propagate.
	Example 3:
	do i=1,n
	c(i) = 2 * f(i)
	a(i) = c(i) + c(i-1)
	d(i) = a(i) + a(i-1)
	end do
	Ø
	do i=1,n
	c(i) = 2 * f(i)
	c1(i) = 2 * f(i)
	c2(i) = 2 * f(i)
	a(i) = c(i) + c1(i-1)
	a1(i) = c1(i) + c2(i-1)
	d(i) = a(i) + a1(i-1)
	end do
	• The problem of finding the minimum amount of code replication sufficient to align a loop is NP-...
	• To do alignment, we may need to do topological sort of the statements according to the partial ...
	Example 4:
	do i=1,n
	S1: a(i) = b(i) + c(i-1)
	S2: c(i) = d(i)
	end do
	• Performing alignment without sorting first will clearly be incorrect in this case
	• Another method for eliminating cross-iteration dependences is to perform loop distribution.
	Example:
	do i=1,n
	a(i) = b(i) + 1
	c(i) = a(i-1) + 2
	end do
	Ø
	do i=1,n
	a(i) = b(i) + 1
	end do
	do i=1,n
	c(i) = a(i-1) + 2
	end do

	9.14 Loop Coalescing for DOALL loops
	• A perfectly nested DOALL loop such as
	doall i=1,n1
	doall j=1,n2
	doall k=1,n3
	...
	end doall
	end doall
	end doall
	could be trivially transformed into a singly-nested loop with a tuple of variables as index:
	doall (i,j,k) = (1..n1).c.(1..n2).c.(1..n3)
	...
	end doall
	This coalescing transformation is convenient for scheduling and could reduce the overhead involve...
	If the loop construct has only one dimension, coalescing can be done by creating a mapping from a...

	9.15 Cyclic Dependences -- DOPIPE
	• Assume a loop with two or more dependence cycles (strongly connected components or p-blocks)
	• The first approach developed for concurrentization of do loops is illustrated below:
	do i=1,n
	a(i) = b(i) + a(i-1)
	c(i) = a(i) + c(i-1)
	end do
	ëØ
	cobegin
	do i=1,n
	a(i) = b(i) + a(i-1)
	post(s)
	end do
	//
	do i=1,n
	wait(s)
	c(i) = a(i) + c(i-1)
	end do
	coend
	i.e. to take a loop with two or more p-blocks such as:
	An alternative form of the doacross loop is:
	do i=1,n
	a(i) = b(i) + a(i-1)
	c(i) = a(i) + c(i-1)
	end do
	Ø
	post [s1(0)]
	post [s2(0)]
	c$ parallel do
	do i=1,n
	wait [s1(i-1)]
	a(i) = b(i) + a(i-1)
	post [s1(i)]
	wait [s2(i-1)]
	c(i) = a(i) + c(i-1)
	post [s2(i)]
	end do

	9.18 Run-time decisions
	Sometimes all what is needed for translation into DOALL is a critical section.
	The following loop has a cyclic dependence graph (output dependences)
	do i=1,n
	a(k(i)) = a(k(i)) + 1
	end do

	This loop can be transformed into DOALL by just inserting a critical section as shown next:
	do i=1,n
	critical a(k(i)) do
	a(k(i)) = a(k(i)) + 1
	end critical
	end do

	9.18.1 Handling Output Dependences at Run-Time
	do i=1,n
	a(k(i)) = c(i) + 1
	end do
	To parallelize the following loop we create a structure for each a(i) with two components %sync a...
	a(k(:))%sync = 0
	doall i=1,n
	critical a(k(i))
	if a(b(i))%sync < i then
	a(k(i))%data = c(i) + 1
	a(k(i))%sync = i
	end if
	end critical
	end doall

	Assume k(i) has the following values
	i = 1 2 3 4 5 6 7 8 9 10
	k(i) = 3 5 7 3 4 5 6 9 10 3
	The critical section will be reached by all iterations. Let us assume the following order of arri...
	for a(3): 4 1 10
	for a(5): 6 2
	In the previous loop a(k(i))%data will be assigned only once for i=3, 5, 7, 8, 9, 10
	a(5) will be assigned once since when iteration 2 enters the critical section after iteration 6 l...
	a(3) will be assigned twice. Once for iteration 4 and once for iteration 10. No assignment takes ...

	9.18.2 Handling flow dependences at Run- Time
	do i=1,n
	a(k(i)) = ...
	... = a(j(i))
	end do
	Ø
	repeat until all(done)
	doall i=1,n
	if (.not.done(i)) then
	a(k(i))%sync = •
	a(j(i))%sync = •
	end if
	end doall
	doall i=1,n
	if (.not.done(i)) then
	critical a(k(i))
	if a(k(i))%sync > i then a(k(i))%sync=i
	if a(j(i))%sync > i then a(j(i))%sync=i
	end critical
	end if
	end doall
	doall i=1,n
	if (.not.done(i)) then
	if (a(k(i))%sync = i & a(j(i))%sync = i) then
	a(k(i)) = ...
	... = a(j(i))
	done(i) = .true.
	end if
	end if
	end doall
	end repeat
	On each iteration of the repeat, the second doall selects those iterations not processed, and for...
	The third doall computes only those pairs where both a(k(i))%sync and a(j(i))%sync have the same ...
	9.17 Stripmining
	A common transformation is the following:
	do i=1,n
	...
	end do
	Ø
	do I=1,n,P
	do i=i,min(n,i+P-1)
	...
	end do
	end do

	This transformation is always correct.
	It has several uses. One of them is to reduce synchronization costs (at the expense of parallelis...
	Reduction of synchonization costs with dopipe is clear from the following example:
	do i=1,n
	a(i) = b(i) + a(i-1)
	c(i) = a(i) + c(i-1)
	end do
	ëØ
	cobegin
	do I=1,n,P
	do i=I,min(I+P-1,n)
	a(i) = b(i) + a(i-1)
	end do
	Post(s)
	end do
	//
	do i=1,n
	Wait(s)
	do i=I,min(I+P-1,n)
	c(i) = a(i) + c(i-1)
	end do
	end do
	coend

	S1; S2; S3 �can execute in parallel with S4; S5; S6 S8; S9���“��“��“��“��“ S10; S11
	and execute collections of p-blocks on separate processors in a pipelined fashion:

	9.15.1 Execution time of DOPIPE
	• Assume the dependence graph shown to the right. Assume also that T(c)=max(T(a),T(b),T(c),T(d),T...

	9.15.2 DOPIPE and Loop Distribution
	Assume a loop with the dependence graph shown on the right
	The loop could be distributed to produce:
	do i=1,n
	a
	b
	end do
	do i=1,n
	c
	d
	end do

	The first loop could be transformed into a DOALL, and the second into a DOPIPE. The resulting tim...
	However, executing the original loop as a DOPIPE produces the same execution time with fewer proc...

	9.15.3 Problems with DOPIPE
	1. Processor allocation is fixed at compile-time, i.e. loops are compiled for a fixed number of p...
	Example 1: A loop with the dependence graph shown to the right, could be compiled for three proce...
	cobegin
	do i=1,n
	a
	end do
	//
	do i=1,n
	b
	c
	end do
	//
	do i=1,n
	d
	end do
	coend
	but for two processors it should be compiled as
	cobegin
	do i=1,n
	a
	b
	end do
	//
	do i=1,n
	c
	d
	end do
	coend
	Example 2: The loop
	can be translated into
	cobegin
	do i=1,n
	a
	end do
	//
	do i=1,n
	b
	end do
	//
	do i=1,n
	c
	end do
	coend
	or into
	cobegin
	do i=1,n
	a
	coend
	//
	do i=1,n,2
	cobegin
	b
	//
	b
	coend
	end do
	//
	do i=1,n
	c
	end do
	coend
	• If the execution time of b is unknown, (e.g. it includes a while loop), it is not possible to d...

	2. Cycles force sequential execution
	Example 3
	do i=3,n
	S: a(i)=b(i-2)-1
	T: b(i)=a(i-3)*k
	end do
	Example 4
	do i=1,n
	do j=1,n
	S: a(i,j)=a(i-1,j)+a(i,j-1)
	end do
	end do

	9.16 Cyclic dependences -- DOACROSS
	A loop with cyclic dependences can be transformed into DOACROSS as shown next:
	do i=1,n
	a(i) = b(i) + a(i-1)
	c(i) = a(i) + c(i-1)
	end do
	Ø
	c$doacross order(aa,bb),share(a,b,c)
	do i=1,n
	c$order aa
	a(i) = b(i) + a(i-1)
	c$endorder aa
	c$order cc
	c(i) = a(i) + c(i-1)
	c$endorder cc
	end do
	DOACROSS has the advantage that all implicit tasks esecute the same code. This facilitates code a...
	Other advantage of the DOACROSS construct over the DOPIPE construct are illustrated in the follow...
	Example 1:
	Example 2:
	• Increasing the number of processors improve performance
	Example 3
	When the following loop is executed as a doacross on two processors
	do i=1,n
	S: a(i) = b(i-2) -1
	T: b(i) = a(i-3) * k
	end do
	we get the following time lines (Si stands for statement S in iteration i)
	Cycle shrinking takes place automatically.
	This is also true in the case of multiply-nested loops where all what is needed is to use a tuple...
	doacross (i,j,k)=[1..n1].c.[1..n2].c.[1..n3]
	Example 4:
	The following loop
	do i=1,n
	do j=1,n
	S: a(i,j) = a(i-1,j) + a(i.j-1)
	end do
	end do
	can be translated into the following doacross loop:
	c$ parallel do
	do i=1,n
	do j=1,n
	wait (ev(i-1,j)
	S: a(i,j) = a(i-1,j) + a(i.j-1)
	post (ev(i,j))
	end do
	end do
	The iteration space of the previous loop is:
	and its time lines when executed on n processors are:

