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8.1 Introduction

Next, we study several algorithms where paral
easily expressed in terms of array operations. 
Fortran 90 to represent these algorithms.

Simplistic timing figures will be given in some c
pipelined machines and array machines.

In these timings, subscript computations and m
communications costs will be ignored.
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8.2 Target machines

The natural target machines for programs with
parallelism are array machines and pipelined p

It is also easy to exploit vector parallelism on s
multiprocessors and on message-passing mult
However, the best parallel form for these mach
cannot be expressed in vector notation. 
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8.3 Time to execute a vector ope

Let us start with the simplest possible situation
following generic vector operation:

a(1:n) # b(1:n)

First, let us assume a pipelined arithmetic unit 
for operation #. Each stage takes τ units of tim

The time to execute the vector operation unde
assumptions is :  

Compare this with the serial time when no pipe
place:

tpipeline s# n 1–( )+( )τ=

tserial s#τn=
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Consider now an array machine with P arithme

The execution time is:

where t# is the time to execute one # operation

In a system where each processing unit contai
arithmentic pipeline, the execution time would 

tparallel
n
P
--- t#=

tparallel & pipelined s 1–( ) n
P
---+ 

  τ=
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8.4 Reductions in Fortran 90

A typical reduction is sum(array) which return
expect,  the sum of the elements of an integer, r
array.  It returns zero if array has size zero.

Others include:

all(mask) Returns the logical value 
elements of of the logical 
.true. or mask has size
otherwise returns the valu

any(mask) Returns the logical value .
the elements of the logica
.true. , and returns the
if no elements are .true
has size zero.

count(mask) Returns the number of .t
mask.

maxval(array) Returns the maximum val
elements of an integer or 
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minval(array) Returns the minimum valu
elements of an integer or 

product(array) returns the product of the
integer, real, or complex a
if array has size zero.

All these functions have an optional argument 
present, the operation is applied to all rank-one
span right through dimension  dim to produce 
reduced by one and extends equal to the exten
dimensions. For example, if a is a real array of
sum(a,dim=2) is a real array of shape [4,6] a
has value sum(a(i,:,j)).

The functions maxval, minval, product, an
third optional argument, mask. If this is presen
the same shape as the first argument and the 
applied to the elements corresponding to true e
mask; for esample, sum(a,mask=a>0) sums
elements of the array a. 
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8.5 Two other useful Fortran 90 f

1. spread(source,dim,ncopies)

Returns an array of rhe same type as source 
increased by one over source. Source may b
array. Dim and ncopies are integer scalars. T
contains max(ncopies,0) copies of source,
(r1,...,rn+1) of the result is source (s1,...,sn) whe
(r1,...,rn+1)  with subscript dim omitted (or sou
a scalar).

Example of use:

a=spread(x,dim=2,ncopies=n)+s
w=sum(abs(a),dim=1)
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is equivalent to:

do i=1,n
w(i)=0
do j=1,n

w(i)=w(i)+abs(x(i)+x(j))
end do

end do

2. maxloc(array[,mask])

Returns a rank-one integer array of size equal 
array. Its value is the subscript of an elemen
value.
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8.6 Time to Execute a Reduction

Consider a reduction such as:
r = sum(a(1:n)) = a(1) + a(2) + a(3

or, in general
r =  a(1) # a(2) # a(3) # ... a(n)

A sequence of log2n vector operations of leng
suffices to compute the reduction (assuming as
the # operation).

Therefore (assuming n=2m): 

An alternative way of performing a reduction, w
implemented in the Cray-1, proceeded by feed
elements of the vector to be reduced together 
of the pipeline. Thus, in the case of sum, the el
input vector are added to the output of the pipe
the figure below. The pipeline is assumed to pr

t
pipeline

s# 1–
n

2i
---- 

 + 
  τ

i 1=

nlog

∑ s# 1–( ) nlog n –(+(= =
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ntity of the reduction operation (zero in the cas
e first element of the vector exits the pipe. 
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0

v6 v5 v4 v3 v2 
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At the end of the process, there will be s# (the 
stages used by the pipe to perform the # opera
results which should be added to get the final r
to get the final result is therefore: 

 

In the case of an array machine, there are two 
< n/2, and if we follow the approach presented
discussion of  reductions in OpenMP, we have:

tpipeline with feedback s# n 1–+( )τ s# 1–( ) s#τ( )+=

tparallel
n
P
--- 1– 

  t+ P 1–( )t++=
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If the final reduction can also be done in logarit
a reduction tree approach:

In this case, the execution time is:

+ + +

+

++

tparallel
n
P
--- 1– 

  t+ Plog t++=
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If P >= n/2, the time is:

The # operation could be a simple arithmetic ope
s + or * or it could be a more complex binary ope
example, to implement maxloc in logarithmic ti
define an operation on two pairs consisting of a
location:
(v1,loc1) # (v2,loc2)=

if v1 < v2 then return(v1,loc
   else return(v2,loc

And, to implement an in logarithmic time an opera
the location of the first negative value in a vector
define the following similar operation: 
(v1,loc1) # (v2,loc2)=

if v1 < 0 then return(v1,loc
  else return(v2,loc

Notice that both of these operations are associa
commutative).

tparallel nlog t+=
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8.7 Parallel Prefix

Consider the following loop:

A(0)=0
DO I=1,N

A(I)=A(I-1)+B(I)
END DO

The loop seems sequential because each itera
information on the value computed in the prece

However, we can use a parallel prefix approach
value of vector A in parallel as follows:

B(N-1)+B(N)B(3)+B(4)B(2)+B(3)B(1)+B(2)  B(1) . . .

B(N)B(4)B(3)B(2)B(1) . . .

B(N-3)+B(N-2)B(1)+B(2)+B(1)+B(2)+B(1)+B(2)B(1) . . .

B(3) B(3)+B(4) +B(N-1)+B(N)



16 of 80

nder the 

-2**I+1)

sing units 

be applied to 
©  1998 David A. Padua

A parallel program implementing this strategy u
assumption that N=2k is:

A(1:N)=B(1:N)
DO I=0,K-1

A(2**I+1:N)=A(2**I+1:N)+A(1:N
END DO

For an array machine with the number of proce
P>=n-1:

As in the case of reduction, parallel prefix can 
any associative binary operation.

tparallel t+ nlog=
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8.8 Relative Performance

How much faster does a program run when ex
parallel?

Speedup: SP=T’1/ TP               

T’1: Execution time of the program on a single 
processor.

TP: Execution time on a parallel machine.

Parallel programs may introduce some redund
higher parallelism. In a sequential program, the
minimize the total number of operations becau
is directly related to the execution time. In a pa
this relationship is not direct. For this reason a
formula for speedup is:

Speedup: SP=T1/ TP             

where T1 is the best known serial version of th

The speedup in (1) is known as the parallel spe
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Assume a multiprocessor with P processors or
machine with P processing elements. The spe
linear in P (that is, of the form k*P for k <= 1), l
is, of the form k * log P), or it can have many o
real machine the speedup is seldom a nice fun
number of processors. 

In some cases the speedup is superlinear; that
is greater than p for p processors. This happen
example,  each processor has its own cache m
way using several processors also increases th
cache memory. Another case when you can ge
speedup is in program performing some form o
operation.

Other important measures include:

1. Efficiency:    EP=T1/PTP  

where P is the number of processors if the targ
multiprocessor (assuming single-user mode) o
processing elements in an array processor.
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2. Redundancy:  RP = OP/O1

where OP is the number of operations in the pa
and O1 is the number of operations in the best
version.
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8.9 Examples of Speedup and Ef

Consider
a(1:n) + b(1:n)

The speedup, efficiency, and redundancy on a
are:

Ss
sτn

τ s n 1–( )+[ ]
---------------------------------

sn
s n 1–+
-------------------- s→= =

Es
sτn

sτ s n 1–( )+[ ]
------------------------------------

n
s n 1–( )+
------------------------- 1<= =

Rs

Os
O1
-------

ns
ns
----- 1= = =
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In an array machine:

The value of SP is P if n is a multiple of P.

EP is 1 if n is a multiple of P. Otherwise it is < 1

tparallel
n
P
--- t+=

SP

nt+
n
P
--- t+

----------------
n
n
P
---

----------= =

EP

nt+

P n
P
--- t+

--------------------
n

P n
P
---

--------------= =

RP 1=
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e parallel prefix 

1+
--------- nlog≈
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The speedup, efficiency, and redundancy of th
example on an array machine with P=n are:

Sn

nt+
nlog t+

-----------------------
n

nlog
-----------------= =

En

nt+
n nlog t+
--------------------------

1
nlog

-----------------= =

Rn

On
O1
-------

n 1–( ) n 2–( ) … n
n
2
---– 

 + + +

n
----------------------------------------------------------------------------

n nlog 1–( )
n 1–

----------------------------= = =
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8.10 Amdahl’s Law

Assume a program which executes in one of tw
or perfectly parallel. In the perfectly parallel mo
processors as desired can cooperate in the ex
program.  Assume that s is  the fraction of the 
serial and q is the fraction that is parallel. The 
program, given p processors is then

SP = T ( s + q ) / T(s + q / P) = 1 / (s 

When P is large, the speedup curve is very stee
obtain a very high speedup, the serial fraction 
has to be very small.  

The form of this curve has been used to argue 
obtain good speedups. However,  there are ma
where good speedups are obtained (see Gusta
Reevaluating Amdahl’s law. CACM Vol 31, No. 
The argument is that the problem size tends to
number of processors. If this is the case, we ha

Scaled speedup = (s + q * P)/(s+(q*P)/P) =

This is a line with a moderate slope.
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8.11 Matrix-Vector Multiplication

In mathematical notation:

In Fortran:
do i=1,m

R(i) = 0
do j=1,n

R(i) = R(i) + A(i,j) * V(j)
end do

end do

A11 A12 … A1n

A21 A22 … A2n

… … … …
Am1 Am2 … Amn

V1

V2

…
Vn

A1iVi

i 1=

n

∑

A2iVi

i 1=

n

∑
…

AmiVi

i 1=

n

∑

=
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The inner loop performs a dot product (or inner
vectors. It can be represetned in Fortran 90 as
do i=1,m

R(i)=DOT_PRODUCT(A(i,1:n),V(1:n)
end do

The dot product is a vector multiplication (of len
case) followed by a reduction.

Time in a pipelined machine for a dot product:

The total time for the matrix-vector multiplicatio

s* n 1–+( )τ s+ 1–( ) nlog n 1–( )+( )τ+( )

m s+ 1–( ) nlog s* 2 n 1–( )+ +[ ]τ
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In an array machine or in a multiprocessor, the

Alternatively, by interchanging the loop header
could be written as follows:
do j=1,n

do i=1,m
R(i) = R(i) + A(i,j) * V(j)

end do
end do

This leads to the following sequence of vector 
do j=1,n

R(1:m)=R(1:m)+A(1:m,j)*V(j)
end do

The time for this loop in a pipelined machine is

m nlog t+ t*+( )( )

n s+ m 1–( ) s* m 1–( )+ + +( )τ
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if there is no chaining, and 

if there is chaining.

Assume two consecutive vector operations wh
operation uses the output from the first. Chaini
two operations to behave as if there were a sin
both operations. This is achieved by feeding th
the pipeline executing the first operation directl
pipeline. The alternative is to wait for the first o
complete before starting the second operation.

n s+ s* m 1–( )+ +( )τ
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To illustrate chaining. consider the two stateme
a(1:n)=b(1:n)*c(1:n)
e(1:n)=a(1:n)+d(1:n)

Ignoring memory accesses and subscript comp
assuming 4 stages for multiplication and 3 for a
have the following time lines in the absence of

But, in the presence of chaning, the time lines 
follows:

...

...
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In an array machine or in a multiprocessor, the
is:

t+ t*+( )n
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8.12 Matrix Multiplication

1. Inner product method. 
Matrix multiplication is usually written:

do i=1,n
do j=1,n

do k=1,n
C(i,j)=C(i,j)+A(i,k)*B

end do
end do

end do

The most direct translation of this program in
is:

do i=1,n
do j=1,n

C(i,j)=DOT_PRODUCT(A(i,1:n
end do

end do
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The time on a pipelined machine is: 

The time on an array machine or multiprocesso

n2 s+ 1–( ) nlog s* 2 n 1–( )+ +( )τ

t+ nlog t*+( )n
2
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2. Middle-product method (n-parallelism)
This is obtained by interchanging the heade
matrix multiplication loop.

do j=1,n
do k=1,n

do i=1,n
C(i,j)=C(i,j)+A(i,k)*B

end do
end do

end do

The direct translation of this loop into vector

do j=1,n
do k=1,n

  C(1:n,j)=C(1:n,j)+A(1:n,
end do

end do
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ternatively, the headers could have been excha
fferent order to obtain the loop:

 i=1,n
do k=1,n
  C(i,1:n)=C(i,1:n)+A(i,k)*B(k,1:n
end do
d do

e time on a pipelined machine, assuming chain

e time in an array machine is:

n2 s+ s* n 1–( )+ +( )τ

t+ t*+( )n
2
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. Outer-product method (n2-parallelism)

nother interchange of the loop headers produc

do k=1,n
do i=1,n

do j=1,n
C(i,j)=C(i,j)+A(i,k)*B(

end do
end do

end do

o obtain n2 parallelism, the inner two loops shou
f a matrix operation:
o k=1,n
C(1:n,1:n)=C(1:n,1:n)+A(1:n,k)⊗ B

nd do

here the operator ⊗ represents the outer produ
ectors. Given two vectors a and b, their outer pr
 such that Zi,j=ai  × bj . Notice that the previous 
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valid Fortran or Fortran 90 loop because ⊗ is n
Fortran character.

The outer product matrix in the loop above has
form:

This matrix is the element-by-element product 
two matrices:

which are formed by replicating Ak=A(1:n,k)
Bk=B(k,1:n) along the appropriate dimensio

A1kBk1 A1kBk2 A1kBk3 …

A2kBk1 A2kBk2 A2kBk3 …

A3kBk1 A3kBk2 A3kBk3 …

… … … …

1

A
k

A
k … A

k

B
k

B
k

…

B
k

×
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replication can be achieved using the Fortran 9
function discussed above:

spread(A(1:n,k),dim=2,ncopies=n)*spread(B(k,1:n)
n))

The resulting loop is therefore:

do k=1,n

C=C+SPREAD(A(1:n,k),2,n)*SPREAD(B(k
end do

In an array machine with P>n2, the time would

where tcopy  is the time to copy a vector. The tim
n copies is logarithmic as discussed in class.

2tcopy nlog t* t+ nlog+ +( )n
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33
   .
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B33

   .
..
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4. n3 parallelism

The product  of two n×n matrices, C=matmul(
computed by adding n matrices of rank (n,n):

A11
B11

   A
11

B12
   A

11
B13

   .
..

A21
B11

   A
21

B12
   A

21
B13

   .
..

A12
B21

   A
12

B22
   A

12
B23

   .
..

A22
B21

   A
22

B22
   A

22
B23

   .
..

A13
B31

   A
13

B32
   A

13
B

A23
B31

   A
23

B32
   A

2

...+ + +

C =
...

...
...
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These n matrices of rank (n,n) can be computed
(element-by-element) two three-dimensional arr
rank(n,n,n).

The two three-dimensional arrays are formed by
and B along different dimensions as shown nex

This replication can, again, be achieved, with SP

A

A

A

...

...

B

B

B

B
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T( =1,NCOPIES=n)

Th

In the time to 
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us, give the following three directions of replica

 can start by computing a n3 temporary array T

:,:,:)=SPREAD(A,DIM=3,NCOPIES=n)*SPREAD(B,DIM

en, the result is just C=SUM(T,DIM=2)

 an array machine with P>=n3 processing unit, 
mpute C would be:

1

2
3

2tcopy nlog t* t++ +( )

+ ++
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0

0

0

β2 1+ n,

…

1– n,

n n,
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8.13 Multiplication by Diagonals

An n×n matrix A is banded if Aij=0 for i-j≥β1, j-i≥

For a small band, for example, β1=β2=3, the al
discussed before for matrix-vector multiplicatio

A11 A12 … A1 β2, 0 0

… A22 A23 … A2 β2, 1+ 0

… … … … … …
Aβ1 1, … … … … … An –

0 Aβ1 1 2,+ … … … …

0 0 … … … … An

0 0 0 An n β1– 1+, … … A
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:

atrices, we get:

0

0

0

0

0

V …

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Aβ2
0 0 0 0

0 … 0 0 0

V+ +
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An alternative is to do the product by diagonals

After separating the diagonals into separate m

A0 A1 … Aβ2
0 0 0

A 1– … … … … 0 0

… … … … … … 0

A β– 1
… … … … … …

0 … … … … … …
0 0 … … … … …
0 0 0 … … … …

V×

A0 0 0 0 0

0 … 0 0 0

0 0 … 0 0

0 0 0 … 0

0 0 0 0 …

V

0 A1 0 0 0

0 0 … 0 0

0 0 0 … 0

0 0 0 0 …
0 0 0 0 0

V …

0 0 0 Aβ2
0

0 0 0 0 …
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

V

0 0 0 0

A 1– 0 0 0

0 … 0 0

0 0 … 0

0 0 0 …

+ + + +
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which can be written as follows:

where Vj=(Vj,...,Vn) and Vn-j=(V1,...,Vn-j).

Also, ∧ means add the sorter vector to the first
the longer one, and ∨  means add the shorter v
component of the longer one.

In Fortran 90 (except for the greek letters and t
    A0(1:n)*V(1:n)  +
(/  A1(1:n-1)*V(2:n),0. /)  +
...
(/  Aβ1(1:n-β1)*V(β1+1:n), (0., j=1,β1) 
(/  0., A-1(1:n-1)*V(1:n-1) /) +
...
(/ (0., j=1,β2), Aβ2(1:n-β2)*V(1:n-β2) /

A0V A1V
2 … Aβ2

V
β2

A 1– Vn 1– … A β1– Vn∨ ∨+∧ ∧ ∧
+ + +

++
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8.14 Consistent Algorithms

A vector algorithm for solving a problem of size
with the best serial algorithms for the same pro
redundancy is bounded as n → ∞.

Vector reduction is consistent. 

But parallel prefix is not (see Section 8.9). 

The time for the simple form of parallel prefix p
Section 8.7 given P processing units and vecto

The problem with algorithms that are non cons
n (size of input data) large enough,  the array a

Rn

On
O1
-------

n
2
---

n
4
--- … 1+ + +

n 1–
------------------------------ n 1–

n 1–
------------ 1→= = =

tparallel
n 2

i
–
P

-------------

i 0=

k 1–

∑=



44 of 80

tant number of 

as the following 

 than the scalar 
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slower than the scalar version. Assuming cons
devices (pipeline stages or processing units).

For example, assuming 8 processors tparallel  h
values:

Notice that the array algorithm becomes slower
version when  n=512. 

n tserial tparallel

16 15 7

32 31 17

64 63 41

512 511 513

1024 1023 1153

~106 ~106 ~2.5×106
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ssymptotic 
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A typical situation with inconsistent algorithms 
the following graph:

time

overhead
makes 
parallel
algorithm
slower

parallel 
algorithm
is better in
this region

a
co

tparallel
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rder]) 
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8.15 A consistent version of para

A consistent version of parallel prefix can be ob
blocking the original algorithm. This can be don
pipelined unit or an array machine. We will sho
machine version. There are several steps in th

1. First the array B(1:n) should be reshaped in

matrix as follows:

C=RESHAPE(B,(/ , P /),0.0

The reshape(source,shape[,pad][,o
function takes the elements of source, in n
order, and returns them (as many as will fit) 
whose shape is specified by the one-dimens
array shape. If there is space remaining, the
specifie and is used to fill out the rest. See t
description of order.

Thus, if 

n
P
---
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,10.,11. /)

:

essing unit and 
parately as 

,1:P)
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B = (/1.,2.,3.,4.,5.,6.,7.,8.,9.

then, the result of RESHAPE above would be

2. Then, we assign a column of C to each proc
compute the partial sums of each column se
follows:

do i=2, 

C(i,1:P) = C(i-1,1:P) + C(i
end do

At the end of this loop we will have

1. 5. 9.

2. 6. 10.

3. 7. 11.

4. 8. 0.

n
P
---

C k q,( ) C i q,( )

i 1=

k

∑=
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f the last 

,j)

ach column will 
mn and the 

adjusted:

C(i,2:P)

n
P
---
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3. The third step is to compute the true value o
element of each column:

do j=2,P

C( ,j)= C( ,j-1)+C( 

end do

At the end of this step, the last element of e
have the sum of all elements in its own colu
columns preceding it.

4. Finally, the elements in each processor are 

do i=1, -1

C(i,2:P) = C( ,1:P-1) + 

end do

n
P
---

n
P
---

n
P
---

n
P
---
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is: 
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The total number of operation in the algorithm 

The algorithms is consistent because:

n
P
--- 1– 

  P P 1–( ) n
p
--- 1– 

  P 1–( )+ +

n
P
--- 1– 

  P P 1–( ) n
p
--- 1– 

  P 1–( )+ +

n
----------------------------------------------------------------------------------------------------- 2→
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6 Cyclic Reduction

e way to solve the recurrence in parallel is to us

m

 get

S1 a1S0 b1+=

Si aiSi 1– bi+= i 2 … n, ,=

Si aiSi 1– bi+=

Si 1– ai 1– Si 2– bi 1–+=

Si aiai 1– Si 2– aibi 1– bi+ +=
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Wh

whe

Now

If w
©  1998 David A. Padua

ich can be rewritten as

re ai
(1) and bi

(1) are defined as follows:

 we have Si as a function of Si-2.

e repeat this process several times we obtain

Si ai
1( )

Si 2– bi
1( )

+=

ai
1( )

aiai 1–=

bi
1( )

aibi 1– bi+=

Si ai
l( )

S
i 2

l
–

bi
l( )

+=

l 0 1 … nlog, , ,=

i 1 2 … n, , ,=
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wh

Init

Wh e 1,...,n, the value 
0 s
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ere

ially,

en the subscript of ai, bi or Si is outside the rang
hould be assumed

ai
l( )

ai
l 1–( )

a
i 2

l 1–
–

l 1–( )
=

bi
l( )

ai
l 1–( )

b
i 2

l 1–
–

l 1–( )
bi

l 1–( )
+=

ai
0( )

ai=

b
0( )

bi=
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ed as shown  

a8         

a8
(1)      

 a8
(2)      
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When l = log n

To compute the a’s and b’s in parallel we proce
below

Si 0 bi
nlog( )

+=

a2    a3    a4    a5    a6    a7    

        a3
(1)  a4

(1)  a5
(1)  a6

(1)  a7
(1) 

                    a5
(2)  a6

(2)  a7
(2)
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*a(1:n)

b1  a8 b8     

*
+

   a8
(1)b8

(1)       

 a8
(2)b8

(2)      

* +
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The resulting program in Fortran 90 is

S(1:n)=b(1:n)
do i=1,logn

S(1:n)=EOSHIFT(S(1:n),-2**(i-
1))*a(1:n)+S(1:n)

a(1:n)=EOSHIFT(a(1:n),-2**(i-1))
end do

   a2 b2   a3 b3  a4 b4   a5 b5   a6 b6   a7 b7 

*
+

*
+

*
+

*
+

*
+

*
+

     b2(1)  a3(1)b3(1)  a4(1)b4(1)  a5(1)b5(1)   a6(1)b5(1)  a7(1)b7(1)

       b3(2)      b4(2)  a5(2)b5(2)   a6(2)b6(2)   a7(2)b7(2)

* + * + * +* +* +
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The function eoshift(array,shift [,bou
[,dim]) returns the result of end-off left-shift
dimensional section of array (in dimension di
shift is negative, the array is shifted to  the r
boundary is present as a scalar, it supplies the
in the blanks; if it is not present, zero is used. I
present, one is assumed.
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g gestation 
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8.17 The FORALL statement

“One of the positive effectns of Fortran 90’s lon
period has been the general recognition, both 
committee and by the community at large, that
to evlove over time. Fortran 95 is a minor, but b
insginificant, updating of Fortran 90.”

It includes PURE and ELEMENTAL procedures, 
argument for maxloc and minloc, and the FO
statement.

“Because the inside iteration of a FORALL block
any order, or in parallel, there is a logical difficu
functions or subroutines inside such blocks: If t
subroutine has side effects (that is, if it change
elsewhere in the machine, or in its own saved 
the result of a FORALL calculation could depend
which the iterations happen to be done. This ca
of course; hence a new PURE attribute for subp

From W. H. Press et al. 
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The FORALL statement is used to specify an ar
in terms of individual elements or sections.

For example,

A(1:10,2:20)=5*B(2:11,1:19)

can al be written as follows:
forall(i=1:10,j=1:19)A(i,j+1=

Notice that FORALL specifies a vector operatio
therefore, the right-hand side is evaluated befo
the left-hand side is changed.

Thus, the previous assignment can be written a

do i=1,10
do j=1,19

A(i,j+1)=5*B(i+1,j)
end do

end do
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ice even if there 
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because the right and left-hand sidesare disjoin

forall (j=1:n) A(j)=5*A(j-1)

should be written as two loops:

do j=1,n
temp(j)=5*A(j-1)

end do
do j=1,n

A(j)=temp(j)
end do

A singlle loop would not do in this case.

Notice that sometimes a single loop would suff
is overlap betwenn left- and right-hand sides. T

forall (j=1:n) A(j)=5*A(j+1)

Is equivalento to the loop:
do j=1,n

A(j)=5*A(j=1)
end do
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xt:

B(I,J)*C(I,J)
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(I)
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ble.
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Several examples of FORALL are presented ne

1. FORALL(I=1:10) A(I,I)=B(I,I)

can be written as
A(1:10)=B(1:10)

or as
A=B

if both A and B have shape (10).

2. FORALL(I=1:10:2,J=10:1:-1)A(I,J)=

can be written as
A(1:10:2,10:1:-1)=B(1:10:2,10:1:-1)*C(1:1

3. FORALL(I=1:10)A(I)=I

Is equivalent to 
A(1:10)=(/1:10/)

4. FORALL(I=1:10,J=1:20)A(I,J)=B
Needs SPREAD to be implemented because ar
an assignment statement have to be comforma
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(J,I)

nsic functions.

1)

 written as 
FORALL could 
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A=SPREAD(B,DIM=2,NCOPIES=20).

5. FORALL(I=1:10,J=1:10)A(I,J)=B

Can be implemented with the TRANSPOSE intri

6. FORALL(I=1:N) A(I,I)=B(I,I)

or the slightly more complex statement:
FORALL(I=1:N) A(I,I)=B(I+1,I-

would need RESHAPE (or EQUIVALENCE) to be
vector operations is Fortran 90. Thus, the first 
be written as:

T1(1:N*N)=RESHAPE(B,(\N*N\))
T2(1:N*N)=RESHAPE(A,(\N*N\))
T2(1:N*N:N+1)=T1(1:N*N:N+1)
A=RESHAPE(T2,(\N,N\))

The second FORALL is left as an excercise.
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7. FORALL(I=1:N,J=1:N,K=1:N,
&      I+J+K.EQ.3*(N+1)/2)
&              A(I+J-K,J)=B(I,J,

This statement includes a boolean expression.
elements where the expression is true, an assig
place.

8. FORALL(I=1:10,J=1:20,K=1:30)
&              A(I,J,K)=I+J+K

For this statement SPREAD is needed:

A=SPREAD(SPREAD((/1:10/),2,20),3
  &  +SPREAD(SPREAD((/1:20/),1,10),
  &  +SPREAD(SPREAD(/1:30/),1,10),2

9. FORALL(I=2:2000)A(I)=A(I/2)

This pattern is a standard technique for repres
tree structure as an array; the two children of  o
elements 2k and 2k+1. This statment causes e
tree to receive a copy of information from its pa



62 of 80

 the leaves of 
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g axes while 

1)

 transpose the 
t to do the rest 
sulting in 
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part of a computation that pipelines data down
the tree in a breadth-first fashion.

10.FORALL(I=1:10,J=1:10,K=1:10)
&          A(I,J,K)=B(J,K,I)

This particularly simple example, can be expre
RESHAPE intrinsic, which provides for permutin
reshaping.

11.FORALL(I=1:10,J=1:10,K=1:10)
  & A(I,J,K) = B(J,11-K,I+

In this case one would have to use RESHAPE to
axes and then use an array section assignmen
of the job. This would be relatively inefficent, re
multiple copying of data.
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8.18 Sorting in Fortran 90.

There are many parallel sorting algorithms. We
very simple ones in this chapter and more elab
later in the semester.

Perhaps the simplest sorting algorithm is bubb
extracterd from Kumar et al. Introduction to Pa
It compares and exchages adjacent elements in
be sorted. Given the sequence a1, a2, ...,an, th
performs n-1 compare-exchange operations in
order: (a1,a2),(a2,a3), ...(an-1,an). This step mov
element to the end of the sequence. The last e
sequence is then ignored, and the sequence o
exchanges is applied to the resulting sequence
sorted after n-1 iterations. The algorithm is as 

do i=n-1,1,-1
do j=1,i

if (a(j) > a(j+1) ) swap (a(j),a(
end do

end do
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Where swap(a,b) is just the sequence

t=a
a=b
b=t

This algorithm can be easily parallelized as dis

For vectorization, we will use the following slig
version known as odd-even transposition:

do i=1,n
if i is odd then

do j=0,n/2-1
if (a(2*j+1)>a(2*j+2)) swap(a(2

end do
end if
if i is even then

do j=1,n/2-1
if (a(2*j)>a(2*j+1)) swap(a(2*j),

end do
end if

end do

The algorithm alternates between two phases:
During the odd phase, elements with odd indic
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ed with their 
 they are 

2))
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compared with  their right neighbors, and if the
sequence they are exchanged. Similarly, durin
phase, elements with even indices are compar
right neighbors, and if they are out of sequence
exchanged.  

Vectorization is quite simple:

do i=1,n
if i is odd then

where (a(1:n-1:2)>a(2:n:
swap (a(1:n-1:2),a(2:n:2))

end where
end if
if i is even then

where (a(2:n-2:2)>a(3:n-
swap (a(2:n-2:2),a(3:n-1:2))

end where
end if

end do
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akes n(n-1)/2 
reduces that to 
equires a 
 And there are 
to log2n. So this 
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Bubble sort is not a very efficient algorithm. It t
comparisons to complete. The parallel version 
n steps, but a good sequential algorithm only r
number of comparisons proportional to n log n.
paralle algorithm that require time proportional 
is ok, but not great.
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A better sorting algorithms in some situations is
was the algorithm used to sort punched cards 
mechanical devices.

The idea is that the values to be sorted are ass
numbers in a certain radix. Integers could be ra
depending on the circumstances. For punched
base 10. In today’s machines, we could assum
any other base can be assumed. When values
base 26 can be assumed.

Radix sort, goes through all the “digits” starting
significant one. For each digit it processes the 
sequence. Elements of the sequence are place
buckets, one for each possible digit. Placemen
is in the order theelements appear in the seque
processing all elements for a particular position
are catenated to create the sequence for the n

Consider for example the following sequence:

223, 148, 221, 071, 138, 131.
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7 8 9

148

138

,138.

essed:

7 8 9

071

,138, 148,071.
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After the first step, the sequence will be separa

bucket 0 1 2 3 4 5 6

221 223

071

131

After catenation, we get: 221,071,131,223,148

Now, the digits in the second position are proc

bucket 0 1 2 3 4 5 6

221 131 148

223 138

Again,the buckets are catenated: 221,223,131
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sed:

7 8 9

enating the 

rtran 90 using 
sk) returns a 
 of array to 

 is in vector a, 
n d digits each, 
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Then, the digits in the third position are proces

bucket 0 1 2 3 4 5 6

071 131 221

138 223

148

Finally, the sorted sequence is obtained by cat
buckets: 071,131,138,148, 221, 223.

The algorithm can be easily implemented in Fo
the pack intrinsic function. Pack(array, ma
one-dimensional array containing the elements
pass the mask.

Thus, assuming that the sequence to be sorted
and that the elements are in base b and contai
we can proceed as follows:
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ed:
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do i=1,d 

m_0(1:n) = the digit in a(1:n) with weigh
m_1(1:n) = the digit in a(1:n) with weigh
...

m_b1(1:n) = the digit in a(1:n) with weig
a=(/pack(a,m_0),pack(a,m_1),...,pa

end do

In particular for base 2, only one mask is need
do i=1,d

m=mod(a,2**i)<2**(i-1)
a= (/pack(a,m),pack(a,.not.m)/)

end do
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 primitives 
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Pack can be implemented in parallel using the
discussed earlier in class:

function pack(a,m)

where (m)
c=1

elsewhere
c=0

end where
order=parallel_prefix(c)
where (m)

temp(order)=a
end where
pack=temp
return

end
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8.19 Processing linked lists

Lined lists are usually represented with pointer
are usually memory addresses. However, linke
be represented using array locations. 

For example, a linked list could be represented
arrays. One containing the value of the list en
other conaining the position within the array wh
element in the list is located.

Now, a vector algorithm to make vector next 
entry in the list is as follows1:

do while (any(next/=null).and.any(next(ne
where(next(next)/=null)

next=next(next)
end where

end do 

1.Here we assume that next(null)=null
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putation in the 
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And a vector algorithm to do parallel prefix com
order of the linked list is as follows: 

do while (any(next /= null))
where (next /= null)

value(next)=value+value(nex
next=next(next)

end where
end do
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8.20 The Wavefront method (a.k.
Hyperplane method)

In this chapter we will only consider a simple tw
Fortran 77 form of this method. That is, we will 
dimensional loop nests with a single statement
assigns to a two dimensional array.

To illustrate this method we will draw a graph o
space of the loop. Each iteration will be a node
graph will taked the form of a mesh with equal 
horizontal separation.

These nodes will be joined by three classes of 
races (write-read, read-write, write-write). Thes
called dependences) will always flow in the di
execution in the original loop. 

The idea is that a vector form can be obtained 
collection of parallel lines that are equidistant,  
any dependence arc, and pass through all the 
graph. 
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i=1, j=1:n

i=2, j=1:n
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For example, the loop
do i=1,n

do j=1,n
a(i,j)=a(i-1,j)+1

end do
end do

can be represented by the following graph:

1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5

j
i
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i)+c(j)

rite after read

ead after write
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From the graph it is clear that for each i there i
operation in j.
do i=1,n

a(i,1:n)=a(i-1,1:n)+1
end do

A second example:
do i=1,n

do j=1,n
a(i,j)=a(i,j-1)+a(i+1,j+1)+b(

end do
end do

i=1:n,j=1

i=1:n,j=2

i=1:n,j=3

w

r
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+b(i)+c(1:n)
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Now for each j there is a vector operation
do j=1,n

a(1:n,j)=a(1:n,j-1)+a(2:n+1,j+1)
end do

A more complicated case:

do i=2,n
do j=2,n

a(i,j)=a(i,j-1)+a(i-1,j)
end do

end do

i+j=5

2,2 2,3 2,4 2,5 2,6

3,2 3,3 3,4 3,5 3,6

4,2 4,3 4,4 4,5 4,6
i+j=4

i+j=6
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a(i,k-j)=...
e
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rom the equations:

e conclude that:

rom where:
o k=4,2*n
forall (i=max(2,k-n):min(n,k-2)) 

nd do

2 i n≤ ≤
2 k i– n≤ ≤

k 4 5 … 2n, , ,=

max 2 k n–,( ) i min n k 2–,( )≤ ≤
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i,j-1)
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Another complex example:
do i=2,n

do j=2,n
a(i,j)=a(i+1,j-1)+a(i-1,j)+a(

end do
end do

2,2 2,3 2,4 2,5 2,6

3,2 3,3 3,4 3,5 3,6

4,2 4,3 4,4 4,5 4,6

2i+j=6
2i+j=7
2i+j=8
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Fro

We

Fro
do 

2)) a(i,k-j)=...
end
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m the equations:

 conclude that:

m where:
k=6,3*n
forall (i=max(2,(k-n+1)/2):min(n,(k-2)/
 do

4 2i 2n≤ ≤
2 k 2i– n≤ ≤

k 6 5 … 3n, , ,=

max 2 k n–
2

-----------, 
  i min n k 2–

2
-----------, 

 ≤ ≤
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