Chapter 8. Parallel VVector Algorithms

© 1998 David A. Padua 1 of 80

8.1 Introduction

Next, we study several algorithms where parallelism can be
easily expressed in terms of array operations. We will use
Fortran 90 to represent these algorithms.

Simplistic timing figures will be given in some cases for
pipelined machines and array machines.

In these timings, subscript computations and memory access/
communications costs will be ignored.

© 1998 David A. Padua 2 of 80

8.2 Target machines

The natural target machines for programs with vector
parallelism are array machines and pipelined processors.

It is also easy to exploit vector parallelism on shared memory
multiprocessors and on message-passing multicomputers.
However, the best parallel form for these machines sometimes
cannot be expressed in vector notation.

© 1998 David A. Padua 3 of 80

8.3 Time to execute a vector operation

Let us start with the simplest possible situation. Consider the
following generic vector operation:

a(l:n) # b(1:n)

First, let us assume a pipelined arithmetic unit with s, stages
for operation #. Each stage takes 1T units of time.

The time to execute the vector operation under these
assumptions is :

tpipeline = (sy+(n-1))t

Compare this with the serial time when no pipelining takes
place:

lserjal = S¥tn

© 1998 David A. Padua 4 of 80

Consider now an array machine with P arithmetic units.

The execution time is:
t = | N
parallel [PW #

where t4 is the time to execute one # operation.

In a system where each processing unit contains an
arithmentic pipeline, the execution time would be:

- n
tparallel & pipelined — %S_ 1)+ [5—‘%

© 1998 David A. Padua 5 of 80

8.4 Reductions in Fortran 90

A typical reduction is sun{ ar r ay) which returns,as we should
expect, the sum of the elements of an integer, real, or complex
array. Iltreturns zero if arr ay has size zero.

Others include:

al | (mask)

any(nask)

count (nask)

maxval (arr ay)

© 1998 David A. Padua

Returns the logical value .true. if all
elements of of the logical array mask are
.t rue. or mask has size zero, and
otherwise returns the value . f al se.

Returns the logical value . t r ue. if any of
the elements of the logical array nask is
.true. ,andreturnsthe value . f al se.
if no elements are . true. orif nmask
has size zero.

Returns the number of . t r ue. valuesin
nask.

Returns the maximum value of the
elements of an integer or real array.

6 of 80

m nval (arr ay) Returns the minimum value of the
elements of an integer or real array.

pr oduct (array) returns the product of the elements of an
integer, real, or complex array. It returns 1
if arr ay has size zero.

All these functions have an optional argument di m if this is
present, the operation is applied to all rank-one sections that
span right through dimension di mto produce an array of rank
reduced by one and extends equal to the extents in the other
dimensions. For example, if a is a real array of shape [4,5,6],
sun(a, di m=2) is a real array of shape [4,6] and element (i,j)
has value sun(a(i,:,j)).

The functions maxval , m nval , pr oduct , and sumhave a
third optional argument, mask. If this is present, it must have
the same shape as the first argument and the operation is
applied to the elements corresponding to true elements of
mask; for esample, sun(a, nask=a>0) sums the positive
elements of the array a.

© 1998 David A. Padua 7 of 80

8.5 Two other useful Fortran 90 functions.

1. spread(source, di mncopi es)

Returns an array of rhe same type as sour ce but with rank
iIncreased by one over sour ce. Sour ce may be a scalar or an
array. Di mand ncopi es are integer scalars. The result
contains nax(ncopi es, 0) copies of source, and element
(rq,..-,rnh+1) Of the result is source (sq,...,5,) Where (s4,...,5,) IS
(r1,-..,rn+7) With subscript di m omitted (or sour ce itself if it is
a scalar).

Example of use:

a=spr ead(x, di m=2, ncopi es=n) +spread(x, 1, n)
w=sun({ abs(a), di m=1)

© 1998 David A. Padua 8 of 80

IS equivalent to:

=w(|) +abs(x(i) +x(j))

2. maxl oc(array[, nask])

Returns a rank-one integer array of size equal to the rank of
arr ay. Its value is the subscript of an element of maximum
value.

© 1998 David A. Padua 9 of 80

8.6 Time to Execute a Reduction

Consider a reduction such as:

r- = suma(l:n)) = a(l) + a(2) + a(3) + ... a(n)
or, in general

r = a(l) # a(2) # a(3) # ... a(n)

A sequence of [log,nlector operations of length n/2, n/4, ..., 1

suffices to compute the reduction (assuming associativity of
the # operation).

Therefore (assuming n=2""):
logn

n
ipeline = 2. ¥~ LT 5Tt = (e~ Diegn+ (n-1)r
=1

An alternative way of performing a reduction, which was
implemented in the Cray-1, proceeded by feeding the pipeline
elements of the vector to be reduced together with the output
of the pipeline. Thus, in the case of sum the elements of the
input vector are added to the output of the pipeline as shown in
the figure below. The pipeline is assumed to produce the

© 1998 David A. Padua 10 of 80

identity of the reduction operation (zero in the case of a sum) until
the first element of the vector exits the pipe.

Vg Vg V4 V3 Vo Vg ‘ | |
(6]

V7 Vg Vg V4 V3 Vo ’—4:' O+V1 ‘ | |
(6]

ovTvevsvsVs gowi o |
(0]

V13 V12 V11 V1g Vo V
13 ¥12 ¥11 Y10 3 ’i:' V3+V7| Vo+vg|vi+vs | O+vy }_‘
4

Via Vi3 Vi2 Vi1 Vio Vo &, 4_,_\,8‘ v3+v7‘ v2+v6‘v1+v5
V1+V5

V2+V6

Vis5Vi4 V13 Vi2 V11 Vlli:'vl+v5+v9‘ V4+Vg ‘v3+v7 ‘ Vo+Vg H

V10 Vo Vg V7 Vg V

10 Yo ¥8 ¥7 Y6 ¥S5 O+vy,| O+vz| O+v, | O+v

v 4 3 2 1
1

V V Vg Vg V7 V
11 V10 Vo Vg V7 Vg V1 +v5‘ 0+v, | o) +v3| 0+v,
Vo

ovevivevsys ool 0wl |
(0]

V15 V11 V10 Vo Vg V
12 ¥11 Y10 Y9 8\/ 7’_‘:] v2+v6‘ v1+v5| O+v4| O+vg3
3

© 1998 David A. Padua 11 of 80

At the end of the process, there will be s. (the number of

stages used by the pipe to perform the # operation) partial
results which should be added to get the final result. The time
to get the final result is therefore:

Loipdline with feedback = (S ¥ N =11+ (s, —1)(s,1)

In the case of an array machine, there are two cases. First, if P
< n/2, and if we follow the approach presented in our
discussion of reductions in OpenMP, we have:

—gn
tparallel B HEW_1%++(P_1)J[+

© 1998 David A. Padua 12 of 80

If the final reduction can also be done in logarithmic time using
a reduction tree approach:

K@/@/ \/\ s

In this case, the execution time is:

_dn
arallel = E[E,}l%[ﬁr'ogph

© 1998 David A. Padua 13 of 80

If P >= n/2, the time is:

tparaIIeI - rlogrﬂt+

The # operation could be a simple arithmetic operation such as
s + or * or it could be a more complex binary operation. For
example, to implement nax|l oc in logarithmic time we could
define an operation on two pairs consisting of a value and a
location:
(vq,l0cq) # (Vo,l0cCy)=

If v, < vy then return(v,, | oc,)

el se return(vs,, |l ocy)

And, to implement an in logarithmic time an operation that finds
the location of the first negative value in a vector we could
define the following similar operation:
(vq,l0Ccq) # (vo,l 0cCy) =
If v, < O then return(vq, | oc,)
el se return(vs,, |l ocy)

Notice that both of these operations are associative (but NOT
commutative).

© 1998 David A. Padua 14 of 80

8.7 Parallel Prefix

Consider the following loop:

A(0) =0

DO | =1, N
A(1)=A(1-1)+B(1)

END DO

The loop seems sequential because each iteration needs

information on the value computed in the preceding iteration.

However, we can use a parallel prefix approach to compute the
value of vector A in parallel as follows:

© 1998 David A. Padua

B(1) B(2) B(3) B(4) B(N)
B(1) B(1)+B(2) | B(2)+B(3) | B(3)+B(4) B(N-1) +B(N)
\
B(1) B(1)+B(2) |B(1)+B(2)+|B(1)+B(2)+ B(N-3) +B(N- 2)
B(3) B(3) +B(4) +B(N- 1) +B(N)

15 of 80

A parallel program implementing this strategy under the
assumption that N=2K is:

A(1l: N)=B(1: N)
DOI =0, K- 1

A(2**] +1: N)=A(2**1 +1: N) +A(1: N 2**| +1)
END DO

For an array machine with the number of procesing units
P>=n-1:

tparaIIeI - t+rlogn1

As in the case of reduction, parallel prefix can be applied to
any associative binary operation.

© 1998 David A. Padua 16 of 80

8.8 Relative Performance

How much faster does a program run when executed in
parallel?

Speedup: Sp=T'1/ Tp (1)

T’1: Execution time of the program on a single (scalar)
processor.

Tp: Execution time on a parallel machine.

Parallel programs may introduce some redundancy to achieve
higher parallelism. In a sequential program, the goal is to
minimize the total number of operations because this number
Is directly related to the execution time. In a parallel program,
this relationship is not direct. For this reason a more honest
formula for speedup is:

Speedup: Sp=T41/Tp (2)
where T, is the best known serial version of the program.

The speedup in (1) is known as the parallel speedup.

© 1998 David A. Padua 17 of 80

Assume a multiprocessor with P processors or an array
machine with P processing elements. The speedup can be
linear in P (that is, of the form k*P for k <= 1), logarithmic (that
is, of the form k * log P), or it can have many other forms. In a
real machine the speedup is seldom a nice function of the
number of processors.

In some cases the speedup is superilinear; that is, the speedup
IS greater than p for p processors. This happens when, for
example, each processor has its own cache memory. In this
way using several processors also increases the size of the
cache memory. Another case when you can get superlinar
speedup is in program performing some form of search
operation.

Other important measures include:
1. Efficiency: Ep=T,/PTp

where P is the number of processors if the target machine is a
multiprocessor (assuming single-user mode) or the number of
processing elements in an array processor.

© 1998 David A. Padua 18 of 80

2. Redundancy: Rp = Op/O,

where Op is the number of operations in the parallel program,
and O, is the number of operations in the best known serial

version.

© 1998 David A. Padua 19 of 80

8.9 Examples of Speedup and Efficiency

Consider
a(l:n) + b(1:n)

The speedup, efficiency, and redundancy on a pipelined unit
are:

g = Stn _ _sn
S 1[s+(n-1)] s+n-1"

E = Stn _ n
S st[s+(n-1)] s+(n-1)

© 1998 David A. Padua 20 of 80

In an array machine:

—[n
tparallel B (IS—‘t"'

nt+_n

T

The value of Spis P if nis a multiple of P,

© 1998 David A. Padua 21 of 80

The speedup, efficiency, and redundancy of the parallel prefix
example on an array machine with P=n are:

nt+ n

~ nt+ 1

En = nllognt, - [logn]

no

n—-1)+(n-2)+...+N—=

_On (n=1)+n-2) 20 n(logn-1) +1

R = = = = logn
1 n n-1

© 1998 David A. Padua 22 of 80

8.10 Amdahl’'s Law

Assume a program which executes in one of two modes: serial
or perfectly parallel. In the perfectly parallel mode, as many
processors as desired can cooperate in the execution of the
program. Assume that s is the fraction of the program that is
serial and g is the fraction that is parallel. The speedup of this
program, given p processors is then

Sp=T(s+q)/T(s+q/P)=1/(s+q/P)

When P is large, the speedup curve is very steep near s =0. To
obtain a very high speedup, the serial fraction of the program
has to be very small.

The form of this curve has been used to argue that is difficult to
obtain good speedups. However, there are many examples
where good speedups are obtained (see Gustafson:
Reevaluating Amdahl!’s law. CACM Vol 31, No. 5. pp. 532-533).
The argument is that the problem size tends to grow with the
number of processors. If this is the case, we have:

Scaled speedup = (s +q * P)/(s+(q*P)/P) = P + (1-P) *s

This is a line with a moderate slope.

© 1998 David A. Padua 23 of 80

8.11 Matrix-Vector Multiplication

In mathematical notation:

Ay A o Al Vg n

Azr Agp - Aon| Vo = | D Ay
......... i=1

Am1 Amz -+ A [Vi

=1 |
In Fortran:
do i =1, m
R(i) =0
do j=1,n
R(i) = R(i) + ACi,]) * V(])
end do
end do

© 1998 David A. Padua 24 of 80

The inner loop performs a dot product (or inner product) of two
vectors. It can be represetned in Fortran 90 as follows:
do i =1, m
R(i)=DOT_PRODUCT(A(i,1:n),V(1:n))
end do

The dot product is a vector multiplication (of length n, in this
case) followed by a reduction.

Time in a pipelined machine for a dot product:
((s« +n=21)1+((s,—1)logn+ (n-1))1)
The total time for the matrix-vector multiplication is then:

m[(s,—1)logn+s. +2(n-1)]t

© 1998 David A. Padua 25 of 80

In an array machine or in a multiprocessor, the time if P>n is.:

(m(['logn't, +1t.))

Alternatively, by interchanging the loop headers, the program
could be written as follows:
do j =1, n
do i =1, m
R(i) = R(1) + ACi,]) * V(J)
end do
end do

This leads to the following sequence of vector operations:
do j=1,n _ _

R(1:mM=R(1:m +A(1:mj)*V(])
end do

The time for this loop in a pipelined machine is:

n(s, + (m-1) +s. +(M—-1))t

© 1998 David A. Padua 26 of 80

if there is no chaining, and

n(s, +s. +(M-1))1

iIf there is chaining.

Assume two consecutive vector operations where the second
operation uses the output from the first. Chaining allows the
two operations to behave as if there were a single pipeline for
both operations. This is achieved by feeding the output from
the pipeline executing the first operation directly to the second
pipeline. The alternative is to wait for the first opeation to
complete before starting the second operation.

© 1998 David A. Padua 27 of 80

To illustrate chaining. consider the two statements:
a(l:n)=b(1l:n)*c(1l:n)
e(l:n)=a(l: n)+d(1l: n)

Ignoring memory accesses and subscript computations, and
assuming 4 stages for multiplication and 3 for addition, we
have the following time lines in the absence of chaning:

| | |

I I I I I I

But, in the presence of chaning, the time lines would look as
follows:

© 1998 David A. Padua 28 of 80

In an array machine or in a multiprocessor, the time (if P > m)
IS:

(t, +t)n

© 1998 David A. Padua 29 of 80

8.12 Matrix Multiplication

1. Inner product method.

Matrix multiplication is usually written:
do i =1, n
do j =1, n
do k=1, n
C(i,j)=C(i,])+A(1, k)*B(k,)
end do
end do
end do

The most direct translation of this program into vector form
IS:
do i =1, n
do j =1, n
C(i,j)=DOT_PRODUCT(A(i,1:n),B(1:n,j))
end do
end do

© 1998 David A. Padua 30 of 80

The time on a pipelined machine is:

n2((s, —1)logn +s. +2(n—1))t

The time on an array machine or multiprocessor if P > n is:

(t+rlogﬂ+t*)n2

© 1998 David A. Padua 31 of 80

2. Middle-product method (n-parallelism)

This is obtained by interchanging the headers in the original
matrix multiplication loop.

do j =
do k 1 N
do |—1 N
C(i,j)=C(i,j)+A(i,k)*B(k,j)
end do
end do
end do

The direct translation of this loop into vector form is:

C(1:n,j)=C(1:n,j)+A(1:n, k)*B(k,j)
end do
end do

© 1998 David A. Padua 32 of 80

Alternatively, the headers could have been exchanged in a
different order to obtain the loop:

do i =1, n

do k=1, n

C(i,1:n)=C(i,1:n)+A(i, k)*B(k, 1: n)
end do
end do

The time on a pipelined machine, assuming chaining, is:

n2(s+ +s, +(N=1))1

The time in an array machine is:

(t++t*)n2

© 1998 David A. Padua 33 of 80

3. Outer-product method (n?-parallelism)

Another interchange of the loop headers produce:

do k=1, n
do I =1, n
do j =1, n
C(i,j)=C(i,j)+A(i,k)*B(k,j)
end do
end do
end do

To obtain n? parallelism, the inner two loops should take the form
of a matrix operation:
do k=1, n
C(l:n,1:n)=C(1:n,1:n)+A(1:n, k) B(k, 1: n)
end do
Where the operator [1 represents the outer product of two

vectors. Given two vectors a and b, their outer product is a matrix
Z such that Z; =a; x b;. Notice that the previous loop is NOT a

© 1998 David A. Padua 34 of 80

valid Fortran or Fortran 90 loop because [is not a valid
Fortran character.

The outer product matrix in the loop above has the following
form:

- 2

A1kBi1 A1kBra A1kBya -+

AgiBy1 AgkBia AgkBya -+ of replication

This matrix is the element-by-element product of the following
two matrices:

k
B
[Ak N Al{| x

which are formed by replicating Ak=A(1: n, k) and
Bsz(k, 1: n) along the appropriate dimensions. This

© 1998 David A. Padua 35 of 80

replication can be achieved using the Fortran 90 SPREAD
function discussed above:

spread(A(1: n, k), di m=2, ncopi es=n) *spread(B(k, 1: n), di =1, ncopi es=
n))

The resulting loop is therefore:

do k=1, n

C=C+SPREAD(A(1:n, k), 2,n) *SPREAD(B(k, 1: N, 1, n)
end do

In an array machine with P>n?, the time would be:

(2t [logn]+t, +t,[logn])n

copy

where i,y IS the time to copy a vector. The time to spr ead to
N copies is logarithmic as discussed in class.

© 1998 David A. Padua 36 of 80

4. n3 parallelism

The product of two nxn matrices, C=nat nul (A, B) , can be
computed by adding n matrices of rank (n,n):

\/@«9
2 P‘y 63”?) 6@3
«}6 >R PA%@ 7> ©?°
SRR vl
PA} P2 ot fL@ s ?)@’?) 2
oY 72> P P o3t
2> e o o> PP
o7 o)
C= PfLrL Py 63’&

© 1998 David A. Padua

37 of 80

These n matrices of rank (n,n) can be computed by multiplying
(element-by-element) two three-dimensional arrays of
rank(n,n,n).

The two three-dimensional arrays are formed by replicating A
and B along different dimensions as shown next:

This replication can, again, be achieved, with SPREAD.

© 1998 David A. Padua 38 of 80

Thus, give the following three directions of replication:

3
2
-

1

+ +
we can start by computing a n3 temporary array T as follows:

Then, the result is just C=SUM T, DI M=2)

In an array machine with P>=n3 processing unit, the time to
compute C would be:

(2t [logn]+t, +t,)

copy

© 1998 David A. Padua 39 of 80

8.13 Multiplication by Diagonals

An nxn matrix A is banded if A;=0 for i-j=31, J-1I=[35:

All A12 . Al’[32 0 0 0

0 0 0 A

nn-fB,;+1 n, N

For a small band, for example, 3;=pB>=3, the algorithm
discussed before for matrix-vector multiplication is not efficient.

© 1998 David A. Padua 40 of 80

An alternative is to do the product by diagonals:

After separating the diagonals into separate matrices, we get:

Ay O 0A, 0 0O 000Ag 0O 0 0000 0 0000
00N 00 000 o \| [A20000 0 0000
00 o\ 0Vt *l500 0 olVt|o 0 oolVt..+| 0 0000\
00 0 0N 000 O O 0O 0N OO ABZOOOO

i 00 0 0 0] 000 0 0] LO O O0N.0 _o\ooo_

© 1998 David A. Padua 41 of 80

which can be written as follows:

where VI=(V;,...,V,)) and V, j=(V1,....Vp).

Also, [1means add the sorter vector to the first component of
the longer one, and [0 means add the shorter vector to the last
component of the longer one.

In Fortran 90 (except for the greek letters and the subscripts):
Ag(1l:n)*V(1:n) +
(/ A(1:n-1)*V(2:n),0. /) +

(/' Aga(1l:n-PBp)*V(By+1l:n), (0., j=1,By) /) +
(/ 0., A(Ll:n-2)*V(1:n-1) /) +

(/ (0., j=1,B), Aga(l:in-By)*V(1l:n-By) /)

© 1998 David A. Padua 42 of 80

8.14 Consistent Algorithms

A vector algorithm for solving a problem of size n is consistent
with the best serial algorithms for the same problem if the
redundancy is bounded as n - oo,

Vector reduction is consistent.

@) L+
R =

n o

n,n,
n:24 n-1
— n-1

1 n-1

But parallel prefix is not (see Section 8.9).

The time for the simple form of parallel prefix presented in

Section 8.7 given P processing units and vector length n=2Kis:
k-1

[
t — n-2
parallel Z {_P W

=0

The problem with algorithms that are non consistant is that for
N (size of input data) large enough, the array algorithm is

© 1998 David A. Padua 43 of 80

slower than the scalar version. Assuming constant number of

devices (pipeline stages or processing units).

For example, assuming 8 processors I,/ has the following

values:

n Iserial lparallel
16 15 7
32 31 17
64 63 41

512 511 513
1024 1023 1153
~10° ~10° ~2.5%X10°

Notice that the array algorithm becomes slower than the scalar

version when n=512.

© 1998 David A. Padua

44 of 80

A typical situation with inconsistent algorithms is depicted in
the following graph:

tlme tparallel tserial
A

7

» N
overhead parallel assymptotic
makes algorithm complexity
parallel IS better in
algorithm this region
slower

© 1998 David A. Padua 45 of 80

8.15 A consistent version of parallel prefix

A consistent version of parallel prefix can be obtained by
blocking the original algorithm. This can be done for both a
pipelined unit or an array machine. We will show the array
machine version. There are several steps in the algorithm

1. First the array B(1:n) should be reshaped into an (pr

matrix as follows:

C=RESHAPE(B, (/ [gw ,P /), 0.0)

The r eshape(sour ce, shape[, pad] [, order])
function takes the elements of sour ce, in normal Fortran
order, and returns them (as many as will fit) as an array
whose shape is specified by the one-dimensional integer
array shape. If there is space remaining, then pad must be
specifie and is used to fill out the rest. See the manual for a
description of or der ..

Thus, if

© 1998 David A. Padua 46 of 80

B =(/1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11. /)
then, the result of RESHAPE above would be:

1.5 0.
2. 6. 10.
3. 7. 11.
4.8. 0.

. Then, we assign a column of Cto each processing unit and
compute the partial sums of each column separately as
follows:

do i =2, [gw

c(i,1:P) = Ci-1,1:P) + C(i,1:P)

end do

At the end of this loop we will have
k

C(k,q) = Z C(i, a)

i=1

© 1998 David A. Padua 47 of 80

3. The third step is to compute the true value of the last
element of each column:

do j =2, P
({g},j): ({g],j—l)w([g],j)
end do

At the end of this step, the last element of each column will

have the sum of all elements in its own column and the
columns preceding it.

4. Finally, the elements in each processor are adjusted:

do i =1, [DW -1
P

C(i,2:P) = {H,l:P—l) + C(i, 2: P)

end do

© 1998 David A. Padua 48 of 80

The total number of operation in the algorithm is:
ni-1 P-1 Ni_14P-1
el H S

The algorithms is consistent because:

ng—lgn(P—l) +%g}1gp—1)

n

- 2

© 1998 David A. Padua 49 of 80

8.16 Cyclic Reduction

Let

S = a;§thy

S =aS_;th I = 2,...,n

One way to solve the recurrence in parallel is to use cyclic reduction:

From
S =a§_;th
and
S_178_15_otb_4
we get
S = aa_1§ _,tab_;+bh

© 1998 David A. Padua 50 of 80

Which can be rewritten as

_ (1 (1)
S =& S _oth

where a1 and b1 are defined as follows:
1) -

g

ey _q
(1) _
bi™" = ab;_; +b

Now we have S; as a function of S;_..

If we repeat this process several times we obtain

5=l
i —2
| =0,1,...,logn
I =12, ..,n

© 1998 David A. Padua 51 of 80

where

) _ (-1 0-1)
S T T N R
=2

| 1-1), (I-1 | -1
o0 = {0
| -2
Initially,
ai(O) = g
ol = b

When the subscript of a;, bjor S;is outside the range 1,...,n, the value
O should be assumed

© 1998 David A. Padua 52 of 80

When /=log n

_ (logn)
S = 0+bh,

To compute the a's and b’s in parallel we proceed as shown
below

Ao agz Ay Ag Ag Az Ag { =0
a3(1) a4(1) a5(1) a6(1) a7(1) a8(1) [=1
T

a5(2) a6(2) a7(2) a8(2) [=2

© 1998 David A. Padua 53 of 80

bl ao b2 az b3 ay b4 ag b5 Ag b6 ay b7 aAg b8 =0

| ‘\i ‘\i ‘\i ‘\1 ~.| ‘\i |

st

+
6,00 a;(Dpy(D a,(Dp,(D a4 (Dp (D 4 (Dp (D 5 (Dp (D a8|(1) p (1) 1
+ —t + 4 + +
ba(? ba(?D ac(Dpg(?D alDp (D 4 (Dp (D 4 (Dp (2 | -2

The resulting program in Fortran 90 is

S(1:n)=b(1:n)
do i =1, 1 ogn
S(1:n)=ECSHI FT(S(1:n),-2**(i -
1)) *a(1l: n)+S(1: n)
a(l:n)=ECSHI FT(a(1:n),-2**(i-1))*a(1l: n)
end do

© 1998 David A. Padua 54 of 80

The function eoshi ft(array, shift [, boundary]

[, di M) returns the result of end-off left-shifting every one-
dimensional section of arr ay (indimensiondi m by shi ft.If
shi ft is negative, the array is shifted to the right. If

boundar y is present as a scalar, it supplies the elements to fill
in the blanks; if it is not present, zero is used. If di mis not
present, one is assumed.

© 1998 David A. Padua 55 of 80

8.17 The FORALL statement

“One of the positive effectns of Fortran 90’s long gestation
period has been the general recognition, both by the X3J3
committee and by the community at large, that Fortran needs
to evlove over time. Fortran 95 is a minor, but by no means
insginificant, updating of Fortran 90.”

It includes PURE and ELEMENTAL procedures, the DI M
argument for raxl oc and m nl oc, and the FORALL
statement.

“Because the inside iteration of a FORALL block can be done in
any order, or in parallel, there is a logical difficulty in allowing
functions or subroutines inside such blocks: If the function or
subroutine has side effects (that is, if it changes any data
elsewhere in the machine, or in its own saved variables) then
the result of a FORALL calculation could depend on the order in
which the iterations happen to be done. This can’t be tolerated,
of course; hence a new PURE attribute for subprograms.”

From W. H. Press et al.

© 1998 David A. Padua 56 of 80

The FORALL statement is used to specify an array assignment
In terms of individual elements or sections.

For example,

A(1l: 10, 2: 20)=5*B(2: 11, 1: 19)

can al be written as follows:
forall (i =1: 10,) =1:19) A(i,) +1=5*B(i +1,])

Notice that FORALL specifies a vector operations and
therefore, the right-hand side is evaluated before any part of
the left-hand side is changed.

Thus, the previous assignment can be written as:

do i =1, 10
do j =1, 19
ACi,] +1)=5*B(i +1,])
end do

end do

© 1998 David A. Padua 57 of 80

because the right and left-hand sidesare disjoint, but

forall (j=1:n) A(j)=5*A(j-1)

should be written as two loops:

do jzl,n _
tenp())=5*A(] -1)
end do
do j:_1,n _
A()) =tenp(])
end do

A singlle loop would not do in this case.

Notice that sometimes a single loop would suffice even if there
iIs overlap betwenn left- and right-hand sides. Thus,

forall (j=1:n) A(j)=5*A(j+1)

Is equivalento to the loop:
do j =1, n _
A(]) =5*A(] =1)
end do

© 1998 David A. Padua 58 of 80

Several examples of FORALL are presented next:

1. FORALL(I=1:10) A(l,1)=B(1, 1)

can be written as
A(1l: 10)=B(1: 10)

or as
A=B

if both A and B have shape (10) .

2. FORALL(I =1:10:2,J=10:1:-1)A(l,J3)=B(1,J3)*C(1, J)

can be written as
A(1l:10:2,10:1:-1)=B(1:10:2,10:1:-1)*C(1:10:2,10:1:-1)

3. FORALL(I =1: 10) A(l) =I

Is equivalent to
A(1l: 10)=(/1:10/)

4. FORALL(I =1: 10, J=1: 20) A(Il, Jd)=B(1)
Needs SPREAD to be implemented because array sections in
an assignment statement have to be comformable.

© 1998 David A. Padua 59 of 80

A=SPREAD(B, DI M=2, NCOPI ES=20) .

5. FORALL(I =1:10, J=1: 10) A(1,J)=B(J, 1)

Can be implemented with the TRANSPOSE intrinsic functions.

6. FORALL(I1=1:N) A(l,1)=B(1,1)

or the slightly more complex statement:
FORALL(I=1:N) A(I,1)=B(lI+1,1-1)

would need RESHAPE (or EQUI VALENCE) to be written as
vector operations is Fortran 90. Thus, the first FORALL could
be written as:

T1(1: N*N) =RESHAPE(B, (\ N N\))
T2(1: N*N) =RESHAPE(A, (\ N* N\))
T2(1: N*N: N+1) =T1(1: N*N: N+1)

A=RESHAPE(T2, (\ N, N\))

The second FORALL is left as an excercise.

© 1998 David A. Padua 60 of 80

7. FORALL(I =1:N,J=1: N, K=1: N,
& | +J+K. EQ 3*(N+1)/ 2)
& A(l +J-K, J)=B(I, Jd, K

This statement includes a boolean expression. Only for those
elements where the expression is true, an assignment will take
place.

8. FORALL(I =1:10, J=1: 20, K=1: 30)
& A(l, J, K =l +J+K

For this statement SPREAD is needed:

A=SPREAD(SPREAD((/ 1: 10/), 2, 20), 3, 30)
& +SPREAD(SPREAD((/ 1: 20/), 1, 10), 3, 30)
& +SPREAD(SPREAD(/ 1: 30/), 1, 10), 2, 20)

9. FORALL(1 =2:2000)A(1)=A(1/2)

This pattern is a standard technique for representing a binary

tree structure as an array; the two children of of element k are
elements 2k and 2k+1. This statment causes every node in the
tree to receive a copy of information from its parent; it might be

© 1998 David A. Padua 61 of 80

part of a computation that pipelines data down the leaves of
the tree in a breadth-first fashion.

10. FORALL(1 =1: 10, J=1: 10, K=1: 10)
& A(l,J,K=B(J, K 1)

This particularly simple example, can be expressed with the
RESHAPE intrinsic, which provides for permuting axes while
reshaping.

11. FORALL(1 =1: 10, J=1: 10, K=1: 10)
& A(l,J,K) = B(J, 11-K, | +1)

In this case one would have to use RESHAPE to transpose the
axes and then use an array section assignment to do the rest
of the job. This would be relatively inefficent, resulting in
multiple copying of data.

© 1998 David A. Padua 62 of 80

8.18 Sorting in Fortran 90.

There are many parallel sorting algorithms. We will discuss two
very simple ones in this chapter and more elaborate algorithms
later in the semester.

Perhaps the simplest sorting algorithm is bubble sort. (Text
extracterd from Kumar et al. Introduction to Parallel Computing)
It compares and exchages adjacent elements in the sequence to
be sorted. Given the sequence aj, a,, ...,a,, the algorith first
performs n-1 compare-exchange operations in the following
order: (a;,as),(@»s,az), ---(@n-1,8n)- This step moves the largest
element to the end of the sequence. The last ement in the
sequence is then ignored, and the sequence of compare
exchanges is applied to the resulting sequence. The sequence is
sorted after n-1 iterations. The algorithm is as follows:

do i=n-1,1,-1

do j =1,
1 f (a()j) = a(j+1)) swap (a@).a@+1))
end do

end do

© 1998 David A. Padua 63 of 80

Where swap(a,b) is just the sequence

a
b
t

T
a
b
This algorithm can be easily parallelized as discussed later on.

For vectorization, we will use the following slightly modifed
version known as odd-even transposition:.

do i1 =1, n
I f 1 /isodd t hen
do j =0,n/2-1
I f (a(2*) +1) =a(2*j +2)) swap(a(2*j+1),a(2*j+2))
end do
end i f
I f 1 /iseven then
do j=1,n/2-1
I f (a(2*j)=a(2*j +1)) swap(a2*)),a(2*j+1))
end do
end i f
end do

The algorithm alternates between two phases: odd and even.
During the odd phase, elements with odd indices are

© 1998 David A. Padua 64 of 80

compared with their right neighbors, and if they are out of
sequence they are exchanged. Similarly, during the even
phase, elements with even indices are compared with their
right neighbors, and if they are out of sequence they are
exchanged.

Vectorization is quite simple:

do i =1, n
If 1 1s odd then
where (a(l:n-1:2)>a(2:n:2))
swap (a(l:n-1:2),a(2:n:2))
end where
end i f
If I iIs even then
where (a(2:n-2:2)>a(3:n-1:2))
swap (a(2:n-2:2),a(3:n-1:2))
end wher e
end i f
end do

© 1998 David A. Padua

65 of 80

Bubble sort is not a very efficient algorithm. It takes n(n-1)/2
comparisons to complete. The parallel version reduces that to
n steps, but a good sequential algorithm only requires a
number of comparisons proportional to n log n. And there are

paralle algorithm that require time proportional to log®n. So this
iIs ok, but not great.

© 1998 David A. Padua 66 of 80

A better sorting algorithms in some situations is radix sort. This
was the algorithm used to sort punched cards with electro-
mechanical devices.

The idea is that the values to be sorted are assumed to be
numbers in a certain radix. Integers could be radix 10 or 2
depending on the circumstances. For punched cards, it was
base 10. In today’s machines, we could assume base two, but
any other base can be assumed. When values are names,
base 26 can be assumed.

Radix sort, goes through all the “digits” starting with the less
significant one. For each digit it processes the whole
sequence. Elements of the sequence are placed in separate
buckets, one for each possible digit. Placement in the buckets
iIs in the order theelements appear in the sequence. After
processing all elements for a particular position, the buckets
are catenated to create the sequence for the next position.

Consider for example the following sequence:

223, 148, 221, 071, 138, 131.

© 1998 David A. Padua 67 of 80

After the first step, the sequence will be separated as follows:

bucket O 1 2 3 4 5 6 7 8 9
221 223 148
Or1 138
131

After catenation, we get: 221,071,131,223,148,138.

Now, the digits in the second position are processed:

bucket O 1 2 3 4 5 6 7 8 9
221 131 148 071
223 138

Again,the buckets are catenated: 221,223,131,138, 148,071.

© 1998 David A. Padua 68 of 80

Then, the digits in the third position are processed.:

bucket O 1 2 3 4 5 6 7 8 9
O71 131 221
138 223
148

Finally, the sorted sequence is obtained by catenating the
buckets: 071,131,138,148, 221, 223.

The algorithm can be easily implemented in Fortran 90 using
the pack intrinsic function. Pack(arr ay, nmask) returns a
one-dimensional array containing the elements of ar r ay to
pass the nask.

Thus, assuming that the sequence to be sorted is in vector a,
and that the elements are in base b and contain d digits each,
we can proceed as follows:

© 1998 David A. Padua 69 of 80

do i =1, d

m O(1: n) = thedigitina(l: n) with weight b’:'l Is O

m 1(1: n) = the digitina(1: n) with weight b’ s 1

m bl(1: n) = thedigitina(1l: n) with weight b1 js b-1

a=(/ pack(a, mO0O), pack(a,m1),...,pack(a, mbl)/)
end do

In particular for base 2, only one mask is needed.:
do i =1,d

mEnod(a, 2**i1) <2** (i -1)

a= (/ pack(a, m, pack(a,.not.m/)
end do

© 1998 David A. Padua 70 of 80

Pack can be implemented in parallel using the primitives
discussed earlier in class:

functi on pack(a, m

where (m
c=1
el sewher e
c=0
end wher e
order =parall el prefix(c)
where (m
tenp(order) =a
end wher e
pack=t enp
return
end

© 1998 David A. Padua 71 of 80

8.19 Processing linked lists

Lined lists are usually represented with pointer. Pointer values
are usually memory addresses. However, linked lists can also
be represented using array locations.

For example, a linked list could be represented using two
arrays. One containing the val ue of the list entry, and the
other conaining the position within the array where the next
element in the list is located.

Now, a vector algorithm to make vector next point to the last
entry in the list is as follows?:

do while (any(next/=null).and. any(next(next)/=null))
wher e(next (next)/ =nul |)

next =next (next)
end wher e
end do

1.Here we assume that next (nul |) =nul |

© 1998 David A. Padua 72 of 80

And a vector algorithm to do parallel prefix computation in the
order of the linked list is as follows:

do while (any(next /= null))
where (next /= null)
val ue(next) =val ue+val ue(next)
next =next (next)
end wher e
end do

© 1998 David A. Padua 73 of 80

8.20 The Wavefront method (a.k.a. the
Hyperplane method)

In this chapter we will only consider a simple two dimensional
Fortran 77 form of this method. That is, we will only consider two
dimensional loop nests with a single statement inside that
assigns to a two dimensional array.

To illustrate this method we will draw a graph of the iteration
space of the loop. Each iteration will be a node in the graph. The
graph will taked the form of a mesh with equal vertical and
horizontal separation.

These nodes will be joined by three classes of arcs representing
races (write-read, read-write, write-write). These arcs (which are
called dependences) will always flow in the direction of
execution in the original loop.

The idea is that a vector form can be obtained by finding a
collection of parallel lines that are equidistant, are not parallel to
any dependence arc, and pass through all the nodes in the
graph.

© 1998 David A. Padua 74 of 80

For example, the loop

do i1 =1, n
do j=1,n
a(i,j)=a(i-1,j)+1
end do
end do

can be represented by the following graph:

0=
o=
0=
o=
0=

© 1998 David A. Padua 75 of 80

From the graph it is clear that for each i there is a vector
operation in j.
do i =1, n
a(i,l1:n)=a(i-1,1: n)+1
end do

A second example:
do i =1, n
do j=1,n
a(i,j)=a(i,j-1)+a(i +1,j +1) +b(i) +c(])
end do
end do

Nv\rite after read

*read after write

© 1998 David A. Padua 76 of 80

Now for each j there is a vector operation

do j =1, n
a(l:n,j)=a(l:n,j-1)+a(2: n+1,j +1) +b(i) +c(1: n)

end do

A more complicated case:

do I =2, n
do j =2, n
a(i,j)=a(i,j-1)+a(i-1,j)
end do
end do
4
EZ, 2,3 2.4 2,5 2,6
’ /:
/z' v{xg ‘,é,s Y34Y350936
+=4" s ¢
R4 V¥#2 V43 VYV44V745 Y46
|+J:5 ,,‘—>.—>‘ - .
+=6" 1 1 1 .1 .l

| Y | | z

© 1998 David A. Padua 77 of 80

From the equations:

2<i<n
2<k-i<gn
k=4175,...,2n

We conclude that:

max(2, k—n) <i <min(n, k—2)

From where:
do k=4, 2*n

forall (i=nmx(2,k-n):mn(n,k-2)) a(i,k-j)=...

end do

© 1998 David A. Padua

78 of 80

Another complex example:

do 1 =2, n
do j =2, n
a(i,j)=a(i+1,j-1)+a(i-1,))+a(i,]-1)
end do
end do

AM 5.5 1 36
2i+]=6 al
2i+|]=7 3 y A A y 5 Y 4,6

>e

2i+j=8 J :éf

—»‘—»

© 1998 David A. Padua 79 of 80

From the equations:

4<2i<2n
2<k-2i<n
k=26,5...,3n

We conclude that:
max%, {k%nEs i < min%m {k;ZZE

From where:
do k=6, 3*n

forall (i=max(2,(k-n+1)/2):mn(n,(k-2)/2)) a(i,k-j)=...
end do

© 1998 David A. Padua 80 of 80

	Chapter 8. Parallel Vector Algorithms
	8.1 Introduction
	8.2 Target machines
	8.3 Time to execute a vector operation
	8.4 Reductions in Fortran 90
	8.5 Two other useful Fortran 90 functions.
	8.6 Time to Execute a Reduction
	8.7 Parallel Prefix
	8.8 Relative Performance
	8.9 Examples of Speedup and Efficiency
	8.10 Amdahl’s Law
	8.11 Matrix-Vector Multiplication
	8.12 Matrix Multiplication
	8.13 Multiplication by Diagonals
	8.14 Consistent Algorithms
	8.15 A consistent version of parallel prefix
	8.16 Cyclic Reduction
	8.17 The FORALL statement
	8.18 Sorting in Fortran 90.
	8.19 Processing linked lists
	8.20 The Wavefront method (a.k.a. the Hyperplane method)

