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A Brief Introduction to Fortran 77
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Fortran is not a flower, but a weed. It is hard
blooms, and grows in every computer. (A. P

• In 1954 a project was begun under the leade
Backus at IBM to develop an "automatic pro
system that would convert programs written
mathematical notation to machine instruction
704 computer.

• Many were skeptical that the project would b
was necessary for the program produced by
be almost as efficient as that produced by a
language programmer.

• First compiler in 1957. Quite successful. 

• Several ANSI standards: 1966 (Fortran 66),
77), 1990 (Fortran 90), 1995 (Fortran 95). 
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Interpreters

An interpreter is a program that performs the o
implied by the source program. For an assignm
for  example, an interpreter might build a tree l

an then carry out the operations at the nodes a
tree. 

Very high-evel languages, like APL and MATLA
interpreted because there are many things abo
such as size and shape of arrays, that cannot b
compile time.
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Compilers

On the other hand, a compiler is a program that reads a 
program written in one language - the source language- and 
translates it into an equivalent program in another language - 
the target language. Aa an importnat part of the tranlation 
process, the compielr reports to its users the presence of 
errors in the source program.

compilersource
program

target
program

error
messages
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rmat:

 a comment.
Source form

Traditionally, Fortran statements had a fixed fo

Columns 1-5: label (a number)

Column 6: Continuation mark

Columns 7-72: statement

A C in column 1 indicates that the whole line is

Examples of Fortran statements:
C This is a comment line
10    I = 1
      DO 15 J = I, 10
          A(J) = 0
15    CONTINUE
C Now a very long statement
      CALL SUBSUB(X,Y,...
     * Q,W)



6 of 118

ilers today.

rtran 90.

example:

 the beginning 
©  1998 David A. Padua

Free format is accepted by most Fortran comp

Up to 132 characters per line are allowed in Fo

An ampersand indicates line continuation. For 
    CALL SUBSUB(X,Y,... &
      Q,W)

The exclamation mark is often used to indicate
of a comment:

i = 1   ! This is a comment
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nstant.
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Lower case letters are considered equal to the
upper case letters except inside a character co

Thus, 
aBc = 1

is the same as
ABC = 1

But
’aBc’

is not equal to 
’ABC’



8 of 118

in C.

onstants with 

s enclosed in 
first number is 
t:
©  1998 David A. Padua

Data Types

There are six basic data types in Fortran 77:
1. Integer

2. Real
3. Double precision
4. Complex

5. Logical
6. Character

Integer and real constants are similar to those 

Double precision constants are similar to real c
exponents, but a D is used instead of an E:
1.D0, 3.527876543D-4

Complex constants are pairs of reals or integer
parentheses and separated by a comma. The 
the real part and the second the imaginary par
(1.23 , 23e1)

Logical constants are .TRUE. and .FALSE.
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The form of a character constant is an apostrop
a nonempty string of characters, followed by a
Two consecutive apostrophes represent the ap
’abc’  ’a’’b’
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Variables

Variables in Fortran 77 start with a letter, conta
and digits, and are no more than six characters
90 up to 31 characters are allowed and the und
form part of the variable name.

The type of variables is specified either explicit
declaration statement or is implicit. Examples o
declaration statements:

real a,b,c(10,10)
integer i,j,k(100)
double precision ...
complex ...
logical q, p r
character s,t * 5,u(20,20)
character * 10 v, w, y

The * num in the character statement specifie
the variable in number of characters. It applies 
if it appears after the character keyword, or 
it appears after a variable name.
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A scalar variable does not have to be declared
first letter of an undeclared variable indicates its
starting with letter I thorough N (INteger) are o
variables. All other undeclared variables are of
This default option can be changed with the IM
statement.

An array declarator is a variable name followed
specification of the dimensions. The dimension
has the form ( d1 , d2 ,...) where  dis r
size of each dimension. In the main program th
are specified using integer constants. They cou
integer, say n, meaning that the possible subsc
one to n. Also, they could be a pair of integers,
meaning that the values of the subscripts for th
have to be between n and m.
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A declarator can also appear in a dimension 
Thus:

real a
dimension a(10,10), b(5:15,5)

is equivalent to ( b is implicitly declared as rea

real a(10,10), b(5:15,5)

Note: Dimension declarators for subroutine par
contain variables or can be the special charact
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Expressions

Expressions in Fortran can be arithmetic, relatio
character. 

Arithmetic expressions are similar to those in C
Fortran there is an exponentiation operator (**
highest precedence. Thus, the right-hand side 
the statement

a = 2*b**3-1

 has the value:

Implicit type conversion is also similar to C.

The division of two integers is an integer. Thus
a n integer variable is even we can us the cond
(n/2)*2.EQ.n

The only character operator is concatenation (/

2b3 1–
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’AB’ // ’DE’

Relation operators compare the values of expr
produce a logical value of true or false. The rel
have lower precedence than arithmetic operato

The relation operators are:
.LT. Less than
.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

For example,

if (a*b .gt. c-1) then ...

logical q
q = t-1 .gt. 5
if (q) then ...
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The logical operators are:

.NOT. Logical negation

.AND. Logical Conjunction

.OR. Logical inclusive disjunction

.EQV. Logical equivalence

.NEQV.Logical nonequivalence
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Fortran statements

We will only discuss a few of the statements:
1. GOTO statement. (e.g GO TO 150)

2. IF statement.

if (a.gt. 5) a = 5

if (a.gt. 5) then
a=5
b=1

end if

if (a.gt. 5) then
a=5
b=1

else
b=2
go to 17

end if
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3. DO statement. Iterative statement.

do 10 i=1,n
do 15 j=1,n

a(i,j) = 0
15 continue
10 continue

do 10 i=1,n
do 10 j=1,n

10 a(i,j) = 0

do i=1,n ! this form is not acc
            ! by all compilers

do j=1,n
a(i,j) = 0

end do
end do
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es 
...
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do 2 i=1,n,2 !This do loop updat
               !elements 1, 3, 5, 

  b(i) = 1
2 continue

4. CALL statement. For subroutine invocation:

call subsub(a, b(1,5),35,.true.)
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Program Units

A Fortran program always includes a Main Pro
include subroutines and functions. The generic
main program, subroutines, and functions is pr

There are three classes of functions in Fortran
functions, statement functions and external fun

All functions are referenced in the same way. A
reference is always within an expression and h
 fun (a,a,...)

where the a’s are the actual arguments.

For example, the following expression contains
to functions:
 sin(x) + root(f,a,b) + y

In this example, sin and root are function na
a, and b are actual arguments. The actual argu
variables, constant, or function/subroutine nam
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Fortran includes a number of pre-defined intrin
such as sin, cos, max, sign, etc. These a
any Fortran manual.

Statement functions are declared at the beginn
program. The declaration has the form:

fun ( d, d, ...) = e

where the d’s are dummy arguments and e is a
that may contain constants, dummy arguments
variables and references to any type of functio

The type of the value returned by the statemen
depends on the type associated with the functi
type is assigned using either type declaration s
the function name is not declared, the implicit r
above for variables. An example of a statemen

real mpyadd, b(100)
...
mpyadd(x,y,z) = x*y + z + 2 + si
...

y = mpyadd(a,b(5),1.0)
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Notice that the variable y in the last assignmen
different from the dummy argument in the state
In fact, dummy arguments in a statement funct
scope of that statement.

External functions can be compiled separately 
program. They may include several executable
Their overall form is:

<type> FUNCTION fun (d ,d, ...)

Declarations and executable s

END

The name of the function (fun) must appear a
within the subprogram. The variable must be d
execution of the function, and its value at the e
subprogram is the value returned by the functio

The type of the (value returned by) function is d
either using the implicit rules or by the <type>
function header.
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I/O Statements

There are many different ways of reading and 
Fortran. 

The simplest forms are:

read *, iolist

print *, iolist

Here, the read and write operate on the standa
standard output. 

The data is written as a sequence on constant
same form they would take within Fortran prog
should be separated by spaces or commas.

Type conversion is follows the same rules of a
statements.

Each print starts a new line.
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Each read starts on the next record.

A read, processes as many records as necess
values to the variables in its iolist.

iolist is a sequence of variables perhaps surrou
loops of the form (variable, index=l,u,s

For example:

read *, n,(a(i),i=1,n), ((b(i,j),i=
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b,x)

dx(n), 

(x(j))
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Examples

subroutine mprove(a,alud,n,np,indx,
parameter (nmax=100)
dimension a(np,np), alud(np,np), in
b(n), x(n), r(nmax)
real*8 sdp
do i=1,n
     sdp=-b(i)
     do j=1,n
          sdp=sdp+dble(a(i,j))*dble
     end do
     r(i)=sdp
end do
call lubksb(alud,n,np,indx,r)
do i=1,n
     x(i)=x(i)-r(i)
end do
return
end
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function rtflsp(func,x1,x2,xacc)
parameter (maxit=30)
fl=func(x1)
fh=func(x2)
if(fl*fh.gt.o.)  pause ‘root must be bracketed 
for false position.’
if(fl.lt.o.) then
     xl=x1
     xh=x2
else
     xl=x2
     xh=x1
     swap=fl
     fl=fh
     fh=swap
endif
dx=xh-xl
do j=1,maxit
     rtflsp=xl+dx*fl/(fl-fh)
     f=func(rtflsp)
     if(f.lt.o.) then
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)return
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          del=xl-rtflsp
          xl=rtflsp
          fl=f
     else
          del=xh-rtflsp
          xh=rtflsp
          fh=f
     endif
     dx=xh-xl
     if(abs(del).lt.xacc.or.f.eq.o.
end do
pause ‘rtflsp exceed maximum iterations’
end
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ran 90
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A Brief Introduction to Fort
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Data Types and Kinds

Data types

• Intrisic data types (INTEGER, REAL,LOGICAL)

• derived data types (“structures” or “records” in other 
languages)

kind parameter (or simply kind)

• An integer that further specifes intrinsic data types 
(REAL(4), REAL(8))

• Literal constants (or simply literals) are psecified as to kind 
by appending an underscore (1.5_4, 1.5_8)

• Vary from machine to machine
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IMPLICIT none
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Examples

INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)

INTEGER, PARAMETER :: SP = KIND(1.0)
INTEGER, PARAMETER :: DP = KIND(1.0D0)
...

INTEGER(I4B)  i,j,k
INTEGER m,n,p
REAL(SP) x,y

REAL w,z
REAL(SP) :: t,u,v
READ(SP), DIMENSION(100,200) :: barr

REAL(SP) :: carr(500)
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Array Shapes and Sizes

The shape of an array refers to both its dimensionality (called 
its rank), and the lenght of each dimension (called the extents)

The F90 intrinsic function shape returns a one dimensional 
array (a rank-one array) whose elements are the extents along 
each dimension.

• shape(barr) returns the vector (100,200)

The size of an array is its total number of elements, 

• The intrinsic size(barr) would return 20000. 

The extent of each dimension can also be computed by using 
additional parameters. 

• size(barr,1) returns 100

• size(barr,2) returns 200.
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Memory Mangement

Within subprograms (that is, subroutines and functions), one 
can have 

• automatic arrays that come into existence each time the 
subprogram is entered (and disappear when the program is 
exited).

• Example

SUBROUTINE domething(,j,k)
REAL, DIMENSION(2*j,k**2) :: carr



33 of 118

 return as a real 

turn as a real 

ting towards 

 of mask are 

elements of 

 mask
Fortran 90 Intrinsic Procedures

aint(a,kind) Truncate to integer value,
kind

anint(a,kind) Nearest whole number, re
kind.

real(a,kind) Convert to rea real kind

ceiling(a) Convert to integer, trunca
more positive

floor(a)

all(mask,dim) returns true if all elements
true

any(mask,dim) Returns true if any of the 
mask are true

count(mask,dim) counts the true elemtns in
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rray elements

4)

)
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minval(array,dim,mask)Minimum value of the a

maxval(array,dim,mask)

product(array,dim,mask)

sum(array,dim,mask)

sum(myarray,dim=1)=(15,18,21,2

sum(myarray,dim=2)=(10,26,42

size(array,dim)

maxloc(array,mask)

minloc(array,mask)

dot_prduct(vecta,vectb)

matmul(mata,matb)

myarray
1 2 3 4

5 6 7 8

9 10 1 12

=
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Finer control on when an array is created or destroyed can be 
achieved by declaring allocatable arrays

• REAL, DIMENSION(:,:), ALLOCATABLE :: darr

...
allocate(darr(10,20))
...

deallocate(darr)
...
allocate(darr(100,200))

...
deallocate(darr)
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• Yet finer control is achieved by the use of pointers.

• Like an allocatable array, a pointer can be allocated.

• However, it an also be pointer associated with a target that 
already exists under another name.

• REAL, DIMENSION(:), POINTER :: parr

REAL, DIMENSION(100), TARGET :: earr
...

parr => earr
...
nullify(parr)

allocate(parr(500))
...
deallocate(parr)
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Procedure Interfaces

When a procedure is referenced (called) from within a program 
or subprogram, the program unit must be told the procedure’s 
interface, that is, its calling sequence.

• INTERFACE

SUBROUTINE  caldat(julian,mm,id,iyyy)
INTEGER, INTENT(IN) :: julian

INTEGER, INTENT(OUT) :: MM,ID,IYYY
END SUBROUTINE caldat

END INTERFACE
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Triplet notation
Sections of arrays are identified in Fortran 9
of the form l:u:s. A triplet represent the s
subscripts 

l, l+s, l+2*s,...,l+m*s

 where m is the smallest number such that
 l+(m+1)s > u     (if s ≥ l)

or
l+(m+1)s < u       (if s ≤ l

 For example, the section A(3:5,2,1:2) o
the array of shape (3,2):

A(3,2,1) A(3,2,2)
A(4,2,1) A(4,2,2)
A(5,2,1) A(5,2,2)

If l is omitted, the lober bound for the array is
is omitted, the upper bound is assumed. If s
assumed. The stride s cannot be 0
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Expressions in Fortran 90 may contain array
specified using triplets, or complete arrays id
name of the array without any subscripts.
For example, consider the arrays a, b and c
follows:
dimension a(100,100) b(100,100),

The statement
c = a + b

assigns to matrix c the element-by-element 
a and b.
Also, 

a(1:100, 2) = 0

assigns 0 to the second column of a. An ide
performed by the following three statements

a(:100,2) = 0
a(1:,2) = 0
a(:,2)  = 0

Another example is
a(51:100,4) = b(1:50,4) * c
a(51:100,4) = a(50:99,4) + 
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• The rank of an array is the number of dimen

• The shape of an array is determined by its r
extent in each dimension.

• All the objects in an expression or assignme
must be conformable. Two arrays are confor
have the same shape. A scalar is conformab
array.

• Any intrinsic operation defined for scalar obj
applied to conformable objects. Such operat
performed element-by-element to produce a
conformable with the array operands.

• The masked array assignment is used to pe
assignment to arrays. For example, in the st

where(temp>0)temp = temp - re

only those elements in the array temp which
decreased by the value reduce_temp.
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In the following compound statement,
where(pressure<=0)

pressure = pressure + in
temp = temp - 5.0

elsewhere
raining = .true.

end where

the array pressure in modified only where
the array temp is modified in the correspond
(i.e. in the same locations as pressure). Fina
raining is assigned .true. only in the lo
correspond to those element of pressure w

• The mask of the where statement is like an
on the right-hand side of all the assignment 
the body of the where statement and theref
conformable to the right-hand side expressio
array on the left-hand side.

• There are a collection of intrinsic functions d
operate on arrays. These will be described a
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6.1 Introduction

OpenMP is a collection of compiler directives, 
and environment variables that can be used to
memory parallelism.

This collection has been designed with the coo
many computer vendors including Intel, HP, IBM
it is likely to become the standard (and therefor
of programming SMPs.

The Fortran directives have already been defin
extensions for C and C++ are underway.
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6.2 The PARALLEL directive

The parallel/end parallel directive pair 
parallel region and constitutes as parallel cons

An OpenMP program begins execution as a sin
the master thread. When a parallel construct is
the master thread creates a team of threads. T
enclosed by the parallel construct, including ro
from within the enclosed construct, are execute
each thread in the team.

At the end of the parallel construct the threads
synchronize and only the master thread contin

The general form of this construct is:

C$omp parallel [parallel-clause[[,]para
parallel region

C$omp end parallel

There are several classes of parallel-clauses. N
the private(list)clause.
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All variables are assumed to be shared by all t
the parallel region. However, there will be a se
each variable listed in a private clause for ea
will also be an additional copy of the variable th
accessed outside the parallel region.

Variables defined as private are undefined for t
entering the construct and are also undefined f
exit from a parallel construct.
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As an example, consider the following code se

c = sin (d)
forall i=1 to n

a(i) = b(i) + c
end forall
e = a(20)+ a(15)

A simple OpenMP implementation would take 

c = sin(d)
c$omp parallel private(i,il,iu)

call get_limits(n,il,iu,
*  omp_get_nu
*  omp_get_th

do i=il,iu
a(i) = b(i) + c

end do
c$omp end parallel

e = a(20) + a(15)



47 of 118

ted into the 
ivate assuming 

m_threads(),
read_num())
©  1998 David A. Padua

Notice that the first statement can be incorpora
parallel region. In fact, c can be declared as pr
it is never used outside the loop.

c$omp parallel private(c,i,il,iu)
c= sin(d)
call get_limits(n,il,iu,

*  omp_get_nu
*  omp_get_th

do i=il,iu
a(i) = b(i) + c

end do
c$omp end parallel

e = a(20) + a(15)
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6.3 The BARRIER directive

To incorporate e into the parallel region it is nec
sure that a(20) and a(15) have been compu
statement executes.

This can be done with a barrier directive wh
synchronizes all the threads in the enclosing p
region. When encountered, each thread waits 
others in that team have reached this point.
c$omp parallel private(c,i,il,iu)

c = sin(d)
call get_limits(n,il,iu,

*  omp_get_nu
*  omp_get_th

do i=il,iu
a(i) = b(i) + c

end do
c$omp barrier

e = a(20) + a(15)
c$omp end parallel



49 of 118

for all tasks in 
ent. There will 
g for access to 

ds to execute 

irective:

m_threads(),
read_num())
©  1998 David A. Padua

6.4 The PSINGLE directive

Finally, since e is shared, it is not a good idea 
the team to execute the last assignment statem
be several redundant assignments all competin
the single memory location. Only one task nee
the assignment.

This can be accomplished with the psingle d
c$omp parallel private(c,i,il,iu)

c = sin(d)
call get_limits(n,il,iu,

*  omp_get_nu
*  omp_get_th

do i=il,iu
a(i) = b(i) + c

end do
c$omp barrier
c$omp psingle

e = a(20) + a(15)
c$omp end psingle nowait
c$omp end parallel
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The psingle directive has the following synta

c$omp psingle [single-clause[[,]single
block

c$omp end psingle [nowait]

This directive specifies that the enclosed regio
be executed by one and only one of the tasks 

Tasks in the team not executing the psingle b
end psingle, unless nowait is specified. In
is no need for this implicit barrier since one alre
the end parallel directive.

One of the two single-clauses is private(list
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A better example of psingle:

subroutine sp_1a(a,b,n)
c$omp parallel private(i)
c$omp pdo

do i=1,n
a(i)=1.0/a(i)

end do
c$omp psingle
 a(1)=min(a(1),1.0)
c$omp end psingle
c$omp pdo

do i=1,n
b(i)=b(i0/a(i)

c$omp end pdo nowait
c$omp end parallel 

end
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6.5 The PDO directive

A simpler way to write the previous code uses 
directive:

c$omp parallel private(c,i,il,iu)
c = sin(d)

c$omp pdo schedule(static)
do i=1,n

a(i) = b(i) + c
end do

c$omp end pdo
c$omp psingle

e = a(20) + a(15)
c$omp end psingle nowait
c$omp end parallel

The pdo directive specifies that the iteration s 
immediately following do loop must be execute
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The syntax of the pdo directive is as follows:

c$omp pdo [pdo-clause[[,]pdo-clause] 
do loop

c$omp end pdo [nowait]

There are several pdo clauses including priva
schedule. 

The schedule could assume other values inclu

The nowait clause eliminates the implicit bar
end pdo directive. In the previous example, th
clause should not be used.
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An example of pdo with the nowait directive i
subroutine pdo_2(a,b,c,d,m,
real a(n,n),b(n,n),c(m,m), 

c$omp parallel private(i,j)
c$omp pdo schedule(dynamic)

do i=2,n
do j=1,i

b(j,i)=(a(j,i)+a(
end do

end do
c$omp end pdo nowait
c$omp pdo schedule(dynamic)

do i=2,m
do j=1,i

d(i,j)=(c(j,i)+c(
end do

end do
c$omp end pdo nowait
c$omp end parallel

end
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6.6 The PARALLEL DO directive

An alternative to the pdo is the parallel do
is no more than a shortcut for a  parallel dir
containing a single  pdo directive.

For example, the following code segment
c$omp parallel private(i)
c$omp pdo schedule(dynamic)

do i=1,n
b(i)=(a(i)+a(i+1))/

end do
c$omp end pdo nowait
c$omp end parallel

end
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could be rewritten
c$omp parallel do 
c$omp& private(i)
c$omp& schedule(dynamic)

do i=1,n
b(i)=(a(i)+a(i+1))/

end do
c$omp end parallel do

end
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And the routine pdo_2  can be rewritten as foll

subroutine pdo_2(a,b,c,d,m,
real a(n,n),b(n,n),c(m,m), 

c$omp parallel do 
c$omp& private(i,j)
c$omp& schedule(dynamic)

do i=2,n
do j=1,i

b(j,i)=(a(j,i)+a(
end do

end do
c$omp end parallel do
c$omp parallel do 
c$omp& private(i,j) 
c$omp& schedule(dynamic)

do i=2,m
do j=1,i

d(i,j)=(c(j,i)+c(
end do

end do
c$omp end parallel do

end
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There are two disadvantages to this last versio
1. There is a barrier at the end of the first loop.

2. There are two parallel regions. There is ove
beginning of each.
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6.7 The PSECTIONS directive

An alternative way to write the pdo_2 routine 
subroutine pdo_2(a,b,c,d,m,
real a(n,n),b(n,n),c(m,m), 

c$omp parallel private(i,j)
c$omp psections
c$omp psection

do i=2,n
do j=1,i

b(j,i)=(a(j,i)
2

end do
end do

c$omp psection
do i=2,m

do j=1,i
d(i,j)=(c(j,i)

2
end do

end do
c$omp end psections nowait
c$omp end parallel
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end
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The psections directive specifies that the en
of code are to be divided among threads in the
section is executed by one thread in the team.
follows:

c$omp psections[sections-clause[[,]s
...]
[c$omp psection]

block
[[c$omp psection

block]
.
.
.]

c$omp end psections [nowait]
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Chapter 7. Parallel Loops in O
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Parallel loops are the most frequently used con
scientific computing in the shared-memory pro
model. 

In this chapter we will discuss omp parallel loo

We begin with the definition of race.
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7.1 Races 

We say that there is a race when there are two
references taking place in two different tasks s

1. They are not ordered
2. They refer to the same memory location
3. One of them is a memory write (store).

For example, in the following code there is a ra
two accesses to a:
c$omp parallel sections
c$omp psection

...
a = x + 5
...

c$omp psection
...
y = a + 1
...

c$omp end parallel sections
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Another example of a race is:
c$omp parallel

...
if (omp_get_thread_num()
... [no omp directive here]
if (omp_get_thread_num()
...

c$omp end parallel

However, there is no race in the following code
two references to a are ordered by the barrier.
c$omp parallel

...
if (omp_get_thread_num()
...

c$omp barrier
...
if (omp_get_thread_num()
...

c$omp end parallel
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Another example of a race is:

c$omp parallel do
do i=1,n

...
a = x(i) + 1
...

end do
c$omp end parallel do

Here, a is written in  all iterations. There is a rac
least two tasks executing this loop. (It is ok to e
OpenMP program with a single processor)
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Another example is:

c$omp parallel do
do i=1,n

...
a(i) = a(i-1) + 1
...

end do

Here, if at least two tasks cooperate in the exe
loop, some pair of consecutive (say iterations j
iterations will be executed by different tasks. 

Then, one of the iterations will write to an array
a(j) in iteration j) and the other will read the s
the next iteration.



70 of 118

gram with 

fficult to detect 

fore the 
signed either 2 
anted y to get 
 to detect if, for 
uently.
©  1998 David A. Padua

Sometimes it is desirable to write a parallel pro
races. But most often it is best to avoid races.

In particular, unintentional races may lead to di
bugs.

Thus, if a has the value 1 and x the value 3 be
following parallel section starts, y could be as
or 9. This would be a bug if the programmer w
the value 9. And the bug could be very difficult
example,  y were to get the value 2 very infreq
c$omp parallel sections
c$omp section

...
a = x + 5
...

c$omp section
...
y = a + 1
...

c$omp end parallel sections
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7.2 Race-free parallel loops

Next, we present several forms of parallel loop
a conventional (sequential) version of the loop 
presented first.

This does not mean that parallel loops can be 
starting with a conventional loop. However, the
forms of parallel loops can be easily understoo
presented in the context of conventional loops.

The first form of parallel loop can be obtained q
conventional loop can be transformed into para
adding a parallel loop directive if the resu
loop contains no races between any pair of iter

An example is the loop
do i=1,n

a(i) = b(i) +1
end do

Notice that this loop computes the vector opera
a(1:n)=b(1:n)+1
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More complex loops can also be directly transf
parallel form. For example:

do i=1,n
if (c(i) .eq. 1) then

do while (a(i) .gt. eps)
a(i) = x(i) - x(i-1) /

end do
else

do while (a(i) .lt. uppe
a(i) = x(i) + y(i+1) *

end do
end if

end do

Notice that although consecutive iterations acc
element of x, there is no race because both a
reads.
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7.3 Privatization

Sometimes the transformation into parallel form
identification of what data should be declared a

For example, consider the following loop:

do i=1,n
x = a(i)+1
b(i) = x + 2
c(i) = x ** 2

end do

This loop would be fully parallel if it were not fo
stored and read in all iterations.

One way to avoid the race is to eliminate the a
by forward substituting a(i)+1:

do i=1,n
b(i) = (a(i)+1) + 2
c(i) = (a(i)+1) ** 2

end do
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A simpler way is to declare x as private:
c$omp parallel do private(i,x)

do i=1,n
x = a(i)+1
b(i) = x + 2
c(i) = x ** 2

end do

In general, a scalar variable can be declared p
1. It is always assigned before it is read in ever

loop, and 
2. It is  never used again, or it is reassigned be

after the loop completes.
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Sometimes it is necessary to privatize arrays. F
the loop

do i=1,n
do j=1,n

y(j) = a(i,j) + 1)
end do
...
do k=2,n-1

b(i,j) = y(j) ** 2
end do

end do

can be directly parallelized if vector y is decla

An array can be declared private if 

1. No element of the array is read before it is a
the same iteration of the loop. 

2. Any array element used after the loop comp
reassigned before it is read.



76 of 118

be privatized is 
ment.
©  1998 David A. Padua

An important case arises when the variable to 
read after the loop completes without reassign

For example
do i=1,n

x = a(i)+1
b(i) = x + 2
c(i) = x ** 2

end do

...=x
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private(x)
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One way to solve this problem is to “peel off” th
of the loop and then parallelize:
c$omp parallel do private(i,x)

do i=1,n-1
x = a(i)+1
b(i) = x + 2
c(i) = x ** 2

end do
x=a(n)+1
b(n)=x+2
c(n)=x+2

An equivalent, but simpler approach is to decla
lastprivate.

c$omp parallel do private(i) last
do i=1,n

x = a(i)+1
b(i) = x + 2
c(i) = x ** 2
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end do
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Variables in lastprivate are private variables; ho
addition, at the end of the do loop, the thread th
last iteration updates the version of the variable
outside the loop.  

If the last iteration does not assign a value to th
variable, the variable is undefined after the loo

For example, if c(n) > 5 in the loop:

c$omp parallel do private(i) last
do i=1,n

if (c(i).lt.5) then
x=b(i)+1
a(i)=x+x**2

end if
end do

then x would not be defined after the loop.
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Similarly, if the private variable is a vector, only
assigned in the last iteration will be defined. (in
elements not assigned in the last iteration are 0

For example, the program:
real a(100),b(100),c(100)
do i=1,100

a(i)=1
end do
do i=1,100

b(i)=3
end do
print *,a(1),a(2)
b(1)=1

c$omp parallel do lastprivate(a)
do i=1,100

do j=1,100
if (b(j).lt.3) then

a(j)=3
c(j)=a(j)

end if
end do

end do
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print *,a(1),a(2)
end

prints
1.000000 1.00000
3.000000 0.



82 of 118

le needs to be 
ts execution. 

be declared private. 
(i+2),...,a(n) 
 assigned before the 
©  1998 David A. Padua

A similar situation arises when a private variab
initialized with values from before the loop star
Consider the loop:

do i=1,n
do j=1,i

a(j) = calc_a(j)
b(j) = calc_b(i,j)

end do
do j=1,n

x=a(j)-b(j)
y=b(j)+a(j)
c(i,j)=x*y

end do
end do

To parallelize this loop, x , y , a and b should 
However, in iteration i the value of a(i+1), a
and of b(i+1),b(i+2),...,b(n) are those
loop starts.
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To account for this, a and b should be declared
firstprivate.
c$omp parallel do private(i,j,x,y
c$omp& firstprivate(a,b)
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7.4 Induction variables

Induction variables appear often in scientific pr
are variables that assume the values of an arit
sequence across the iterations of the loop:

For example, the loop

do i=1,n
j = j + 2
do k=1,j

a(k,j) = b(k,j) + 1
end do

end do

cannot be directly transformed into parallel form
satement j=j+2 produces a race. And j cann
because it is read before it is assigned.

However, it is usually easy to express induction
function of the loop index. So, the previous loo
tranformed into:
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Most induction variables are quite simple, like t
previous example. However, in some cases a m
formula is necessary to represent the induction
function of the loop index:

For example consider the loop:

do i=1,n
do j=1,m

k=k+2
a(k)=b(i,j)+1

end do
end do

The only obstacle for the parallelization of loop
induction variable k. Notice that no two iteratio
same element of array a because k always incr
iteration to the next. 

The formula for k is somewhat more involved t
of the previos example, but still is relatively sim
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c$omp parallel do private(i,j)
do i=1,n

do j=1,m
a(2*(m*(i-1)+j)+k)=b(i

end do
end do
k=2*n*m+k

As a final example, consider the loop:

do i=1,n
j=j+1
a(j)= b(i)+1 
do k=1,i

j=j+1
c(j)=d(i,k)+1  

end do
end do
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Here, again, only the induction variable, j, ca
But now the formulas are somewhat more com

c$omp parallel do private(i,k)
do i=1,n

a(i+i*(i-1)/2)= b(i)+1 
do k=1,i

c(i+i*(i-1)/2+k)=d(i,k
end do

end do
j=n+n*(n+1)/2
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Sometimes, it is necessary to do some addition
transformations to remove induction veriables.
following loop:

j=n
do i=1,n

b(i)=(a(j)+a(i))/2.
j=i

end do

Variable j is called a wraparound variable of f
called first order because only the first iteration
j from outside the loop.  A wraparound variable
variable whose value is carried from one iterati
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The way to remove the races produced by j is
iteration, move the assignment to j from one 
top of the next iteration (notice that now j must
i-1), and then privatize :

j=n
if (n>=1) then

b(1)=(a(j)+a(1))/2.
c$omp parallel do private (i),las

do i=2,n
j=i-1
b(i)=(a(j)+a(i))/2.

end do
end if

Notice that the if statement is necessary to ma
first iteration is executed only if the original loo
executed it.
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Alternatively, the wraparound variable could be
variable. The transformation in this case is bas
as above except that the induction variable has
expressed in terms of the loop index first.

Consider the loop:
j=n
do i=1,n

b(i)=(a(j)+a(i))/2.
j=j+1

end do

As we just said, we first replace the right hand 
assignement to j with an expression involving 

j=n
do i=1,n

b(i)=(a(m)+a(i))/2.
m=i+j

end do
j=n+j

Notice that we changed the name of the variab
loop to be able to use the value of j coming fr
loop.
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We can now proceed as above to obtain:
j=n
if (n>=1) then

b(1)=(a(j)+a(i))/2.
c$omp parallel do private (i,m) 

do i=2,n
m=i-1+j
b(i)=(a(m)+a(i))/2.

end do
j=n+j !this has to be ins

end if
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7.5 Ordered sections.

Sometimes the only way to avoid races is to ex
serially. Consider the looP:

do i=1,n
a(i)=b(i)+1
c(i)=sin(c(i-1))+a(i)
d(i)=c(i)+d(i-1)**2

end do

Although there is no clear way to avoid races in
could execute in parallel the first statement. In 
this case transform the loop into:
c$omp parallel do

do i=1,n
a(i)=b(i)+1

end do
do i=1,n

c(i)=sin(c(i-1))+a(i)
d(i)=c(i)+d(i-1)**2

end do
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wever, there is a way to improve the performan
th the ordered directive whose syntax is as fo
omp ordered[(name)]

block
omp end ordered[(name)]

e interleaving of the statements in the ordered 
rations are identical to that of the sequential pr
ctions without a name are all assumed to have

us, the previous loop can be rewritten as:
omp parallel do

do i=1,n
a(i)=b(i)+1

omp ordered (x)
c(i)=sin(c(i-1))+1

omp end ordered(x)
omp ordered (y)

d(i)=c(i)+d(i-1)**2
omp end ordered (y)

end do
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Thus, we have two ways of executing the loop 
Assuming n=12, and four processors, the follow
are feasible:

a(1)=

a(5)=

a(2)=

a(6)= a(7)= a(8)=

a(4)=a(3)=

a(9)=a(10)=a(11)=a(12)=

c(1)=

d(1)=

c(3)=

d(3)=

c(2)=

d(2)=

a(1)= a(2

c(1)=

d(1)= c(2

d(2a(5)=

a(6

c(5)=

d(5)= c(6

d(6

...

...
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Notice that now no races exist because accesse
memory location are always performed in the sa

Ordered sections may need to include more than
statement.  For example, in the loop:

do i=1,n
...
a(i)=b(i-1)+1
b(i)=a(i)+c(i)
...

end do

the possibility of races would not be avoided unl
statements are made part of the same ordered s
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It is important to make the ordered sections as
possible because the overall execution time de
size of the longest ordered section.
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time. 

• Consider the loop

c$omp parallel do
do i=1,n

c$omp ordered (a)
aa = ...

c$omp end ordered (a)
c$omp ordered (b)

...
c$omp ordered (c)

...
c$omp ordered (d)

...
c$omp ordered (e)

...
end do
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• Assume its execution time lines have the follo

which, in terms of performance,  is equivalent

a

a

a

a

b

b

b

b

c

c

c

c

d

d

d

d

e

e

e
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following time lines:

where a constant delay D between the start
iterations is evident. This delay is equal to th
longest ordered section (i.e., D=T(c) in this c

• The execution time of the previous loop usin
is: 

a

a

a

b

b

b

b

c

c

c

c

d

d

d

e

e

ea

D

D

D

D

D D
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T(a)+T(b)+nT(c)+T(d)+T(e)
 as can be seen next:

• In general the execution time when there are
processors as iterations is

nD+(B-D)=(n-1)D+B
where B is the execution time of the whole lo

a

a

a

b

b

b

c

c

c

d

d

d

e

e

T(a)+T(b) nT(c)=nD T(d)+
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7.6 Critical Regions and Reductio

Consider the following loop:

do i=1,n
do i=1,m

ia(i,j)=b(i,j)+d(i,j)
isum=isum+ia(i,j)

end
end

Here, we have a race due to isum. This race c
removed by the techniques discussed above. H
operation used to compute isum is associative
only appears in the statement that computes it

The integer addition operation is not really ass
practice we can assume it is if the numbers are
so there is never any overflow.
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Under these circumstances, the loop can be tra
the following form:

c$omp parallel private(local_isum
local_isum=0

c$omp pdo
do i=1,n

do j=1,m
local_isum=local_isum 

end do
end do

c$omp end pdo nowait
c$omp critical

isum=isum+local_isum
c$omp end critical
c$omp end parallel
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Here, we use the critical directive to avoid the f
problem.

The statement 
isum=isum+local_isum

will be translated into a machine language seq
the following:

load register_1,isum
load register_2,local_isum
add  register_3,register_1,
store register_3,isum

Assume now there are two tasks executing the
isum=isum+local_isum

simultaneously. In one local_sum is 10, and 
Assume isum is 0 when both tasks start execu
statement. Consider the following sequence of



105 of 118

tween the two 
rective 
time can 

2

cal_isum

r2,isum

3,r2,r1

 r3,isum
©  1998 David A. Padua

As can be seen, interleaving the instructions be
tasks produces incorrect results. The critical di
precludes this interleaving. Only one task at a 
execute a critical region with the same name. 

time task 1 isum task 

1 load 
r1,local_isum

0

2 load r2, isum 0 load 
r1,lo

3 add r3,r2,r1 0 load 

4 store r3, isum 10 add r

15 store
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The assumption is that it does not matter in wh
tasks enter a critical region as long as they are
critical region of the same name at the same ti



107 of 118

 loop is:

m)

er of operations 
©  1998 David A. Padua

An alternative way of writing the above parallel

c$omp parallel do reduction(+:isu
do i=1,n

do j=1,n
isum=isum+ia(j,i)

end do
end do

The reduction clause can be applied to a numb
and intrinsic functions. 
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