A Brief Introduction to Fortran 77
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Fortran is not a flower, but a weed. It is hardy, occasionally
blooms, and grows in every computer. (A. Perlis)

In 1954 a project was begun under the leadership of John

Backus at IBM to develop an "automatic programming"
system that would convert programs written in a
mathematical notation to machine instructions for the IBM
704 computer.

Many were skeptical that the project would be successful. It

was necessary for the program produced by the compiler to
be almost as efficient as that produced by a good assembly
language programmer.

First compiler in 1957. Quite successful.

Several ANSI standards: 1966 (Fortran 66), 1978 (Fortran
77), 1990 (Fortran 90), 1995 (Fortran 95).

2 of 118



Interpreters

An interpreter is a program that performs the operations
implied by the source program. For an assignment statement,
for example, an interpreter might build a tree like

position +
T
initial / * \
rate 60

an then carry out the operations at the nodes as it walks the
tree.

Very high-evel languages, like APL and MATLAB, are usually
interpreted because there are many things about the data,
such as size and shape of arrays, that cannot be dedueced at

compile time.
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Compilers

On the other hand, a compiler is a program that reads a
program written in one language - the source language- and
translates it into an equivalent program in another language -
the target language. Aa an importnat part of the tranlation
process, the compielr reports to its users the presence of
errors in the source program.

source compiler 5 target
program * program

error
messages
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Source form

Traditionally, Fortran statements had a fixed format:
Columns 1-5: label (a number)

Column 6: Continuation mark

Columns 7-72: statement

A Cin column 1 indicates that the whole line is a comment.

Examples of Fortran statements:

C This is a comment | i ne
10 | = 1
DO 15 J =1, 10
A(J) =0
15 CONTI NUE

C Now a very | ong st at enent
CALL sSuUBSUB( X, Y, ...

QW
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Free format is accepted by most Fortran compilers today.
Up to 132 characters per line are allowed in Fortran 90.

An ampersand indicates line continuation. For example:
CALL SuUBSUB( X, Y, ... &

QW

The exclamation mark is often used to indicate the beginning
of a comment:

I = 1 I This is a conment
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Lower case letters are considered equal to the corresponding
upper case letters except inside a character constant.

Thus,
aBc =1
Is the same as
ABC = 1
But
‘aBc’

IS not equal to
'ABC’
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Data Types

There are six basic data types in Fortran 77:
. Integer

. Real

. Double precision

. Complex

. Logical

. Character

O h WNDNPR

Integer and real constants are similar to those in C.

Double precision constants are similar to real constants with
exponents, but a Dis used instead of an E:
1. DO, 3.527876543D 4

Complex constants are pairs of reals or integers enclosed in
parentheses and separated by a comma. The first number is
the real part and the second the imaginary part:

(1.23 , 23el)

Logical constants are . TRUE. and . FALSE.
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The form of a character constant is an apostrophe, followed by
a nonempty string of characters, followed by an apostrophe.
Two consecutive apostrophes represent the apostrophe.

’abC’ 1a11b1
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Variables

Variables in Fortran 77 start with a letter, contain only letters
and digits, and are no more than six characters long. In Fortran
90 up to 31 characters are allowed and the underscore _ can
form part of the variable name.

The type of variables is specified either explicitly in a type
declaration statement or is implicit. Examples of type
declaration statements:

real a, b, c(10, 10)

Il nteger i,j,k(100)

doubl e pr eci si on

conplex ...

|l ogical g, pr

character s,t * 5, u(20, 20)

character * 10 v, w, Yy

The * numin the character statement specifies the length of
the variable in number of characters. It applies to the whole list
if it appears after the char act er keyword, or to the variable if
it appears after a variable name.
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A scalar variable does not have to be declared in Fortran. The
first letter of an undeclared variable indicates its type. Variables
starting with letter | thorough N (INteger) are of type i nt eger
variables. All other undeclared variables are of type r eal .
This default option can be changed withthe | MPLI CI T
statement.

An array declarator is a variable name followed by a
specification of the dimensions. The dimension specification
has the form ( d; , d, ,...) where d;s representthe

size of each dimension. In the main program the dimensions
are specified using integer constants. They could be a single
integer, say n, meaning that the possible subscripts are from
one to n. Also, they could be a pair of integers, say m: n,
meaning that the values of the subscripts for that dimension
have to be between nand m.
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A declarator can also appear in a di nensi on statement,
Thus:

real a
di nensi on a(10, 10), b(5:15,5)

iIs equivalent to ( b is implicitly declared as r eal )

real a(10, 10), b(5:15,5)

Note: Dimension declarators for subroutine parameters can
contain variables or can be the special character *.
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Expressions

Expressions in Fortran can be arithmetic, relational, logical and
character.

Arithmetic expressions are similar to those in C, except that in
Fortran there is an exponentiation operator (* *) which has the
highest precedence. Thus, the right-hand side expression in

the statement
a = 2*p**3-1

has the value:

2b3 -1

Implicit type conversion is also similar to C.

The division of two integers is an integer. Thus, to test whether
a n integer variable is even we can us the condition

(n/2)*2. EQ n

The only character operator is concatenation (/ / ):
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'AB’ // 'DE’
Relation operators compare the values of expression and
produce a logical value of true or false. The relation operators
have lower precedence than arithmetic operators.
The relation operators are:

. LT. Less than

. LE. Less than or equal to

. EQ Equal to

. NE. Not equal to

. GT. Greater than

. GE. Greater than or equal to

For example,

if (a*b .gt. c-1) then ...

logical q
q=t1.gt.5
if (q) then ...
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The logical operators are:

. NOT. Logical negation

. AND. Logical Conjunction

. OR Logical inclusive disjunction
. EQV. Logical equivalence

. NEQV. Logical nonequivalence
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Fortran statements

We will only discuss a few of the statements:
1. GOTO statement. (e.g GO TO 150)
2. IF statement.

If (a.gt. 5) a =5

I f (a.gt. 5) then
a=5
b=1

end if

I f (a.gt. 5) then
a=5

el se
b=2
go to 17
end i f
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3. DO statement. lterative statement.

do 10 i =1, n
do 15 j =1, n
a(i,j) =20
15 conti nue
10 conti nue

do 10 i =1, n
do 10 j=1,n

10 a(i,j) =0
do i =1, n Il this formis not accepted
I by all conpilers
do j =1, n
a(i,j) =0
end do

end do
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do 2 i=1,n,2 ! This do | oop updat es
lelenents 1, 3, 5,
b(i) = 1
2 conti nue

4. CALL statement. For subroutine invocation:

call subsub(a, b(1,5), 35, .true.)
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Program Units

A Fortran program always includes a Main Program and may
include subroutines and functions. The generic name for the
main program, subroutines, and functions is program unit.

There are three classes of functions in Fortran: intrinsic
functions, statement functions and external functions.

All functions are referenced in the same way. A function
reference is always within an expression and has the form
fun (a,a,...)

where the a’s are the actual arguments.

For example, the following expression contains two references
to functions:
sin(x) + root(f,a,b) + vy

In this example, si n and r oot are function names and x, f ,
a, and b are actual arguments. The actual arguments can be
variables, constant, or function/subroutine names.
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Fortran includes a number of pre-defined intrinsic functions
suchassin, cos, nax, Sign,etc. These are described in
any Fortran manual.

Statement functions are declared at the beginning of the
program. The declaration has the form:

fun ( d, d, ...) = e

where the d’s are dummy arguments and e is an expression
that may contain constants, dummy arguments, program
variables and references to any type of function.

The type of the value returned by the statement function

depends on the type associated with the function name. The

type is assigned using either type declaration statements or, if

the function name is not declared, the implicit rules described

above for variables. An example of a statement function is:
real npyadd, b(100)

.rrbi/add(x,y,z) = X*y + z + 2 + sin(x)

y = npyadd(a, b(5), 1. 0)
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Notice that the variable y in the last assignment statement is
different from the dummy argument in the statement function.
In fact, dummy arguments in a statement function have a
scope of that statement.

External functions can be compiled separately from the main
program. They may include several executable statements.
Their overall form is:

<type> FUNCTION fun (d ,d, ...)
Decl arati ons and execut abl e st at enent s

END

The name of the function (f un) must appear as a variable
within the subprogram. The variable must be defined on every
execution of the function, and its value at the end of the
subprogram is the value returned by the function.

The type of the (value returned by) function is determined
either using the implicit rules or by the <t ype> specified in the
function header.
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I/O Statements

There are many different ways of reading and writing in
Fortran.

The simplest forms are:

read *, iolist

print *, iolist

Here, the read and write operate on the standard input and
standard output.

The data is written as a sequence on constants that take the
same form they would take within Fortran program. They
should be separated by spaces or commas.

Type conversion is follows the same rules of assignment
statements.

Each print starts a new line.
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Each read starts on the next record.

A read, processes as many records as necessary to assign
values to the variables in its iolist.

olist is a sequence of variables perhaps surrounded by implicit
loops of the form (vari abl e, i1 ndex=l, u, s).

For example:
read *, n,(a(i),i=1,n), ((b(i,}]),1=1,n),j=1,n)
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Examples

subr outi ne nprove(a, al ud, n, np, i ndx, b, x)
par anet er (nNmax=100)

di nrensi on a(np, np), alud(np, np), indx(n),
b(n), x(n), r(nnmax)

real *8 sdp

do i =1, n
sdp=-b(i)
do j =1, n
sdp=sdp+dbl e(a(i,j)) *dbl e(x(j))
end do
r(i)=sdp
end do
call | ubksb(al ud, n, np, i ndx, r)
do i =1, n
X(1)=x(i)-r(i)
end do
return

end
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function rtfl sp(func, x1, X2, Xxacc)
par anet er (nmaxit=30)

fl =func(x1)
f h=f unc(x2)

if(fli*fh.gt.0.) pause ‘root must be bracketed

for false position.’

if(fl.It.0.) then
Xl=x1
xXh=x2

else
Xl=x2
xXh=x1
swap=fl
fl=fh
fh=swap

endif

dx=xh-xl

do j=1,maxit
rtflsp=xI+dx*fl/(fl-th)
f=func(rtflsp)
if(f.It.0.) then

© 1998 David A. Padua
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del =xl -rtfl sp
Xl =rtflsp

fl=f
el se
del =xh-rtfl sp
xh=rtfl sp
f h=f
endi f
dx=xh- x|

i f(abs(del).lt. xacc.or.f.eqg.o0.)return

end do
pause ‘rtflsp exceed maximum iterations’

end

© 1998 David A. Padua 26 of 118



A Brief Introduction to Fortran 90
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Data Types and Kinds
Data types

* Intrisic data types (INTEGER, REAL,LOGICAL)

e derived data types (“structures” or “records” in other
languages)

kind parameter (or simply kind)

* An integer that further specifes intrinsic data types
(REAL(4), REAL(8))

* Literal constants (or simply literals) are psecified as to kind
by appending an underscore (1.5 4, 1.5 8)

* Vary from machine to machine
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IMPLICIT none
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Examples

INTEGER, PARAMETER :: 14B = SELECTED_INT_KIND(9)
INTEGER, PARAMETER :: SP = KIND(1.0)
INTEGER, PARAMETER :: DP = KIND(1.0DO)

INTEGER((4B) i,j,k

INTEGER m,n,p

REAL(SP) x,y

REAL w,z

REAL(SP) :: t,u,v

READ(SP), DIMENSION(100,200) :: barr
REAL(SP) :: carr(500)
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Array Shapes and Sizes

The shape of an array refers to both its dimensionality (called
its rank), and the lenght of each dimension (called the extents)

The F9O0 intrinsic function shape returns a one dimensional
array (a rank-one array) whose elements are the extents along
each dimension.

e shape(barr) returns the vector (100,200)

The size of an array is its total number of elements,
* The intrinsic size(barr) would return 20000.

The extent of each dimension can also be computed by using
additional parameters.

e size(barr,1) returns 100

e size(barr,2) returns 200.
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Memory Mangement

Within subprograms (that is, subroutines and functions), one
can have

e automatic arrays that come into existence each time the

subprogram is entered (and disappear when the program is
exited).

e Example

SUBROUTINE domething(,j,k)
REAL, DIMENSION(2*),k**2) :: carr
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Fortran 90 Intrinsic Procedures

aint(a, kind) Truncate to integer value, return as a real
kind

anint(a, kind) Nearest whole number, return as a real
kind.

real(a, kind) Convert to rea real kind

ceiling(a) Convert to integer, truncating towards
more positive

floor(a)

all(mask, dim) returns true if all elements of mask are
true

any(mask,dim) Returns true if any of the elements of

mask are true

count(mask,dim) counts the true elemtns in mask
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minval(array, dim,mask)Minimum value of the array elements
maxval(array, dim, mask)
product(array, dim,mask)

sum(array,dim, mask)
1234
myarray = |5 6 7 8
910 1 12

sum(myarray,dim=1)=(15,18,21,24)
sum(myarray,dim=2)=(10,26,42)
size(array, dim)
maxloc(array, mask)
minloc(array,mask)
dot_prduct(vecta,vectb)

matmul(mata,matb)
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Finer control on when an array is created or destroyed can be
achieved by declaring allocatable arrays

* REAL, DIMENSIONC(:,:), ALLOCATABLE :: darr

allocate(darr(10,20))
deallocate(darr)
allocate(darr(100,200))

deallocate(darr)
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Yet finer control is achieved by the use of pointers.
Like an allocatable array, a pointer can be allocated.

However, it an also be pointer associated with a target that
already exists under another name.

REAL, DIMENSIONC(:), POINTER :: parr
REAL, DIMENSION(100), TARGET :: earr

parr == earr

nullify(parr)
allocate(parr(500))

deallocate(parr)

36 of 118



Procedure Interfaces

When a procedure is referenced (called) from within a program
or subprogram, the program unit must be told the procedure’s
Interface, that is, its calling sequence.

* INTERFACE

SUBROUTINE caldat(julian,mm,id,iyyy)
INTEGER, INTENT(IN) :: julian
INTEGER, INTENT(OUT) :: MM,ID,IYYY
END SUBROUTINE caldat

END INTERFACE
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Triplet notation

Sections of arrays are identified in Fortran 90 using triplets

of the form | : u: s. A triplet represent the sequence of
subscripts

|, I +s, | +2*s, ..., +nrs
where mis the smallest number such that

| +(m+l) s >u (i f s =1)
or

| +(Mm+l) s <u (i f s = 1)

For example, the section A(3: 5, 2, 1: 2) of an array Ais
the array of shape (3,2):

A(3, 2,1) A( 3, 2, 2)

A(4, 2,1) A(4, 2, 2)

A(b5, 2,1) A(b5, 2, 2)

If | is omitted, the lober bound for the array is assumed. If u

Is omitted, the upper bound is assumed. If s is omitted, 1 is
assumed. The stride s cannot be O
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Expressions in Fortran 90 may contain array sections,
specified using triplets, or complete arrays identified by the
name of the array without any subscripts.

For example, consider the arrays a, b and c declared as
follows:
di nensi on a(100, 100) b(100, 100), c(100, 100)

The statement

c = a+ b
assigns to matrix ¢ the element-by-element sum of matrices
a and b.
Also,

a(l: 100, 2) =0

assigns O to the second column of a. An identical function is
performed by the following three statements.

a(:100,2) =0
a(l:,2) =0
a(:, 2) = 0

Another example is
a(51: 100, 4)
a(51: 100, 4)

b(1l: 50,4) * c(30, 31: 80)
a(50:99,4) + 1
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The rank of an array is the number of dimensions.

The shape of an array is determined by its rank and its
extent in each dimension.

All the objects in an expression or assignment statement

must be conformable. Two arrays are conformable if they
have the same shape. A scalar is conformable with any
array.

Any intrinsic operation defined for scalar objects may be

applied to conformable objects. Such operations are
performed element-by-element to produce a resultant array
conformable with the array operands.

The masked array assignment is used to perform selective
assignment to arrays. For example, in the statement
where(tenp>0)tenp = tenp - reduce_ tenp

only those elements in the array t enp which are > 0O will be
decreased by the value r educe_t enp.
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In the following compound statement,
wher e( pr essur e<=0)
pressure = pressure + |INc_pressure
tenmp = tenp - 5.0
el sewher e
raining = .true.
end where

the array pr essur e in modified only where it is <= 1. Also,
the array t enp is modified in the corresponding locations
(i.e. In the same locations as pressure). Finally, the array
rai ni ng is assigned . t rue. only in the locations that
correspond to those element of pr essur e which are > 1.

* The mask of the wher e statement is like another operator

on the right-hand side of all the assignment statements in
the body of the wher e statement and therefore has to be
conformable to the right-hand side expression and to the
array on the left-hand side.

* There are a collection of intrinsic functions designed to
operate on arrays. These will be described as needed.
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6.1 Introduction

OpenMP is a collection of compiler directives, library routines,
and environment variables that can be used to specify shared
memory parallelism.

This collection has been designed with the cooperation of
many computer vendors including Intel, HP, IBM, and SGI. So,
it is likely to become the standard (and therefore portable) way
of programming SMPs.

The Fortran directives have already been defined and similar
extensions for C and C++ are underway.
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6.2 The PARALLEL directive

The paral | el /lend par al | el directive pair defines a
parallel region and constitutes as parallel construct.

An OpenMP program begins execution as a single task, called
the master thread. When a parallel construct is encountered,
the master thread creates a team of threads. The statements
enclosed by the parallel construct, including routines called
from within the enclosed construct, are executed in parallel by
each thread in the team.

At the end of the parallel construct the threads in the team
synchronize and only the master thread continues execution.

The general form of this construct is:

Ckonp par al | el [ parallel-clausel | , ]| parallel-clause] ...]
parallel region
Csonp end par all el

There are several classes of parallel-clauses. Next, we discuss
the pri vat e( /ist) clause.
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All variables are assumed to be shared by all tasks executing
the parallel region. However, there will be a separate copy of
each variable listed in a pri vat e clause for each task. There
will also be an additional copy of the variable that can be
accessed outside the parallel region.

Variables defined as private are undefined for the thread
entering the construct and are also undefined for the thread on
exit from a parallel construct.
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As an example, consider the following code segment

c = sin (d)

forall 1 =1 to n
a(i) = b(i) + c

end forall

e = a(20)+ a(15)

A simple OpenMP implementation would take the form

c = sin(d)
cdonp parallel private(i,il,iu)
call get limts(n,il,iu,
* onp_get num.t hreads(),
* onp_get thread nun())
do i =il ,iu
a(it) = b(i) + c
end do

cdonp end par all el
e = a(20) + a(15)
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Notice that the first statement can be incorporated into the
parallel region. In fact, c can be declared as private assuming
it iIs never used outside the loop.

cdonp parall el private(c,i,il,iu)
c= sin(d)
call get limts(n,il,iu,
* onp_get num't hreads(),
* onp_get thread nun())
do i =il ,iu
a(it) = b(i) + c
end do

c$onp end parall el
e = a(20) + a(15)
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6.3 The BARRI ER directive

To incorporate e into the parallel region it is necessary to make
sure that a( 20) and a( 15) have been computed before the
statement executes.

This can be done with a bar ri er directive which
synchronizes all the threads in the enclosing par al | el
region. When encountered, each thread waits until all the
others in that team have reached this point.

cdonp parall el private(c,i,il,iu)
c = sin(d)
call get limts(n,il,iu,
* onp_get num't hreads(),
* onp_get thread nun())
do i =il ,iu
a(it) = b(i) + c
end do

cdonp barri er
e = a(20) + a(15)
c$onp end parall el
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6.4 The PSI NGL_E directive

Finally, since e is shared, it is not a good idea for all tasks in
the team to execute the last assignment statement. There will
be several redundant assignments all competing for access to
the single memory location. Only one task needs to execute
the assignment.

This can be accomplished with the psi ngl e directive:

cdonp parall el private(c,i,il,iu)
c = sin(d)
call get limts(n,il,iu,
* onp_get num.t hreads(),
* onp_get thread nun())
do i =il ,iu
a(it) = b(i) + c
end do

cdonp barri er
cdonp psi ngl e

e = a(20) + a(15)
cdonp end psi ngl e nowai t
cdonp end parall el
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The psi ngl e directive has the following syntax:

cdonp psi ngl e [ single-clause] [ , ] single-clause] ...]
block
c$onp end psi ngl e [ nowai t]

This directive specifies that the enclosed region of code is to
be executed by one and only one of the tasks in the team.

Tasks in the team not executing the psi ngl e block wait at the
end psi ngl e, unless nowai t is specified. In this case, there
IS No need for this implicit barrier since one already exists at
the end par al | el directive.

One of the two single-clauses is pri vat e( list) .
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A better example of psi ngl e:

cdonp
cdonp

cdonp
cdonp
cdonp

cdonp
cdonp

subrouti ne sp_1la(a, b, n)
parall el private(i)

pdo
do i =1, n
a(i)=1.0/a(i)
end do
psi ngl e

a(l)=mn(a(l1), 1. 0)
end psi ngl e
pdo
do i =1, n
b(i)=b(iO0/a(i)
end pdo nowai t
end parall el
end
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6.5 The PDOdirective

A simpler way to write the previous code uses the pdo
directive:

cdonp parall el private(c,i,il,iu)
c = sin(d)
cdonp pdo schedul e(stati c)
do i =1, n
a(i) = b(i) + c
end do

cdonp end pdo
cdonp psi ngl e

e = a(20) + a(15)
cdonp end psi ngl e nowai t
cdonp end parall el

The pdo directive specifies that the iteration s of the
immediately following do loop must be executed in parallel.
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The syntax of the pdo directive is as follows:

cdonp pdo [ pdo-clause| [, ] pdo-clause] ...]
do loop
cdonp end pdo [ nowai t]

There are several pdo clauses including pri vat e and
schedul e.

The schedule could assume other values including dynam c.

The nowai t clause eliminates the implicit barrier at the
end pdo directive. In the previous example, the nowai t
clause should not be used.
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An example of pdo with the nowai t directive is
subrouti ne pdo 2(a, b,c,d, mn)
real a(n,n),b(n,n),c(mm, d(mm
c$onp parall el private(i,j)

cdonp pdo schedul e(dynam c)
do i =2, n
do j =1,
b(j.,1)=(Ca(j,i)+a(j.,i+1))/2
end do
end do
cdonp end pdo nowai t
cdonp pdo schedul e(dynam c)
do I =2, m
do j =1, i
d(i,j)=(c(j,1)+c(j,1-1))/2
end do
end do
cdonp end pdo nowai t

c$onp end parall el
end
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6.6 The PARALLEL DOdirective

An alternative to the pdo is the par al | el do directive which
IS Nno more than a shortcut for a par al | el directive
containing a single pdo directive.

For example, the following code segment
c$onp parall el private(i)

cdonp pdo schedul e(dynam c)
do i =1, n
b(i)=(C(a(i)+a(i+1))/2
end do
cdonp end pdo nowai t

c$onp end parall el
end
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could be rewritten

cdonp paral l el do
conp& private(i)

cPonp& schedul e(dynam c)

do i =1, n
b(i)=C(a(i)+a(i+1))/2
end do

cdonp end parall el do
end
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And the routine pdo_2 can be rewritten as follows:

cdonp
chonp&
chfonp&

cdonp
cdonp
chbonp&
chfonp&

cdonp

subrouti ne pdo 2(a, b,c,d, mn)
real a(n,n),b(n,n),c(mm, d(mm
paral |l el do
private(i,])
schedul e(dynam c)
do i =2, n
do j =1, i
b(j.1)=Ca(j,1)+a(]j,1+1))/2
end do
end do
end parall el do
paral l el do
private(i,])
schedul e(dynam c)
do I =2, m
do j =1,
d(i,j)=(c()j,1)+c(j,i-1))/2
end do
end do
end parall el do
end
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There are two disadvantages to this last version of pdo_2:
1. There is a barrier at the end of the first loop.

2. There are two parallel regions. There is overhead at the
beginning of each.
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6.7 The PSECTI ONS directive

An alternative way to write the pdo_ 2 routine is:
subrouti ne pdo 2(a, b,c,d, mn)
real a(n,n),b(n,n),c(mm, d(mm
c$onp parall el private(i,j)

cdonp psecti ons
cdonp psecti on
do i =2, n
do j =1, i
, b(j,1)=Ca(j,.i)+a().,.i+1))/
end do
end do
cdonp psecti on
do I =2, m
do j =1,
, d(i,j)=(c(j,i)+c(j,1-1))/
end do
end do
cdonp end psecti ons nowai t

cdonp end parall el
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end
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The psecti ons directive specifies that the enclosed sections
of code are to be divided among threads in the team. Each

section is executed by one thread in the team. Its syntax is as
follows:

cdonp psecti ons| sections-clause[ [ , ] sections-clause]
o]
[ cFonp psecti on]
block
[ [ cbonp psecti on

blockK]

]

c$onp end psec-t i ons [ nowai t]
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Chapter 7. Parallel Loops in OpenMP
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Parallel loops are the most frequently used constructs for
scientific computing in the shared-memory programming

model.
In this chapter we will discuss omp parallel loops.

We begin with the definition of race.
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/.1 Races

We say that there is a race when there are two memory
references taking place in two different tasks such that

1. They are not ordered
2. They refer to the same memory location
3. One of them is a memory write (store).

For example, in the following code there is a race due to the
two accesses to a:
cdonp paral |l el secti ons

cdonp psecti on
a=x+5
cdonp pse-c.t.i on
y = a + 1

cdonp end parall el sections
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Another example of a race is:
chonp par al | el

f f | (onp_get thread nun(). eq. 0) a=x+5
. . . [no onp directive here]
I f (onp_get thread nun().eq.1l) a=y+1

c$onp end -p.ar al | el
However, there is no race in the following code because the
two references to a are ordered by the barrier.
cdonp par al | el

f f | (onp_get thread nunm(). eq. 0) a=x+5
cdonp bar rier

f f | (onp_get _thread num().eq.1l) a=y+1

c$onp end -p.ar al | el
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Another example of a race is:

cdonp paral l el do
do i =1, n

a = x(i) + 1
end do
cdonp end parallel do

Here, a is written in all iterations. There is a race if there are at
least two tasks executing this loop. (It is ok to execute an
OpenMP program with a single processor)
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Another example is:

cdonp paral l el do
do i =1, n

a(i) = a(i-1) + 1
end do
Here, if at least two tasks cooperate in the execution of the

loop, some pair of consecutive (say iterations j and j+1)
iterations will be executed by different tasks.

Then, one of the iterations will write to an array element (say
a(j ) initerationj ) and the other will read the same element in
the next iteration.

© 1998 David A. Padua 69 of 118



Sometimes it is desirable to write a parallel program with
races. But most often it is best to avoid races.

In particular, unintentional races may lead to difficult to detect
bugs.

Thus, if a has the value 1 and x the value 3 before the
following parallel section starts, y could be assigned either 2
or 9. This would be a bug if the programmer wanted y to get
the value 9. And the bug could be very difficult to detect if, for
example, y were to get the value 2 very infrequently.

cdonp paral l el secti ons

cdonp secti on
a=x +5
cdonp sec.t.i.on
y = a + 1

cdonp end parall el sections
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7.2 Race-free parallel loops

Next, we present several forms of parallel loops. In each case,
a conventional (sequential) version of the loop will be
presented first.

This does not mean that parallel loops can be written only by
starting with a conventional loop. However, the most important
forms of parallel loops can be easily understood when
presented in the context of conventional loops.

The first form of parallel loop can be obtained quite simply. A
conventional loop can be transformed into parallel form by just
adding a par al | el | oop directive if the resulting parallel
loop contains no races between any pair of iterations.

An example is the loop
do i =1, n
a(i) = b(i) +1
end do

Notice that this loop computes the vector operation
a(l:n)=b(1l:n)+1
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More complex loops can also be directly transformed into
parallel form. For example:
do i =1, n
I f (c(i) .eq. 1) then
do while (a(i) .gt. eps)
a(it) = x(1) - x(i-1) / c
end do
el se
do while (a(i) .lt. upper)
a(i) = x(i) + y(i+1) * d

end do
end i f
end do

Notice that although consecutive iterations access the same
element of X, there is no race because both accesses are

reads.
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7.3 Privatization

Sometimes the transformation into parallel form requires the
identification of what data should be declared as pri vat e.

For example, consider the following loop:

do i =1, n
x = a(i)+1
b(i) = x + 2
c(i) = x ** 2
end do

This loop would be fully parallel if it were not for x which is
stored and read in all iterations.

One way to avoid the race is to eliminate the assignment to x
by forward substituting a(i ) +1.:

do i =1, n
b(i) = (a(i)+1) + 2
c(i) = (a(i)+1) ** 2

end do

© 1998 David A. Padua 73 of 118



A simpler way is to declare x as private:
c$onp parall el do private(i, X)

do i =1, n
x = a(i)+1
b(i) = x + 2
c(i) = x ** 2
end do

In general, a scalar variable can be declared private if

1. Itis always assigned before it is read in every iteration of the
loop, and

2. It is never used again, or it is reassigned before used again
after the loop completes.
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Sometimes it is necessary to privatize arrays. For example,
the loop
do i =1, n
do j =1, n
y(j) = a(i,]) + 1)
end do

do k=2, n-1
b(i,j) =vy(j) ** 2
end do
end do

can be directly parallelized if vector y is declared pri vat e.

An array can be declared private if

1. No element of the array is read before it is assigned within
the same iteration of the loop.

2. Any array element used after the loop completed is
reassigned before it is read.
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An important case arises when the variable to be privatized is
read after the loop completes without reassignment.

For example
do i
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One way to solve this problem is to “peel off” the last iteration
of the loop and then parallelize:
c$onp parall el do private(i, X)

do i =1, n-1

x = a(i)+1
b(i) = x + 2
c(i) = x ** 2

end do
x=a(n) +1
b(n) =x+2

c(n)=x+2

An equivalent, but simpler approach is to declare x as
| ast pri vat e.

c$onp parall el do private(i) | astprivate(x)

do i =1, n
x = a(i)+1
b(i) = x + 2
c(i) = x ** 2
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end do
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Variables in lastprivate are private variables; however, Iin
addition, at the end of the do loop, the thread that executes the
last iteration updates the version of the variable that exists
outside the loop.

If the last iteration does not assign a value to the entire
variable, the variable is undefined after the loop.

For example, ifc(n) > 5 in the loop:

cdonp parall el do private(i) | astprivate(x)

do i =1, n
if (c(i).lt.5 then
x=b(i) +1
a(l) =x+x**2
end i f
end do

then x would not be defined after the loop.
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Similarly, if the private variable is a vector, only the elements
assigned in the last iteration will be defined. (in KAI's version, the
elements not assigned in the last iteration are 0).

For example, the program:
real a(100), b(100), c(100)
do i =1, 100

a(i) =1
end do
do i =1, 100
b(i) =3
end do
print *,a(l), a(2)
b(1l)=1

cdonp parall el do | astprivat e(a)
do i =1, 100
do j =1, 100
if (b(j).1t.3) then

a(j)::3 _
c(j)=a(]))
end i1 f
end do

end do
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print *,a(l), a(2)
end

prints
1. 000000 1. 00000
3. 000000 0.
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A similar situation arises when a private variable needs to be

initialized with values from before the loop starts execution.
Consider the loop:

do i =1, n
do j =1,
a(j)
b(])
end do
do j =1, n
x=a(j)-b(j)
y=b(]) +a(]j)
c(i,])=x*y

end do
end do
To parallelize this loop, X , ¥y , a and b should be declared private.
However, in iteration i the value of a(i +1), a(i+2),...,a(n)
and of b(i +1), b(i +2), ..., b(n) are those assigned before the

loop starts.
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To account for this, a and b should be declared as
firstprivate.

cdonp parall el do private(i,j, X,Vy)
conp& firstprivate(a, b)
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7.4 Induction variables

Induction variables appear often in scientific programs. These
are variables that assume the values of an arithmetic
seguence across the iterations of the loop:

For example, the loop

do i =1, n
j =] + 2
do k=1, j
a(k,j) = b(k,j) + 1
end do
end do

cannot be directly transformed into parallel form because the
satementj =) +2 produces a race. And | cannot be privatized
because it is read before it is assigned.

However, it is usually easy to express induction veriables as a
function of the loop index. So, the previous loop can be
tranformed into:
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Most induction variables are quite simple, like the one in the
previous example. However, in some cases a more involved
formula is necessary to represent the induction variable as a
function of the loop index:

For example consider the loop:

do i =1, n
do j =1, m
k=k+2
a(k)=b(i,j)+1
end do
end do

The only obstacle for the parallelization of loop i1 is the
induction variable k. Notice that no two iterations assign to the
same element of array a because k always increases from one
iteration to the next.

The formula for k is somewhat more involved than the formula
of the previos example, but still is relatively simple:
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cfonp parall el do private(i,]j)

do i =1, n
do j =1, m
a(2*(nm(i-1)+j)+k)=b(i,j)+1
end do
end do

k=2* n* nmtk

As a final example, consider the loop:

do i =1, n
=] +1
a(j)= b(i)+1
do k=1, i
=] +1
c(j)=d(i, k)+1
end do

end do
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Here, again, only the induction variable, j , causes problems.
But now the formulas are somewhat more complex:

c$onp parall el do private(i, k)

do i =1, n
a(i +i*(i-1)/2)= b(i)+1
do k=1, i
c(i+i*(i-1)/2+k)=d(i, k) +1
end do
end do

j=n+n*(n+1)/ 2

© 1998 David A. Padua 88 of 118



Sometimes, it is necessary to do some additional
transformations to remove induction veriables. Consider the
following loop:

J =n

do 1 =1, n
b(i)=Ca(j)+a(i))/2.
] =1

end do

Variable j is called a wraparound variable of first order. It is
called first order because only the first iteration uses a value of
] from outside the loop. A wraparound variable is an induction
variable whose value is carried from one iteration to the next.
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The way to remove the races produced by | is to peel off one
iteration, move the assignment toj from one iteration to the
top of the next iteration (notice that now j must be assigned

I - 1), and then privatize :

j =n
if (n>=1) then
b(1)=(a())+a(l))/2.
c$onmp parall el do private (i),lastprivate(j)
do i =2, n
j=i-1
b(i)=(a())+a(i))/2.
end do
end if

Notice that the if statement is necessary to make sure that the
first iteration is executed only if the original loop would have
executed it.
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Alternatively, the wraparound variable could be an induction
variable. The transformation in this case is basically the same
as above except that the induction variable has to be
expressed in terms of the loop index first.

Consider the loop:
] =n
do i =1, n
b(i)=(Ca(j)+a(i))/2.
] =) +1
end do

As we just said, we first replace the right hand side of the
assignement to j with an expression involving i .

J =n

do i =1, n
b(i)=C(a(m +a(i))/ 2.
M=l +j

end do

] =n+j

Notice that we changed the name of the variable within the
loop to be able to use the value of j] coming from outside the
loop.
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We can now proceed as above to obtain:
] =n
if (n>=1) then
b(1)=(a(j)+a(i_))/2. _
cdonp parall el do private (i, mn

do i =2, n
=i - 1+j
b(i)=C(a(m +a(i))/ 2.
end do
] =N—+j lthis has to be inside the if
end if
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7.5 Ordered sections.

Sometimes the only way to avoid races is to execute the code
serially. Consider the looP:

do i =1, n
a(i)=b(i)+1
c(i)=sin(c(i-1))+a(i)
d(i)=c(i)+d(i-1)**2
end do

Although there is no clear way to avoid races in this loop, we
could execute in parallel the first statement. In fact, we can in
this case transform the loop into:
cdonp paral l el do
do i =1, n
a(i)=b(i)+1
end do
do i =1, n
c(i)=sin(c(i-1))+a(i)
d(i)=c(i)+d(i-1)**2
end do
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However, there is a way to improve the performance of the whole loop
with the or der ed directive whose syntax is as follows:
conp or der ed[ ( name) ]
bl ock
conp end order ed[ ( name) ]

The interleaving of the statements in the ordered sections of different
iterations are identical to that of the sequential program. Ordered
sections without a name are all assumed to have the same name.

Thus, the previous loop can be rewritten as:
conp paral l el do

do i =1, n
a(i)=b(i)+1
conp order ed (x)
c(i)=sin(c(i-1))+1
conp end or der ed( x)
conp ordered (y)
d(i)=c(i)+d(i-1)**2
conp end ordered (y)

end do
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Thus, we have two ways of executing the loop in parallel.
Assuming n=12, and four processors, the following time lines
are feasible:

a(l) =

a(2) =

a(3) =

a(4) =

a(b5) =

a(6)=

a(7)=

a(8) =

a(l) =

a(2) =

a(3) =

a(4) =

a(9) =

a( 10) =

a(11) =

c(l)=

a( 12) =

c(l)=

d(1) =

c(2)=

d(2) =

c(3)=

d(3) =
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d(1) =

c(2)=

a(b) =

d(2) =

c(3) =

a(6) =

d(3) =

c(4) =

c(5) =

a(7)=

d(4) =

d(5) =

c(6)=

a(8) =

d(e) =

c(7)=

d(7) =
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Notice that now no races exist because accesses to the same
memory location are always performed in the same order.

Ordered sections may need to include more than one
statement. For example, in the loop:

do 1 =1, n

a(i)=b(i-1)+1
b(i)=a(i) +c(i)
end.do
the possibility of races would not be avoided unless both
statements are made part of the same ordered section.
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It is important to make the ordered sections as small as
possible because the overall execution time depends on the
size of the longest ordered section.
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7.6 Execution time of a par al | el

do when

order ed sections have constant execution

time.
* Consider the loop

cdonp paral l el do

do i =1, n

cdonp ordered (a)

aa = ...
cdonp end ordered (a)
cdonp ordered (b)
cdonp or d-e.r.ed (c)
cdonp or d-e.r.ed (d)
cdonp or d-e.r.ed (e)

end do
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* Assume its execution time lines have the following form:

“

Z

00
00| D

which, in terms of performance, is equivalent to the



following time lines:

‘a‘ b C d‘e

«—D—a‘ b C d‘e‘

‘—D—"—D—la‘ b C d |e

‘—D—"—D—"—D—la b C d |e
° °
° °
° °

where a constant delay D between the start of consecutive
iterations is evident. This delay is equal to the time of the
longest ordered section (i.e., D=T(c) in this case).

* The execution time of the previous loop using n processors
IS:
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T(a)+T(b)+nT(c)+T(d)+T(e)

as can be seen next:

T(a)+T(b) nT(c)=nD T(d)+T(e)
‘a ‘ b d ‘e
a
000 ‘ . 1 le
‘a b C d |e

* |In general the execution time when there are as many

processors as iterations is

where B is the execution time of the whole loop body.
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7.6 Critical Regions and Reductions

Consider the following loop:

do i =1, n
do i =1, m
a(i,j)=bCi,j)+d(i,])
| sum=i sum+i a(i, j)
end
end

Here, we have a race due toi sum This race cannot be
removed by the techniques discussed above. However, the +
operation used to compute i sumis associative andi sum
only appears in the statement that computes its value.

The integer addition operation is not really associative, but in
practice we can assume it is if the numbers are small enough
so there is never any overflow.
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Under these circumstances, the loop can be transformed into
the following form:

cdonp parall el private(local isumnm
| ocal 1 sun=0
c$onp pdo
do i =1, n
do j =1, m
| ocal i sunel ocal _1sum+ ia(j,i1)
end do
end do

cdonp end pdo nowai t
cdonp critical
| sun=i sum+l ocal 1 sum
cdonp end critical
c$onp end parall el
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Here, we use the critical directive to avoid the following
problem.

The statement
| sunEi sum+l ocal 1 sum

will be translated into a machine language sequence similar to
the following:

| oad regi ster_1,isum
| oad regi ster_2,l ocal i1 sum
add regi ster 3, register_1,reqgister_2

store regi ster_ 3,1 sum

Assume now there are two tasks executing the statement
| sun=i sum+l ocal 1 sum

simultaneously. In one | ocal sumis 10, and in the other 15.
Assume i sumis 0O when both tasks start executing the
statement. Consider the following sequence of events:
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ti ne task 1 Il sum task 2
1 | oad O
rl,l ocal isum
2 |l oad r2, i sum O | oad
rl, |l ocal isum
3 add r3,r2,r1 O |l oad r2,i sum
4 store r3, isum 10 add r3,r2,r1l
15 store r3,1 sum

As can be seen, interleaving the instructions between the two
tasks produces incorrect results. The critical directive
precludes this interleaving. Only one task at a time can
execute a critical region with the same name.
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The assumption is that it does not matter in which order the
tasks enter a critical region as long as they are never inside a
critical region of the same name at the same time.
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An alternative way of writing the above parallel loop is:

cdonp parall el do reduction(+:isum
do i =1, n
do j =1, n
| sum=i sum+i a(j , 1)
end do
end do

The reduction clause can be applied to a number of operations
and intrinsic functions.
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