Chapter 9:

DEPENDENCE-DRIVEN LOOP MANIPULATION

9.1 DEPENDENCES

Flow Dependence (True Dependence)

S1	$X=A+B$
S2	$C=X+1$

Anti Dependence
S1 $A=X+B$

S2 $X=C+D$

Output Dependence

S1 $X=A+B$

S2 $\mathrm{X}=\mathrm{C}+\mathrm{D}$

9.2 DEPENDENCE AND PARALLELIZATION (SPREADING)

$S_{1 ;} S_{2} ; S_{3}$ can execute in parallel with $S_{4} ; S_{5} ; S_{6}$

$$
S_{8} ; S_{9} \quad \text { " } \quad \text { ، } \quad \text { " } S_{10} ; S_{11}
$$

C \$ OMP PSECTIONS
C \$ OMP SECTIONS 1S 2

$$
\text { S } 3
$$

C\$OMP SECTION
S 4S 5S 6
C\$OMP END PSECTIONS
S 7
C\$OMP PSECTIONS
C \$ OMP SECTIONS 8
S 9
C \$ OMP SECTION
S 10S 11
C \$ OMP END PSECTIONS

9.3 RENAMING

(To remove memory-related dependences)

Si	$A=X+B$
Si	$X=Y+1$
SB	$C=X+B$
SH	$X=Z+B$
Sn	$D=X+1$

Use renaming.

Si	$\mathrm{A}=\mathrm{X}+\mathrm{B}$
S 2	$\mathrm{X} 1=\mathrm{Y}+1$
S 3	$\mathrm{C}=\mathrm{X} 1+\mathrm{B}$

SH $\mathrm{X} 2=\mathrm{Z}+\mathrm{B}$
SS $D=X 2+1$

9.4 DEPENDENCES IN LOOPS

$$
\text { DO } I=1, N
$$

S1
S2

$$
\begin{aligned}
& A=B(I)+1 \\
& C(I)=A+2
\end{aligned}
$$

END DO

9.5 DEPENDENCES IN LOOPS (Cont.)

$$
\text { DO } \mathrm{I}=1, \mathrm{~N}
$$

S1
S2
END DO
DO $I=1, N$
S1
S2
$A(I)=X(I+1)+1$
END DO

9.6 DEPENDENCE ANALYSIS

DO $I=1, N$	
SI	$X(F(I))=B(I)+1$
$S 2$	$A(I)=X(G(I))+2$

END DO

We say that


```
IFF \exists I}
Э F (I_1)=G(I2)
[ALSO \(\left.I_{1}, I_{2} \varepsilon[1, N]\right]\)
```


IF $\exists \mathrm{I}_{1}<\mathrm{I}_{2}$
$\ni \mathrm{F}\left(\mathrm{I}_{2}\right)=\mathrm{G}\left(\mathrm{I}_{1}\right)$

9.7 LOOP PARALLELIZATION AND VECTORIZATION

- A loop whose dependence graph is cycle-free can be parallelized or vectorized. e.g.

$$
\begin{array}{rr}
X(1: N)=B(1: N)+1 & \text { PARALLEL DO } I=1, N \\
A(1: N)=X(1: N)+1 & X(I)=B(I)+1 \\
& A(I)=X(I)+1
\end{array}
$$

END PARALLEL DO

- The reason is that if there are no cycles in the dependence graph, then there will be no races in the parallel loop.

9.8 ALGORITHM REPLACEMENT

- Some program patterns occur frequently in programs. They can be replaced with a parallel algorithm. e.g.

DO $I=1, N$

$$
A(I)=A(I-1)+B(I)
$$

END DO

$$
A(1: N)=\operatorname{REC} 1 N(B(1: N), A(0), N)
$$

$\mathrm{X}=\mathrm{A}$ (1)
DO $I=2, N$
IF (X.GT.A(I)) X=A(I)
END DO

$\mathrm{X}=\mathrm{MIN}(\mathrm{A}(1: N))$

9.9 LOOP DISTRIBUTION

- To insulate these patterns, we can decompose loops into several loops, one for each strongly-connected component (π-block)in the dependence graph.

```
DO I=1,N
S1:
S2:
S3: IF(X.GT.A(I))THEN
S4 X=A(I)
    ENDIF
    END DO
                            |
    DO I=1,N
        A(I) = B (I) +C (I)
    END DO
    DO I=1,N
        D (I) =D (I-1) +A (I)
    END DO
    DO I=1,N
        IF (X.GT.A(I) THEN
                X=A (I)
            END IF
    END DO
```


9.10 LOOP INTERCHANGING

- The dependence information detremines whether or not the loop headers can be interchanged.
- For example, the following loop headers can be interchanged

$$
\begin{aligned}
& \text { do } i=1, n \\
& \quad \text { do } j=1, n \\
& \quad a(i, j)=a(i, j-1)+a(i-1, j) \\
& \quad \text { end do } \\
& \text { end do }
\end{aligned}
$$

- However, the headers in the following loop cannot be interchanged

$$
\begin{aligned}
& \text { do } i=1, n \\
& \quad \text { do } j=1, n \\
& \quad a(i, j)=a(i, j-1)+a(i-1, j+1) \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

9.11 DEPENDENCE REMOVAL

- Some cycles in the dependence graph can be eliminated by using elementary transformations.
Scalar Expansion:

	DO	$\mathrm{I}=1, \mathrm{~N}$
S1:		$\mathrm{A}=\mathrm{B}(\mathrm{I})+1$
S2:		$C(I)=A+D(I)$
	END	DO
	DO	$\mathrm{I}=1, \mathrm{~N}$
S1:		$\mathrm{A} 1(\mathrm{I})=\mathrm{B}(\mathrm{I})+1$
S2:		$C(I)=A 1(I)+D(I)$
	END	DO
	A $=$ A	(N)

9.12 Induction variable recognition

```
    DO I=1,N
S1: J=J+2
S2: X(I)=X(I)+J
    END DO
    DO I=1,N
S1: J1=J+2*I
S2: X(I)=X(I)+J1
    END DO
```

$\begin{array}{lc} & \text { DO } I=1, N \\ \text { S1: } & \mathrm{J} 1(\mathrm{I})=\mathrm{J}+2 \star \mathrm{I} \\ \text { S2: } & \mathrm{X}(\mathrm{I})=\mathrm{X}(\mathrm{I})+\mathrm{J} 1(\mathrm{I})\end{array}$
END DO

S2

9.13 More about the DO to PARALLEL DO transformation

- When the dependence graph inside a DO loop has no cross-iteration dependences, it can be transformed into a PARALLEL DO.

Example 1:

$$
\begin{aligned}
& d o \quad i=1, n \\
& S_{1}: a(i)=b(i)+c(i) \\
& S_{2}: d(i)=x(i)+1 \\
& \text { end do }
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& d o \quad i=1, n \\
& S_{1}: a(i)=b(i)+c(i) \\
& S_{2}: d(i)=a(i)+1 \\
& 2 \\
& \text { end do }
\end{aligned}
$$

Example 3:

$$
\begin{aligned}
& \text { do } i=1, n \\
& S_{1}: b(i)=a(i)
\end{aligned}
$$

$S_{\text {: }}$: do while $b(i)^{* * 2-a(i) . g t . e p s i l o n ~}$
$S_{3}^{2}: \quad b(i)=(b(i)+a(i) / b(i)) / 2.0$
end do while
end do

- When there are cross iteration dependences, but no cycles, do loops can be aligned to be transformed into DOALLs

Example 1:
do $i=1, n$
$S_{1}: a(i)=b(i)+1$
$S: c(i)=a(i-1)^{* *} 2$
2
end do

$$
\begin{aligned}
& \text { do } i=0, n \\
& S_{1}: \text { if } i>0 \text { then } a(i)=b(i)+1 \\
& S_{2}: \text { if } i<n \text { then } c(i+1)=a(i)^{* * 2} \\
& \text { end do }
\end{aligned}
$$

- Sometimes we have to replicate to achieve alignment

Example 2:
do $i=1, n$

$$
\begin{aligned}
& a(i)=b(i)+c(i) \\
& d(i)=a(i)+a(i-1)
\end{aligned}
$$

end do

\downarrow
do $i=1, n$

$$
\begin{aligned}
& a(i)=b(i)+c(i) \\
& a 1(i)=b(i)+c(i) \\
& d(i)=a 1(i)+a(i-1)
\end{aligned}
$$

end do

do i=0,n

$$
\begin{aligned}
& \text { if } i>0 \text { then } a(i)=b(i)+c(i) \\
& \text { if } i<n \text { then } a 1(i+1)=b(i+1)+c(i+1) \\
& \qquad d(i+1)=a 1(i+1)+a(i)
\end{aligned}
$$

end do

- Need for replication could propagate.

Example 3:
do $i=1, n$

$$
\begin{aligned}
& c(i)=2 * f(i) \\
& a(i)=c(i)+c(i-1) \\
& d(i)=a(i)+a(i-1)
\end{aligned}
$$

end do

$$
\downarrow
$$

do $\mathrm{i}=1, \mathrm{n}$

$$
\begin{aligned}
& c(i)=2 * f(i) \\
& c 1(i)=2 * f(i) \\
& c 2(i)=2 * f(i) \\
& a(i)=c(i)+c 1(i-1) \\
& \text { a1(i) }=c 1(i)+c 2(i-1) \\
& d(i)=a(i)+a 1(i-1)
\end{aligned}
$$

end do

- The problem of finding the minimum amount of code replication sufficient to align a loop is NP-hard in the size of the input loop (Allen et al 1987)
- To do alignment, we may need to do topological sort of the statements according to the partial order given by the dependence graph.

Example 4:
do $i=1, n$
$S_{1}: a(i)=b(i)+c(i-1)$
S: c(i) $=d(i)$
2

end do

- Performing alignment without sorting first will clearly be incorrect in this case
- Another method for eliminating cross-iteration dependences is to perform loop distribution.

Example:

$$
\begin{aligned}
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \quad \mathrm{a}(\mathrm{i})=\mathrm{b}(\mathrm{i})+1 \\
& \mathrm{c}(\mathrm{i})=\mathrm{a}(\mathrm{i}-1)+2 \\
& \text { end do } \\
& \quad \downarrow \\
& \\
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \quad \mathrm{a}(\mathrm{i})=\mathrm{b}(\mathrm{i})+1 \\
& \text { end do } \\
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \quad \mathrm{c}(\mathrm{i})=\mathrm{a}(\mathrm{i}-1)+2 \\
& \text { end do }
\end{aligned}
$$

9.14 Loop Coalescing for DOALL loops

- A perfectly nested DOALL loop such as
doall $i=1, n 1$
doall $\mathrm{j}=1, \mathrm{n} 2$
doall $k=1, n 3$
end doall
end doall
end doall
could be trivially transformed into a singly-nested loop with a tuple of variables as index:
doall (i,j,k) = (1..n1).c.(1..n2).c.(1..n3)
end doall

This coalescing transformation is convenient for scheduling and could reduce the overhead involved in starting DOALL loops.

If the loop construct has only one dimension, coalescing can be done by creating a mapping from a single index, say x into a multimensional index.

9.15 Cyclic Dependences -- DOPIPE

- Assume a loop with two or more dependence cycles (strongly connected components or π-blocks)
- The first approach developed for concurrentization of do loops is illustrated below:
do $i=1, n$
$a(i)=b(i)+a(i-1)$
$c(i)=a(i)+c(i-1)$
end do
\downarrow
cobegin
do $\mathrm{i}=1, \mathrm{n}$
$a(i)=b(i)+a(i-1)$
post(s)
end do
//
do $\mathrm{i}=1, \mathrm{n}$
wait(s)
$c(i)=a(i)+c(i-1)$
end do
coend
i.e. to take a loop with two or more π-blocks such as:

and execute collections of π-blocks on separate processors in a pipelined fashion:

a	b	a	b	a
c	b			

9.15.1 Execution time of DOPIPE a

- Assume the dependence graph shown to the right. Assume also that $\mathrm{T}(\mathrm{c})=\max (\mathrm{T}(\mathrm{a}), \mathrm{T}(\mathrm{b}), \mathrm{T}(\mathrm{c}), \mathrm{T}(\mathrm{d}), \mathrm{T}(\mathrm{e}))$ Then the execution time of the DOPIPE on 4 processors is

$$
\mathrm{T}(\mathrm{a})+\mathrm{T}(\mathrm{~b})+\mathrm{nT}(\mathrm{c})+\mathrm{T}(\mathrm{~d})+\mathrm{T}(\mathrm{e})
$$

9.15.2 DOPIPE and Loop Distribution

> Assume a loop with the dependence graph shown on the right

The loop could be distributed to produce: do $\mathrm{i}=1, \mathrm{n}$
a
b
end do do $i=1, n$

C
d
end do
The first loop could be transformed into a DOALL, and the second into a DOPIPE. The resulting time lines would be:

However, executing the original loop as a DOPIPE produces the same execution time with fewer processor (if $\max (\mathrm{T}(\mathrm{a}), \mathrm{T}(\mathrm{b})) \leq$ $\max (\mathrm{T}(\mathrm{c}), \mathrm{T}(\mathrm{d}))$ and the number of iterations >4):

9.15.3 Problems with DOPIPE

1. Processor allocation is fixed at compile-time, i.e. loops are compiled for a fixed number of processors.

Example 1: A loop with the dependence graph shown to the right, could be compiled for three processors as:
cobegin do $\mathrm{i}=1, \mathrm{n}$
a
end do
//
do $i=1, n$
b
c
end do

// \quad| do $i=1, n$ |
| :---: |
| d |

end do
coend

but for two processors it should be compiled as

cobegin do $i=1, n$ a
b
end do
//
$$
\text { do } \mathrm{i}=1, \mathrm{n}
$$
C
d
end do
coend

a	b	a		b			b		
		C	d		c	d			d

Example 2: The loop
can be translated into
cobegin do $\mathrm{i}=1, \mathrm{n}$ a
end do
//
do $i=1, n$
b
// \quad end do
do $i=1, n$
c
end do
coend

or into

- If the execution time of b is unknown, (e.g. it includes a while loop), it is not possible to decide at compile-time how many copies of b to do in parallel.

2. Cycles force sequential execution

Example 3

$$
\begin{aligned}
& \text { do } i=3, n \\
& S: \quad a(i)=b(i-2)-1 \\
& \text { T: } \quad b(i)=a(i-3)^{\star} k \\
& \text { end do }
\end{aligned}
$$

Example 4

$$
\begin{aligned}
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \quad \text { do } \mathrm{j}=1, \mathrm{n} \\
& \mathrm{~S}: \quad \quad \quad \mathrm{a}(\mathrm{i}, \mathrm{j})=\mathrm{a}(\mathrm{i}-1, \mathrm{j})+\mathrm{a}(\mathrm{i}, \mathrm{j}-1) \\
& \quad \text { end do } \\
& \text { end do }
\end{aligned}
$$

9.16 Cyclic dependences -- DOACROSS

A loop with cyclic dependences can be transformed into DOACROSS as shown next:

$$
\begin{aligned}
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \qquad \begin{aligned}
\mathrm{a}(\mathrm{i}) & =\mathrm{b}(\mathrm{i})+\mathrm{a}(\mathrm{i}-1) \\
\mathrm{c}(\mathrm{i}) & =\mathrm{a}(\mathrm{i})+\mathrm{c}(\mathrm{i}-1)
\end{aligned} \\
& \text { end do }
\end{aligned}
$$

c\$doacross order(aa,bb),share(a,b,c)
do $i=1, n$
c\$order aa

$$
a(i)=b(i)+a(i-1)
$$

c\$endorder aa
c\$order cc

$$
c(i)=a(i)+c(i-1)
$$

c\$endorder cc
end do

DOACROSS has the advantage that all implicit tasks esecute the same code. This facilitates code assignment.
Other advantage of the DOACROSS construct over the DOPIPE construct are illustrated in the following examples.

An alternative form of the doacross loop is:

$$
\begin{aligned}
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \quad \mathrm{a}(\mathrm{i})=\mathrm{b}(\mathrm{i})+\mathrm{a}(\mathrm{i}-1) \\
& \mathrm{c}(\mathrm{i})=\mathrm{a}(\mathrm{i})+\mathrm{c}(\mathrm{i}-1) \\
& \text { end do } \\
& \downarrow \\
& \text { post }[\mathrm{s} 1(0)] \\
& \text { post }[\mathrm{s} 2(0)] \\
& \text { parallel do } \\
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \text { wait }[\mathrm{s} 1(\mathrm{i}-1)] \\
& \mathrm{a}(\mathrm{i})=\mathrm{b}(\mathrm{i})+\mathrm{a}(\mathrm{i}-1) \\
& \text { post }[\mathrm{s} 1(\mathrm{i})] \\
& \text { wait }[\mathrm{s} 2(\mathrm{i}-1)] \\
& \mathrm{c}(\mathrm{i})=\mathrm{a}(\mathrm{i})+\mathrm{c}(\mathrm{i}-1) \\
& \text { post }[\mathrm{s} 2(\mathrm{i})] \\
& \text { end do }
\end{aligned}
$$

c\$ parallel do

Example 1:

Example 2:

- Increasing the number of processors improve performance

Example 3

When the following loop is executed as a doacross on two processors
do $\mathrm{i}=1$, n
S: $\quad a(i)=b(i-2)-1$
T: $\quad b(i)=a(i-3) * k$
end do
we get the following time lines (S stands for statement S in iteration i)

Proc.

-••

Cycle shrinking takes place automatically.
This is also true in the case of multiply-nested loops where all what is needed is to use a tuple as the loop index as in

$$
\text { doacross }(i, j, k)=\left[1 . . n_{1}\right] . c .\left[1 . . n_{2}\right] . c .\left[1 . . n_{3}\right]
$$

Example 4:

The following loop

$$
\begin{aligned}
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \quad \quad \mathrm{do} \mathrm{j}=1, \mathrm{n} \\
& \mathrm{~S}: \quad \quad \quad \mathrm{a}(\mathrm{i}, \mathrm{j})=\mathrm{a}(\mathrm{i}-1, \mathrm{j})+\mathrm{a}(\mathrm{i} . \mathrm{j}-1) \\
& \quad \text { end do } \\
& \text { end do }
\end{aligned}
$$

can be translated into the following doacross loop:
c\$ parallel do

$$
\begin{aligned}
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \quad \text { do } \mathrm{j}=1, \mathrm{n} \\
& \quad \text { wait }(\mathrm{ev}(\mathrm{i}-1, \mathrm{j}) \\
& \mathrm{S}: \quad \begin{array}{l}
\mathrm{a}(\mathrm{i}, \mathrm{j})=\mathrm{a}(\mathrm{i}-1, \mathrm{j})+\mathrm{a}(\mathrm{i} . \mathrm{j}-1) \\
\quad \operatorname{post}(\mathrm{ev}(\mathrm{i}, \mathrm{j}))
\end{array} \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

The iteration space of the previous loop is:

and its time lines when executed on n processors are:

$S^{1,1}$	$S^{1,2}$	$S^{1,3}$		
	$S^{2,1}$	$S^{2,2}$	$S^{2,3}$	
		$s^{3,1}$	$s^{3,2}$	$s^{3,3}$

9.17 Stripmining

A common transformation is the following:

$$
\begin{aligned}
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \ldots \\
& \text { end do } \\
& \quad \downarrow \\
& \text { do } \mathrm{I}=1, \mathrm{n}, \mathrm{P} \\
& \quad \text { do } \mathrm{i}=\mathrm{i}, \min (\mathrm{n}, \mathrm{i}+\mathrm{P}-1) \\
& \ldots \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

This transformation is always correct.
It has several uses. One of them is to reduce synchronization costs (at the expense of parallelism) in dopipe and doacross loops.

Reduction of synchonization costs with dopipe is clear from the following example:

$$
\begin{aligned}
& \text { do } \mathrm{i}=1 \text {, } \mathrm{n} \\
& a(i)=b(i)+a(i-1) \\
& c(i)=a(i)+c(i-1) \\
& \text { end do } \\
& \downarrow \\
& \text { cobegin } \\
& \text { do } I=1, n, P \\
& \text { do } \mathrm{i}=\mathrm{I}, \mathrm{~min}(\mathrm{l}+\mathrm{P}-1, \mathrm{n}) \\
& a(i)=b(i)+a(i-1) \\
& \text { end do } \\
& \text { Post(} \sigma \text {) } \\
& \text { end do } \\
& \text { // } \\
& \text { do } \mathrm{i}=1 \text {, } \mathrm{n} \\
& \text { Wait(} \sigma \text {) } \\
& \text { do } \mathrm{i}=\mathrm{I}, \mathrm{~min}(\mathrm{l}+\mathrm{P}-1, \mathrm{n}) \\
& c(i)=a(i)+c(i-1) \\
& \text { end do } \\
& \text { end do } \\
& \text { coend }
\end{aligned}
$$

9.18 Run-time decisions

Sometimes all what is needed for translation into DOALL is a critical section.

The following loop has a cyclic dependence graph (output dependences)

$$
\begin{aligned}
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \quad \mathrm{a}(\mathrm{k}(\mathrm{i}))=\mathrm{a}(\mathrm{k}(\mathrm{i}))+1 \\
& \text { end do }
\end{aligned}
$$

This loop can be transformed into DOALL by just inserting a critical section as shown next:

$$
\begin{aligned}
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \quad \text { critical } \mathrm{a}(\mathrm{k}(\mathrm{i})) \text { do } \\
& \quad \mathrm{a}(\mathrm{k}(\mathrm{i}))=\mathrm{a}(\mathrm{k}(\mathrm{i}))+1 \\
& \quad \text { end critical } \\
& \text { end do }
\end{aligned}
$$

9.18.1 Handling Output Dependences at Run-Time

$$
\begin{aligned}
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \quad \mathrm{a}(\mathrm{k}(\mathrm{i}))=\mathrm{c}(\mathrm{i})+1 \\
& \text { end do }
\end{aligned}
$$

To parallelize the following loop we create a structure for each a(i) with two components \%sync and \%data and translate into:

$$
\begin{aligned}
& \mathrm{a}(\mathrm{k}(:)) \% \text { sync }=0 \\
& \text { doall } \mathrm{i}=1, \mathrm{n} \\
& \quad \text { critical } \mathrm{a}(\mathrm{k}(\mathrm{i})) \\
& \quad \text { if } \mathrm{a}(\mathrm{~b}(\mathrm{i}) \% \text {) sync }<\mathrm{i} \text { then } \\
& \mathrm{a}(\mathrm{k}(\mathrm{i})) \% \text { data }=\mathrm{c}(\mathrm{i})+1 \\
& \mathrm{a}(\mathrm{k}(\mathrm{i})) \% \text { sync }=\mathrm{i} \\
& \text { end if } \\
& \text { end critical } \\
& \text { end doall }
\end{aligned}
$$

Assume k (i) has the following values

$$
\mathrm{i}=\quad 12345678910
$$

$$
k(i)=35734569103
$$

The critical section will be reached by all iterations. Let us assume the following order of arrival among the conflicting ones:
for $a(3): 4110$
for $a(5): 62$
In the previous loop $\mathrm{a}(\mathrm{k}(\mathrm{i})$)\%data will be assigned only once for $\mathrm{i}=3,5,7,8,9,10$
a(5) will be assigned once since when iteration 2 enters the critical section after iteration 6 leaves, $a(5) \%$ sync will be 6 , and the boolean function inside the if will be false.
$a(3)$ will be assigned twice. Once for iteration 4 and once for iteration 10. No assignment takes place when iteration 1 enters the critical section after iteration 4 leaves.

9.18.2 Handling flow dependences at RunTime

$$
\begin{array}{ll}
\text { do } \mathrm{i}=1, \mathrm{n} \\
\qquad \begin{array}{ll}
\mathrm{a}(\mathrm{k}(\mathrm{i})) & =\ldots \\
\ldots & =\mathrm{a}(\mathrm{j}(\mathrm{i})) \\
\text { end } \mathrm{do} & \\
\qquad &
\end{array} .
\end{array}
$$

repeat until all(done)doall $i=1, n$if (.not.done(i)) then
$a(k(i)) \% s y n c=\infty$

$$
a(j(i)) \% s y n c=\infty
$$

end if
end doall doall $i=1, n$
if (.not.done(i)) then critical a(k(i)) if $a(k(i)) \% s y n c>i$ then $a(k(i)) \% s y n c=i$ if $a(j(i)) \% s y n c>i$ then $a(j(i)) \% s y n c=i$ end critical
end if
end doall
doall $i=1, n$
if (.not.done(i)) then
if $(a(k(i)) \% s y n c=i \quad \& a(j(i)) \% s y n c=i)$ then $a(k(i))=\ldots$
$\ldots=a(j(i))$
done(i) = .true.
end if
end if
end doall
end repeat

On each iteration of the repeat, the second doall selects those iterations not processed, and for a collection of iterations $i_{1}, i_{2}, \ldots i_{K}$ with $k\left(i_{1}\right)=k\left(i_{2}\right)=\ldots=k\left(i_{K}\right)=K$ $a(K) \% s y n c$ gets the value $\min \left(i_{1}, i_{2}, \ldots i_{K}\right)$.

The third doall computes only those pairs where both $a(k(i)) \% s y n c$ and $a(j(i)) \% s y n c$ have the same value. The reason these iterations can be executed is that either no previous iterations of the original do loop reference the same array elements or earlier iterations referring to the same elements of a have already been executed in previous iterations of the repeat.

