
      
GUIDE™ Reference Manual
Version 3.5
Document #9607001
Kuck & Associates, Inc.



     

this
ans,

Kuck

  

ively

 their

.S.
ights
 or
ights
GUIDE™ Reference Manual
Version 3.5

Revised September, 1997

Kuck & Associates, Inc.
1906 Fox Drive

Champaign, IL 61820-7345
USA

Phone: (217) 356-2288
FAX: 217-356-5199

Internet: kai@kai.com
WWW: http://www.kai.com/kpts/guide/

The information in this document is subject to change without notice. No part of 
document may be reproduced, copied or distributed in any form or by any me
electronic or mechanical, for any purpose, without the express written consent of 
& Associates, Inc.

© Copyright 1983-1997 by Kuck & Associates, Inc. All rights reserved.

KAI, KAP/Pro Toolset, Assure, and Guide are trademarks of Kuck & Associates, Inc.
Cray is a registered trademark of Cray Research, Inc.
DEC and Digital are trademarks of Digital Equipment Corp.
Java is a trademark of Sun Microsystems, Inc.
UNIX is a registered Trademark in the USA and other countries, licensed exclus
through X/Open Company Limited. 
All other brand and product names are trademarks or registered trademarks of
respective companies.

GOVERNMENT RESTRICTED RIGHTS. Use, duplication, or disclosure by the U
government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the R
in Technical Data and Computer Software clause at DFARS 252.227-7013
subparagraphs (c) (1) and (2) of the Commercial Computer Software-Restricted R
clause at 48 CFR 52.227-19, as applicable.

Printed in the United States of America.



                     

Table of Contents
CHAPTER 1 1 Introduction

1 About Guide

2 Using this Reference Manual

2 Reference Manual Contents

3 Reference Manual Conventions

3 Guide On-line

4 Technical Support

4 Comments

CHAPTER 2 5 Using Guide

5 Parallel Processing Model

5 Overview

7 Increasing Efficiency

9 Data Sharing

9 Using Guide to Develop Parallel Programs
guide@kai.com i



 

Table of Contents

                                                     
10 Analyze

10 Restructure

10 Tune

11 Orphaned Directives

13 A Few Rules About the “Orphaned” Directives

CHAPTER 3 15 OpenMP Directives

15 Control Directives

15 PARALLEL/END PARALLEL

16 PDO/END PDO

17 PSECTIONS/END PSECTIONS

17 PSINGLE/END PSINGLE

18 PARALLEL DO/END PARALLEL DO

19 PARALLEL SECTIONS/END PARALLEL SECTIONS

20 IF(if_expr)

20 DEFAULT(SHARED|PRIVATE|NONE)
SHARED(shared_vars)
PRIVATE(private_vars)

21 FIRSTPRIVATE (firstprivate_vars)

21 LASTPRIVATE (lastprivate_vars)

21 REDUCTION(operator:reduction_vars)
REDUCTION(intrinsic:reduction_vars)

22 COPYIN (copyin_vars)

22 Common Privatization

23 INSTANCE PARALLEL

23 THREAD PRIVATE

23 Declaring Private Commons

24 Allocating Private Commons

25 Synchronization Directives

25 CRITICAL/END CRITICAL

25 ORDERED/END ORDERED

26 MASTER/END MASTER

26 ATOMIC
ii http://www.kai.com/kpts/guide/



   

Table of Contents

                                                   
26 FLUSH[(string)]

27 BARRIER

27 Scheduling Options

28 Scheduling Options Using Directives

29 Scheduling Options Using Environment Variables

29 Environment Variables

29 KMP_LIBRARY=<string>

30 KMP_STACKSIZE=<integer>[,<character>]

30 KMP_STATSFILE=<file>

30 LD_LIBRARY_PATH=<path>

30 OMP_DYNAMIC=<boolean>

31 OMP_NUM_THREADS=<integer>

31 OMP_SCHEDULE=<string>[,<integer>]

CHAPTER 4 33 The Guide Drivers

33 About Guidef77 and Guidef90

34 Using the Drivers

35 Driver Options

35 Displaying the Driver Usage Message

35 Displaying All Command Lines

35 Suppressing Guidef Warnings

36 Driver-Specific Options

36 WG,guide_option_1[[[,guide_option_2],guide_option_3],...]

36 WGcompiler=<path>

36 WGcpp=<path>

36 WGf77=<path>

36 WGf90=<file>

36 WGfortran=<path>

36 WGftn=<path>

37 WGkeep

37 WGkeepcpp

37 WGld=<file>
guide@kai.com iii



 

Table of Contents

                                                            
37 WGlibpath=<path>

37 WGlink=<path>

37 WGnocpp

37 WGnokeep

38 WGnoprocess

38 WGnorc

38 WGonly

38 WGpath=<path>

38 WGprefix=<string>

38 WGsrcdir

39 WGversion

39 Guide Options

39 Guide Options Functional Categories

39 General Optimization

39 Input-Output

39 Listing

39 Advanced Optimization

40 FORTRAN Dialect

40 Hardware

40 Directive Recognition

40 Guide Options Table

43 Guide Options Alphabetic Listing

43 alignmax=<integer>

43 assume=<string> or a=<string>; noassume or nas

44 blank_padding or bp; noblank_padding or nbp

44 case or case; nocase or ncase

44 chunk=<integer> or chk=<integer>

44 cmp[=<file>]

45 concurrentize, conc; noconcurrentize, noconc

45 datasave or ds; nodatasave or nds

45 directives=p or dr=p; nodirectives or ndr

45 dlines or dl; nodlines or ndl

46 free; nofree
iv http://www.kai.com/kpts/guide/



   

Table of Contents

               
46 heaplimit=<integer> or heap=<integer>

47 ignoreoptions or ig; noignoreoptions or nig

47 include=<directory> or inc=<directory>

47 input=<file> or i=<file>

47 integer=<integer> or int=<integer>

48 lines=<integer> or ln=<integer>

48 list[=<file>] or l=[<file>]; nolist or nl

48 listoptions=<string> or lo=<string>

48 logical=<integer> or log=<integer>

49 minconcurrent=<integer> or mc=<integer>

49 onetrip or 1; noonetrip or n1

50 optimize=<integer> or o=<integer>

50 real=<integer> or rl=<integer>

50 recursion or rc; norecursion or nrc

50 roundoff=<string> or r=<string>

51 save=<string> or sv=<string>

52 scalaropt=<integer> or so=<integer>

52 scan=<integer> or scan=<integer>

52 scheduling=<character> or schd=<character>

53 suppress=<string> or su=<string>

53 syntax=<string> or sy=<string>

53 type or ty; notype or nty

54 c*$*options Line

CHAPTER 5 55 Libraries

55 Selecting a Library

55 Serial

56 Turnaround

56 Throughput

56 The Guide_stats Library

57 Linking the Libraries

57 External Routines
guide@kai.com v



Table of Contents
57 mppbeg(), mppend()

58 omp_get_max_threads()

58 omp_get_num_procs()

58 omp_get_num_threads()

59 omp_get_thread_num()

CHAPTER 6 61 GuideView

61 Introduction

61 Using GuideView

62 GuideView Options

62 mhz=<integer>

63 ovh=<file>

63 WJ,[java_option]

63 JAVA Options

63 ms<integer>[{k,m}]

63 mx<integer>[{k,m}]

CHAPTER 7 65 The Guide_stats Report

66 Settings

66 Parallel Region

67 Synchronized Code

67 Synchronization

67 Locks

67 Barriers

68 Join Barriers

68 Average Statistics

68 Performance Projections

69 Event Counts

69 Program Start/Finish

70 Internal Checks

70 Fork
vi http://www.kai.com/kpts/guide/



Table of Contents
70 Private Commons with INSTANCE PARALLEL or THREAD PRIVATE

71 Dynamic Scheduling

71 Synchronization Events

72 Internal Synchronization Events

72 Routine Events

72 Library Calls

72 Internal Events

CHAPTER 8 73 Directive Translation

73 KAP/Pro Parallel Directive to OpenMP Directive Translator

74 Cray Directive to OpenMP Directive Translator

76 Cray TASKCOMMON as opposed to OpenMP THREAD PRIVATE

77 SGI Directive to KAP/Pro Parallel Directive Translator

79 KAP Directive to OpenMP Directive Translator

APPENDIX A 81 Examples

82 PDO: A Simple Difference Operator

83 PDO: Two Difference Operators

84 PDO: Reduce Fork/Join Overhead

85 PSECTIONS: Two Difference Operators

86 PSINGLE: Updating a Shared Scalar

87 PSECTIONS: Updating a Shared Scalar

88 PDO: Updating a Shared Scalar

89 PARALLEL DO: A Simple Difference Operator

90 PARALLEL SECTIONS: Two Difference Operators

91 Simple Reduction

92 TASKCOMMON: Private Common

93 THREAD PRIVATE: Private Common and Master Thread

94 INSTANCE PARALLEL: As a Private Common

95 INSTANCE PARALLEL: As a Shared and then a Private Common

96 Avoiding External Routines: Reduction
guide@kai.com vii



Table of Contents
98 Avoiding External Routines: Temporary Storage

100 FIRSTPRIVATE: Copying in Initialization Values

101 THREAD PRIVATE: Copying in Initialization Values

102 INSTANCE PARALLEL: Copying in Initialization Values

APPENDIX B 103 Timing Guide Constructs

104 Typical Overhead
viii http://www.kai.com/kpts/guide/



About Guide Introduction •  1

In
tr

od
uc

tio
n

1

lop-

o-
et 
sys-
ndard 
tible 

ted 
CHAPTER 1 Introduction

About Guide

The KAP/Pro Toolset is a system of tools and application accelerators for deve
ers of large scale, parallel scientific-engineering software.

The KAP/Pro Toolset is intended for users who understand their application pr
grams and understand parallel processing. The Guide component of the tools
implements OpenMP directives on all popular shared memory parallel (SMP) 
tems that support threads. The KAP/Pro Toolset uses the de facto industry sta
OpenMP directives to express parallelism. The OpenMP directive set is compa
with the older directives from PCF, X3H5, SGI and Cray.

Throughout this manual, the term “OpenMP directives” is used to refer to the 
KAP/Pro Toolset implementation of the OpenMP de facto standard, unless sta
otherwise. 

The KAP/Pro Toolset includes a utility to translate directives from the older 
KAP/Pro Toolset parallel processing directives which were based on X3H5 
(c$par  directives) to the new OpenMP directives (c$omp). 
guide@kai.com 1



1 •  Introduction Using this Reference Manual

2

ut-

llel 
e 

 for 

s.

 
se 

een 

aph-

uide 

.

ith 
The input to Guide is a FORTRAN program with OpenMP directives. The o
put of Guide is a FORTRAN program with the directive parallelism imple-
mented using threads and the Guide support libraries. This output can be 
compiled using a FORTRAN compiler.

Please note that this version of Guide does not support MODULES and 
INTERNAL PROCEDURES.

Using this Reference Manual

Reference Manual Contents

Chapter 2, “Using Guide,” beginning on page 5, contains the OpenMP para
processing model, an overview for using Guide, and an example to illustrat
how to insert Guide directives .

Chapter 3, “OpenMP Directives,” beginning on page 15, contains definitions
all OpenMP directives. OpenMP directives control the level of parallelism 
within your code. This chapter also defines the Guide environment variable

Chapter 4, “The Guide Drivers,” beginning on page 33, describes the Guide
drivers, and it contains descriptions of all Guide command line options. The
options allow you to alter Guide’s default behaviors.

.Chapter 5, “Libraries,” beginning on page 55, explains the differences betw
the libraries, and how to use them. 

Chapter 6, “GuideView,” beginning on page 61, describes the GuideView gr
ical viewer.

Chapter 7, “The Guide_stats Report,” beginning on page 65, describes the G
statistics report that is generated when you link with the guide_stats library. 

Chapter 8, “Directive Translation,” beginning on page 73, describes the 
cray2omp utility that translates Cray cmic$ directives to OpenMP directives

Appendix A, “Examples,” beginning on page 81, contains code examples w
OpenMP directives.
http://www.kai.com/kpts/guide/



Guide On-line Introduction •  1

In
tr

od
uc

tio
n

1

 the 

 

the 

re-

 
om-
Appendix B, “Timing Guide Constructs,” beginning on page 103, shows the 
expense associated with using OpenMP directives.

Reference Manual Conventions

To distinguish filenames, commands, variable names, and code examples from
remainder of the text, these terms are printed in courier  typeface. Command 
line options are printed in bold typeface.

With Guide’s command line options and directives, one can control a program’s 
parallelization by providing information to Guide. Some of these command line
options and directives require arguments. In their descriptions, <integer> indicates 
an integer number, <path> indicates a directory, <name> indicates an argument 
name, <file> indicates a filename, <character> indicates a single character, and 
<string> indicates a string of characters. For example, -lines=<integer> in this 
user’s guide indicates that an integer needs to be provided in order to change 
-lines option from the default value to a new value (such as -lines=0).

Optional items are denoted with square brackets:

-[no]dlines

The no is optional. If -dlines is used, dlines is turned on. To turn dlines off, use 
-nodlines.

To differentiate user input and code examples from descriptive text, they are p
sented:

In Courier typeface, indented where possible .

For brevity, throughout this manual, we use Guidef to represent Guidef77 and
Guidef90, the Guide drivers for the system FORTRAN 77 and FORTRAN 90 c
pilers.  

Guide On-line

Visit the Guide Home Page at http://www.kai.com/kpts/guide/ for the latest infor-
mation on Guide. 
guide@kai.com 3



1 •  Introduction Technical Support

4

f 
ource 
 infor-

r fea-
asy 
pli-
Technical Support

KAI spends considerable effort to produce high-quality software; however, i
Guide produces a fatal error or incorrect results, please send a copy of the s
code, a list of the switches and options used, and as much output and error
mation as possible to Kuck & Associates (KAI), guide@kai.com.

Comments

If there is a way for Guide to provide more meaningful results, messages, o
tures that would improve usability, let us know. Our goal is to make Guide e
to use as you improve your productivity and the execution speed of your ap
cations. Please send your comments to guide@kai.com.
http://www.kai.com/kpts/guide/



Parallel Processing Model Using Guide •  2

U
si

ng
 G

ui
de

2

ent 
raged 

r the 
l. As 

alled 
ntil it 

is 
xe-
CHAPTER 2 Using Guide

Parallel Processing Model

This section defines general parallel processing terms and explains how differ
constructs affect parallel code. The user interested in exact semantics is encou
to consult the OpenMP standard document or the ANSI X3H5 Parallel Extensions 
for FORTRAN document number X3H5/93-SD1-Revision M or contact KAI at 
http://www.kai.com/kpts/guide/ or email KAI at guide@kai.com for more informa-
tion. 

Overview

After placing OpenMP parallel processing directives in an application, and afte
application is processed with Guide and compiled, it can be executed in paralle
the parallel program begins execution, a single thread begins. This thread is c
the base or master thread. The master thread will continue serial processing u
encounters a parallel region. Parallel regions are delineated by the PARALLEL/
END PARALLEL directive pair.

When the master thread enters a parallel region, a team, or group of threads, 
formed. Starting from the beginning of the parallel region, code is replicated (e
cuted by all team members) until a worksharing construct is encountered. The PDO, 
PSECTIONS, or PSINGLE constructs are defined as worksharing constructs 
guide@kai.com 5



2 •  Using Guide Parallel Processing Model

6

nt 

exi-
e 
 
truct 
el 

is 

ruct 
 

y the 

her 

 
d 

con-
uct.

em-
in the 
because they distribute the enclosed work among the members of the curre
team. encountered. A worksharing construct is only distributed if it occurs 
dynamically inside of a parallel region. If the worksharing construct occurs l
cally inside of the parallel region then it is always executed by distributing th
work among the team members. If the worksharing construct is not lexically
enclosed by a parallel region (i.e. it is orphaned), then the worksharing cons
will be distributed among the team members of the closest enclosing parall
region if one exists, otherwise it will be executed serially. 

The PDO/END PDO directive pair controls parallel execution for a DO loop. 
PSECTIONS/END PSECTIONS directive pair controls parallel execution for 
arbitrary blocks of sequential code, one section per thread. The PSINGLE/END 
PSINGLE directive pair defines a section of code where exactly one thread 
allowed to execute the code. 

Synchronization constructs are CRITICAL/END  CRITICAL , ORDERED/END 
ORDERED, MASTER/END MASTER, ATOMIC, FLUSH and BARRIER. Syn-
chronization can be specified within a parallel region or a worksharing const
with the CRITICAL/END  CRITICAL  directive pair. Only one thread at a time
is allowed to execute the code within this directive pair. Within a PDO or PSEC-
TIONS construct, synchronization can be specified with an ORDERED/END 
ORDERED directive pair. This directive pair is used in conjunction with a PDO or 
PSECTIONS construct with the ORDERED clause to impose an order on the 
execution of a section of code. The MASTER/END MASTER directive pair is 
another synchronization directive pair that can be used to force execution b
master thread. Another way to specify synchronization is with a BARRIER 
directive. A BARRIER directive can be used to force all team members to gat
at a particular point in code. Each team member that executes a BARRIER waits 
at the BARRIER until all of the team members have arrived. BARRIERs cannot 
occur (cause deadlock) within worksharing or synchronization constructs.

When a thread reaches the end of a worksharing construct (an END PDO, END 
PSECTIONS, or END PSINGLE directive), it must wait until all team members
within that construct have completed their work. When all of the work define
by the worksharing construct is completed, the team exits the worksharing 
struct and continues executing the code that follows the worksharing constr

At the end of the parallel region, the master thread waits until all the team m
bers have arrived. Then the team is logically disbanded (but may be reused 
next parallel region) and the master thread continues sequentially until it 
encounters the next parallel region. 
http://www.kai.com/kpts/guide/



Parallel Processing Model Using Guide •  2

U
si

ng
 G

ui
de

2
-
for a 

 
of the 

ng 
Increasing Efficiency

Scheduling options can be selected for worksharing constructs to increase effi
ciency. Scheduling options specify the way processes are assigned iterations 
loop. These options control the chunk size and load balancing. A NOWAIT option 
can be used to increase efficiency. The NOWAIT option allows processes that finish
their work to continue executing code. These processes do not wait at the end 
worksharing construct.

Enabling the option -optimize can also help increase efficiency. For example, usi
-optimize=1 will eliminate unnecessary BARRIERs. The default setting for this 
option is -optimize=1.
guide@kai.com 7



2 •  Using Guide Parallel Processing Model

8

For your convenience, the following example has been adapted from the ANSI 
X3H5 Parallel Extensions for FORTRAN document. 

Figure 2-1 “Pseudo Code of the Parallel Processing Model”

program main       ! Begin Serial Execution
                   !
 ...               ! Only the master thread executes
                   !
parallel           ! Begin a Parallel Construct,
                   ! form a team
                   !
    ...            ! This is Replicated Code where each team
    ...            ! member executes the same code
                   !
    psections      ! Begin a Worksharing Construct
                   !
    section        ! One unit of work
       ...         !
    section        ! Another unit of work
       ...         !
    end psections  ! Wait until both units of work complete
                   !
    ...            ! More Replicated Code
                   !
    pdo            ! Begin a Worksharing Construct,
                   ! each iteration is a unit of work
                   !
    ...            ! Work is distributed among the team
                   !
    end pdo nowait ! End of Worksharing Construct,
                   ! nowait is specified
                   !
    ...            ! More Replicated Code
                   !
    barrier        ! Wait for all team members to arrive
                   !
    ...            ! More Replicated Code
                   !
end parallel       ! End of Parallel Construct, disband team
                   ! continue with serial execution
                   !
 ...               ! Possibly more Parallel Constructs
                   !
end                ! End serial execution
http://www.kai.com/kpts/guide/



Using Guide to Develop Parallel Programs Using Guide •  2

U
si

ng
 G

ui
de

2
ucts 

 syn-

 
liza-

t 

n of 

he 

 a 
ual 
ore 
 text.
Data Sharing

Data sharing is specified at the start of a parallel region or worksharing constr
using the SHARED and PRIVATE clauses. All variables in the SHARED clause are 
shared among the members of a team. It is the programmer’s responsibility to
chronize access to these variables. All variables in the PRIVATE clause are private 
to each team member. For the entire parallel region, assuming t team members, we 
have t+1 copies of all the variables in the PRIVATE clause; one global copy that is
active outside parallel regions, and a private copy for each team member. Initia
tion of PRIVATE variables at the start of a parallel region is the programmer’s 
responsibility, unless the FIRSTPRIVATE clause is specified in which case the 
PRIVATE copy is initialized from the global copy at the start of the construct a
which the FIRSTPRIVATE clause is specified. In general, updating the global 
copy of a PRIVATE variable at the end of a parallel region is the programmer’s 
responsibility. However the LASTPRIVATE clause of a PDO directive enables 
updating the global copy from the team member that executed the last iteratio
the PDO. 

In addition to the SHARED and PRIVATE clauses, entire COMMON blocks can be 
privatized using the INSTANCE PARALLEL directive along with NEW or COPY 
NEW directives. For INSTANCE PARALLEL, if a NEW or COPY NEW appears, then 
there are t+1 copies of the COMMON block when there are t team members. This fol-
lows the same model as for PRIVATE variables. If a NEW or COPY NEW is not 
encountered for an INSTANCE PARALLEL COMMON block, only one copy of the 
COMMON block exists.

Another method for privatizing COMMON blocks is by using a THREAD PRIVATE 
directive. For compatibility with Cray TASKCOMMON directives, THREAD PRI-
VATE blocks always have t copies for t team members. The master thread uses t
global copy as its private copy for the duration of each parallel region.

Using Guide to Develop Parallel Programs

To help users who are familiar with parallel programming, this section contains
high-level overview for using Guide to develop a parallel application. This man
is not intended to be a comprehensive treatment of parallel processing. For m
information about parallel processing, consult your favorite parallel processing
guide@kai.com 9



2 •  Using Guide Using Guide to Develop Parallel Pro-

10

e 

 that 
do 

n be 
-

m.

 the 

 

d 
the 
Analyze

• Profile the program to find out where it spends most of its time. This is th
part of the program that needs to be parallelized.

• In this part of the program there are usually nested loops. Locate a loop
has very few cross-iteration dependences. Work through the call tree to 
this.

Restructure

• If the loop is parallel, introduce a Guide PARALLEL DO directive around this 
loop.

• In the routine with the PARALLEL DO, list the variables that are present in 
the loop on the SHARED(), PRIVATE() , LASTPRIVATE() , or 
FIRSTPRIVATE()  clauses.

• List the DO index of the parallel loop as PRIVATE() .

• COMMON block elements must not be placed on the PRIVATE()  list if their 
global scope is to be preserved. The common privatization directives ca
used to privatize to a thread the COMMON containing those variables with glo
bal scope.

• Attempt to remove cross-iteration dependencies by rewriting the algorith

• Synchronize the remaining cross-iteration dependences by placing CRITI-
CAL directives around the uses and assignments to variables involved in
dependences.

• Any I/O in the PARALLEL DO should be synchronized.

• Identify more parallel loops and restructure them.

• If possible merge adjacent PARALLEL DOs into a single parallel region with
multiple PDOs to reduce execution overhead.

Tune

• Guide supports the tuning process by including the guide_stats library. The 
tuning process should include minimizing the sequential code in CRITICAL  
sections and load balancing by using various scheduling options.

For users with parallel FORTRAN 77 programs that already have embedde
Cray autotasking directives, a tool is included with Guide to help automate 
http://www.kai.com/kpts/guide/



Orphaned Directives Using Guide •  2

U
si

ng
 G

ui
de

2

n” 

 
. In 
u-
ines 
llel-

ajor 
job of translating them to KAP/Pro parallel directives. See “Directive Translatio
on page 73.

Orphaned Directives

The KAP/Pro Toolset 3.0 introduces an extension to the parallel programming
model that dramatically increases the expressiveness of the parallel directives
addition to being able to specify all of the parallel directives inline in one subro
tine, you are now able to partition the directives among many different subrout
so that you are not constrained in your programming style in order to use para
ism.

The example:

c$omp parallel private(i) shared(n)
c$omp pdo
        do i = 1, n
           call work(i)
        end do
c$omp end parallel

is a common programming idiom for using the PDO worksharing construct to con-
currentize the execution of the loop. If we had two such loops we might write:

c$omp parallel private(i,j) shared(n)
c$omp pdo
        do i = 1, n
           call some_work(i)
        end do
c$omp pdo
        do j = 1, n
           call more_work(j)
        end do
c$omp end parallel

However, programs are sometimes naturally structured by placing each of the m
computational sections into it's own subroutine. For example:
guide@kai.com 11



2 •  Using Guide Orphaned Directives

12

nd 
et 

into 
subroutine phase1
   do i = 1, n
      call some_work(i)
   end do
end

subroutine phase2
   do j = 1, n
      call more_work(j)
   end do
end

In KAP/Pro Toolset 3.0, you can parallelize this code in a natural manner, a
still maintain all of the benefits of specifying parallelism using KAP/Pro Tools
parallel directives.

        ...
c$omp parallel
        call phase1
        call phase2
c$omp end parallel
        ...

        subroutine phase1
c$omp pdo
           do i = 1, n
              call some_work(i)
           end do
        end

        subroutine phase2
c$omp pdo
           do j = 1, n
              call more_work(j)
           end do
        end

Notice in this example, the directives specifying the parallelism are divided 
three separate subroutines. 
http://www.kai.com/kpts/guide/



Orphaned Directives Using Guide •  2

U
si

ng
 G

ui
de

2
the 
 

of a 
A Few Rules About the “Orphaned” Directives

1. An orphaned worksharing construct (PDO/PSECTION/PSINGLE) that is exe-
cuted outside of a dynamic parallel region will be executed sequentially. In 
following example the first call to PHASE0 is executed serially, and the second
call is partitioned among the processors on the machine.

        ...
        call phase0(10)
c$omp parallel
        call phase0(10)
c$omp end parallel
        ...

        subroutine phase0(n)
c$omp pdo
        do i = 1, n
           call other_work(i)
        end do
        end 

2. Any collective operation (worksharing construct or barrier) executed inside 
worksharing construct is illegal. For example:

    ...
c$omp parallel
c$omp pdo
        do i = 1, n
           call bar
        end do
c$omp end parallel
    ...
        subroutine bar
c$omp barrier
        end
guide@kai.com 13



2 •  Using Guide Orphaned Directives

14

 

r 

 at 
allel 
3. It is illegal to execute a collective operation (worksharing or barrier) from
inside of a synchronization region (CRITICAL/ORDERED). 

c$omp parallel
c$omp critical
        call test
c$omp end critical
c$omp end parallel
        ...

        subroutine test
c$omp pdo
        do i = 1, n
           call work(i)
        end do
        end

4. All structured directives must occur in the same block of the program. Fo
example (PDO/END PDO, CRITICAL/END  CRITICAL , PARALLEL/END 
PARALLEL, ORDERED/END ORDERED, etc.). 

5. Private scoping of a variable at a worksharing construct can be specified
the worksharing construct.  Shared scoping must be specified at the par
region.  Please consult the OpenMP specification for complete details.

        subroutine test
        common /cmndat/ i
c$omp pdo
        do i = 1, n
            call work(i)
        end do
        end
http://www.kai.com/kpts/guide/



Control Directives OpenMP Directives •  3

O
pe

nM
P

 
D

ire
ct

iv
es

3

irec-
b-
 
d, 

ckets 
re-
CHAPTER 3 OpenMP Directives

Control Directives

Guide uses OpenMP directives to support a single level of parallelism. Each d
tive begins with C$OMP. When a parallel processing directive is continued on su
sequent lines, each additional line begins with C$OMP&. Several directives must be
paired (directive and END directive). The same type of directive may not be neste
e.g. a C$OMP PDO directive may not appear within the scope of another PDO direc-
tive within the same subroutine. Please note that items enclosed in square bra
([] ) are optional. The syntax of the OpenMP directives accepted by Guide is p
sented below. 

PARALLEL/END PARALLEL

The C$OMP PARALLEL and C$OMP END PARALLEL directives define the scope 
of a parallel region. 
guide@kai.com 15



3 •  OpenMP Directives Control Directives

16

allel 

tive, 
 exe-

e 

 the 
C$OMP PARALLEL
C$OMP& [IF (if_expr)]
C$OMP& [DEFAULT(SHARED|PRIVATE|NONE)]
C$OMP& [SHARED(shared_vars)]
C$OMP& [PRIVATE(private_vars)]
C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C$OMP& [COPYIN(copyin_vars)]
C$OMP END PARALLEL

The various clauses are described below. 

When a parallel region is encountered in the dynamic scope of another par
region, the parallel regions are each executed using a team of one thread.

PDO/END PDO

The C$OMP PDO directive states that the next statement is an iterative DO loop 
which will be executed using multiple threads. If the PDO/END PDO directive is 
encountered in the execution of the program while a parallel region is not ac
then the directives do not cause work to be distributed and the entire loop is
cuted on the thread that encounters this construct. 

C$OMP PDO
C$OMP& [Scheduling_Options]
C$OMP& [PRIVATE(private_vars)]
C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [LASTPRIVATE(lastprivate_vars)]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C$OMP& [ORDERED]
[C$OMP END PDO [NOWAIT]]

Using the C$OMP END PDO directive is optional. Without the NOWAIT clause, 
the C$OMP PDO directive will hold all threads that reach the end of the PDO loop 
until all iterations of that DO loop have been completed. Therefore, the C$OMP 
END PDO directive without the NOWAIT clause has no effect, and the end of th
C$OMP PDO directive is marked by the end of the DO loop. Specifying the 
C$OMP END PDO NOWAIT directive allows early finishing threads to execute 
code that appears after the C$OMP END PDO NOWAIT directive. If the C$OMP 
END PDO directive is used, no statements or directives may appear between
last statement of the DO loop and the C$OMP END PDO directive.
http://www.kai.com/kpts/guide/



Control Directives OpenMP Directives •  3

O
pe

nM
P

 
D

ire
ct

iv
es

3

n 

l 
 all 

e, 

til 
ection 
PSECTIONS/END PSECTIONS

The C$OMP PSECTIONS and C$OMP END PSECTIONS directive pair delineates 
sections of code that will be executed on different threads. Each parallel sectio
between the C$OMP PSECTIONS and C$OMP END PSECTIONS directives must 
be preceded by the C$OMP SECTION directive. If the PSECTIONS/ END PSEC-
TIONS directive is encountered in the execution of the program while a paralle
region is not active then the directives do not cause work to be distributed and
the psections are executed on the thread that encounters this construct. 

C$OMP PSECTIONS
C$OMP& [PRIVATE(private_vars)]
C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [LASTPRIVATE(lastprivate_vars)]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C$OMP& [ORDERED]
[C$OMP SECTION]
      [code A]
C$OMP SECTION
      [code B]
C$OMP END PSECTIONS [NOWAIT]

This example executes code A and code B in parallel on two threads. 

PSINGLE/END PSINGLE

The C$OMP PSINGLE and C$OMP END PSINGLE directives define a section of 
code where exactly one thread is allowed to execute the code.

C$OMP PSINGLE
C$OMP& [PRIVATE(private_vars)]
C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [LASTPRIVATE(lastprivate_vars)]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C$OMP END PSINGLE [NOWAIT]

The first arriving thread is allowed to execute the C$OMP PSINGLE directive. 
Other threads must wait until the master thread has finished the section of cod
then they continue executing with the statement after the C$OMP END PSINGLE 
directive. If the NOWAIT clause is present, then the other threads do not wait un
the master thread has executed the section of code and immediately skip the s
of code. 
guide@kai.com 17



3 •  OpenMP Directives Control Directives

18

n-
uted 

t 
PARALLEL DO/END PARALLEL DO

The C$OMP PARALLEL DO and C$OMP END PARALLEL DO directives are a 
short form syntax for a parallel region with a single PDO. The parallel loop is 
enclosed by the PARALLEL DO/END PARALLEL DO pair. The PARALELL 
DO/END PARALLEL DO directive is used in place of the PARALLEL/END 
PARALLEL and PDO/ END PDO directive pairs. If these directives are encou
tered while a parallel region is already active, then these directives are exec
by a team of one thread and the entire loop is executed by each thread tha
encounters it. 

C$OMP PARALLEL DO
C$OMP& [IF (if_expr)]
C$OMP& [Scheduling_Options]
C$OMP& [DEFAULT(SHARED|PRIVATE|NONE)
C$OMP& [SHARED(shared_vars)
C$OMP& [PRIVATE(private_vars)]
C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [LASTPRIVATE(lastprivate_vars)]
C$OMP& [COPYIN(copyin_vars)]
C$OMP& [ORDERED]
[C$OMP END PARALLEL DO]

The above example is equivalent to the following: 

C$OMP PARALLEL
C$OMP& [IF (if_expr)]
C$OMP& [DEFAULT(SHARED|PRIVATE|NONE)
C$OMP& [SHARED(shared_vars)]
C$OMP& [PRIVATE(private_vars)]
C$OMP& [COPYIN(copyin_vars)]
C$OMP PDO
C$OMP& [Scheduling_Options]
C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [LASTPRIVATE(lastprivate_vars)]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C$OMP& [ORDERED]
C$OMP END PDO NOWAIT
C$OMP END PARALLEL
http://www.kai.com/kpts/guide/



Control Directives OpenMP Directives •  3

O
pe

nM
P

 
D

ire
ct

iv
es

3

ro-
 by a 

coun-
PARALLEL SECTIONS/END PARALLEL SECTIONS

The C$OMP PARALLEL SECTIONS/C$OMP END PARALLEL SECTIONS direc-
tives are a short form for a parallel region with a single psection. The PSECTION is 
enclosed by the PARALLEL SECTIONS/END PARALLEL SECTIONS directive 
pair. The PARALLEL SECTIONS/END PARALLEL SECTIONS directive pair is 
used in place of the PARALLEL/END PARALLEL and PSECTIONS/END PSEC-
TIONS directive pairs. The psection between the C$OMP PARALLEL SECTIONS 
and C$OMP END PARALLEL SECTIONS directives must be preceded by the 
C$OMP SECTION directive. If the C$OMP PARALLEL SECTIONS and C$OMP 
END PARALLEL SECTIONS directives are encountered in the execution of the p
gram while a parallel region is already active, then these directives are executed
team of one thread and the entire construct is executed by each thread that en
ters it. 

C$OMP PARALLEL SECTIONS
C$OMP& [IF (if_expr)]
C$OMP& [DEFAULT(SHARED|PRIVATE|NONE)
C$OMP& [SHARED(shared_vars)
C$OMP& [PRIVATE(private_vars)]
C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [LASTPRIVATE(lastprivate_vars)]
C$OMP& [ORDERED]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C$OMP& [COPYIN(copyin_vars)]
[C$OMP SECTION]
      [code A]
C$OMP SECTION
      [code B]
C$OMP END PARALLEL SECTIONS

The above example is equivalent to the following: 
guide@kai.com 19



3 •  OpenMP Directives Control Directives

20

-
ates 
f 

 
en 

ble in 
ri-
C$OMP PARALLEL
C$OMP& [IF (if_expr)]
C$OMP& [DEFAULT(SHARED|PRIVATE|NONE)
C$OMP& [SHARED(shared_vars)]
C$OMP& [PRIVATE(private_vars)]
C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C$OMP& [COPYIN(copyin_vars)]
C$OMP PSECTIONS
C$OMP& [LASTPRIVATE(lastprivate_vars)]
C$OMP& [ORDERED]
[C$OMP SECTION]
      [code A]
C$OMP SECTION
      [code B]
C$OMP END PSECTIONS NOWAIT
C$OMP END PARALLEL

IF(if_expr)

When the logical IF  (if_expr)  expression exists, the IF  clause is evaluated. 
If the logical expression evaluates to .FALSE. , then all of the code in the paral
lel region is executed by a team of one thread. If the logical expression evalu
to .TRUE. , then the coden the parallel region may be executed by a team o
multiple threads. When the IF  clause is not present, it is assumed to be .TRUE.  

DEFAULT(SHARED|PRIVATE|NONE)
SHARED(shared_vars)
PRIVATE(private_vars)

The SHARED ()  and PRIVATE ()  lists in the parallel region state the explicit
forms of data sharing among the threads that execute the parallel code. Wh
distinct threads should reference the same variable or array, place the varia
the SHARED list. When distinct threads can reference distinct instances of va
ables or arrays, place the variable in the PRIVATE list. 

The PRIVATE clause is allowed on PARALLEL, PDO and PSECTIONS direc-
tives. The DEFAULT and SHARED clauses are only allowed on PARALLEL 
directives. 
http://www.kai.com/kpts/guide/



Control Directives OpenMP Directives •  3

O
pe

nM
P

 
D

ire
ct

iv
es

3

t 
 

p-
e-
 

 
tion of 

s for 
When a variable that is referenced in the lexical extent of a parallel region is no
listed on any list, its default sharing classification is determined based upon the
DEFAULT clause. DEFAULT(SHARED) causes unlisted variables to be SHARED, 
DEFAULT(PRIVATE)  causes unlisted variables to be PRIVATE, and 
DEFAULT(NONE) causes unlisted variables to generate an error. The only exce
tions to the DEFAULT rules are loop control variables (loop indices) and f90 stat
ment scoped entities, which are PRIVATE unless explicitly overridden. The default
is DEFAULT(SHARED). 

FIRSTPRIVATE (firstprivate_vars)

A variable or array in a FIRSTPRIVATE()  list is copied from the variable or array
of the same name in the enclosing context by each team member before execu
the construct.

The FIRSTPRIVATE clause is allowed on PARALLEL, PDO, PSECTIONS and 
PSINGLE directives. 

LASTPRIVATE (lastprivate_vars)

A variable or array in a LASTPRIVATE()  list is copied back into the variable or 
array of the same name in the enclosing context before the execution terminate
the team member that executes the final iteration of the index set for a PDO, the last 
lexical SECTION of a PSECTIONS construct, or the code enclosed by a PSINGLE, 
as appropriate. If the loop is executed and the LASTPRIVATE variable is not writ-
ten in the final iteration of the index set for a PDO or the last lexical SECTION in a 
PSECTIONS construct, then the value of the shared variable is undefined.

The LASTPRIVATE clause is allowed on PDO, PSECTIONS, and PSINGLE direc-
tives. 

REDUCTION(operator:reduction_vars)
REDUCTION(intrinsic:reduction_vars)

A variable or array element in the REDUCTION(reduction_vars)  list is 
treated as a reduction by creating a PRIVATE temporary for that variable and com-
puting into the original variable after the end of the construct using a CRITICAL  
section. The allowed operators are +, - , * , .AND. , .OR. , .EQV. , and .NEQV.  
The allowed intrinsics are MAX, MIN, IAND, IOR, and IEOR. 
guide@kai.com 21



3 •  OpenMP Directives Common Privatization

22

d’s 
of a 

om-
een 
The REDUCTION clause is allowed on PARALLEL, PDO, PSECTIONS, and 
PSINGLE directives. 

 c$omp parallel do
 c$omp& shared (a,n)
 c$omp& private (i)
 c$omp& reduction (max:maxa)
         do i = 1, n
             maxa = max ( maxa, a(i) )
         enddo
 c$omp end parallel do

The above example is equivalent to the following: 

 c$omp parallel
 c$omp& shared (a,n,maxa,maxa_orig)
 c$omp& private (i,maxa_local)
        maxa_local = minimum_valu_for_type_of_maxa
 c$omp pdo
        do i = 1, n
            maxa_local = max ( maxa_local, a(i) )
        enddo
 c$omp end pdo nowait
 c$omp critical
       maxa = max (maxa, maxa_local)
 c$omp end critical
 c$omp end parallel

COPYIN (copyin_vars)

The COPYIN()  clause applies only to THREAD PRIVATE common blocks and 
their members. This clause provides a mechanism to copy the master threa
values of the listed variables to the other members of the team at the start 
parallel region. 

The COPYIN directive is only allowed on PARALLEL directives. 

Common Privatization

Directives Globally addressable storage that is private to each thread in a c
putation is useful as a place to store information needed to coordinate betw
different subroutines executed by one thread of a parallel region. 
http://www.kai.com/kpts/guide/



Common Privatization OpenMP Directives •  3

O
pe

nM
P

 
D

ire
ct

iv
es

3

refer-

s 

 

-

This notion is supported by using the following two types of private commons:

6. INSTANCE PARALLEL as defined by ANSI X3H5 

7. THREAD PRIVATE as a migration feature for Cray’s TASKCOMMON 

INSTANCE PARALLEL

INSTANCE PARALLEL private COMMON blocks separate the declaration point 
from the allocation point. The allocation is specified via an explicit NEW or COPY 
NEW directive. The absence of an allocation directive causes all the threads to 
ence the same storage.

THREAD PRIVATE

THREAD PRIVATE causes an implicit NEW in every parallel region. COPY NEW of 
an THREAD PRIVATE COMMON block is provided as a migration feature for SGI’
COPYIN. Because NEW is implicit, an THREAD PRIVATE COMMON block is 
always private. 

Declaring Private Commons

Private COMMON blocks are declared by the INSTANCE PARALLEL or THREAD 
PRIVATE directives. The INSTANCE PARALLEL directive creates a copy of each
specified COMMON block for each thread, only when a NEW is encountered. The 
THREAD PRIVATE directive assigns each specified COMMON block to the master 
thread and creates a copy of the COMMON block for each additional thread. The syn
tax for the two directives is as follows:

C$OMP INSTANCE PARALLEL [/CMN1/ [,/CMN2/] ]
C$OMP THREAD PRIVATE [/CMN1/ [,/CMN2/] ] 

These directives are placed in the declaration section. If a COMMON block appears in 
an INSTANCE PARALLEL or THREAD PRIVATE directive somewhere, the COM-
MON block must appear, respectively, in an INSTANCE PARALLEL or THREAD 
PRIVATE directive everywhere. A variable in a private COMMON block 
(INSTANCE PARALLEL or THREAD PRIVATE) cannot appear in a DATA state-
ment.
guide@kai.com 23



3 •  OpenMP Directives Common Privatization

24

u-

ial-

 

om 
Allocating Private Commons

The NEW and COPY NEW directives allocate the named INSTANCE PARALLEL 
COMMON blocks inside parallel regions. For THREAD PRIVATE COMMON 
blocks, this allocation is implicit to allow compatibility with Cray’s TASKCOM-
MON. These directives must occur either in the declaration section for subro
tines which are called in the parallel region, or immediately following the 
PARALLEL statement when COMMON is used in the subroutine containing the 
parallel region.

When a thread inside a parallel region encounters a NEW directive, the named 
private COMMON blocks are allocated and initialized if they have not already 
been allocated and initialized. If the thread has previously allocated and init
ized the COMMON block for a different parallel region, that space is simply 
reused. 

Whether a COMMON block is private to each thread for a given parallel region
depends upon whether a NEW or COPY NEW directive for that COMMON block has 
been seen either inside the parallel region or in any of the routines called fr
that parallel region. If no NEW directive has been seen, the private COMMON 
block acts as a regular shared COMMON block.

The syntax for using the NEW directive is as follows: 

C$OMP NEW [/CMN1/ [,/CMN2/] ]

The COPY NEW directive is similar to the NEW directive. COPY NEW allocates 
and initializes private COMMON blocks if they have not already been allocated 
and initialized. However, COPY NEW causes the values in the original COMMON 
to be copied into the private COMMON in each parallel region entered. When NEW 
is specified, the COMMON is initialized only for the first parallel region encoun-
tered.

When COPY NEW is used with the THREAD PRIVATE directive, it must occur in 
the same subroutine immediately after the PARALLEL statement. 

The syntax for using the COPY NEW directive is as follows: 

C$OMP COPY NEW [/CMN1/ [,/CMN2/] ]

NOTE:  Behavior is undefined when COMMON blocks are allocated and initial-
ized with both a NEW and a COPY NEW within a single parallel region. If any 
http://www.kai.com/kpts/guide/



Synchronization Directives OpenMP Directives •  3

O
pe

nM
P

 
D

ire
ct

iv
es

3

ion. 

 

ion of 

ns are 
ly 

ot 

 
ter the 
tial 

ll dur-
thread executes a NEW or COPY NEW for a COMMON block, every thread must exe-
cute a NEW or COPY NEW, respectively, for the same COMMON block.

Synchronization Directives

CRITICAL/END CRITICAL

The C$OMP CRITICAL  and C$OMP END CRITICAL  directives define the scope 
of a critical section. Only one thread at a time is allowed inside the critical sect
The name has global scope. Two CRITICAL  directives with the same name are 
automatically mutually exclusively. All unnamed CRITICAL  sections are assumed
to map to the same name.

C$OMP CRITICAL [(name)]
C$OMP END CRITICAL [(name)]

ORDERED/END ORDERED

The C$OMP ORDERED and C$OMP END ORDERED directives define the scope of 
an ordered section. Only one thread at a time is allowed inside an ordered sect
the same name.

C$OMP ORDERED [(name)]
C$OMP END ORDERED [(name)]

The optional variable can be used to name an ordered section. Ordered sectio
allowed either within or outside of parallel regions, but when they occur lexical
outside of a parallel region, they must be unnamed. 

In addition, the ordered section must be dynamically enclosed in a PDO loop with 
the ORDERED scheduling modifier. It is an error to use this directive pair when n
in the dynamic scope of a PDO with an ORDERED modifier. 

The semantics of an ordered section are defined in terms of the loop’s iteration
space. The threads executing the iteration space are granted permission to en
ordered section in the same order as the iterations are executed in the sequen
version of the loop.

Each ordered section with a given name must only be entered once or not at a
ing the execution of a PDO iteration. 
guide@kai.com 25



3 •  OpenMP Directives Synchronization Directives

26

ip the 
lied 

wise 
 
ve 

irec-

and 

pec-
shed 
A deadlock situation will occur if these rules are not observed. 

MASTER/END MASTER

The section of code enclosed in a C$OMP MASTER/C$OMP END MASTER pair 
is executed by the master thread of the team. Other threads of the team sk
enclosed section of code and continue execution. Note that there is no imp
BARRIER on entry to or exit from the master section. 

ATOMIC

This directive ensures atomic update of a location in memory that may other
be exposed to the possibility of multiple, simultaneous, writing threads. This
directive only applies to the immediately following statement which must ha
one of the following forms:

x = x <op> <expr>
x = <expr> <op> x
x = <intrinsic> (x, <expr>)
x = <intrinsic> (<expr>, x)

where

Correct use of this directive requires that if an object is updated using this d
tive, than all references to that object must use this directive. 

FLUSH[(string)]

This directive causes thread visible variables to be written back to memory 
is provided for users who wish to write their own synchronization directly 
through shared memory. The optional string is a list which may be used to s
ify varaibles that need to be flushed. If the list is absent, all variables are flu
to memory. 

x is an intrinsic typed variable

<expr> is a scalar expression that does not reference x

<intrinsic> is one of MAX,MIN,IAND,IOR,IEOR

<op> is one of +, - , * , / , .AND. , .OR. , .EQV. , .NEQV.
http://www.kai.com/kpts/guide/



Scheduling Options OpenMP Directives •  3

O
pe

nM
P

 
D

ire
ct

iv
es

3

 the 
f 

ach 

nism 
d with 
ged 

rame-
t the 
e 
BARRIER

BARRIER directives are used to gather all team members to a particular point in
code. BARRIERs force team members to wait at that point in the code until all o
the team members encounter that BARRIER. BARRIER directives are not allowed 
inside of worksharing constructs.

C$OMP BARRIER

Scheduling Options

Scheduling options are used to specify the iteration dispatch mechanism for e
parallel loop. Scheduling options can be specified in the following three ways: 

1. Command Line Options

2. Directives

3. Environment Variables

Command line options and directives are used to specify the scheduling mecha
when the source file is being processed by Guide. For loops that are processe
the RUNTIME scheduling mechanism, described below, scheduling can be chan
at run time with environment variables.

Loop scheduling is dependent on the scheduling mechanism and the chunk pa
ter. The table below describes what each scheduling option does. Assume tha
loop has the following attributes: l iterations, p threads are being used to execute th
loop, and n is an integer greater than 0 specifying the chunk size. 
guide@kai.com 27



3 •  OpenMP Directives Scheduling Options

28

t here. 
 The 

 

-

ed 

 is to 
-

Scheduling Options Using Directives

The list below shows the syntax for specifying scheduling options with the PDO 
and PARALLEL DO directives. 

SCHEDULE(STATIC      [,<chunk_size>] )
SCHEDULE(DYNAMIC     [,<chunk_size>] )
SCHEDULE(GUIDED      [,<chunk_size>] )
SCHEDULE(TRAPEZOIDAL [,<chunk_size>] )
SCHEDULE(INTERLEAVED)
SCHEDULE(RUNTIME)

Table 3-1 Scheduling Options
Scheduling
Designator Chunk Meaning

s n Static scheduling with a chunk size of n. n iterations are 
dispatched statically to each thread (repeat until l itera-
tions have been dispatched). If n is missing, this is the 
same as static even scheduling.

e ignored Static even scheduling. The chunk size has no effec
l/p iterations are dispatched statically to each thread.
same as static with a chunk size of l/p.

i ignored Static interleaved scheduling. The chunk size has no
effect here. Thread i is statically dispatched iterations i, 
i+p , i+2p, ...

d n Dynamic scheduling with a chunk size of n. n iterations 
are dispatched dynamically to each thread.

g n Guided scheduling with a minimum chunk size of n. An 
exponentially decreasing number of iterations are dis
patched dynamically to each thread. At least n iterations 
are dispatched every time except the last.

t n Trapezoidal scheduling with minimum chunk size of n. A 
linearly decreasing number of iterations are dispatch
dynamically to each thread. At least n iterations are dis-
patched every time except the last.

r ignored Runtime scheduling is specified when the scheduling
be determined via the OMP_SCHEDULE environment vari
able.
http://www.kai.com/kpts/guide/



Environment Variables OpenMP Directives •  3

O
pe

nM
P

 
D

ire
ct

iv
es

3

uling 

ble 3-

ning 

e 
If <chunk_size>  is not specified, it is assumed to be 1 for DYNAMIC, GUIDED 
and TRAPEZOIDAL, and assumed to be missing for STATIC. See Table 3-1 on 
page 28 for a complete description of the scheduling options. The ORDERED sched-
uling modifier is necessary for PDO and PARALLEL DO loops which contain 
ordered sections.

Scheduling Options Using Environment Variables

Scheduling options may also be specified at run time when the run time sched
type has been specified at Guide processing time with the OMP_SCHEDULE envi-
ronment variable. The syntax for the OMP_SCHEDULE environment variable is as 
follows:

OMP_SCHEDULE = <string>[,<integer>]

Where <string>  is one of STATIC, INTERLEAVED, DYNAMIC, GUIDED, or 
TRAPEZOIDAL, and the optional <integer>  parameter is a chunk size for the 
dispatch method. For a complete description of the scheduling options, see Ta
1.

Environment Variables

Guide uses some environment variables which may need to be set before run
Guide.

KMP_LIBRARY=<string>

This variable selects the Guide library. The three available options are:

See Chapter 5, “Libraries,” beginning on page 55 for more information about th
Guide libraries.

ser serial

tur turnaround

thr throughput
guide@kai.com 29



3 •  OpenMP Directives Environment Variables

30

ll be 
l suf-

n the 
l 

ics 

 name 
 part 

-

ro-

ries. 
ile 

e 

 
eads 
re 
KMP_STACKSIZE=<integer>[,<character>]

This variable specifies the number of bytes, kilobytes, or megabytes that wi
allocated for each parallel thread to use as its private stack. Use the optiona
fix k, b, or m to specify bytes, kilobytes, or megabytes. The default is 1m or one 
megabyte. This number may be too small if many local variables are used i
parallel regions, or the parallel region calls subroutines that have many loca
variables.

KMP_STATSFILE=<file>

When this variable is used, in conjunction with the guide_stats library, the statis-
tics report is written to the specified file. The default file name for the statist
report is statsfile .

Three metacharacter sequences are defined that can be included in the file
and expanded at runtime to provide unique context sensitive information as
of the file name. These three metacharacter sequences are: 

%H:This expands into the hostname of the machine running the parallel pro
gram. 

%I: This expands into a unique numeric identifier for this execution of the p
gram. It is the process identifier of the program.

%P:Is the value of the OMP_PARALLEL environment variable which deter-
mines the number of threads that are created by the parallel program.

LD_LIBRARY_PATH=<path>

This variable is used to specify an alternate path for the Guide run-time libra
This variable may need to be set when you run your application if you comp
with shared objects or use dynamic linking.

OMP_DYNAMIC=<boolean>

The OMP_DYNAMIC environment variable enables dynamic adjustment of th
number of threads between parallel regions. A value of TRUE for <boolean>  
enables dynamic adjustment, whereas a value of FALSE disables any change in
the number of threads. If dynamic adjustment is enabled, the number of thr
may be adjusted only at the beginning of each parallel region. No threads a
created or destroyed during the execution of the parallel region.
http://www.kai.com/kpts/guide/



Environment Variables OpenMP Directives •  3

O
pe

nM
P

 
D

ire
ct

iv
es

3

e 
l 
um-

nk 

hed-
OMP_NUM_THREADS=<integer>

The OMP_NUM_THREADS environment variable is used to dynamically control th
number of threads. The <integer>  is a positive number. Performance of paralle
programs usually degrades when the requested parallelism is larger than the n
ber of physical processors.

OMP_SCHEDULE=<string>[,<integer>]

The OMP_SCHEDULE environment variable controls the schedule type and chu
size for PDO constructs with a SCHEDULE(RUNTIME) clause or those with no 
clause if the command line scheduling designator is set to r . The schedule type is 
given by <string> , which  is one of STATIC, INTERLEAVED, DYNAMIC, 
GUIDED, or TRAPEZOIDAL, and  the optional chunk size is given by <inte-
ger>  for those scheduling types which allow a chunk size. See Table 3-1, “Sc
uling Options,” on page 28.
guide@kai.com 31



3 •  OpenMP Directives Environment Variables

32
 http://www.kai.com/kpts/guide/



About Guidef77 and Guidef90 The Guide Drivers •  4

T
he

 G
ui

de
 D

riv
er

s4

 and 
tion 
lac-

com-

, the 
ific 
usage 

nd 
om-
CHAPTER 4 The Guide Drivers

About Guidef77 and Guidef90

The Guide drivers, Guidef77 and Guidef90, replace the system FORTRAN 77
FORTRAN 90 compilers on the command line and integrate Guide instrumenta
and the compile/link step into one command line. In scripts and Makefiles, rep
ing the standard compiler (typically f77  or f90 ) with guidef77  or guidef90 , 
respectively, will execute the necessary C preprocessor, Guide, and compiler 
mands automatically.

In addition to all of the command line options accepted by the Fortran compiler
Guide drivers accept prefixed forms of all Guide options as well as driver-spec
options. An absence of command line arguments causes the drivers to emit a 
message.

For brevity, throughout this manual, we will use Guidef to represent Guidef77 a
Guidef90, the Guide drivers for the system FORTRAN 77 and FORTRAN 90 c
pilers.
guide@kai.com 33



4 •  The Guide Drivers Using the Drivers

34

igna-

ith-
the 

suc-

m 
-

 

f 

fix 
 of 

n 

ted 
Using the Drivers

To run Guide, use the following command line:

guidef -WG,<option>[,<option>,…] filename <compiler_options>

where filename is the input file to Guide. The -WG driver option specifies addi-
tional Guide arguments. For example, to change the default scheduling des
tor and the chunk size from the command line, use 
-WG,-scheduling=d,-chunk=4. Multiple options must be separated with a 
comma.

If a list of FORTRAN source files is specified on the Guidef command line w
out the -c compiler option, and if Guide fails to process any of the files, then 
driver will compile (but not link) all successfully processed files.

Instrumented source files (Guide output files) are removed by default after 
cessful Guide instrumentation and compilation. There are, however, four 
instances where output files are not removed:

• When Guide fails to process a FORTRAN source file, the output files fro
each failing source file are not removed, while the output files from success
fully processed files are removed.

• If the compile/link step fails for any of the source files Guide successfully
instruments, none of the output files are removed.

• If you specify -WGkeep, none of the output files are removed.

• If the compiler debug flag (e.g. -g) is specified on the command line, none o
the output files are removed (-WGkeep is implied). -WGnokeep will cause 
output files to be deleted even in the presence of -g or -WGkeep.

Guide output files consist of the name of the original source file with the pre
G_ added to the beginning of the filename. The compiler is given the names
these output files and creates object files with a G_ prefix. The driver then 
removes this prefix from the object files. For example, if Guide processes a
input file named foo.f , it would create an output file named G_foo.f . 
Guidef would then pass this name on to the compiler. If an object file is crea
by the compilation process, then it would be named G_foo.o  by the compiler, 
and Guidef would then rename this object file foo.o .
http://www.kai.com/kpts/guide/



Driver Options The Guide Drivers •  4

T
he

 G
ui

de
 D

riv
er

s4

reate 
 
.

er-
d 

 
y 

t-

idef 

g is 

he 
FORTRAN files with capitalized suffixes (e.g. filename.F ) are first passed 
through the C preprocessor before Guide is invoked. The C preprocessor will c
files with a cppG_ suffix (e.g. cppG_filename.F ). As mentioned above, Guide
will create an output file whose name is based on the original source file name

Driver Options

The Guidef driver recognizes the FORTRAN compiler options and several driv
specific options. If Guidef fails to recognize a command line option, it is ignore
and passed directly to the compiler.

Default driver-specific options are located in a file named .guidefrc  in either the 
current directory or your home directory. All driver-specific options listed in this
chapter can be placed in the .guidefrc  file. These options must be separated b
white space or new lines. All instances of <file> in these options must contain the 
full path to the new executable, which should include the filename of the execu
able.

In the following descriptions, <integer> indicates an integer number, <path> indi-
cates a directory, <name> indicates an argument name, <file> indicates a filename, 
<character> indicates a single character, and <string> indicates a string of charac-
ters.

Displaying the Driver Usage Message

The -h option displays the usage message for the driver. This flag will cause Gu
to abort execution.

Displaying All Command Lines

The -v option causes the driver to display all command lines executed. This fla
passed on to the compiler.

Suppressing Guidef Warnings

Use the -w option to suppress mild Guidef warnings. This flag is passed on to t
compiler.
guide@kai.com 35



4 •  The Guide Drivers Driver-Specific Options

36

 be 

es-
Driver-Specific Options

The following driver-specific options are not passed on to the FORTRAN com-
piler.

WG,guide_option_1[[[,guide_option_2],guide_option_3],...] 

This flag prefixes any specified Guide option(s). Multiple Guide options may
appended using commas as delimiters.

For instance, to pass the -o=1 and -real=8 options to Guide, the appropriate 
Guidef driver option would be -G,-o=1,-real=8.

WGcompiler=<path>

The -WGcompiler option allows you to specify an alternate <path> for the 
FORTRAN compiler executable. This option can also be specified with the 
-WGftn , -WGfortran , -WGf77, and -WGf90 arguments.

WGcpp=<path>

The -WGcpp option allows you to specify an alternate path for the C preproc
sor executable.

WGf77=<path>

See the definition of the -WGcompiler option above.

WGf90=<file>

See the definition of the -WGcompiler option above.

WGfortran=<path>

See the definition of the -WGcompiler option above.

WGftn=<path>

See the definition of the -WGcompiler option above.
http://www.kai.com/kpts/guide/



Driver-Specific Options The Guide Drivers •  4

T
he

 G
ui

de
 D

riv
er

s4

ted 
files 

 

ble.

. 

ed 

t-

rce 
-

ed. 
WGkeep

If -WGkeep is stated, output files generated by Guide and temporary files crea
by the C preprocessor will not be unlinked after compilation. By default, these 
are automatically removed after a successful compilation.

WGkeepcpp

If -WGkeepcpp is stated, output files generated by the preprocessor will not be
removed after a successful compilation.

WGld=<file>

The -WGld  option allows you to specify an alternate path for the linker executa

WGlibpath=<path>

This option specifies an alternate <path> in which to search for the Guide libraries
For dynamic/shared compilation, be sure to add <path> to your 
LD_LIBRARY_PATH environment variable before running an executable creat
by Guide.

WGlink=<path>

The -WGlink  option allows you to specify an alternate path for the linker execu
able.

WGnocpp

-WGnocpp prevents Guidef from calling the C preprocessor for FORTRAN sou
files with the .F  suffix. By default, the driver will automatically call the C prepro
cessor for all files with the .F  suffix.

WGnokeep

Use -WGnokeep to force output and temporary C preprocessor files to be remov
The presence of this flag overrides any instance of -WGkeep on the command line, 
including the -WGkeep implied from -g and -WGonly.
guide@kai.com 37



4 •  The Guide Drivers Driver-Specific Options

38

e that 

c 

pro-

 in 
WGnoprocess

Guide will not process any of the specified source files if -WGnoprocess is 
present on the command line. This flag can be used to compile source cod
has already been processed by Guide.

WGnorc

This flag will turn off any driver-specific options that were found in your 
$HOME/.guidefrc  file. Since this option will also cancel any driver-specifi
options that precede it, -WGnorc should be the first driver-specific option to 
appear on the command line.

WGonly

When -WGonly is used, Guide will process the source code in all specified 
source files, but neither the compiler nor linker will be executed. Like 
-WGkeep, this option retains output files and temporary files generated by 
Guide and the C preprocessor.

WGpath=<path>

-WGpath specifies an alternate path to the Guide executable.

WGprefix=<string>

The -WGprefix  option changes the prefix string added to the Guide and pre
cessor output files. For instance, if you specify the following:

guidef -WGprefix=qqq -WGcpp -WGkeep file1.F

the results are cppqqqfile1.f  and qqqfile1.f  instead of G_file1.f  
and cppG_file1.f .

WGsrcdir

-WGsrcdir  specifies that the preprocessor and Guide output files should be
the same directory as the source file.
http://www.kai.com/kpts/guide/



Guide Options The Guide Drivers •  4

T
he

 G
ui

de
 D

riv
er

s4

 

ing 
 
g des-

 

 and 

ions 

e.
WGversion

The Guidef driver displays its internal version number and other information to
stderr  when -WGversion is used. Using this option will abort execution.

Guide Options

The -WG driver option specifies additional Guide arguments. To state a Guide 
option, the long (full) name, short name, or any portion of the long name, start
from the beginning, which uniquely identifies the option may be used. Multiple
options must be separated by a comma. For example, to change the schedulin
ignator and the chunk size, use -WG,-scheduling=d,-chunk=4.

Guide Options Functional Categories

Table 4-1 lists the Guide options. These options are grouped into the following
functional categories:

General Optimization

These options control large classes of optimizations.

Input-Output

These options affect the input file selection and output file naming, placement,
characteristics.

Listing

These options control listing information that is provided about the transformat
and optimizations performed.

Advanced Optimization

These options customize and fine-tune the optimizer for maximum performanc
guide@kai.com 39



4 •  The Guide Drivers Guide Options Table

40

ings 
ine. In 

t can 

ate-
ment 
ction 
FORTRAN Dialect

These options help customize for particular dialects of FORTRAN.

Hardware

These options inform Guide about your target architecture. The default sett
have been chosen to take advantage of the architecture of the target mach
most cases, you will not need to change the default settings.

Directive Recognition

These options enable or disable recognition and processing of directives tha
be placed in the code.

Guide Options Table

In Table 4-1, Guide options are listed alphabetically within each functional c
gory. The default settings are also listed. Guide options that require an argu
list the default argument. For more information on Guide options, see the se
“Guide Options Alphabetic Listing” on page 43.
http://www.kai.com/kpts/guide/



Guide Options Table The Guide Drivers •  4

T
he

 G
ui

de
 D

riv
er

s4
Table 4-1 Guide Options  

Long Name Short Name Default Setting

General Optimization:

optimize=<integer> o=<integer> 1

roundoff=<integer> r=<integer> 0

scalaropt=<integer> so=<integer> 0

Input-Output:

cmp[=<file>] cmp[=<file>] G_<file>

input=<file> i=<file> <file>

[no]list=<file> [n]l=<file> none

Listing:

lines=<integer> ln=<integer> 55

listoptions=<string> lo=<string> k

suppress=<string> su=<string> no suppress

Advanced Optimization:

[no]assume [n]as=<string> cel

[no]concurrentize [no]conc noconcurrentize

minconcurrent=<integer> mc=<integer> 1000
guide@kai.com 41



4 •  The Guide Drivers Guide Options Table

42
FORTRAN Dialect:

alignmax=<integer> alignmax=<integer> 16

[no]blank_padding [n]bp blank_padding

[no]case [n]case nocase

[no]datasave [n]ds datasave

[no]dlines [n]dl nodlines

[no]free [no]free nofree

include=<path> inc=<path> no include

integer=<integer> int=<integer> 4

logical=<integer> log=<integer> 4

[no]onetrip [n]1 noonetrip

real=<integer> rl=<integer> 4

[no]recursion [n]rc norecursion

save=<string> sv=<string> manual

scan=<integer> scan=<integer> 72

syntax=<string> sy=<string> no syntax

[no]type [n]ty notype

Directive Recognition:

[no]directives=<string> [n]dr=<string> p

[no]ignoreoptions [n]ig noignoreoptions

[no]openmpcc_lines [no]ompcc_lines ompcc_lines

default=<string> default=<string> shared

Hardware:

heaplimit=<integer> heap=<integer> 500

Scheduling:

chunk=<integer> chk=<integer> 1

scheduling=<character> schd=<character> e

Table 4-1 Guide Options  (Continued)

Long Name Short Name Default Setting
http://www.kai.com/kpts/guide/



Guide Options Alphabetic Listing The Guide Drivers •  4

T
he

 G
ui

de
 D

riv
er

s4

 than 
hort 

he 

the 

ari-

 

ign to 
inal 
The -listoptions=k command line option can be used to determine what your 
default settings are.

Guide Options Alphabetic Listing

This section lists the Guide options that can be specified by using the -WG driver 
option. To make these options easy to find, they are listed alphabetically rather
by functional category. The headings in the following sections list the full and s
names for each option.

alignmax=<integer>

This option selects the maximum size datatype that will be naturally aligned. T
integer argument represents the boundary size in bytes. The default is 
-alignmax=16.

assume=<string> or a=<string>
noassume or nas

The -assume option instructs Guide to make certain global assumptions about 
program being processed. The -assume option switch values are the following:

a Different subroutine or function parameters may refer to the same object.

b Array subscripts may go outside the declared bounds.

c Constants used in subroutine or function calls will be placed in temporary v
ables.

e EQUIVALENCE statements may cause different names to refer to the same
memory location.

l Unless Guide can prove they are unneeded, Guide must insert code to ass
variables in transformed loops the values they would have had after the orig
serial loop.

The default value is -assume=cel. To disable all the above assumptions, specify 
-noassume on the command line.
guide@kai.com 43



4 •  The Guide Drivers Guide Options Alphabetic Listing

44

 

e in 

w 
l 
or-

used 

 

s of 

o-

de 

 

blank_padding or bp
noblank_padding or nbp

The -blank_padding option instructs Guide to pad the input line with blanks.
This option is on by default.

case or case
nocase or ncase

The -case option instructs Guide to distinguish between upper and lowercas
identifier names. The default -nocase instructs Guide to be case-insensitive in 
variable names.

When Guide inserts or modifies lines in a program, it usually creates the ne
code in capital letters. The -case option requires Guide to preserve the origina
case of variables in the new code. Making Guide case-sensitive can be imp
tant. If, for example, there is a variable named n and a variable named N in the 
original source code, Guide will change the n to a N when it optimizes the code 
unless -case is specified, causing a conflict between two different variables 
which now have the same name.

chunk=<integer> or chk=<integer>

This option specifies a parameter for parallel loop scheduling, and is to be 
in conjunction with the -scheduling option. Together, the -scheduling and the 
-chunk options establish default scheduling for all the parallel loops for this 
Guide run. Individual loops can override this default scheduling mechanism
using the scheduling options on the PARALLEL DO or PDO directive. The 
default chunk size is 1. See “Scheduling Options” on page 27 for description
the -chunk options.

cmp[=<file>]

The -cmp=<file> option instructs Guide to place the optimized FORTRAN pr
gram in a specified transformed program file (the compile file). The default 
name of the FORTRAN output file is derived from the input filename by Gui
adding G_ to the beginning of the filename and changing the extension to .f . If 
-cmp=<file> is specified, the FORTRAN output file is written to the specified
file. If -cmp is specified, then the output is written to standard output.
http://www.kai.com/kpts/guide/



Guide Options Alphabetic Listing The Guide Drivers •  4

T
he

 G
ui

de
 D

riv
er

s4

unc-

o 

 

e 
ult, 
r 
concurrentize, conc
noconcurrentize, noconc

Guide uses the -concurrentize switch to enable parallelizaion of loops derived 
from array syntax only. The -concurrentize option also implies -scalaropt=1.

datasave or ds
nodatasave or nds

The -datasave option instructs Guide to treat local variables in a subroutine or 
function which appear in DATA statements as if they were also in SAVE statements. 
That is, their values will be retained between invocations of the subroutine or f
tion. This is the practice of many commercial FORTRAN compilers, and -datasave 
is on by default. This choice affects certain optimizations performed by Guide.

The negative option, -nodatasave, complies with the FORTRAN standard. See als
the description of the -save command line option.

directives=p or dr=p
nodirectives or ndr

The -directives=p or -dr=p  option enables parallel programming directives. This
option is on by default. To disable parallel programming directives, use 
-nodirectives or -ndr.

dlines or dl
nodlines or ndl

The -dlines option instructs Guide to treat a D in column 1 as a space character. Th
rest of that line will then be parsed as a normal FORTRAN statement. By defa
Guide treats these lines as comments. This option is useful for the inclusion o
exclusion of debugging lines. 

In the following example, the first (default) case shows that the D line is ignored:

         do 10 i = 1,n
            a (i) = b (i)
   d        write (*,*) a (i)
      10 continue

becomes
guide@kai.com 45



4 •  The Guide Drivers Guide Options Alphabetic Listing

46

er of 

e 
e 
e 
e. 

ide 

em-
first 
 pro-
         do 10 i=1,n
            a(i) = b(i)
      10 continue

But when -dlines is specified, Guide sees a WRITE statement:

         do 10 i=1,n
            a(i) = b(i)
            write (*, *) a(i)
      10 continue

free
nofree

The -free option removes the standard column restrictions for FORTRAN 
source code. Continuation lines are indicated with an “&” as the last charact
the continued line and as the first character of the continuation line.

The -free option is off by default, and the usual FORTRAN 77 conventions 
apply.

heaplimit=<integer> or heap=<integer>

Guide may require large amounts of memory in order to process your sourc
code. The -heaplimit option specifies the maximum size in megabytes that th
Guide heap can grow. If this limit is breached, Guide will stop processing th
source code and try to exit gracefully with an “out of memory” error messag
The default size is 500 megabytes.

If the -heaplimit setting is greater than the amount of available memory, Gu
may run out of memory before it reaches the -heaplimit.

Guide relies upon the operating system to tell it that the OS has run out of m
ory before that problem occurs. Some operating systems kill Guide without 
telling Guide that there is insufficient memory. In that case, Guide may stop
cessing the code and exit in an undefined manner. Using -heaplimit makes a 
graceful exit more likely.
http://www.kai.com/kpts/guide/



Guide Options Alphabetic Listing The Guide Drivers •  4

T
he

 G
ui

de
 D

riv
er

s4

 the 

c-
 
 in 

m-

 
d out-
pro-
ignoreoptions or ig
noignoreoptions or nig

The -ignoreoptions option directs Guide to ignore any c*$*options or *$*options 
line that may appear at the top of the input file. Normally, Guide reads the 
c*$*options or *$*options instruction for further command line options, as 
explained in the description of the c*$*options line below.

Setting -noignoreoptions directs Guide to acknowledge the c*$*options line in the 
source program. That is, Guide will accept the command line options given on
c*$*options line.

include=<directory> or inc=<directory>

By default, Guide looks only in the current directory to locate files specified in 
INCLUDE statements. The -include option allows an alternate directory to be spe
ified for locating those files. An INCLUDE file whose name does not begin with a
slash (/) is sought first in the directory containing the file being processed, then
the directory named in the -include option.

input=<file> or i=<file>

When running Guide in stand-alone mode on UNIX systems, simply enter the 
source filename on the command line. This option is available for special circu
stances and for compatibility with other operating systems.

On UNIX systems, if the -input  option is specified without a filename, Guide will
read its source from standard input and write the transformed code to standar
put. In this case, no listing file will be generated unless a filename is explicitly 
vided with the -list option.

integer=<integer> or int=<integer>

This option specifies a size in bytes, N, for the default size of INTEGER variables. 
When N=2 or 4, take INTEGER*N as the default INTEGER type. When 
-integer=0, Guide uses the ordinary default length for INTEGER variables. The 
default is -integer=4.
guide@kai.com 47



4 •  The Guide Drivers Guide Options Alphabetic Listing

48

nt 
 the 
e 

he 

 

 

lines=<integer> or ln=<integer>

The -lines option enables Guide’s listing to be paginated for printing in differe
formats. The number of lines per page on the listing may be changed using
-lines option. The setting -lines=0 instructs Guide to paginate only at subroutin
boundaries. The default setting is -lines=55.

list[=<file>] or l=[<file>]
nolist or nl

The -list option informs Guide where to place the listing file. Guide derives t
default name of the listing file from the input filename by adding G_ to the 
beginning of the filename and changing the extension to .lst . If only this 
option is stated, then the listing file is written to the specified file. To disable
generation of the listing file, enter -nolist on the command line. The default is 
-nolist.

listoptions=<string> or lo=<string>

The -listoptions option tells Guide what optional information to include in the
listing, transformed code, and error files.

Any of the following information can be selected:

To disable all of the above switches and produce no listing file, enter -nolist on 
the command line. The default value is -listoptions=k.

logical=<integer> or log=<integer>

This option specifies a size in bytes, N, for the default size of LOGICAL vari-
ables. When N=1, 2, or 4, take LOGICAL*N as the default LOGICAL type. The 
value assigned to -logical should be equal to the value assigned to -integer. The 
default is -logical=4.

Value Prints
k Guide options used, printed at the end of each program unit
o Original source program annotated listing
t Transformed program annotated listing
http://www.kai.com/kpts/guide/



Guide Options Alphabetic Listing The Guide Drivers •  4

T
he

 G
ui

de
 D

riv
er

s4

s. If 

ay be 

he 
er-

 by 
ts 

ial. If 
n be 

ener-

(This 

e 

 

 

al 
ops 
minconcurrent=<integer> or mc=<integer>

Executing a loop in parallel incurs overhead which varies with different system
a loop has little work, parallel execution may be slower than serial execution 
because of the overhead. However, beyond a certain level, performance gain m
obtained through parallel execution. This level is passed to Guide with the 
-minconcurrent option.

The range of values for this option is all numbers greater than or equal to 0. T
higher the -minconcurrent value, the larger the loop body must be (have more it
ations, more statements, or both) to run concurrently. 

At compilation time, Guide estimates the amount of computation inside a loop
multiplying the loop iteration count by the sum of the nonindex operands/resul
and the nonassignment operators and compares this value with the -minconcurrent 
value. If the estimated amount of work is greater than the -minconcurrent value, 
Guide generates concurrent code for the loop. Otherwise, it leaves the loop ser
the DO loop bounds are known at compilation time, the exact iteration count ca
computed. However, if the DO loop bounds are unknown, Guide generates an IF  
expression in the directive. This is interpreted by the compiler as a request to g
ate two loops, one concurrentized and one left serial, and an IF-THEN-ELSE  to 
make a run time check to decide whether or not to execute the loop in parallel. 
case is called a two-version loop.)

To disable the generation of two-version loops throughout the program, use th
command line option -minconcurrent=0.

The -minconcurrent option only applies to parallel loops created by Guide from
array syntax. The -minconcurrent option implies the -concurrentize switch.

onetrip or 1
noonetrip or n1

The -onetrip option allows one-trip DO loops to be specified. Many pre-FORTRAN
77 compilers implemented DO loops which would always have at least one itera-
tion, even if the initial value of the loop control variable was higher than the fin
value. This option informs Guide that the program being processed contains lo
which need the one-trip feature. This option is off by default.
guide@kai.com 49



4 •  The Guide Drivers Guide Options Alphabetic Listing

50

calls 
oca-

ro-

ror 
 a 
, 
ffer 
nt. 
optimize=<integer> or o=<integer>

The -optimize option sets the base optimization and analysis level.

The meaning of the different optimization levels is as follows:

0 Guide performs no optimizations on parallel directives.

1 Guide optimizes parallel directives.

The default is -optimize=1.

real=<integer> or rl=<integer>

This option specifies a size in bytes, for the default size of REAL variables. 
When the -real option is present, Guide uses REAL*<integer>  as the default 
REAL type.

The default value is -real=4.

NOTE: This option merely informs Guide about the default REAL size; it does 
NOT ask Guide to convert from REAL*4 to REAL*8.

recursion or rc
norecursion or nrc

The -recursion option informs Guide that subroutines and functions in the 
source program may be called recursively (that is, a subroutine or function 
itself, or it calls another routine which calls it). Recursion affects storage all
tion decisions and the interpretation of the -save option. This option is off by 
default.

The -recursion option must be in force in each recursive routine that Guide p
cesses or unsafe transformations could result.

roundoff=<string> or r=<string>

The -roundoff  option specifies the amount of change from serial roundoff er
that is tolerable in the program. If an arithmetic reduction is accumulated in
different order in the processed program than it was in the original program
then the roundoff error is accumulated differently, and the final result may di
from that of the original program. In most cases, the difference is insignifica
http://www.kai.com/kpts/guide/



Guide Options Alphabetic Listing The Guide Drivers •  4

T
he

 G
ui

de
 D

riv
er

s4

 
is-
nal 

n 

alar 

 invo-

ither 
ed 

-
e 
However, if the source program is numerically unstable or if it requires extreme
precision, certain restructuring transformations performed by Guide must be d
abled in order to obtain exactly the same results as those obtained in the origi
program.

The -roundoff  option has the values 0 or 1.

The -/roundoff  levels are defined as follows:

0 Guide allows no roundoff-changing transformations. When -roundoff=0, the 
transformed code is in strict conformance to the FORTRAN standard. Whe
-roundoff>0, the standards are relaxed. This is the default.

1 Guide enables expression simplification and code floating.

save=<string> or sv=<string>

The -save option instructs Guide on how to handle the storage class of local sc
variables. In particular, Guide can be instructed to perform live variable analysis to 
help Guide decide whether to save the value of a local scalar variable between
cations of a function or a routine by generating a SAVE statement. Guide can also 
be instructed to treat the default storage class of all local scalar variables as e
AUTOMATIC or STATIC. In any case, Guide will not delete or ignore a hand cod
SAVE statement.

There are four possible settings for the -save option:

Specifying -save=all (-save=a) tells Guide not to perform live variable analysis. 
However, all variables local to a function or a routine and COMMON blocks will be 
treated as if they are saved. The -save=all option is not affected by the -[no]recur-
sion option.

The default -save=manual (-save=m) tells Guide not to perform live variable anal
ysis. Guide assumes that the necessary SAVE statements have been inserted into th
code and it performs no corresponding analysis of its own. Hand coded SAVE state-
ments are assumed to be correct and sufficient. The -save=manual setting is not 
affected by the -recursion option.

Specifying -save=manual_adjust (-save=ma) instructs Guide to perform live vari-
able analysis. The effect of -save=manual_adjust depends on the -[no]recursion 
setting:
guide@kai.com 51



4 •  The Guide Drivers Guide Options Alphabetic Listing

52

s
 one

h
 the

 

se
nd

t 

e 

de 
alue 
 

tion 
on 
With -norecursion, SAVE statements will be added for variable
which are used before being defined on at least one path from
entry point to the routine.

With -recursion, SAVE statements will be added for variables whic
are used before being defined on all paths from all entry points to
routine.

Specifying -save=all_adjust (-save=aa) instructs Guide to perform live variable
analysis. The effect of -save=all_adjust depends on the -[no]recursion setting:

With -norecursion, treat all local variables as saved, except tho
which are defined before use in all paths from all entry points a
which are not in hand coded SAVE statements.

With -recursion, this is the same as -save=all.

Saving local variables may be required for correct execution, but can restric
Guide optimizations. Accordingly, -save=ma should be used with caution.

scalaropt=<integer> or so=<integer>

The -scalaropt option sets the level of scalar transformations performed. Th
allowed values and their meanings are:

0 No scalar optimizations are performed. This is the default.

1 Forward substitution and backward elimination are performed.

scan=<integer> or scan=<integer>

The -scan option allows the length of the FORTRAN input lines to be set. Gui
will ignore (by treating as a comment) characters on columns beyond the v
of the -scan option. The value must be one of 72, 120, or 132. The default is
-scan=72.

scheduling=<character> or schd=<character>

The -scheduling option tells the compiler what kind of scheduling to use for 
loop iterations on a multiprocessor machine. This option is used in conjunc
with the -chunk option. See “Scheduling Options” on page 27 for a descripti
of the -scheduling options.
http://www.kai.com/kpts/guide/



Guide Options Alphabetic Listing The Guide Drivers •  4

T
he

 G
ui

de
 D

riv
er

s4

es. 
ssages 

 
ng 

 

s not 

-

EC 

citly 
suppress=<string> or su=<string>

The -suppress option disables the printing of individual classes of Guide messag
These message classes range from syntax warning and error messages to me
about the optimizations performed. The allowed values of the -suppress option are 
as follows:

The default instructs Guide to report all message types listed above.

syntax=<string> or sy=<string>

The -syntax option directs Guide to check for compliance with certain syntactic
rules. If you are familiar with a different implementation of FORTRAN, then usi
a dialect switch can prevent a construct from being translated differently than 
expected. The default is to accept a superset FORTRAN 77 and FORTRAN 90
except for MODULES and INTERNAL PROCEDURES.

With -syntax=a, Guide checks for strict compliance with the ANSI FORTRAN 
77/90 standard. Warning and error messages are issued for syntax which doe
conform to the standard.

Note: With -syntax=a, syntax errors are issued for array references without sub
scripts.

With -syntax=v, Guide accepts the extensions and interpretations of Digital or D
FORTRAN 77/90.

type or ty
notype or nty

The -type option instructs Guide to issue error messages for variables not expli
typed. The -notype default suppresses this checking.

Value Disables
d Data Dependence messages
e Syntax Error messages
i Informational messages
n Not Optimized messages
q Questions
s Standardized messages
w Syntax Warning messages
guide@kai.com 53



4 •  The Guide Drivers Guide Options Alphabetic Listing

54

ns, 
s as 

a 

 

the 

d 
c*$*options Line

When a source file should always be run with the same command line optio
the first line of the file may be used to specify them. The format of this line i
follows:

c*$*options option[=value] [option[=value]]...

The c*$*options (or *$*options) must appear in columns 1-11 (or 1-10) with 
character space between this command and the options that follow.

Only the first line may be used for c*$*options. Short or long option names may
be used on this line.

Options of the form -option=<name> (e.g., -cmp or -inline) cannot be specified 
on the c*$*options line of the source file. These options may be specified on 
command line only.

If conflicting options are specified on the command line and on the c*$*options 
line, the c*$*options line takes precedence. If additional options are specifie
on the c*$*options line, these are used in addition to those specified on the 
command line.

If the command line option -ignoreoptions is set, any c*$*options line in the 
source file is treated as a comment.
http://www.kai.com/kpts/guide/



Selecting a Library Libraries •  5

rie
s

5

e 
s 

ns. 
h-
CHAPTER 5 Libraries

Selecting a Library

Guide supplies two libraries, an end-user library and a development library. Th
end-user library is guide. It should be used for normal or performance-critical run
on applications that have already been tuned. The development library is 
guide_stats. It provides performance information about the code, but it slightly 
degrades performance. It should be used to tune the performance of applicatio
Both the guide and guide_stats libraries contain the serial, turnaround, and throug
put libraries described below (these libraries are selected by using the 
KMP_LIBRARY environment variable, see “KMP_LIBRARY=<string>” on 
page 29).

Serial

The serial library forces parallel applications to be run on a single processor. 
guide@kai.com 55 Li
br

a



5 •  Libraries The Guide_stats Library

56

ro-
 run, 
he 
ved 

ny 
 time. 
nce. 

on-
nd 
a-

n-
cient 

 
he 
nce 

e 

he 
 

y 
Turnaround

In a dedicated (batch or single user) parallel environment where all of the p
cessors for a program are exclusively allocated to the program for its entire
it is most important to effectively utilize all of the processors all of the time. T
turnaround library is designed to keep all of the processors active and invol
in the parallel computation to minimize the execution time of a single job.

NOTE: Avoid over-allocating system resources. This occurs if either too ma
processors have been specified, or if too few processors are available at run
If system resources are over-allocated, this library will cause poor performa
The throughput library should be used if this occurs.

Throughput

In a multi-user environment where the load on the parallel machine is not c
stant or where the job stream is not predictable, it may be better to design a
tune for throughput. This minimizes the total time to run multiple jobs simult
neously, or to mix sequential and parallel jobs on the same machine.

The throughput library is designed to let the program be aware of it’s enviro
ment (i.e. the system load) and to adjust the resources used to produce effi
execution in a dynamic environment.

The Guide_stats Library

The guide_stats library is designed to provide the user with detailed statistics
about a program’s execution. These statistics help the user to “see inside” t
program to analyze performance bottlenecks and to make parallel performa
predictions. With this information, it is possible to modify the program (or th
execution environment) to make more efficient use of the parallel machine.

When a program is compiled with Guidef, linked with the guide_stats library, 
and executed, statistics are output to the file specified with the 
KMP_STATSFILE environment variable (the default file name guide_stats is 
used if this environment variable is not specified). In addition, running with t
guide_stats library enables additional runtime checks that may aid in program
debugging. When using the guide_stats library, make sure that the main pro-
gram, and any subroutines that cause program termination, are compiled b
using Guidef.
http://www.kai.com/kpts/guide/



Linking the Libraries Libraries •  5

rie
s

5

ew, 

 

t 

ion be 
. In 
 diffi-

 

ains 

 and 
-
, the 
if 

y 
The resulting statistics are most easily viewed and analyzed by using GuideVi
discussed in Chapter 6, “GuideView,” beginning on page 61.

Linking the Libraries

Guide uses the guide library by default. To use the guide_stats library, use the 
-WGstats command line option to Guidef. For example, the following command
line can be used to compile a source file with the guide_stats library:

guidef -WGstats source.f

External Routines

The following library routines can be used for low-level debugging to verify tha
the library code and the user’s application are functioning as intended. 

The use of these routines is discouraged; using them requires that the applicat
linked with the guide library, even when the code is being executed sequentially
addition, using these routines makes validating the program with Assure more
cult.

In most cases, directives can be used in place of these routines. For example,
thread-private storage should be implemented by using the PRIVATE()  clause of 
the PARALLEL directive or the TASKCOMMON directive, rather than by explicit 
expansion and indexing. Appendix A, “Examples,” beginning on page 81, cont
examples of coding styles that avoid the use of these routines.

mppbeg(), mppend()

These routines are not necessary if a program is written entirely in FORTRAN
compiled by using Guidef. In a mixed language environment, however, the pro
gram’s entry or exit points might be written in a different language. In this case
user must ensure that mppbeg()  is called at the beginning of the main program (
the main program is not compiled by using Guidef) and that mppend()  is called at 
all points that cause program termination (if those routines are not compiled b
using Guidef). 
guide@kai.com 57 Li
br

a



5 •  Libraries External Routines

58

ss-
pi-
are 
used 

he 
e 

n the 

t par-

 the 
ons 
 
l 
Calling these routines from another language requires knowledge of the cro
language calling standards on your platform. The following convention is ty
cally used with the C language. An underscore is appended to names that 
declared in FORTRAN subroutines. Thus, a main program in C that can be 
with Guide FORTRAN code might look like: 

void
main( int argc, char *argv[] )
{
    extern mppbeg_(), mppend_();
    mppbeg_();
    work();
    mppend_();
    exit(0);
}

The calls to mppbeg()  and mppend()  must occur when the program is exe-
cuting sequentially, not when a parallel region is active. 

omp_get_max_threads()

This routine returns the maximum number of threads that are available on t
parallel machine. The returned value is a positive integer, and is equal to th
value of the OMP_NUM_THREADS environment variable, if set. 

omp_get_num_procs()

This routine returns the maximum number of processors that are available o
parallel machine. The returned value is a positive integer. 

omp_get_num_threads()

This routine returns the number of threads that are being used in the curren
allel region. The returned value is a positive integer. 

NOTE: The number of threads used may change from one parallel region to
next. When designing parallel programs it is best to not introduce assumpti
that the number of threads is constant across different instances of parallel
regions. The number of threads may increase of decrease between paralle
regions, but will never exceed the OMP_NUM_THREADS environment variable 
value.
http://www.kai.com/kpts/guide/



External Routines Libraries •  5

rie
s

5

 inte-
omp_get_thread_num()

This routine returns the thread id of the calling thread. The returned value is an
ger between zero and omp_get_num_threads()-1 . 
guide@kai.com 59 Li
br

a



5 •  Libraries External Routines

60
 http://www.kai.com/kpts/guide/



Introduction GuideView •  6

G
ui

de
V

ie
w

6

ails 
at a 
ks.

ls of 
ant 

nted 
CHAPTER 6 GuideView

Introduction

GuideView is a graphical tool that presents a window into the performance det
of a program’s parallel execution. Performance anomalies can be understood 
glance with the intuitive, color coded display of parallel performance bottlenec

GuideView graphically illustrates what each processor is doing at various leve
detail by using a hierarchical summary. Statistical data are collapsed into relev
summaries which focus on the actions to be taken. 

Using GuideView

GuideView uses as input a statistics file that was output when a Guide instrume
program was run. An optional file with library overhead information and an 
optional configuration file can also be provided. The syntax for invoking 
GuideView is as follows:

guideview [<guideview_options>] <file>
guide@kai.com 61



6 •  GuideView GuideView Options

62

 the 

n 

r fea-

f the 

 in 

ult 
e. 
d, 
r or 

elp 

al-
The guideview_options represents optional GuideView options, and the file 
argument is the name of the statistics file created by a Guide run that used
guide_stats library (see Chapter 6).

The GuideView browser looks for a configuration file named 
.guideviewrc  or guide.ini  when it starts up. It first looks in the cur-
rent directory, then in your home directory, and then in each directory in tur
that appears in your $CLASSPATH environment variable setting. Using this 
file you can configure several options that will control fonts, colors, window 
sizes, window locations, line numbering, tab expansion in source, and othe
tures of the GUI.

An example of an initialization file is provided with your Guide installation. 
This example file contains comments that explain the meaning and usage o
supported options. If Guide is installed in directory X on your machine, the 
example of an initialization file that explains the options available in it will be
X/guide35/class/example.guideviewrc .

The default location for this example initialization file is in the directory 
/usr/local/KAI/guide/class . If the default location is different 
from the installed location, then a symbolic link will be created from the defa
location to the installed location if the default location is writable at install tim
The easiest way to use this file is to copy it and then edit the copy as neede
uncommenting lines you want and/or setting the options to values you prefe
need.

Detailed information about GuideView’s operation can be found under the h
menu of the GUI. 

GuideView Options

mhz=<integer>

The -mhz=<integer> option denotes the MHz rate for the machine used for c
culating statistics.
http://www.kai.com/kpts/guide/



JAVA Options GuideView •  6

G
ui

de
V

ie
w

6

e 
ea-

ver-
 by 
s.

ple 

ow 
r-

 
ith 

ytes, 
ovh=<file>

The -ovh=<file> specifies an overheads file for the input statistics file. There ar
small overheads that exist in the GuideView library. These overheads can be m
sured in terms of the number of cycles for each library call or event. You can o
ride the default values to get more accurate overhead values for your machine
using the -ovh=<file> option to create a file that contains machine-specific value

An example overheads file is provided with your Guide installation. This exam
file contains comments that explain the meaning and usage of the supported 
options. If Guide was installed in directory X on your machine, this example file 
resides in X/guide/class/guide.ovh .

WJ,[java_option]

The GuideView GUI is implemented in JAVA. The -WJ flag prefixes any specified 
JAVA option. The JAVA options are passed to the JAVA interpreter. 

Any valid JAVA interpreter option may be used; however, the options listed bel
may be particularly beneficial when used with GuideView to enhance the perfo
mance of the GUI:

JAVA Options

The -WJ flag must prefix any specified JAVA option. For example, to pass the 
-ms5m option to the JAVA interpreter, use -WJ,-ms5m.

ms<integer>[{k,m}]

The -ms option specifies how much memory is allocated for the heap when the
interpreter starts up. The initial memory is specified either in bytes, kilobytes (w
the suffix k ), or megabytes (with the suffix m). For example, to specify one mega-
byte, use -ms1m.

mx<integer>[{k,m}]

The -mx option specifies the maximum heap size the interpreter will use for 
dynamically allocated objects. The maximum heap size is specified either in b
kilobytes (with the suffix k ), or megabytes (with the suffix m). For example, to 
specify two megabytes, use -mx2m.
guide@kai.com 63



6 •  GuideView JAVA Options

64
 http://www.kai.com/kpts/guide/



The Guide_stats Report •  7

T
he

 G
ui

de
_s

ta
ts

 
R

ep
or

t

7

s 

hen 

re 

d by 
y 

on 
 
 pro-
-

CHAPTER 7 The Guide_stats 
Report

The guide_stats library can be used to gain insight into how a parallel program i
behaving — or misbehaving. The guide_stats library contains monitoring software 
that collects statistics during the execution of a Guide instrumented program. W
a program is compiled with Guidef, linked with the guide_stats library, and exe-
cuted, a statistics report file is produced in a file named by the KMP_STATSFILE 
environment variable. See Chapter 5, “Libraries,” beginning on page 55 for mo
details on using the guide_stats library. 

This chapter documents the format and content of the statistics report produce
the guide_stats library. The easiest way to view and interpret these statistics is b
using GuideView, described in Chapter 6, “GuideView,” beginning on page 61.

The use of the guide_stats library does introduce some overhead into the executi
of a parallel program, so the guide_stats library should not be used for production
runs that require peak performance. The statistics report, however, reflects the
portion of time that would be spent in each part of a parallel program if that pro
gram had been run without using the guide_stats library.
guide@kai.com 65



7 •  The Guide_stats Report Settings

66

 not 
the 

s. 

s 
de 

duc-

et 
 

s this 
In the following description, output from the library will be shown in cou-
rier  font. If an entire line of the statistics report contains zeros, that line is
displayed. Also, the following examples show whole program statistics, but 
actual statistics report will contain information for each individual parallel 
region. The whole program statistics are totals over all of the parallel region

The statistics report provides timings in real (wall clock) time, which include
both system time (for system calls) and user time (for computation and Gui
library calls).

It is important to consider the MAX, MIN range of values for each statistic. If 
there is a large difference between MAX and MIN, it may indicate a load imbal-
ance due to poor scheduling. If static scheduling is being used, consider re
ing the chunk size or employing dynamic scheduling. 

Settings

  KMP_STATSFILE  = stats
  KMP_PARALLEL   = 4
  KMP_STACKSIZE  = 1048576
  KMP_SCHEDULING = <default>
  KMP_CHUNK      = <default>
  KMP_SPINLOCKS  = <default>

The statistics report starts with a description of the environment variables s
during the run. See “Environment Variables” on page 29 for a description of
these variables.

Parallel Region

whole program time spent in parallel region (seconds):
              MAX    AVG    MIN    #00    #01    #02    #03
 real time   12.3   11.8   11.5   12.3   11.5   11.7   11.7

This section lists the time spent in parallel regions for each of the processor
run was made with. (Processors are number consecutively starting at #00 .)
http://www.kai.com/kpts/guide/



Synchronized Code The Guide_stats Report •  7

T
he

 G
ui

de
_s

ta
ts

 
R

ep
or

t

7
and 

e 
 to 

iting 
ck 

 and 

 the 

 
nt 

h 
n-
Synchronized Code

whole program time spent in synchronized code (seconds):
              MAX    AVG    MIN    #00    #01    #02    #03
 real time    0.0    0.0    0.0    0.0    0.0    0.0    0.0

Time is accumulated in synchronized code after a thread has acquired a lock 
before it releases the lock. Attempt to reduce the size of CRITICAL  sections, 
ORDERED sections, and PSINGLE regions as much as possible. Even if the tim
spent in these regions is small, reducing their size may provide insight into how
eliminate them entirely. Eliminating synchronized code can save time spent wa
at locks as well. Keep in mind that using dynamic scheduling causes implicit lo
acquisition, and therefore accumulates time in synchronized code.

Synchronization

There are three classes of synchronization overhead reported: locks, barriers,
join barriers.

Locks

whole program time spent in waiting at locks (seconds):
              MAX    AVG    MIN    #00    #01    #02    #03
 real time    0.5    0.4    0.3    0.3    0.5    0.3    0.3

Time is accumulated in locks whenever a lock is acquired, either explicitly, with
use of CRITICAL  section, ORDERED section, or PSINGLE directives, or 
implicitly, with the use of the Guide library (for example, implicit locking occurs
when using dynamic scheduling). A large proportion of parallel region time spe
waiting for locks indicates contention for lock resources. If many CRITICAL  sec-
tions, ORDERED sections, or PSINGLE regions are used, consider naming eac
region separately, or try to merge regions if the time spent in the associated sy
chronized code is small. 

Barriers

whole program time spent in waiting at barriers (seconds):
              MAX    AVG    MIN    #00    #01    #02    #03
 real time    1.2    1.0    0.6    0.6    1.2    1.2    1.1
guide@kai.com 67



7 •  The Guide_stats Report Average Statistics

68

rri-
ary.

g a 
tion 

oces-

high 
d.

ned 
Time is accumulated here when waiting at barriers for the BARRIER directives.

Join Barriers

whole program time spent in waiting at join barriers (seconds):
              MAX    AVG    MIN    #00    #01    #02    #03
 real time    0.8    0.3    0.0    0.8    0.0    0.0    0.4

Time is accumulated here when waiting at implicit barriers. These implicit ba
ers occur at the end of parallel regions and at other places in the Guide libr

Average Statistics

whole program average statistics (seconds):
            Total Parallel     Lock  Barrier     Sync  Joining
 real time   39.5     11.8      0.4      1.0      0.0      0.3

whole program estimated parallelism:
 63.0 to 64.6 percent parallel

Whole program statistics estimate the amount of parallelism obtained durin
given parallel execution. This estimate allows the success of your paralleliza
efforts to be measured. The estimate is computed by dividing the Parallel  
time, which is the average of the time spent in parallel regions across all pr
sors, by the Total  time, with correction factors for Lock , Barrier , and 
Sync  time. Two estimates are given; the low parallelism estimate assumes 
lock overhead, and the high parallelism estimate assumes low lock overhea

Performance Projections

whole program speedup projections (estimated):
                 #01  #02  #03  #04  #05  #06  #07  #08
 63.0% parallel  1.0  1.5  1.7  1.9  2.0  2.1  2.2  2.2
 64.6% parallel  1.0  1.5  1.8  1.9  2.1  2.2  2.2  2.3

The %Parallel  time is used to estimate the speedup that would be obtai
if more processors were available.
http://www.kai.com/kpts/guide/



Event Counts The Guide_stats Report •  7

T
he

 G
ui

de
_s

ta
ts

 
R

ep
or

t

7ly 
 insuf-
ro-

at 
 pro-
icate 
ions 
are 
 load. 
 of 
ase.

tics 
d by 

Init
Term
Amdahl’s Law is used:

This number can be optimistic because parallel overhead may not scale linear
with the number of processors used. If these speedup numbers are considered
ficient, despite this built-in optimism, explore finding more parallelism in your p
gram.

Event Counts

The event counts section lists the total number of parallel processing events th
occurred on each processor. This information can be useful for debugging the
gram. If more or fewer events of a certain type occur than expected, it may ind
a bug in the program. If too much time is being spent in parallel overhead funct
such as waiting at barriers, it may be either that too many of these operations 
being used or that the operations themselves are taking too long due to system
Compare the time spent in the function to the number of events in those types
functions to the estimate the time spent per event to help decide which is the c

Program Start/Finish

whole program event counts (zero event counts not shown):

These events mark the beginning and end of the program as a whole for statis
initialization and reporting. They should occur only once and should be execute
the first processor.

TOTAL MAX AVG MIN #00 #01 #02 #03
ialize 1 1 0 0 1 0 0 0
inate 1 1 0 0 1 0 0 0

Speedup 
Total Time

Serial Time (Parallel Time / Processors)+
-------------------------------------------------------------------------------------------------------≤
guide@kai.com 69



7 •  The Guide_stats Report Event Counts

70

i-
n-

read 

Check Act
Check T 509

Check St

Fo
Fork J

InstPar qAl
InstPar qC
InstPar qSe

InstTsk qAl
InstTsk qCo
Internal Checks

These are internal checks on program status. Check  Active  tests whether a 
thread is running in parallel. Check  Task  requests the thread’s unique ident
fier. Check  Stack  determines whether there is sufficient stack space to co
tinue execution.

Fork

Fork counts the entries to parallel regions. These should be executed by th
#00 .

Private Commons with INSTANCE PARALLEL or THREAD 
PRIVATE

These are counts of internal events when INSTANCE PARALLEL is used for 
declaring COMMON blocks. InstPar  qAlloc  is a count of COMMON block 
allocations. InstPar  qCopy  is a count of times that COMMON blocks are 
copied and allocated. InstPar  qSetup  is a count of times that COMMON 
blocks are set up and declared.

TOTAL MAX AVG MIN #00 #01 #02 #03
ive 36 36 9 0 36 0 0 0
ask 94382 39994 23595 16509 39994 19776 18103 16
ack 0 0 0 0 0 0 0 0

TOTAL MAX AVG MIN #00 #01 #02 #03
rk 36 36 9 0 36 0 0 0

oin 36 36 9 0 36 0 0 0

TOTAL MAX AVG MIN #00 #01 #02 #03
loc 0 0 0 0 0 0 0 0
opy 0 0 0 0 0 0 0 0
tup 0 0 0 0 0 0 0 0

TOTAL MAX AVG MIN #00 #01 #02 #03
loc 0 0 0 0 0 0 0 0
py 0 0 0 0 0 0 0 0
http://www.kai.com/kpts/guide/



Event Counts The Guide_stats Report •  7

T
he

 G
ui

de
_s

ta
ts

 
R

ep
or

t

7

htly 

have 

InstTsk 85
InstPar
InstPar 
InstTsk 
InstTsk 

Loop
Loop Dis 48

B
Enter C 2
Exit C 2
Begin 

End 
These are counts of internal events when THREAD PRIVATE is used for declar-
ing COMMON blocks. InstTsk  qAlloc  is a count of COMMON block alloca-
tions. InstTsk  qCopy  is a count of times that COMMON blocks are copied and 
allocated.

These are counts of internal events very similar to those above. These are slig
more efficient and Guide will use them when possible.

Dynamic Scheduling

These two events indicate the number of dynamic scheduling operations that 
been performed. Loop  Setup  counts the entries to a loop. Loop  dispatch  
counts the number of times additional iterations are scheduled.

Synchronization Events

These events indicate synchronization events that have occurred. Barrier  indi-
cates BARRIERs, Enter  Critical  and Exit  Critical  indicate 
CRITICAL  sections, and Begin  Single  and End Single  indicate PSIN-
GLEs.

TOTAL MAX AVG MIN #00 #01 #02 #03
tAlloc 160878 44659 40219 37285 38061 44659 40873 372
 tCopy 0 0 0 0 0 0 0 0
tSetup 0 0 0 0 0 0 0 0
tAlloc 0 0 0 0 0 0 0 0
tCopy 0 0 0 0 0 0 0 0

TOTAL MAX AVG MIN #00 #01 #02 #03
 Setup 136 34 34 34 34 34 34 34
patch 4514 1214 1128 1048 1102 1214 1150 10

TOTAL MAX AVG MIN #00 #01 #02 #03
arrier 272 68 68 68 68 68 68 68
ritical 4530 1218 1132 1052 1106 1218 1154 105
ritical 4530 1218 1132 1052 1106 1218 1154 105
Single 0 0 0 0 0 0 0 0
Single 0 0 0 0 0 0 0 0
guide@kai.com 71



7 •  The Guide_stats Report Event Counts

72

e 
 the 
ts.

d 
tain 
e 

an 

Variable Sy

Task 09
Max CP

Num Thre
Max Threa

Region Na

Yie
Sle
Internal Synchronization Events

These are synchronization events internal to the Guide runtime library.

Routine Events

 This is a count of the number of calls to external routines. The Task  ID  sec-
tion refers to the omp_get_thread_num()  routine. Max CPUs refers to 
the omp_get_num_procs()  routine. Num Threads  refers to the 
omp_get_num_threads()  routine, and Max Threads  refers to the 
omp_get_max_threads()  routine.

Library Calls

This is a count of the number of calls to the library to register the source lin
number and file corresponding to a particular parallel region. This is used by
statistics library to give context sensitive information for the timers and even

Internal Events

These are internal events. High numbers for Yield  or Sleep  indicate that 
the program is not working as efficiently as it could. This may be due to loa
imbalance, lock contention, or over-allocation of system resources. Try to ob
more Yields  than Sleeps  on an efficiently running system by reducing th
number of processors requested with the OMP_NUM_THREADS environment 
variable or by reducing or eliminating critical sections. A null call is basically 
empty function.

TOTAL MAX AVG MIN #00 #01 #02 #03
nc 0 0 0 0 0 0 0 0

TOTAL MAX AVG MIN #00 #01 #02 #03
ID 94382 39994 23595 16509 39994 19776 18103 165
Us 1 1 0 0 1 0 0 0
ads 0 0 0 0 0 0 0 0
ds 0 0 0 0 0 0 0 0

TOTAL MAX AVG MIN #00 #01 #02 #03
me 6 6 1 0 6 0 0 0

TOTAL MAX AVG MIN #00 #01 #02 #03
ld 0 0 0 0 0 0 0 0
ep 0 0 0 0 0 0 0 0
http://www.kai.com/kpts/guide/



KAP/Pro Parallel Directive to OpenMP Directive Translator Directive Translation •  8

D
ire

ct
iv

e 
T

ra
ns

la
tio

n

8

r 

e 

y 
s to 
 

 
o 
CHAPTER 8 Directive Translation

KAP/Pro Parallel Directive to OpenMP Directive Translato

Programs which have been parallelized with KAP/Pro Toolset directives can b
used as the basis for a port to the new OpenMP version of Guide. The 
kpts2omp.pl  program will help translate KAP/Pro Parallel directives into 
OpenMP directives that Guide accepts.

The kpts2omp.pl  program accepts as an argument the name of a file with 
KAP/Pro Toolset directives. The translated file is written to stdout  with OpenMP 
directives added. The stdout  can be redirected to capture the translated file. An
directives or constructs that cannot be handled automatically cause diagnostic
be added inline in the translated output. The stderr  output contains a synopsis of
the diagnostics. 

The kpts2omp.pl  translation is a totally automatic process because all of the
functionality provided by KAP/Pro Toolset directives is available in the KAP/Pr
Toolset implementation of OpenMP directives.
guide@kai.com 73



8 •  Directive Translation Cray Directive to OpenMP Directive 

74

 

 the 

med 
on 

 

-
 

f 
nsla-
ms 
Table 8-1, “kpts2omp.pl Translator Options,” below lists the options that are
available when running kpts2omp.pl .

NOTE:  Perl  must be installed on the system to use kpts2omp.pl .

Cray Directive to OpenMP Directive Translator 

Programs which have been parallelized with Cray directives can be used as
basis for a port to Guide. The cray2omp.pl  program will help translate Cray 
Autotasking directives into OpenMP directives that Guide accepts. It is assu
that the Cray program with Autotasking directives has been ported to work 
the target machine and compiler in serial mode.

The cray2omp.pl  program accepts as an argument the name of a file with
Cray Autotasking directives. The translated file is written to stdout  with 
OpenMP directives added. The stdout  can be redirected to capture the trans
lated file. Any directives or constructs that cannot be handled automatically
cause diagnostics to be added inline in the translated output. The stderr  out-
put contains a synopsis of the diagnostics. 

The cray2omp.pl  translation is not a totally automatic process because o
some semantic differences between the two directive sets. However, this tra
tion performs a majority of the work required for migration, and most progra

Table 8-1  kpts2omp.pl Translator Options

Option Description

 -[hH?] print usage info

 -i ifdef  mode, generates ‘#ifdef _OPENMP/#endif ’ around 
directives

 -I disables ifdef  mode (default setting)

 -o original directives included in output

 -O original directives not included in output (default setting)

 -t <num> number of spaces for continuation directives (0 <= num <=  8,  
default  = 4)

 -v verbose mode, give messages about likely errors (default setting)

 -V disables verbose messages
http://www.kai.com/kpts/guide/



Cray Directive to OpenMP Directive Translator Directive Translation •  8

D
ire

ct
iv

e 
T

ra
ns

la
tio

n

8

ng 

ail-

ses 
will not require manual intervention. If manual intervention is required, searchi
for “cray2omp ” in the output will lead to places where cray2omp.pl  had trou-
ble performing translations automatically. 

Table 8-2, “cray2omp.pl Translator Options,” below lists the options that are av
able when running cray2omp.pl .

Table 8-3, “Cray to OpenMP Translations,” below lists the cray2omp.pl  transla-
tions that are performed. Many of the directives in the table have optional clau
that are translated by cray2omp.pl  when possible. A diagnostic is produced 
when there is not an equivalent OpenMP directive.

Table 8-2 cray2omp.pl Translator Options

Option Description

 -[hH?] print usage info

 -i ifdef  mode, generates ‘#ifdef _OPENMP/#endif ’ around direc-
tives

 -I disables ifdef  mode (default setting)

 -o original directives included in output (default setting)

 -O original directives not included in output

 -t <num> number of spaces for continuation directives (0 <= num <=  8,  
default  = 4)

 -v verbose mode, give messages about likely errors (default setting)

 -V disables verbose messages

Table 8-3 Cray to OpenMP Translations 

Cray OpenMP

cmic$ taskcommon tcb c$omp threadprivate ( /tcb/ ) 

cdir$ taskcommon tcb c$omp threadprivate ( /tcb/ ) 

cdir$ ivdep *$* assert no recurrence

cdir$ no recurrence *$* assert no recurrence 

cmic$ guard c$omp critical

cmic$ end guard c$omp end critical

cmic$ parallel c$omp parallel
guide@kai.com 75



8 •  Directive Translation Cray Directive to OpenMP Directive 

76

 
dit-
NOTE:  Perl  must be installed on the system to use cray2omp.pl .

Cray TASKCOMMON as opposed to OpenMP THREAD PRIVATE

The tools provided with Guide perform a semi-automatic translation of Cray
FORTRAN prallel directives into OpenMP directives. However, some hand e
ing of the resulting program may be necessary. 

Cray taskcommon  also has a semantic feature that is not supported in the 
OpenMP syntax. Individual elements of a taskcommon  can be placed in the 
private list of a parallel  do .

First cmic$ case c$omp psections
c$omp section

Subsequent cmic$ case c$omp section

cmic$ endcase c$omp end psections

cmic$ do parallel c$omp pdo

cmic$ enddo c$omp barrier

cmic$ doall c$omp parallel do

single schedule(dynamic)

guided schedule(guided,64)

vector schedule(guided,64)

guided(n) schedule(guided,n)

chunksize(n) schedule(dynamic,n)

The following directives are not directly translatable into OpenMP syntax: 

cmic$ process
cmic$ also process
cmic$ end process
cmic$ stop all process
cmic$ do global
cmic$ continue
cmic$ getcpus
cmic$ numcpus
cmic$ relcpus
cmic$ soft exit
cmic$ micro

Table 8-3 Cray to OpenMP Translations (Continued)

Cray OpenMP
http://www.kai.com/kpts/guide/



SGI Directive to KAP/Pro Parallel Directive Translator Directive Translation •  8

D
ire

ct
iv

e 
T

ra
ns

la
tio

n

8

-
y 
ing 

I 
In the following example, the scalar elements of taskcommon  /tcb1/ , which 
are x  and y, are on the private list but the large array z  is not. With OpenMP, one 
could use the copyin  clause to achieve this effect. Since all the elements of 
taskcommon  /tcb2/  are on the private list, the entire /tcb2/  can be placed on 
the copyin  clause. 

For example, this Cray version

cmic$ taskcommon tcb1, tcb2
    common /tcb1/ x,y,z(10000)
    common /tcb2/ a,b,c
        
    x = 1
    y = 2
cmic$ do parallel private(i,x,y,a,b,c) shared(n)
    do i = 1, n
       ...
    enddo

should be translated into:

c$omp thread private tcb1, tcb2
    common /tcb1/ x,y,z(10000)
    common /tcb2/ a,b,c
        
    x = 1
    y = 2
c$omp parallel do private(i) shared(n) 
copyin(x,y,/tcb2/)
    do i = 1, n
       ...
    enddo

SGI Directive to KAP/Pro Parallel Directive Translator 

Programs which have been prallelized with SGI c$  directives can be used as the 
basis for a port to Guide. The sgi2par.pl  program will help translate SGI direc
tives into KAP/Pro parallel processing directives. These KAP/Pro directives ma
then be translated automatically into OpenMP directives that Guide accepts us
the kpts2omp.pl  program described earlier on page 73.

The sgi2par.pl  program accepts as an argument the name of a file with SG
directives. The translated file is written to stdout  with KAP/Pro parallel process-
guide@kai.com 77



8 •  Directive Translation SGI Directive to KAP/Pro Parallel Direc-

78

 
se 

am. 

 
e 

 

ans-

ans-

ans-

ans-

ling 
ing directives added. The stdout  can be redirected to capture the translated
file. Any directives or consutructs that cannot be handled automatically cau
diagnostics to be added inline in the translated output. The stderr  output con-
tains the synopsis of the diagnostics. 

Most of the common SGI directives are handled automatically by this progr
Whenever manual intervention is required, searching for “sgi2par.pl ” in the 
output will lead to places where sgi2par.pl  had trouble performing transla-
tions.

Table 8-4, “SGI to KAP/Pro Translations,” below lists the SGI directives and
their translations that are performed. Many of the directives in the table hav
optional clauses that are translated by sgi2par.pl  when possible. A diagnos-
tic is produced when there is not an equivalent KAP/Pro parallel processing
directive. 

None of the SGI scheduling keywords are automatically translated my 
sgi2par.pl . Sgi2par.pl  produces a diagnostic to assist in manually 
inserting scheduling keywords into the program.

NOTE:  Perl  must be installed on your system to use sgi2par.pl .

Table 8-4 SGI to KAP/Pro Translations

SGI directive or clause or library routine KAP/Pro Translation

c$doacross c$par parallel do

c$ call mp_barrier c$par barrier

c$ call mp_setlock c$par critical section

c$ call mp_unsetlock c$par end critical section

mp_my_threadnum Not translated automatically, but can be tr
lated using mpptid

mp_numthreads Not translated automatically, but can be tr
lated using mppnth

c$copyin Not translated automatically, but can be tr
lated manually

c$ mp_schedtype clause Not translated automatically, but can be tr
lated manually

c$mp_schedtype directive No translation, have to propagate schedu
type to rest of file manually
http://www.kai.com/kpts/guide/



KAP Directive to OpenMP Directive Translator Directive Translation •  8

D
ire

ct
iv

e 
T

ra
ns

la
tio

n

8

 

t can-
lated 
KAP Directive to OpenMP Directive Translator 

Programs which contain the older PCF directives of the form *KAP*  can be used as 
the basis for a port to OpenMP. The kap2omp.pl  program will help translate 
KAP directives into OpenMP directives.

The kap2omp.pl  program accepts the name of a file with KAP directives. The
translated file is written to stdout  with OpenMP directives added. The stdout  
can be redirected to capture the translated file. Any directives or constructs tha
not be handled automatically cause diagnostics to be added inline in the trans
output. The stderr  output contains the synopsis of the diagnostics. All 
cray2omp.pl  translator options given in Table 8-2, “cray2omp.pl Translator 
Options,” on page 75, are also available for the kap2omp.pl  program.

NOTE:  Perl  must be installed on the system to use kap2omp.pl .
guide@kai.com 79



8 •  Directive Translation KAP Directive to OpenMP Directive Trans-

80
 http://www.kai.com/kpts/guide/



Examples •  A

E
xa

m
pl

es

A

SI 
APPENDIX A Examples

For your convenience, the following examples have been adapted from the AN
X3H5 Parallel Extensions for FORTRAN document.
guide@kai.com 81



A •  Examples

82

ch 
g. 
PDO: A Simple Difference Operator

This example shows a simple parallel loop where the amount of work in ea
iteration is different. We used dynamic scheduling to get good load balancin
The end pdo  has a nowait  because there is an implicit barrier  at the end 
parallel . Alternately, using the option -optimize=1 would have also elimi-
nated the barrier .

        subroutine pdo_1 (a,b,n)
        real a(n,n), b(n,n)

c$omp parallel
c$omp&   shared(a,b,n)
c$omp&   private(i,j)
c$omp pdo schedule(dynamic,1)
        do i = 2, n
            do j = 1, i
               b(j,i) = ( a(j,i) + a(j,i-1) ) / 2
            enddo
        enddo
c$omp end pdo nowait
c$omp end parallel
        end
http://www.kai.com/kpts/guide/



Examples •  A

E
xa

m
pl

es

A

PDO: Two Difference Operators

Shows two parallel regions fused to reduce fork/join overhead. The first end  pdo  
has a nowait  because all the data used in the second pdo  is different than all the 
data used in the first pdo .

        subroutine pdo_2 (a,b,c,d,m,n)
        real a(n,n), b(n,n), c(m,m), d(m,m)

c$omp parallel
c$omp&   shared(a,b,c,d,m,n)
c$omp&   private(i,j)
c$omp pdo schedule(dynamic,1)
        do i = 2, n
            do j = 1, i
                b(j,i) = ( a(j,i) + a(j,i-1) ) / 2
            enddo
        enddo
c$omp end pdo nowait
c$omp pdo schedule(dynamic,1)
        do i = 2, m
            do j = 1, i
                d(j,i) = ( c(j,i) + c(j,i-1) ) / 2
            enddo
        enddo
c$omp end pdo nowait
c$omp end parallel
        end
guide@kai.com 83



A •  Examples

84

, 

er-
PDO: Reduce Fork/Join Overhead

Routines pdo_3a  and pdo_3b  perform numerically equivalent computations
but because the parallel  directive in routine pdo_3b  is outside the do  j 
loop, routine pdo_3b  probably forms teams less often, and thus reduces ov
head.

        subroutine pdo_3a (a,b,m,n)
        real a(n,m), b(n,m)

        do j = 2, m
c$omp parallel
c$omp&   shared(a,b,n,j)
c$omp&   private(i)
c$omp pdo
            do i = 1, n
                a(i,j) = b(i,j) / a(i,j-1)
            enddo
c$omp end pdo nowait
c$omp end parallel
        enddo
        end

        subroutine pdo_3b (a,b,m,n)
        real a(n,m), b(n,m)

c$omp parallel
c$omp&   shared(a,b,m,n)
c$omp&   private(i,j)
        do j = 2, m
c$omp pdo
            do i = 1, n
                a(i,j) = b(i,j) / a(i,j-1)
            enddo
c$omp end pdo nowait
        enddo
c$omp end parallel
        end
http://www.kai.com/kpts/guide/



Examples •  A

E
xa

m
pl

es

A

 of 
PSECTIONS: Two Difference Operators

Identical to “PDO: Two Difference Operators” on page 83 but uses psections  
instead of pdo . Here the speedup is limited to 2 because there are only 2 units
work whereas in “PDO: Two Difference Operators” on page 83 there are n-1 + m-1 
units of work .

        subroutine psections_1 (a,b,c,d,m,n)
        real a(n,n), b(n,n), c(m,m), d(m,m)

c$omp parallel
c$omp&   shared(a,b,c,d,m,n)
c$omp&   private(i,j)
c$omp psections
c$omp psection
        do i = 2, n
            do j = 1, i
                b(j,i) = ( a(j,i) + a(j,i-1) ) / 2
            enddo
        enddo
c$omp psection
        do i = 2, m
            do j = 1, i
                d(j,i) = ( c(j,i) + c(j,i-1) ) / 2
            enddo
        enddo
c$omp end psections nowait
c$omp end parallel
        end
guide@kai.com 85



A •  Examples

86
PSINGLE: Updating a Shared Scalar

This example demonstrates how to use a psingle  construct to update an ele-
ment of the shared array a. The optional end pdo nowait  after the first pdo  
is omitted because we need to wait at the end of the pdo  before proceeding into 
the psingle .

        subroutine sp_1a (a,b,n)
        real a(n), b(n)

c$omp parallel
c$omp&   shared(a,b,n)
c$omp&   private(i)
c$omp pdo
        do i = 1, n
            a(i) = 1.0 / a(i)
        enddo
c$omp psingle
        a(1) = min( a(1), 1.0 )
c$omp end psingle
c$omp pdo
        do i = 1, n
            b(i) = b(i) / a(i)
        enddo
c$omp end pdo nowait
c$omp end parallel
        end
http://www.kai.com/kpts/guide/



Examples •  A

E
xa

m
pl

es

A

ent 
PSECTIONS: Updating a Shared Scalar

Identical to “PSINGLE: Updating a Shared Scalar” on page 86 but using differ
directives.

        subroutine psection_sp_1 (a,b,n)
        real a(n), b(n)

c$omp parallel
c$omp&   shared(a,b,n)
c$omp&   private(i)
c$omp pdo
        do i = 1, n
            a(i) = 1.0 / a(i)
        enddo
c$omp psections
        a(1) = min( a(1), 1.0 )
c$omp end psections
c$omp pdo
        do i = 1, n
            b(i) = b(i) / a(i)
        enddo
c$omp end pdo nowait
c$omp end parallel
        end
guide@kai.com 87



A •  Examples

88

fer-
PDO: Updating a Shared Scalar

Identical to “PSINGLE: Updating a Shared Scalar” on page 86 but using dif
ent directives.

        subroutine pdo_sp_1 (a,b,n)
        real a(n), b(n)

c$omp parallel
c$omp&   shared(a,b,n)
c$omp&   private(i)
c$omp pdo
        do i = 1, n
            a(i) = 1.0 / a(i)
        enddo
c$omp end pdo
c$omp pdo
        do i = 1, 1
            a(1) = min( a(1), 1.0 )
        enddo
c$omp end pdo
c$omp pdo
        do i = 1, n
            b(i) = b(i) / a(i)
        enddo
c$omp end pdo nowait
c$omp end parallel
        end
http://www.kai.com/kpts/guide/



Examples •  A

E
xa

m
pl

es

A

t 
PARALLEL DO: A Simple Difference Operator

Identical to “PDO: A Simple Difference Operator” on page 82 but using differen
directives. 

        subroutine paralleldo_1 (a,b,n)
        real a(n,n), b(n,n)

c$omp parallel do
c$omp&   shared(a,b,n)
c$omp&   private(i,j)
c$omp&   schedule(dynamic,1)
        do i = 2, n
            do j = 1, i
                b(j,i) = ( a(j,i) + a(j,i-1) ) / 2
            enddo
        enddo
        end
guide@kai.com 89



A •  Examples

90

dif-

ism 
PARALLEL SECTIONS: Two Difference 
Operators

Identical to “PSECTIONS: Two Difference Operators” on page 85 but using 
ferent directives. The maximum performance improvement is limited to the 
number of sections run in parallel, so this example has a maximum parallel
of 2.

        subroutine psections_2 (a,b,c,d,m,n)
        real a(n,n), b(n,n), c(m,m), d(m,m)

c$omp parallel sections
c$omp&   shared(a,b,c,d,m,n)
c$omp&   private(i,j)
c$omp psection
        do i = 2, n
            do j = 1, i
               b(j,i) = ( a(j,i) + a(j,i-1) ) / 2
            enddo
        enddo
c$omp psection
        do i = 2, m
            do j = 1, i
               d(j,i) = ( c(j,i) + c(j,i-1) ) / 2
            enddo
        enddo
c$omp end parallel sections
        end
http://www.kai.com/kpts/guide/



Examples •  A

E
xa

m
pl

es

A

g 
Simple Reduction

This demonstrates how to perform a reduction using partial sums while avoidin
synchronization in the loop body.

        subroutine reduction_1 (a,m,n,sum)
        real a(m,n)

c$omp parallel
c$omp&   shared(a,m,n,sum)
c$omp&   private(i,j,local_sum)
        local_sum = 0.0
c$omp pdo
        do i = 1, n
            do j = 1, m
                local_sum = local_sum + a(j,i)
            enddo
        enddo
c$omp end pdo nowait
c$omp critical
        sum = sum + local_sum
c$omp end critical
c$omp end parallel
        end

The above reduction could also use the REDUCTION ()  clause as follows:

        subroutine reduction_2 (a,m,n,sum)
        real a(m,n)

c$omp parallel do
c$omp&   shared(a,m,n)
c$omp&   private(i,j)
c$omp&   reduction(+:sum)
        do i = 1, n
            do j = 1, m
                local_sum = local_sum + a(j,i)
            enddo
        enddo
        end
guide@kai.com 91



A •  Examples

92
TASKCOMMON: Private Common

This example demonstrates the use of taskcommon  privatizable common 
blocks.

        subroutine tc_1 (n)
        common /shared/ a
        real a(100,100)
        common /private/ work
        real work(10000)
c$omp thread private (/private/)  ! this privatizes the
                                  ! common /private/
c$omp parallel
c$omp&   shared(n)
c$omp&   private(i)
c$omp pdo
        do i = 1, n
            call construct_data() ! fills in array work()
            call use_data()       ! uses array work()
        enddo
c$omp end pdo nowait
c$omp end parallel
        end
http://www.kai.com/kpts/guide/



Examples •  A

E
xa

m
pl

es

A

 in 
THREAD PRIVATE: Private Common and Master 
Thread

In this example, the value 2 is printed since the master thread's copy of a variable
a thread private  privatizable common block is accessed within a master  
section or in serial code sections.  If a psingle  was used in place of the master  
section, some single thread, but not necessarily the master thread, would set j  to 2 
and the printed result would be indeterminate.

        subroutine tc_2
        common /blk/ j
c$omp thread private (/blk/)

        j = 1
c$omp parallel
c$omp master
        j = 2
c$omp end master
c$omp end parallel

        print *, j
        end
guide@kai.com 93



A •  Examples

94
INSTANCE PARALLEL: As a Private Common

This demonstrates the use of instance  parallel  privatizable common 
blocks.

        subroutine ip_1 (n)
        common /shared/ a
        real a(100,100)
        common /private/ work
        real work(10000)
c$omp instance parallel (/private/)

c$omp parallel
c$omp&   shared(n)
c$omp&   private(i)
c$omp new (/private/)            ! this privatizes the
c$omp pdo                        ! common /private/
        do i = 1, n
            call construct_data()! fills in array work()
            call use_data()      ! uses array work()
        enddo
c$omp end pdo nowait
c$omp end parallel
        end
http://www.kai.com/kpts/guide/



Examples •  A

E
xa

m
pl

es

A

INSTANCE PARALLEL: As a Shared and then a 
Private Common

This demonstrates the use of an instance  parallel common  block first as a 
shared common block and then as a private common block. This would not be pos-
sible with taskcommon  blocks since taskcommon  blocks are always private.

        subroutine ip_2 (n,m)
        common /shared/ a,b
        real a(100,100), b(100,100)
        common /private/ work
        real work(10000)
c$omp instance parallel (/private/)

c$omp parallel                    ! common /private/ is
c$omp&   shared(a,b,n)            ! shared here since
c$omp&   private(i)               ! no new appears
c$omp pdo
        do i = 1, n
            work(i) = b(i,i) / 4.0
        enddo
c$omp end pdo nowait
c$omp end parallel

        do i = 1, n
            do j = 1, m
                a(j,i) = work(i) * ( a(j-1,i) + a(j+1,i)
     x                   + a(j,i-1) + a(j,i+1) )
            enddo
        enddo

c$omp parallel
c$omp&   shared(m)
c$omp&   private(i)
c$omp new (/private/)             ! this privatizes the
c$omp pdo                         ! common /private/
        do i = 1, m
            call construct_data() ! fills in array work()
            call use_data()       ! uses array work()
        enddo
c$omp end pdo nowait
c$omp end parallel
        end
guide@kai.com 95



A •  Examples

96

 

al 
Avoiding External Routines: Reduction

This example demonstrates two coding styles for reductions, one using the
external routines omp_get_max_threads()  and 
omp_get_thread_num()  and the other using only OpenMP directives.

        subroutine reduction_3a (n)
        real gx( 0:7 )   ! assume 8 processors

        do i = 0, omp_get_max_threads()-1
            gx(i) = 0
        enddo

c$omp parallel
c$omp&   shared(a)
c$omp&   private(i,lx)
        lx = 0
c$omp pdo
        do i = 1, n
            lx = lx + a(i)
        enddo
c$omp end pdo nowait
        gx( omp_get_thread_num() ) = lx
c$omp end parallel

        x = 0
        do i = 0, omp_get_max_threads()-1
            x = x + gx(i)
        enddo

        print *, x
        end

As is shown below, this example could have been written without the extern
routines.
http://www.kai.com/kpts/guide/



Examples •  A

E
xa

m
pl

es

A

        subroutine reduction_3b (n)

        x = 0
c$omp parallel
c$omp&   shared(a,x)
c$omp&   private(i,lx)
        lx = 0
c$omp pdo
        do i = 1, n
            lx = lx + a(i)
        enddo
c$omp end pdo nowait
c$omp critical
        x = x + lx
c$omp end critical
c$omp end parallel

        print *, x
        end

This example could have also been written more simply using the reduction  ()  
clause as follows:

        subroutine reduction_3c (n)

        x = 0
c$omp parallel
c$omp&   shared(a)
c$omp&   private(i)
c$omp pdo reduction(+:x)
        do i = 1, n
            x = x + a(i)
        enddo
c$omp end pdo nowait
c$omp end parallel

        print *, x
        end
guide@kai.com 97



A •  Examples

98

using 

 

Avoiding External Routines: Temporary Storage 

This example demonstrates three coding styles for temporary storage, one 
the external routine and omp_get_thread_num()  and the other two using 
only directives.

        subroutine local_1a (n)
        dimension a(100)
        common /cmn/ t( 100, 0:7 )  ! assume 8 processors 

max.
c$omp parallel do
c$omp&   shared(a,t)
c$omp&   private(i)
        do i = 1, n
            do j = 1, n
                t(j, omp_get_thread_num()) = a(i) ** 2
            enddo
            call work( t(1,omp_get_thread_num()) )
        enddo
        end

If t  is not global, then the above could be accomplished by putting t  in the 
private clause:

        subroutine local_1b (n)
        dimension t(100)

c$omp parallel do
c$omp&   shared(a)
c$omp&   private(i,t)
        do i = 1, n
            do j = 1, n
                t(j) = a(i) ** 2
            enddo
            call work( t )
        enddo
        end

If t  is global, then the instance  parallel  and new directives can be used
instead.
http://www.kai.com/kpts/guide/



Examples •  A

E
xa

m
pl

es

A

        subroutine local_1c (n)
        dimension t(100)
        common /cmn/ t
c$omp instance parallel (/cmn/)

c$omp parallel do
c$omp&   shared(a)
c$omp&   private(i)
c$omp new (/cmn/)
        do i = 1, n
            do j = 1, n
                t(j) = a(i) ** 2
            enddo
            call work   ! access t from common /cmn/
        enddo
        end
guide@kai.com 99



A •  Examples

100

 

FIRSTPRIVATE: Copying in Initialization Values

Not all of the values of a and b are initialized in the loop before they are used
(the rest of the values are produced by init_a  and init_b ). Using 
firstprivate  for a and b causes the initialization values produced by 
init_a  and init_b  to be copied into private copies of a and b for use in the 
loops.

        subroutine dsq3_b (c,n)
        integer n
        real a(100), b(100), c(n,n), x, y
        call init_a( a, n )
        call init_b( b, n )
c$omp parallel do shared(c,n) private(i,j,x,y) 
firstprivate(a,b)
        do i = 1, n
            do j = 1, i
                a(j) = calc_a(i)
                b(j) = calc_b(i)
            enddo
            do j = 1, n
                x = a(i) - b(i)
                y = b(i) + a(i)
                c(j,i) = x * y
            enddo
        enddo
c$omp end parallel do
        print *, x, y
        end
http://www.kai.com/kpts/guide/



Examples •  A

E
xa

m
pl

es

A

pt 
THREAD PRIVATE: Copying in Initialization 
Values

Similar to “FIRSTPRIVATE: Copying in Initialization Values” on page 100 exce
using thread private  common blocks.  For thread private , copyin  is 
used instead of firstprivate  to copy initialization values from the shared 
(master) copy of /blk/  to the private copies.

        subroutine dsq3_b_tc (c,n)
        integer n
        real a(100), b(100), c(n,n), x, y
        common /blk/ a,b
c$omp thread private (/blk/)

        call init_a( a, n )
        call init_b( b, n )
c$omp parallel do shared(c,n) private(i,j,x,y) 
copyin(a,b)
        do i = 1, n
            do j = 1, i
                a(j) = calc_a(i)
                b(j) = calc_b(i)
            enddo
            do j = 1, n
                x = a(i) - b(i)
                y = b(i) + a(i)
                c(j,i) = x * y
            enddo
        enddo
c$omp end parallel do
        print *, x, y
        end
guide@kai.com 101



A •  Examples

102

 

INSTANCE PARALLEL: Copying in Initialization 
Values

Similar to “FIRSTPRIVATE: Copying in Initialization Values” on page 100 
except using instance parallel  privatizable common blocks. For 
instance parallel , copy new  is used instead of firstprivate  to 
privatize the common block and to copy initialization values from the shared
(master) copy of /blk/  to the private copies.

        subroutine dsq3_b_ip (c,n)
        integer n
        real a(100), b(100), c(n,n), x, y
        common /blk/ a,b
c$omp instance parallel (/blk/)

        call init_a( a, n )
        call init_b( b, n )
c$omp parallel do shared(c,n) private(i,j,x,y)
c$omp copy new (/blk/)
        do i = 1, n
            do j = 1, i
                a(j) = calc_a(i)
                b(j) = calc_b(i)
            enddo
            do j = 1, n
                x = a(i) - b(i)
                y = b(i) + a(i)
                c(j,i) = x * y
            enddo
        enddo
c$omp end parallel do
        print *, x, y
        end
http://www.kai.com/kpts/guide/



Timing Guide Constructs •  B

 G
ui

de
 

tr
uc

ts
B

d for 
sed 

t 
APPENDIX B Timing Guide 
Constructs

The table contained in this appendix demonstrates the amount of time expende
OpenMP directives in comparison to a null call for a typical RISC processor ba
SMP. A null call is a call to an empty function.

SUBROUTINE NULL
RETURN
END

In the table below, it took about 10 cycles to call the null function. A BARRIER 
construct (!$OMP BARRIER) is about 10 times slower for 1 processor, and abou
70 times slower for 2 processors.
guide@kai.com 103

T
im

in
g

C
on

s



B •  Timing Guide Constructs

104

sors.

Guide Construct X s

function call

barrier 0

psingle 0

critical section 0

parallel region 0
Typical Overhead

This information can be used to draw the following general conclusions:

• A BARRIER statement is 30 to 50 percent less expensive than a PARALLEL 
region.

• BARRIERs and PSINGLEs have roughly the same overhead.

• After 2 processors, all the costs follow a linear pattern as you add proces

1 processor 2 processor 3 processor 4 processor

 null call cycles X null call cycles X null call cycles X null call cycle

1 10 1 10 1 10 1 10

10 100 70 700 90 900 100 100

20 200 90 900 110 1100 130 130

30 300 70 700 150 1500 210 210

50 500 190 1900 220 2200 280 280
http://www.kai.com/kpts/guide/



Index
A
advanced optimization 39, 41

command line options 39, 41
alignmax 42, 43
all

save option 51
all_adjust

save option 52
as 41, 43
assume 41, 43
ATOMIC 26

B
BARRIER 27
barrier 7

reported overhead 67
blank_padding 42, 44
bold typeface 3
bp 42, 44

C
c*$*options 47, 54

case 42, 44
chk 42, 44
chunk 28, 42, 44
cmp 41, 44
command line options 41, 50

1 42, 49
advanced optimization 39, 41
alignmax 42, 43
alphabetic listing 43–54
as 41, 43
assume 41, 43
blank_padding 42, 44
bp 42, 44
case 42, 44
chk 42, 44
chunk 42, 44
cmp 41, 44
conc 41, 45
concurrentize 41, 45
datasave 42, 45
directives 42, 45
dl 42, 45
guide@kai.com 105



Index

106
dlines 42, 45
dr 42, 45
ds 42, 45
free 42
heap 42, 46
heaplimit 42, 46
i 41, 47
ig 42, 47
ignoreoptions 42, 47
inc 42, 47
include 42, 47
input 41, 47
int 42, 47
integer 42, 47
l 41, 48
lines 41, 48
list 41, 48
listoptions 41, 48
ln 41, 48
lo 41, 48
log 42, 48
logical 42, 48
mc 41
minconcurrent 41
o 41, 50
onetrip 42, 49
optimize 41, 50
rc 42, 50
real 42, 50
recursion 42, 50
rl 42, 50
roundoff 41, 50
save 42, 51
scalaropt 41, 52
scan 42, 52
schd 42, 52
scheduling 42, 52
so 41, 52
specifying 47, 54
su 41, 53
suppress 41, 53
sv 42, 51
sy 42, 53
syntax 42, 53
ty 42, 53

type 42, 53
common blocks

allocating private 24
declaring private 23
privatizing 10, 23

common privatization 22
allocating private commons 24
declaring private commons 23
INSTANCE PARALLEL 23

common privatization directives
THREAD PRIVATE 23

conc 41, 45
concurrentize 41, 45
control directives 15–22

COPYIN 22
END PARALLEL 15
END PARALLEL DO 18
END PARALLEL SECTIONS 19
END PDO 16
END PSECTIONS 17
END PSINGLE 17
FIRSTPRIVATE 21
LASTPRIVATE 21
PARALLEL 15
PARALLEL DO 18
PARALLEL SECTIONS 19
PDO 16
PSECTIONS 17
PSINGLE 17
REDUCTION 21

COPYIN 22
courier font 3
CRITICAL 25

D
datasave 42, 45
debugging code 45
DEC

FORTRAN extensions 53
Digital

FORTRAN extensions 53
directives 42, 45

ATOMIC 26
BARRIER 27
control 15–22
http://www.kai.com/kpts/guide/



Index
COPYIN 22
CRITICAL 25
END CRITICAL 25
END MASTER 26
END ORDERED 25
END PARALLEL 15
END PARALLEL DO 18
END PARALLEL SECTIONS 19
END PDO 16
END PSECTIONS 17
END PSINGLE 17
FIRSTPRIVATE 21
FLUSH 26
INSTANCE PARALLEL 23
LASTPRIVATE 21
MASTER 26
ORDERED 25
PARALLEL 15
PARALLEL DO 18
PARALLEL SECTIONS 19
PDO 16
PSECTIONS 17
PSINGLE 17
recognition 45
REDUCTION 21
synchronization 25
THREAD PRIVATE 23

dl 42, 45
dlines 42, 45
dr 42, 45
driver options

h 35
v 35
w 35
WG 36
WGcompiler 36
WGcpp 36
WGf77 36
WGf90 36
WGfortran 36
WGftn 36
WGkeep 37
WGkeepcpp 37
WGld 37
WGlibpath 37

WGlink 37
WGnocpp 37
WGnokeep 37
WGnoprocess 38
WGnorc 38
WGonly 38
WGpath 38
WGprefix 38
WGsrcdir 38
WGversion 39

ds 42, 45

E
eliminating 7
END CRITICAL 25
END MASTER 26
END ORDERED 25
END PARALLEL 15
END PARALLEL DO 18
END PARALLEL SECTIONS 19
END PDO 16
END PSECTIONS 17
END PSINGLE 17
environment variables 29, 30, 31

kmp_library 29
kmp_scheduling 29
kmp_stacksize 30
kmp_statsfile 30
ld_library_path 30
omp_dynamic 30
omp_num_threads 31
omp_schedule 31
scheculing options 29

error messages 53
suppressing 53

external routines 57
mppbeg() 57
mppend() 57
omp_get_max_threads() 58
omp_get_num_procs() 58
omp_get_num_threads() 58
omp_get_thread_num() 59

F
FIRSTPRIVATE 21
guide@kai.com 107



Index

108
FLUSH 26
FORTRAN

dialects 40, 53
free 42

G
guidefrc 35

H
heap 42, 46
heaplimit 42, 46

I
i 41, 47
ig 42, 47
ignoreoptions 42, 47
inc 42, 47
include 42, 47
input 41, 47
INSTANCE PARALLEL 23
int 42, 47
integer 42, 47

K
kmp_library 29
kmp_scheduling 29
kmp_stacksize 30
kmp_statsfile 30

L
l 41, 48
LASTPRIVATE 21
ld_library_path 30
libraries 55, 57

linking 57
selecting 55

lines 41, 48
linking

libraries 57
list 41, 48
listoptions 41, 48
ln 41, 48
lo 41, 48
log 42, 48
logical 42, 48

M
manual

save option 51
manual_adjust

save option 51
MASTER 26
mc 41
messages

suppressing 53
minconcurrent 41
mppbeg() 57
mppend() 57

O
o 41, 50
omp_dynamic 30
omp_get_max_threads() 58
omp_get_num_procs() 58
omp_get_num_threads() 58
omp_get_thread_num() 59
omp_num_threads 31
omp_schedule 31
onetrip 42, 49
optimize 41, 50
options 47, 54
ORDERED 25

P
PARALLEL 15
PARALLEL DO 18
PARALLEL SECTIONS 19
PDO 16
private commons

allocating 24
declaring 23

privatization
directives 10, 23

PSECTIONS 17
PSINGLE 17

R
r 41, 50
rc 42, 50
real 42, 50
recursion 42, 50
http://www.kai.com/kpts/guide/



Index
REDUCTION 21
roundoff 41, 50

S
save 42, 51

all 51
all_adjust 52
manual 51
manual_adjust 51

scalaropt 41, 52
scan 42, 52
schd 42, 52
scheduling 42, 52
scheduling options 27

chunk size 28
environment variables 29

so 41, 52
su 41, 53
suppress 41, 53
sv 42, 51
sy 42, 53
synchronization directives 25, 26

ATOMIC 26
BARRIER 27
CRITICAL 25
FLUSH 26
MASTER 26
ORDERED 25

syntax 42, 53

T
THREAD PRIVATE 23
ty 42, 53
type 42, 53

W
warnings

suppressing 53
WG 36
WGcompiler 36
WGcpp 36
WGf77 36
WGf90 36
WGfortran 36
WGftn 36

WGkeep 37
WGkeepcpp 37
WGld 37
WGlibpath 37
WGlink 37
WGnocpp 37
WGnokeep 37
WGnoprocess 38
WGnorc 38
WGonly 38
WGpath 38
WGprefix 38
WGsrcdir 38
WGversion 39
guide@kai.com 109


	CHAPTER 1 Introduction
	About Guide
	Using this Reference Manual
	Reference Manual Contents
	Reference Manual Conventions

	Guide On-line
	Technical Support
	Comments

	CHAPTER 2 Using Guide
	Parallel Processing Model
	Overview
	Increasing Efficiency
	Data Sharing

	Using Guide to Develop Parallel Programs
	Analyze
	Restructure
	Tune

	Orphaned Directives
	A Few Rules About the “Orphaned” Directives


	CHAPTER 3 OpenMP Directives
	Control Directives
	PARALLEL/END PARALLEL
	PDO/END PDO
	PSECTIONS/END PSECTIONS
	PSINGLE/END PSINGLE
	PARALLEL DO/END PARALLEL DO
	PARALLEL SECTIONS/END PARALLEL SECTIONS
	IF(if_expr)
	DEFAULT(SHARED|PRIVATE|NONE) SHARED(shared_vars) P...
	FIRSTPRIVATE (firstprivate_vars)
	LASTPRIVATE (lastprivate_vars)
	REDUCTION(operator:reduction_vars) REDUCTION(intri...
	COPYIN (copyin_vars)

	Common Privatization
	INSTANCE PARALLEL
	THREAD PRIVATE
	Declaring Private Commons
	Allocating Private Commons

	Synchronization Directives
	CRITICAL/END CRITICAL
	ORDERED/END ORDERED
	MASTER/END MASTER
	ATOMIC
	FLUSH[(string)]
	BARRIER

	Scheduling Options
	Scheduling Options Using Directives
	Scheduling Options Using Environment Variables

	Environment Variables
	KMP_LIBRARY=<string>
	KMP_STACKSIZE=<integer>[,<character>]
	KMP_STATSFILE=<file>
	LD_LIBRARY_PATH=<path>
	OMP_DYNAMIC=<boolean>
	OMP_NUM_THREADS=<integer>
	OMP_SCHEDULE=<string>[,<integer>]


	CHAPTER 4 The Guide Drivers
	About Guidef77 and Guidef90
	Using the Drivers
	Driver Options
	Displaying the Driver Usage Message
	Displaying All Command Lines
	Suppressing Guidef Warnings

	Driver-Specific Options
	WG,guide_option_1[[[,guide_option_2],guide_option_...
	WGcompiler=<path>
	WGcpp=<path>
	WGf77=<path>
	WGf90=<file>
	WGfortran=<path>
	WGftn=<path>
	WGkeep
	WGkeepcpp
	WGld=<file>
	WGlibpath=<path>
	WGlink=<path>
	WGnocpp
	WGnokeep
	WGnoprocess
	WGnorc
	WGonly
	WGpath=<path>
	WGprefix=<string>
	WGsrcdir
	WGversion

	Guide Options
	Guide Options Functional Categories
	General Optimization
	Input-Output
	Listing
	Advanced Optimization
	FORTRAN Dialect
	Hardware
	Directive Recognition

	Guide Options Table
	Guide Options Alphabetic Listing
	alignmax=<integer>
	assume=<string> or a=<string> noassume or nas
	blank_padding or bp noblank_padding or nbp
	case or case nocase or ncase
	chunk=<integer> or chk=<integer>
	cmp[=<file>]
	concurrentize, conc noconcurrentize, noconc
	datasave or ds nodatasave or nds
	directives=p or dr=p nodirectives or ndr
	dlines or dl nodlines or ndl
	free nofree
	heaplimit=<integer> or heap=<integer>
	ignoreoptions or ig noignoreoptions or nig
	include=<directory> or inc=<directory>
	input=<file> or i=<file>
	integer=<integer> or int=<integer>
	lines=<integer> or ln=<integer>
	list[=<file>] or l=[<file>] nolist or nl
	listoptions=<string> or lo=<string>
	logical=<integer> or log=<integer>
	minconcurrent=<integer> or mc=<integer>
	onetrip or 1 noonetrip or n1
	optimize=<integer> or o=<integer>
	real=<integer> or rl=<integer>
	recursion or rc norecursion or nrc
	roundoff=<string> or r=<string>
	save=<string> or sv=<string>
	scalaropt=<integer> or so=<integer>
	scan=<integer> or scan=<integer>
	scheduling=<character> or schd=<character>
	suppress=<string> or su=<string>
	syntax=<string> or sy=<string>
	type or ty notype or nty
	c*$*options Line


	CHAPTER 5 Libraries
	Selecting a Library
	Serial
	Turnaround
	Throughput

	The Guide_stats Library
	Linking the Libraries
	External Routines
	mppbeg(), mppend()
	omp_get_max_threads()
	omp_get_num_procs()
	omp_get_num_threads()
	omp_get_thread_num()


	CHAPTER 6 GuideView
	Introduction
	Using GuideView
	GuideView Options
	mhz=<integer>
	ovh=<file>
	WJ,[java_option]

	JAVA Options
	ms<integer>[{k,m}]
	mx<integer>[{k,m}]


	CHAPTER 7 The Guide_stats CHAPTER 7 Report
	Settings
	Parallel Region
	Synchronized Code
	Synchronization
	Locks
	Barriers
	Join Barriers

	Average Statistics
	Performance Projections
	Event Counts
	Program Start/Finish
	Internal Checks
	Fork
	Private Commons with INSTANCE PARALLEL or THREAD P...
	Dynamic Scheduling
	Synchronization Events
	Internal Synchronization Events
	Routine Events
	Library Calls
	Internal Events


	CHAPTER 8 Directive Translation
	KAP/Pro Parallel Directive to OpenMP Directive Tra...
	Cray Directive to OpenMP Directive Translator
	Cray TASKCOMMON as opposed to OpenMP THREAD PRIVAT...

	SGI Directive to KAP/Pro Parallel Directive Transl...
	KAP Directive to OpenMP Directive Translator

	APPENDIX A Examples
	PDO: A Simple Difference Operator
	PDO: Two Difference Operators
	PDO: Reduce Fork/Join Overhead
	PSECTIONS: Two Difference Operators
	PSINGLE: Updating a Shared Scalar
	PSECTIONS: Updating a Shared Scalar
	PDO: Updating a Shared Scalar
	PARALLEL DO: A Simple Difference Operator
	PARALLEL SECTIONS: Two Difference Operators
	Simple Reduction
	TASKCOMMON: Private Common
	THREAD PRIVATE: Private Common and Master Thread
	INSTANCE PARALLEL: As a Private Common
	INSTANCE PARALLEL: As a Shared and then a Private ...
	Avoiding External Routines: Reduction
	Avoiding External Routines: Temporary Storage
	FIRSTPRIVATE: Copying in Initialization Values
	THREAD PRIVATE: Copying in Initialization Values
	INSTANCE PARALLEL: Copying in Initialization Value...

	APPENDIX B Timing Guide APPENDIX B Constructs
	Typical Overhead


