GuipE™ Reference Manual
Version 3.5

Document #9607001
Kuck & Associates, Inc.

Guipe™ Reference Manual
Version 3.5

Revised September, 1997

Kuck & Associates, Inc.
1906 Fox Drive
Champaign, IL 61820-7345

USA

Phone: (217) 356-2288
FAX: 217-356-5199
Internet: kai@kai.com
WWW: http://www.kai.com/kpts/guide/

The information in this document is subject to change without notice. No part of this
document may be reproduced, copied or distributed in any form or by any means,
electronic or mechanical, for any purpose, without the express written consent of Kuck
& Associates, Inc.

© Copyright 1983-1997 by Kuck & Associates, Inc. All rights reserved.

KAI, KAP/Pro Toolset, Assureand Guide are trademarks of Kuck & Associates, Inc.

Cray is a registered trademark of Cray Research, Inc.

DEC and Digital are trademarks of Digital Equipment Corp.

Java is a trademark of Sun Microsystems, Inc.

UNIX is a registered Trademark in the USA and other countries, licensed exclusively
through X/Open Company Limited.

All other brand and product names are trademarks or registered trademarks of their
respective companies.

GOVERNMENT RESTRICTED RIGHTS. Use, duplication, or disclosure by the U.S.
government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs (c) (1) and (2) of the Commercial Computer Software-Restricted Rights
clause at 48 CFR 52.227-19, as applicable.

Printed in the United States of America.

Table of Contents

CHAPTER 1

CHAPTER 2

Introduction

About Guide

Using this Reference Manual
Reference Manual Contents
Reference Manual Conventions

Guide On-line

Technical Support

Comments

A A W WDNMDNEFE PP

Using Guide

Parallel Processing Model
Overview
Increasing Efficiency
Data Sharing
Using Guide to Develop Parallel Programs

© ©O© N oo O

guide@kai.com

Table of Contents

10 Analyze

10 Restructure

10 Tune

11 Orphaned Directives

13 A Few Rules About the “Orphaned” Directives
CHAPTER 3 15 OpenMP Directives

15 Control Directives

15 PARALLEL/END PARALLEL

16 PDO/END PDO

17 PSECTIONS/END PSECTIONS

17 PSINGLE/END PSINGLE

18 PARALLEL DO/END PARALLEL DO

19 PARALLEL SECTIONS/END PARALLEL SECTIONS

20 IF(if_expr)

20 DEFAULT(SHARED|PRIVATE|NONE)

SHARED(shared_vars)
PRIVATE((private_vars)

21 FIRSTPRIVATE (firstprivate_vars)

21 LASTPRIVATE (lastprivate_vars)

21 REDUCTION(operator:reduction_vars)
REDUCTION(intrinsic:reduction_vars)

22 COPYIN (copyin_vars)

22 Common Privatization

23 INSTANCE PARALLEL

23 THREAD PRIVATE

23 Declaring Private Commons

24 Allocating Private Commons

25 Synchronization Directives

25 CRITICAL/END CRITICAL

25 ORDERED/END ORDERED

26 MASTER/END MASTER

26 ATOMIC

ii http://www.kai.com/kpts/guide/

Table of Contents

CHAPTER 4

26
27
27
28
29
29
29
30
30
30
30
31
31

33

33
34
35
35
35
35
36
36
36
36
36
36
36
36
37
37
37

FLUSHI(string)]
BARRIER
Scheduling Options
Scheduling Options Using Directives
Scheduling Options Using Environment Variables
Environment Variables
KMP_LIBRARY=<string>
KMP_STACKSIZE=<integer>[,<character>]
KMP_STATSFILE=<file>
LD_LIBRARY_PATH=<path>
OMP_DYNAMIC=<boolean>
OMP_NUM_THREADS=<integer>
OMP_SCHEDULE=<string>[,<integer>]

The Guide Drivers

About Guidef77 and Guidef90
Using the Drivers
Driver Options
Displaying the Driver Usage Message
Displaying All Command Lines
Suppressing Guidef Warnings
Driver-Specific Options
WG, guide_option_1[[[,guide_option_2],guide_option_3],...]
WGcompiler=<path>
WGcpp=<path>
WGf77=<path>
WGT90=<file>
WGfortran=<path>
WGftn=<path>
WGkeep
WGkeepcpp
WGld=<file>

guide@kai.com

Table of Contents

37 WGlibpath=<path>
37 WGlink=<path>

37 WGnocpp

37 WGnokeep

38 WGnoprocess

38 WGnorc

38 WGonly

38 WGpath=<path>
38 WGprefix=<string>
38 WGsrcdir

39 WGversion

39 Guide Options
39 Guide Options Functional Categories

39 General Optimization
39 Input-Output

39 Listing

39 Advanced Optimization
40 FORTRAN Dialect

40 Hardware

40 Directive Recognition

40 Guide Options Table
43 Guide Options Alphabetic Listing

43 alignmax=<integer>

43 assume=<string> or a=<string>; noassume or nas
44 blank_padding or bp; noblank_padding or nbp
44 case or case; nocase or ncase

44 chunk=<integer> or chk=<integer>

44 cmp[=<file>]

45 concurrentize, conc; noconcurrentize, noconc
45 datasave or ds; nodatasave or nds

45 directives=p or dr=p; nodirectives or ndr

45 dlines or dlI; nodlines or ndl

46 free; nofree

http://www.kai.com/kpts/guide/

Table of Contents

CHAPTER 5

46
47
47
47
47
48
48
48
48
49
49
50
50
50
50
51
52
52
52
53
53
53
54

55

55
55
56
56
56
57
57

heaplimit=<integer> or heap=<integer>
ignoreoptions or ig; noignoreoptions or nig
include=<directory> or inc=<directory>
input=<file> or i=<file>

integer=<integer> or int=<integer>
lines=<integer> or In=<integer>
list[=<file>] or |=[<file>]; nolist or nl
listoptions=<string> or lo=<string>
logical=<integer> or log=<integer>
minconcurrent=<integer> or mc=<integer>
onetrip or 1; noonetrip or nl1
optimize=<integer> or o=<integer>
real=<integer> or rl=<integer>

recursion or rc; norecursion or nrc
roundoff=<string> or r=<string>
save=<string> or sv=<string>
scalaropt=<integer> or so=<integer>
scan=<integer> or scan=<integer>
scheduling=<character> or schd=<character>
suppress=<string> or su=<string>
syntax=<string> or sy=<string>

type or ty; notype or nty

c*$*options Line

Libraries

Selecting a Library
Serial
Turnaround
Throughput
The Guide_stats Library
Linking the Libraries
External Routines

guide@kai.com

Table of Contents

57
58
58
58
59

CHAPTER 6 61

61
61
62
62
63
63
63
63
63

CHAPTER 7 65

66
66
67
67
67
67
68
68
68
69
69
70
70

mppbeg(), mppend()
omp_get_max_threads()

omp_get_num_procs()
omp_get_num_threads()
omp_get_thread_num()

GuideView

Introduction

Using GuideView

GuideView Options
mhz=<integer>
ovh=<file>
WJ,[java_option]

JAVA Options
ms<integer>[{k,m}]
mx<integer>[{k,m}]

The Guide_stats Report

Settings
Parallel Region
Synchronized Code
Synchronization

Locks

Barriers

Join Barriers
Average Statistics
Performance Projections
Event Counts

Program Start/Finish

Internal Checks

Fork

Vi http://www.kai.com/kpts/guide/

Table of Contents

70 Private Commons with INSTANCE PARALLEL or THREAD PRIVATE
71 Dynamic Scheduling
71 Synchronization Events
72 Internal Synchronization Events
72 Routine Events
72 Library Calls
72 Internal Events
CHAPTER 8 73 Directive Translation

73 KAP/Pro Parallel Directive to OpenMP Directive Translator

74 Cray Directive to OpenMP Directive Translator

76 Cray TASKCOMMON as opposed to OpenMP THREAD PRIVATE
77 SGI Directive to KAP/Pro Parallel Directive Translator

79 KAP Directive to OpenMP Directive Translator

APPENDIX A 81 Examples

82 PDO: A Simple Difference Operator

83 PDO: Two Difference Operators

84 PDO: Reduce Fork/Join Overhead

85 PSECTIONS: Two Difference Operators

86 PSINGLE: Updating a Shared Scalar

87 PSECTIONS: Updating a Shared Scalar

88 PDO: Updating a Shared Scalar

89 PARALLEL DO: A Simple Difference Operator

90 PARALLEL SECTIONS: Two Difference Operators

91 Simple Reduction

92 TASKCOMMON: Private Common

93 THREAD PRIVATE: Private Common and Master Thread
94 INSTANCE PARALLEL: As a Private Common

95 INSTANCE PARALLEL: As a Shared and then a Private Common
96 Avoiding External Routines: Reduction

guide@kai.com vii

Table of Contents

APPENDIX B

98

100
101
102

103
104

Avoiding External Routines: Temporary Storage
FIRSTPRIVATE: Copying in Initialization Values
THREAD PRIVATE: Copying in Initialization Values
INSTANCE PARALLEL: Copying in Initialization Values

Timing Guide Constructs
Typical Overhead

viii

http://www.kai.com/kpts/guide/

About Guide Introduction ¢ 1

CHAPTER 1 Introduction

c
o
=
(@]
>
e
o
S
+—
c

About Guide

The KAP/Pro Toolset is a system of tools and application accelerators for develop-
ers of large scale, parallel scientific-engineering software.

The KAP/Pro Toolset is intended for users who understand their application pro-
grams and understand parallel processing. The Guide component of the toolset
implements OpenMP directives on all popular shared memory parallel (SMP) sys-
tems that support threads. The KAP/Pro Toolset uses the de facto industry standard
OpenMP directives to express parallelism. The OpenMP directive set is compatible
with the older directives from PCF, X3H5, SGI and Cray.

Throughout this manual, the term “OpenMP directives” is used to refer to the
KAP/Pro Toolset implementation of the OpenMP de facto standard, unless stated
otherwise.

The KAP/Pro Toolset includes a utility to translate directives from the older
KAP/Pro Toolset parallel processing directives which were based on X3H5
(cHpar directives) to the new OpenMP directive$omp).

guide@kai.com 1

1 « Introduction Using this Reference Manual

The input to Guide is a FORTRAN program with OpenMP directives. The out-
put of Guide is a FORTRAN program with the directive parallelism imple-
mented using threads and the Guide support libraries. This output can be
compiled using a FORTRAN compiler.

Please note that this version of Guide does not suMOBDULESNnd
INTERNALPROCEDURES

Using this Reference Manual

Reference Manual Contents

Chapter 2, “Using Guide,” beginning on page 5, contains the OpenMP parallel
processing model, an overview for using Guide, and an example to illustrate
how to insert Guide directives .

Chapter 3, “OpenMP Directives,” beginning on page 15, contains definitions for
all OpenMP directives. OpenMP directives control the level of parallelism
within your code. This chapter also defines the Guide environment variables.

Chapter 4, “The Guide Drivers,” beginning on page 33, describes the Guide
drivers, and it contains descriptions of all Guide command line options. These
options allow you to alter Guide’s default behaviors.

.Chapter 5, “Libraries,” beginning on page 55, explains the differences between
the libraries, and how to use them.

Chapter 6, “GuideView,” beginning on page 61, describes the GuideView graph-
ical viewer.

Chapter 7, “The Guide_stats Report,” beginning on page 65, describes the Guide
statistics report that is generated when you link wittgtiide_statdibrary.

Chapter 8, “Directive Translation,” beginning on page 73, describes the
cray2omp utility that translates Cray cmic$ directives to OpenMP directives.

Appendix A, “Examples,” beginning on page 81, contains code examples with
OpenMP directives.

http://www.kai.com/kpts/guide/

Guide On-line Introduction ¢ 1

Appendix B, “Timing Guide Constructs,” beginning on page 103, shows the
expense associated with using OpenMP directives.

c
o
=
(@]
>
e
o
S
+—
c

Reference Manual Conventions

To distinguish filenames, commands, variable names, and code examples from the
remainder of the text, these terms are printezbiarier typeface. Command
line options are printed ibold typeface.

With Guide’scommand line optionanddirectives one can control a program’s
parallelization by providing information to Guide. Some of these command line
options and directives require arguments. In their descript@mgger> indicates

an integer numbegpath> indicates a directorgname>indicates an argument

name <file> indicates a filenamescharacter> indicates a single character, and
<string> indicates a string of characters. For examlilggs=<integer>in this

user’s guide indicates that an integer needs to be provided in order to change the
-lines option from the default value to a new value (suchiass=0).

Optional items are denoted with square brackets:
-[no]dlines

Theno is optional. If-dlines is useddlinesis turned on. To turdlinesoff, use
-nodlines

To differentiate user input and code examples from descriptive text, they are pre-
sented:

In Courier typeface, indented where possible
For brevity, throughout this manual, we use Guidef to represent Guidef77 and

Guidefa0, the Guide drivers for the system FORTRAN 77 and FORTRAN 90 com-
pilers.

GuideOn-line

Visit the Guide Home Page latttp://www.kai.com/kpts/guidédr the latest infor-
mation on Guide.

guide@kai.com 3

1 « Introduction Technical Support

Technical Support

KAl spends considerable effort to produce high-quality software; however, if
Guide produces a fatal error or incorrect results, please send a copy of the source
code, a list of the switches and options used, and as much output and error infor-
mation as possible to Kuck & Associates (KAJlide @kai.com

Comments

If there is a way for Guide to provide more meaningful results, messages, or fea-
tures that would improve usability, let us know. Our goal is to make Guide easy
to use as you improve your productivity and the execution speed of your appli-
cations. Please send your commeniguicle @kai.com

http://www.kai.com/kpts/guide/

Parallel Processing Model Using Guide « 2

CHAPTER 2 USIng GUIde

Parallel Processing Model

This section defines general parallel processing terms and explains how different
constructs affect parallel code. The user interested in exact semantics is encouraged
to consult the OpenMP standard document oAKNEI X3H5 Parallel Extensions

for FORTRANdocument number X3H5/93-SD1-Revision M or contact KAI at
http://www.kai.com/kpts/guidet email KAl atguide@kai.comfor more informa-

tion.

Overview

After placing OpenMP parallel processing directives in an application, and after the
application is processed with Guide and compiled, it can be executed in parallel. As
the parallel program begins execution, a single thread begins. This thread is called
the base or master thread. The master thread will continue serial processing until it
encounters a parallel region. Parallel regions are delineated BAR®RLLEL/
ENDPARALLELdirective pair.

When the master thread enters a parallel region, a team, or group of threads, is
formed. Starting from the beginning of the parallel region, code is replicated (exe-
cuted by all team members) until a worksharing construct is encountergelDThe
PSECTIONS or PSINGLE constructs are defined as worksharing constructs

guide@kai.com 5

2+ Using Guide Parallel Processing Model

because they distribute the enclosed work among the members of the current
team. encountered. A worksharing construct is only distributed if it occurs
dynamically inside of a parallel region. If the worksharing construct occurs lexi-
cally inside of the parallel region then it is always executed by distributing the
work among the team members. If the worksharing construct is not lexically
enclosed by a parallel region (i.e. it is orphaned), then the worksharing construct
will be distributed among the team members of the closest enclosing parallel
region if one exists, otherwise it will be executed serially.

The PDO/ENDPDOdirective pair controls parallel execution fob®loop.
PSECTIONS/ENDPSECTIONSdirective pair controls parallel execution for
arbitrary blocks of sequential code, one section per thread?SINGLE/END
PSINGLE directive pair defines a section of code where exactly one thread is
allowed to execute the code.

Synchronization constructs aE&RITICAL/END CRITICAL , ORDERED/END
ORDEREIMASTER/ENIMASTERATOMIC FLUSHandBARRIER Syn-
chronization can be specified within a parallel region or a worksharing construct
with the CRITICAL/END CRITICAL directive pair. Only one thread at a time

is allowed to execute the code within this directive pair. WithD&or PSEC-
TIONS construct, synchronization can be specified wit©&DERED/END
ORDEREMirective pair. This directive pair is used in conjunction wiibeDor
PSECTIONSconstruct with th©RDEREBIlause to impose an order on the
execution of a section of code. TWASTER/ENIMASTERirective pair is

another synchronization directive pair that can be used to force execution by the
master thread. Another way to specify synchronization is vBARRIER

directive. ABARRIERdirective can be used to force all team members to gather
at a particular point in code. Each team member that execB&RRIERwaits

at theBARRIERuntil all of the team members have arrivBARRIERs cannot
occur (cause deadlock) within worksharing or synchronization constructs.

When a thread reaches the end of a worksharing constrUeN@RDQ END
PSECTIONS or ENDPSINGLE directive), it must wait until all team members
within that construct have completed their work. When all of the work defined
by the worksharing construct is completed, the team exits the worksharing con-
struct and continues executing the code that follows the worksharing construct.

At the end of the parallel region, the master thread waits until all the team mem-
bers have arrived. Then the team is logically disbanded (but may be reused in the
next parallel region) and the master thread continues sequentially until it
encounters the next parallel region.

http://www.kai.com/kpts/guide/

Parallel Processing Model Using Guide « 2

Increasing Efficiency

Scheduling options can be selected for worksharing constructs to increase effi-
ciency. Scheduling options specify the way processes are assigned iterations for a
loop. These options control the chunk size and load balanciN@WAIToption 2
can be used to increase efficiency. N@WAIToption allows processes that finis

their work to continue executing code. These processes do not wait at the end
worksharing construct.

Enabling the optioroptimize can also help increase efficiency. For example, usi
-optimize=1 will eliminate unnecessalyARRIERs. The default setting for this
option is-optimize=1.

guide@kai.com 7

2+ Using Guide Parallel Processing Model

For your convenience, the following example has been adapted fraxh8ie
X3H5 Parallel Extensions for FORTRAMcument.

Figure 2-1 “Pseudo Code of the Parallel Processing Model”

program main ! Begin Serial Execution
I

! Only the master thread executes
!
parallel ! Begin a Parallel Construct,

I form a team
!
! This is Replicated Code where each team
I member executes the same code
!

psections ! Begin a Worksharing Construct
!

section 1 One unit of work

!

section ! Another unit of work

|

end psections ! Wait until both units of work complete
|

i More Replicated Code
!
pdo I Begin a Worksharing Construct,

I each iteration is a unit of work
|

I Work is distributed among the team
|

end pdo howait ! End of Worksharing Construct,
! nowait is specified
I

i More Replicated Code
|

barrier ! Wait for all team members to arrive
|

i More Replicated Code
|

end parallel ! End of Parallel Construct, disband team
! continue with serial execution
!
! Possibly more Parallel Constructs
|
end I End serial execution

http://www.kai.com/kpts/guide/

Using Guide to Develop Parallel Programs Using Guide 2

Data Sharing

Data sharing is specified at the start of a parallel region or worksharing constructs
using theSHAREDandPRIVATE clauses. All variables in tteHAREDxlause are
shared among the members of a team. It is the programmer’s responsibility to[sy
chronize access to these variables. All variables iIPRI¥ATE clause are private
to each team member. For the entire parallel region, asstteiagn members, we
havet+1 copies of all the variables in tRRIVATE clause; one global copy that is
active outside parallel regions, and a private copy for each team member. Initi
tion of PRIVATE variables at the start of a parallel region is the programmer’s
responsibility, unless tHeEIRSTPRIVATE clause is specified in which case the
PRIVATE copy is initialized from the global copy at the start of the construct ai
which theFIRSTPRIVATE clause is specified. In general, updating the global
copy of aPRIVATE variable at the end of a parallel region is the programmer’s
responsibility. However theASTPRIVATE clause of &#DOdirective enables
updating the global copy from the team member that executed the last iteration of
thePDO

Using Guide

In addition to theSHAREDNdPRIVATE clauses, entir€ OMMODlocks can be
privatized using thtNSTANCEPARALLELdirective along witiNEWor COPY
NEWdirectives. FOINSTANCEPARALLEL if aNEWbr COPYNEWAppears, then
there arg+1 copies of th€€ OMMOBDlock when there atgeam members. This fol-
lows the same model as f@RIVATE variables. If NEWor COPYNEWs not
encountered for alNSTANCEPARALLELCOMMONDIock, only one copy of the
COMMONDlock exists.

Another method for privatizinGOMMODIocks is by using aHREACPRIVATE
directive. For compatibility with CrayASKCOMMGNrectives,THREALDPRI-
VATEDblocks always havecopies fort team members. The master thread uses the
global copy as its private copy for the duration of each parallel region.

Using Guide to Develop Parallel Programs

To help users who are familiar with parallel programming, this section contains a
high-level overview for using Guide to develop a parallel application. This manual
is not intended to be a comprehensive treatment of parallel processing. For more
information about parallel processing, consult your favorite parallel processing text.

guide@kai.com 9

2+ Using Guide Using Guide to Develop Parallel Pro-

Analyze
* Profile the program to find out where it spends most of its time. This is the
part of the program that needs to be parallelized.

* In this part of the program there are usually nested loops. Locate a loop that
has very few cross-iteration dependences. Work through the call tree to do
this.

Restructure
* Ifthe loop is parallel, introduce a GuiBRALLELDOdirective around this
loop.

* In the routine with th€ ARALLELDAQ list the variables that are present in
the loop on th6&6HARED(), PRIVATE() , LASTPRIVATE() , or
FIRSTPRIVATE() clauses.

¢ List theDOindex of the parallel loop &RIVATE() .

¢ COMMODbDIock elements must not be placed onRRIVATE() list if their
global scope is to be preserved. The common privatization directives can be
used to privatize to a thread tB®MMOdbntaining those variables with glo-
bal scope.

* Attempt to remove cross-iteration dependencies by rewriting the algorithm.

* Synchronize the remaining cross-iteration dependences by plaRiiid-
CAL directives around the uses and assignments to variables involved in the
dependences.

* Any I/O in thePARALLELDOshould be synchronized.
* Identify more parallel loops and restructure them.

* If possible merge adjaceRARALLELDGs into a single parallel region with
multiple PDG to reduce execution overhead.

Tune

* Guide supports the tuning process by includinggihide_statdibrary. The
tuning process should include minimizing the sequential co@&ImICAL
sections and load balancing by using various scheduling options.

For users with parallel FORTRAN 77 programs that already have embedded
Cray autotasking directives, a tool is included with Guide to help automate the

10

http://www.kai.com/kpts/guide/

Orphaned Directives Using Guide 2

job of translating them to KAP/Pro parallel directives. See “Directive Translation”
on page 73.

Orphaned Directives

The KAP/Pro Toolset 3.0 introduces an extension to the parallel programming
model that dramatically increases the expressiveness of the parallel directives
addition to being able to specify all of the parallel directives inline in one subro
tine, you are now able to partition the directives among many different subrout
so that you are not constrained in your programming style in order to use para
ism.

Using Guide [\N)

The example:

c$omp parallel private(i) shared(n)
c$omp pdo
doi=1,n
call work(i)
end do
c$omp end parallel

is a common programming idiom for using fiBOworksharing construct to con-
currentize the execution of the loop. If we had two such loops we might write:

c$omp parallel private(i,j) shared(n)
c$omp pdo
doi=1,n
call some_work(i)
end do
c$omp pdo
doj=1,n
call more_work(j)
end do
c$omp end parallel

However, programs are sometimes naturally structured by placing each of the major
computational sections into it's own subroutine. For example:

guide@kai.com 11

2+ Using Guide Orphaned Directives

subroutine phasel
doi=1,n
call some_work(i)
end do
end

subroutine phase?2
doj=1,n
call more_work(j)
end do
end

In KAP/Pro Toolset 3.0, you can parallelize this code in a natural manner, and
still maintain all of the benefits of specifying parallelism using KAP/Pro Toolset
parallel directives.

c$omp parallel
call phasel
call phase2
c$omp end parallel

subroutine phasel
c$omp pdo
doi=1,n
call some_work(i)
end do
end

subroutine phase2
c$omp pdo
doj=1,n
call more_work(j)
end do
end

Notice in this example, the directives specifying the parallelism are divided into
three separate subroutines.

12

http://www.kai.com/kpts/guide/

Orphaned Directives Using Guide 2

A Few Rules About the “Orphaned” Directives

1. An orphaned worksharing construPifO/PSECTION/PSINGLE) that is exe-
cuted outside of a dynamic parallel region will be executed sequentially. In the
following example the first call tBHASEOQis executed serially, and the second
call is partitioned among the processors on the machine.

call phase0(10)
csomp parallel

call phase0(10)
c$omp end parallel

Using Guide

subroutine phase0(n)
c$omp pdo
doi=1,n
call other_work(i)
end do
end

2. Any collective operation (worksharing construct or barrier) executed inside of a
worksharing construct is illegal. For example:

c$omp parallel
c$omp pdo
doi=1,n
call bar
end do
c$omp end parallel

subroutine bar
c$omp barrier
end

guide@kai.com 13

2+ Using Guide Orphaned Directives

3. ltisillegal to execute a collective operation (worksharing or barrier) from
inside of a synchronization regio6RITICAL/ORDERED.

c$omp parallel
c$omp critical

call test
c$omp end critical
c$omp end parallel

subroutine test
c$omp pdo
doi=1,n
call work(i)
end do
end

4. All structured directives must occur in the same block of the program. For
example PDO/ENDPDQCRITICAL/END CRITICAL , PARALLEL/END
PARALLEL ORDERED/ENDRDERE[®tc.).

5. Private scoping of a variable at a worksharing construct can be specified at
the worksharing construct. Shared scoping must be specified at the parallel
region. Please consult the OpenMP specification for complete details.

subroutine test
common /cmndat/ i
c$omp pdo
doi=1,n
call work(i)
end do
end

14

http://www.kai.com/kpts/guide/

Control Directives OpenMP Directives + 3

CHAPTER 3 OpenMP Directives

Control Directives

Guide uses OpenMP directives to support a single level of parallelism. Each d
tive begins withC$OMPWhen a parallel processing directive is continued on su
sequent lines, each additional line begins W#OMP&Several directives must be
paired (directive anBENDdirective). The same type of directive may not be nesté
e.g. aC$OMRPDOdirective may not appear within the scope of andéiz®direc-
tive within the same subroutine. Please note that items enclosed in square brackets
([1) are optional. The syntax of the OpenMP directives accepted by Guide is pre-
sented below.

CpenMP
Directives

PARALLEL/END PARALLEL

The CSOMPPARALLELandC$OMFRENDPARALLELdirectives define the scope
of a parallel region.

guide@kai.com 15

3 ¢ OpenMP Directives Control Directives

C$OMP PARALLEL

CSOMP& [IF (if_expr)]

C$OMP& [DEFAULT(SHARED|PRIVATE|NONE)]
C3OMP& [SHARED(shared_vars)]

C3OMP& [PRIVATE(private_vars)]

C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C$OMP& [COPYIN(copyin_vars)]

C$OMP END PARALLEL

The various clauses are described below.

When a parallel region is encountered in the dynamic scope of another parallel
region, the parallel regions are each executed using a team of one thread.

PDO/END PDO

The C$OMPPDOdirective states that the next statement is an itef@t®eop

which will be executed using multiple threads. If FHi2O/ENDPDOdirective is
encountered in the execution of the program while a parallel region is not active,
then the directives do not cause work to be distributed and the entire loop is exe-
cuted on the thread that encounters this construct.

C$OMP PDO

C3OMP& [Scheduling_Options]

C$OMP& [PRIVATE(private_vars)]

C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [LASTPRIVATE(lastprivate_vars)]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C$OMP& [ORDERED]

[C$OMP END PDO [NOWAIT]]

Using theCSOMRENDPDOdirective is optional. Without thdOWAITclause,

the C$OMRPDCOdirective will hold all threads that reach the end oRB&®loop

until all iterations of thaDOloop have been completed. Therefore, GI$OMP
ENDPDOdirective without theNOWAITclause has no effect, and the end of the
C$OMRPDOdirective is marked by the end of th®loop. Specifying the
C$OMHRENDPDONOWAITdirective allows early finishing threads to execute
code that appears after tt8 OMAENDPDONOWAITdirective. If theC$OMP
ENDPDOdirective is used, no statements or directives may appear between the
last statement of thBOloop and the€$OMMRENDPDOdirective.

16

http://www.kai.com/kpts/guide/

Control Directives OpenMP Directives + 3

PSECTIONS/END PSECTIONS

The CSOMAPSECTIONSandC$OMMAENDPSECTIONSdirective pair delineates
sections of code that will be executed on different threads. Each parallel section
between th&€$OMRPSECTIONSandC$OMRENDPSECTIONSdirectives must

be preceded by tHe$OMPSECTIONdirective. If thePSECTIONS/ END PSEC-
TIONS directive is encountered in the execution of the program while a parallel
region is not active then the directives do not cause work to be distributed and all
the psections are executed on the thread that encounters this construct.

C$OMP PSECTIONS
C$OMP& [PRIVATE(private_vars)]
C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [LASTPRIVATE((lastprivate_vars)]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C$OMP& [ORDERED]
[C$OMP SECTION]

[code A]
C$OMP SECTION

[code B]
C$OMP END PSECTIONS [NOWAIT]

This example executes codend codd in parallel on two threads.

D_(n
()
= >
C-l—'
GJO
a9
oFs

PSINGLE/END PSINGLE

The CSOMPPSINGLE andC$OMRENDPSINGLE directives define a section of
code where exactly one thread is allowed to execute the code.

C$OMP PSINGLE

C$OMP& [PRIVATE(private_vars)]

C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
CSOMP& [LASTPRIVATE(lastprivate_vars)]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C3$OMP END PSINGLE [NOWAIT]

The first arriving thread is allowed to execute @@#OMHMAPSINGLE directive.

Other threads must wait until the master thread has finished the section of code,
then they continue executing with the statement afteE$§@VIFEENDPSINGLE

directive. If theNOWAITclause is present, then the other threads do not wait until

the master thread has executed the section of code and immediately skip the section
of code.

guide@kai.com 17

3 ¢ OpenMP Directives Control Directives

PARALLEL DO/END PARALLEL DO

The CSOMAPARALLELDOandC$OMRENDPARALLELDOdirectives are a

short form syntax for a parallel region with a sing2O The parallel loop is
enclosed by theARALLELDO/ENDPARALLELDOpair. ThePARALELL
DO/ENDPARALLELDOdirective is used in place of tlRARALLEL/END
PARALLELandPDO/ END PDOdirective pairs. If these directives are encoun-
tered while a parallel region is already active, then these directives are executed
by a team of one thread and the entire loop is executed by each thread that
encounters it.

C$OMP PARALLEL DO

CSOMP& [IF (if_expr)]

C$OMP& [Scheduling_Options]

C$OMP& [DEFAULT(SHARED|PRIVATE|NONE)
C3$OMP& [SHARED(shared_vars)

C3OMP& [PRIVATE(private_vars)]
C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [LASTPRIVATE(lastprivate_vars)]
C$OMP& [COPYIN(copyin_vars)]

C$OMP& [ORDERED]

[CSOMP END PARALLEL DO]

The above example is equivalent to the following:

C$OMP PARALLEL

C3OMPE& [IF (if_expr)]

C$OMP& [DEFAULT(SHARED|PRIVATE|NONE)
C$OMP& [SHARED(shared_vars)]

C3OMP& [PRIVATE(private_vars)]

C3OMP& [COPYIN(copyin_vars)]

C$OMP PDO

C$OMP& [Scheduling_Options]

C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [LASTPRIVATE(lastprivate_vars)]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C$OMP& [ORDERED]

C$OMP END PDO NOWAIT

C$OMP END PARALLEL

http://www.kai.com/kpts/guide/

Control Directives OpenMP Directives + 3

PARALLEL SECTIONS/END PARALLEL SECTIONS

The CSOMRPARALLELSECTIONS/C$OMMAENDPARALLELSECTIONSdirec-
tives are a short form for a parallel region with a single psectiorPSBECTIONis
enclosed by theARALLELSECTIONS/ENDPARALLELSECTIONSdirective
pair. ThePARALLELSECTIONS/ENDPARALLELSECTIONSdirective pair is
used in place of theARALLEL/ENDPARALLELandPSECTIONS/ENDPSEC-
TIONS directive pairs. The psection between @ROMRPARALLELSECTIONS
andC$OMRENDPARALLELSECTIONSdirectives must be preceded by the
C$OMPBSECTIONdirective. If theC3OMAPARALLELSECTIONSandC$OMP

ENDPARALLELSECTIONSdirectives are encountered in the execution of the pro-
gram while a parallel region is already active, then these directives are executed by a
team of one thread and the entire construct is executed by each thread that encoun-

ters it.

C$OMP PARALLEL SECTIONS
C$OMP& [IF (if_expr)]
C$OMP& [DEFAULT(SHARED|PRIVATE|NONE)
C$OMP& [SHARED(shared_vars)
C$OMPE& [PRIVATE(private_vars)]
C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [LASTPRIVATE(lastprivate_vars)]
C$OMP& [ORDERED]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C$OMP& [COPYIN(copyin_vars)]
[C$OMP SECTION]

[code A]
C$OMP SECTION

[code B]
C$OMP END PARALLEL SECTIONS

The above example is equivalent to the following:

guide@kai.com 19

D_(n
()
= >
C-l—'
GJO
a9
oFs

3 ¢ OpenMP Directives Control Directives

C$OMP PARALLEL
CSOMP& [IF (if_expr)]
C$OMP& [DEFAULT(SHARED|PRIVATE|NONE)
C3OMP& [SHARED(shared_vars)]
C3OMP& [PRIVATE(private_vars)]
C$OMP& [FIRSTPRIVATE(firstprivate_vars)]
C$OMP& [REDUCTION(operator:reduction_vars)]
C$OMP& [REDUCTION(intrinsic:reduction_vars)]
C$OMP& [COPYIN(copyin_vars)]
C$OMP PSECTIONS
C3OMP& [LASTPRIVATE(lastprivate_vars)]
C$OMP& [ORDERED]
[C$OMP SECTION]

[code A]
C$OMP SECTION

[code B]
C$OMP END PSECTIONS NOWAIT
C$OMP END PARALLEL

IF(if_expr)

When the logicalF (if_expr) expression exists, thE clause is evaluated.

If the logical expression evaluatesEALSE. , then all of the code in the paral-

lel region is executed by a team of one thread. If the logical expression evaluates
to . TRUE. , then the coden the parallel region may be executed by a team of
multiple threads. When tHE clause is not present, it is assumed tolsJE.

DEFAULT(SHARED|PRIVATE|NONE)
SHARED(shared_vars)
PRIVATE((private_vars)

TheSHAREL) andPRIVATE() lists in the parallel region state the explicit
forms of data sharing among the threads that execute the parallel code. When
distinct threads should reference the same variable or array, place the variable in
the SHAREDist. When distinct threads can reference distinct instances of vari-
ables or arrays, place the variable inPfIVATE list.

The PRIVATE clause is allowed oBARALLEL PDOandPSECTIONSdirec-
tives. TheDEFAULTandSHARE[xlauses are only allowed &ARALLEL
directives.

20

http://www.kai.com/kpts/guide/

Control Directives OpenMP Directives + 3

When a variable that is referenced in the lexical extent of a parallel region is not
listed on any list, its default sharing classification is determined based upon the
DEFAULTclause DEFAULT(SHARED)causes unlisted variables to BARED
DEFAULT(PRIVATE) causes unlisted variables toPRIVATE, and
DEFAULT(NONE)causes unlisted variables to generate an error. The only excep-
tions to theDEFAULTrules are loop control variables (loop indices) and f90 state-
ment scoped entities, which &@&IVATE unless explicitly overridden. The default

is DEFAULT(SHARED)

FIRSTPRIVATE (firstprivate_vars)

A variable or array in RIRSTPRIVATE() listis copied from the variable or array
of the same name in the enclosing context by each team member before execution of
the construct.

TheFIRSTPRIVATE clause is allowed oRARALLEL PDQ PSECTIONSand
PSINGLE directives.

LASTPRIVATE (lastprivate_vars)

A variable or array in AaASTPRIVATE() list is copied back into the variable or
array of the same name in the enclosing context before the execution termina
the team member that executes the final iteration of the index seRfD #éhe last
lexical SECTIONof aPSECTIONSconstruct, or the code enclosed IBSNGLE,
as appropriate. If the loop is executed and#h8TPRIVATE variable is not writ-
ten in the final iteration of the index set foPROor the last lexicaBECTIONIn a
PSECTIONSconstruct, then the value of the shared variable is undefined.

D_(n
()
= >
C-l—'
GJO
2 2
55

The LASTPRIVATEclause is allowed oRDQ PSECTIONS andPSINGLE direc-
tives.

REDUCTION(operator:reduction_vars)
REDUCTION(intrinsic:reduction_vars)

A variable or array element in tREDUCTION(reduction_vars) listis

treated as a reduction by creatingRIVATE temporary for that variable and com-
puting into the original variable after the end of the construct usgiglalCAL
section. The allowed operators ate , *, .AND. , .OR. , .EQV. , and.NEQV.

The allowed intrinsics arglAX MIN, IAND, IOR, andIEOR.

guide@kai.com 21

3 ¢ OpenMP Directives Common Privatization

TheREDUCTIONlause is allowed oRARALLEL PDQPSECTIONS and
PSINGLE directives.

c$omp parallel do

c$ompé& shared (a,n)

csompé& private (i)

c$ompé& reduction (max:maxa)
doi=1,n

maxa = max (maxa, a(i))

enddo

c$omp end parallel do

The above example is equivalent to the following:

c$omp parallel
c$ompé& shared (a,n,maxa,maxa_orig)
c$ompé& private (i,maxa_local)

maxa_local = minimum_valu_for_type_of maxa
c$omp pdo

doi=1,n

maxa_local = max (maxa_local, ai))

enddo
c$omp end pdo nowait
c$omp critical

maxa = max (maxa, maxa_local)
c$omp end critical
c$omp end parallel

COPYIN (copyin_vars)

TheCOPYIN() clause applies only tBHREADPRIVATE common blocks and
their members. This clause provides a mechanism to copy the master thread’s
values of the listed variables to the other members of the team at the start of a
parallel region.

The COPYINdirective is only allowed oRARALLELdirectives.

Common Privatization

Directives Globally addressable storage that is private to each thread in a com-
putation is useful as a place to store information needed to coordinate between
different subroutines executed by one thread of a parallel region.

http://www.kai.com/kpts/guide/

Common Privatization OpenMP Directives 3

This notion is supported by using the following two types of private commons:

6. INSTANCEPARALLELas defined by ANSI X3H5
7. THREALDPRIVATE as a migration feature for Craff da¢SKCOMMON

INSTANCE PARALLEL

INSTANCEPARALLEL privateCOMMODIocks separate the declaration point

from the allocation point. The allocation is specified via an expNiEMbr COPY
NEWirective. The absence of an allocation directive causes all the threads to refer-
ence the same storage.

THREAD PRIVATE

THREALDPRIVATE causes an implicNEWnN every parallel regiorCOPYNEWbf
anTHREALDPRIVATE COMMODIock is provided as a migration feature for SGI’
COPYIN Becaus&\NEWs implicit, anTHREACPRIVATE COMMODblock is
always private.

Declaring Private Commons

PrivateCOMMODIocks are declared by thidSTANCEPARALLELor THREAD
PRIVATE directives. TheNSTANCEPARALLELdirective creates a copy of eac
specifiedCOMMODIock for each thread, only whemN&WSs encountered. The
THREALDPRIVATE directive assigns each specifié®@MMODblock to the master
thread and creates a copy of @®@MMODlock for each additional thread. The syr=
tax for the two directives is as follows:

C$OMP INSTANCE PARALLEL [/CMN1/ [,/CMN2/]]
C$OMP THREAD PRIVATE [/CMN1/ [/CMN2/]]

OpenMP
Directives

These directives are placed in the declaration sectio€TMMOIock appears in
anINSTANCEPARALLELor THREALCPRIVATE directive somewhere, tf@OM-
MONblock must appear, respectively, inlAISTANCEPARALLELor THREAD
PRIVATE directive everywhere. A variable in a priv&@®MMOblock
(INSTANCEPARALLELor THREALPRIVATE) cannot appear in@RATAstate-
ment.

guide@kai.com 23

3 ¢ OpenMP Directives Common Privatization

Allocating Private Commons

TheNEWANdCOPYNEWirectives allocate the nam8dSTANCEPARALLEL
COMMONblocks inside parallel regions. FDHREAOPRIVATE COMMON
blocks, this allocation is implicit to allow compatibility with Craf&SKCOM-
MONThese directives must occur either in the declaration section for subrou-
tines which are called in the parallel region, or immediately following the
PARALLELstatement whe@OMMOIN used in the subroutine containing the
parallel region.

When a thread inside a parallel region encount&i&\AHirective, the named
privateCOMMODIocks are allocated and initialized if they have not already
been allocated and initialized. If the thread has previously allocated and initial-
ized theCOMMONDIock for a different parallel region, that space is simply
reused.

Whether &2OMMODIock is private to each thread for a given parallel region
depends upon whetheNEWbr COPYNEWirective for thaCOMMOINock has
been seen either inside the parallel region or in any of the routines called from
that parallel region. If nbBlIEWHirective has been seen, the priva@VMON

block acts as a regular shae@MMODlock.

The syntax for using thdEWlirective is as follows:
C$OMP NEW [/[CMN1/ [/CMN2/]]

The COPYNEWirective is similar to th&lEWdirective. COPYNEWAllocates
and initializes privat€ OMMODIocks if they have not already been allocated
and initialized. HowevelC OPYNEWtauses the values in the origi@ddMMON
to be copied into the priva@OMMOIN each parallel region entered. WheBW
is specified, th€ OMMON initialized only for the first parallel region encoun-
tered.

WhenCOPWEWS used with th& HREAPRIVATE directive, it must occur in
the same subroutine immediately after BARALLELstatement.

The syntax for using the OPYNEWdirective is as follows:
C$OMP COPY NEW [/CMN1/ [,/CMN2/]]

NOTE: Behavior is undefined whe@OMMODlocks are allocated and initial-
ized with both &NEWand aCOPYNEWwithin a single parallel region. If any

24

http://www.kai.com/kpts/guide/

Synchronization Directives OpenMP Directives 3

thread executesMEWbr COPYNEWor aCOMMODIock, every thread must exe-
cute aNEWbr COPYNEWTrespectively, for the san@OMMODIock.

Synchronization Directives

CRITICAL/END CRITICAL

The C3OMRCRITICAL andC$OMFENDCRITICAL directives define the scope

of a critical section. Only one thread at a time is allowed inside the critical section.
The name has global scope. TGRITICAL directives with the same name are
automatically mutually exclusively. All unnam€&iRITICAL sections are assumed

to map to the same name.

C$OMP CRITICAL [(name)]
C$OMP END CRITICAL [(name)]

ORDERED/END ORDERED

The COMFORDERERBNdC$OMRENDORDEREM@irectives define the scope of
an ordered section. Only one thread at a time is allowed inside an ordered sec
the same name.

C$OMP ORDERED [(name)]
C$OMP END ORDERED [(name)]

D_(n
()
= >
C-l—'
CDO
o 9
oFs

The optional variable can be used to name an ordered section. Ordered sections are
allowed either within or outside of parallel regions, but when they occur lexically
outside of a parallel region, they must be unnamed.

In addition, the ordered section must be dynamically encloseBOoop with
the ORDEREDBcheduling modifier. It is an error to use this directive pair when not
in the dynamic scope ofRDOwith anORDEREIodifier.

The semantics of an ordered section are defined in terms of the loop’s iteration
space. The threads executing the iteration space are granted permission to enter the
ordered section in the same order as the iterations are executed in the sequential
version of the loop.

Each ordered section with a given name must only be entered once or not at all dur-
ing the execution of RDOiteration.

guide@kai.com 25

3 ¢ OpenMP Directives Synchronization Directives

A deadlock situation will occur if these rules are not observed.

MASTER/END MASTER

The section of code enclosed ICROMMMASTER/C$OMENDMASTERpair

is executed by the master thread of the team. Other threads of the team skip the
enclosed section of code and continue execution. Note that there is no implied
BARRIERoON entry to or exit from the master section.

ATOMIC

This directive ensures atomic update of a location in memory that may otherwise
be exposed to the possibility of multiple, simultaneous, writing threads. This
directive only applies to the immediately following statement which must have
one of the following forms:

X = X <op> <expr>
X = <expr> <op> X
X = <intrinsic> (X, <expr>)
X = <intrinsic> (<expr>, x)

where
X is an intrinsic typed variable
<expr> is a scalar expression that does not refergnce
<intrinsic> is one ofMAXMIN,IAND,IOR,IEOR
<op> is one of+,-,*,/,.AND. ,.OR. , .EQV. , .NEQV.

Correct use of this directive requires that if an object is updated using this direc-
tive, than all references to that object must use this directive.

FLUSH][(string)]

This directive causes thread visible variables to be written back to memory and
is provided for users who wish to write their own synchronization directly
through shared memory. The optional string is a list which may be used to spec-
ify varaibles that need to be flushed. If the list is absent, all variables are flushed
to memory.

26

http://www.kai.com/kpts/guide/

Scheduling Options OpenMP Directives 3

BARRIER

BARRIERdirectives are used to gather all team members to a particular point in the
code.BARRIERs force team members to wait at that point in the code until all of
the team members encounter tBARRIER BARRIERdirectives are not allowed
inside of worksharing constructs.

C$OMP BARRIER

Scheduling Options

Scheduling options are used to specify the iteration dispatch mechanism for each
parallel loop. Scheduling options can be specified in the following three ways:
1. Command Line Options

2. Directives

3. Environment Variables

Command line options and directives are used to specify the scheduling mechzg
when the source file is being processed by Guide. For loops that are processe
theRUNTIMEscheduling mechanism, described below, scheduling can be chal
at run time with environment variables.

Onen®iP
Directives

Loop scheduling is dependent on the scheduling mechanism and the chunk pa
ter. The table below describes what each scheduling option does. Assume that the
loop has the following attributekiterationsp threads are being used to execute the
loop, andn is an integer greater th@nspecifying the chunk size.

guide@kai.com 27

3 ¢ OpenMP Directives

Scheduling Options

Scheduling
Designator

Table 3-1 Scheduling Options

Chunk

Meaning

S

n

ignored

ignored

ignored

Static scheduling with a chunk sizenoh iterations are
dispatched statically to each thread (repeat Liitéla-
tions have been dispatched)nlis missing, this is the
same as static even scheduling.

Static even scheduling. The chunk size has no effect here.
I/p iterations are dispatched statically to each thread. The
same as static with a chunk sizd/pf

Static interleaved scheduling. The chunk size has no
effect here. Threadis statically dispatched iterations
i+p, i+2p, ...

Dynamic scheduling with a chunk sizenof iterations
are dispatched dynamically to each thread.

Guided scheduling with a minimum chunk size.on
exponentially decreasing number of iterations are dis-
patched dynamically to each thread. At leaisérations
are dispatched every time except the last.

Trapezoidal scheduling with minimum chunk size.ok
linearly decreasing number of iterations are dispatched
dynamically to each thread. At leasiterations are dis-
patched every time except the last.

Runtime scheduling is specified when the scheduling is to
be determined via theMP_SCHEDUL&hvironment vari-
able.

Scheduling Options Using Directives

The list below shows the syntax for specifying scheduling options withDig
andPARALLELDOdirectives.

SCHEDULE(STATIC [,<chunk_size>])
SCHEDULE(DYNAMIC [,<chunk_size>])
SCHEDULE(GUIDED [,<chunk_size>])
SCHEDULE(TRAPEZOIDAL [,<chunk_size>])
SCHEDULE(INTERLEAVED)
SCHEDULE(RUNTIME)

28

http://www.kai.com/kpts/guide/

Environment Variables OpenMP Directives 3

If <chunk_size> s not specified, it is assumed tobéor DYNAMIC GUIDED
andTRAPEZOIDAL and assumed to be missing 8FATIC. See Table 3-1 on
page 28 for a complete description of the scheduling optionSORI¥EREBched-
uling modifier is necessary f®DOandPARALLELDOIloops which contain
ordered sections.

Scheduling Options Using Environment Variables

Scheduling options may also be specified at run time when the run time scheduling
type has been specified at Guide processing time wit@hie SCHEDUL&nvi-
ronment variable. The syntax for t&&1P_SCHEDULE&nvironment variable is as
follows:

OMP_SCHEDULE = <string>[,<integer>]

Where<string> is one ofSTATIC, INTERLEAVED DYNAMIC GUIDED or
TRAPEZOIDAL and the optionatinteger> parameter is a chunk size for the
dispatch method. For a complete description of the scheduling options, see Ta
1.

D_(n
()
= >
C-l—'
GJO
a9
oFs

Environment Variables

Guide uses some environment variables which may need to be set before run
Guide.

KMP_LIBRARY=<string>
This variable selects the Guide library. The three available options are:
ser serial

tur turnaround
thr throughput

See Chapter 5, “Libraries,” beginning on page 55 for more information about the
Guide libraries.

guide@kai.com 29

3 ¢ OpenMP Directives Environment Variables

KMP_STACKSIZE=<integer>[,<character>]

This variable specifies the number of bytes, kilobytes, or megabytes that will be
allocated for each parallel thread to use as its private stack. Use the optional suf-
fix k, b, orm to specify bytes, kilobytes, or megabytes. The defaltnisr one
megabyte. This number may be too small if many local variables are used in the
parallel regions, or the parallel region calls subroutines that have many local
variables.

KMP_STATSFILE=<file>

When this variable is used, in conjunction with gluéde_ statdibrary, the statis-
tics report is written to the specified file. The default file name for the statistics
report isstatsfile

Three metacharacter sequences are defined that can be included in the file name
and expanded at runtime to provide unique context sensitive information as part
of the file name. These three metacharacter sequences are:

%H:This expands into the hostname of the machine running the parallel pro-
gram.

%I: This expands into a unique numeric identifier for this execution of the pro-
gram. It is the process identifier of the program.

%P:Is the value of th©MP_PARALLElenvironment variable which deter-
mines the number of threads that are created by the parallel program.

LD_LIBRARY_PATH=<path>

This variable is used to specify an alternate path for the Guide run-time libraries.
This variable may need to be set when you run your application if you compile
with shared objects or use dynamic linking.

OMP_DYNAMIC=<bhoolean>

The OMP_DYNAMI@nvironment variable enables dynamic adjustment of the
number of threads between parallel regions. A valueRbIEfor <boolean>

enables dynamic adjustment, whereas a valk&@bSE disables any change in

the number of threads. If dynamic adjustment is enabled, the number of threads
may be adjusted only at the beginning of each parallel region. No threads are
created or destroyed during the execution of the parallel region.

30

http://www.kai.com/kpts/guide/

Environment Variables OpenMP Directives 3

OMP_NUM_THREADS=<integer>

TheOMP_NUM_THREAI@Svironment variable is used to dynamically control the
number of threads. Thdnteger> is a positive number. Performance of parallel

programs usually degrades when the requested parallelism is larger than the num-
ber of physical processors.

OMP_SCHEDULE=<string>[,<integer>]

The OMP_SCHEDUL&nvironment variable controls the schedule type and chunk
size forPDOconstructs with S CHEDULE(RUNTIMEXlause or those with no

clause if the command line scheduling designator is setThe schedule type is

given by<string> , which is one oSTATIC, INTERLEAVED DYNAMIC

GUIDED or TRAPEZOIDAL and the optional chunk size is given<igte-

ger> for those scheduling types which allow a chunk size. See Table 3-1, “Sched-
uling Options,” on page 28.

D_(n
()
= >
C-l—'
GJO
a9
oFs

guide@kai.com 31

3 ¢ OpenMP Directives

Environment Variables

32

http://www.kai.com/kpts/guide/

About Guidef77 and Guidef90 The Guide Drivers 4

CHAPTER 4 The Guide Drivers

About Guidef77 and Guidef90

The Guide drivers, Guidef77 and Guidef90, replace the system FORTRAN 77 and
FORTRAN 90 compilers on the command line and integrate Guide instrumentation
and the compile/link step into one command line. In scripts and Makefiles, replac-
ing the standard compiler (typicaliy7 orf90) with guidef77 orguidef90 ,
respectively, will execute the necessary C preprocessor, Guide, and compiler £o
mands automatically.

r

In addition to all of the command line options accepted by the Fortran compiler,
Guide drivers accept prefixed forms of all Guide options as well as driver-speg
options. An absence of command line arguments causes the drivers to emit a
message.

For brevity, throughout this manual, we will use Guidef to represent Guidef77
Guidefa0, the Guide drivers for the system FORTRAN 77 and FORTRAN 90 ¢
pilers.

The Guigie Drive

guide@kai.com 33

4 « The Guide Drivers Using the Drivers

Using the Drivers
To run Guide, use the following command line:

guidef -WG,<option>[,<option>,...] filename <compiler_options>

wherefilenameis the input file to Guide. Th&VG driver option specifies addi-
tional Guide arguments. For example, to change the default scheduling designa-
tor and the chunk size from the command line, use
-WG,-scheduling=d,-chunk=4 Multiple options must be separated with a
comma.

If a list of FORTRAN source files is specified on the Guidef command line with-
out the-c compiler option, and if Guide fails to process any of the files, then the
driver will compile (but not link) all successfully processed files.

Instrumented source files (Guide output files) are removed by default after suc-
cessful Guide instrumentation and compilation. There are, however, four
instances where output files are not removed:

* When Guide fails to process a FORTRAN source file, the output files from
each failing source file areotremoved, while the output files from success-
fully processed fileare removed.

* If the compile/link step fails for any of the source files Guide successfully
instruments, none of the output files are removed.

* If you specify-WGkeep, none of the output files are removed.

* If the compiler debug flag (e.gg) is specified on the command line, none of
the output files are removedN(Gkeep is implied).-WGnokeepwill cause
output files to be deleted even in the preseneg of -WGkeep.

Guide output files consist of the name of the original source file with the prefix
G_added to the beginning of the filename. The compiler is given the names of
these output files and creates object files wiB @refix. The driver then

removes this prefix from the object files. For example, if Guide processes an
input file namedoo.f , it would create an output file naméd foo.f

Guidef would then pass this name on to the compiler. If an object file is created
by the compilation process, then it would be na@etbo.o by the compiler,

and Guidef would then rename this objectfille.o

34

http://www.kai.com/kpts/guide/

Driver Options The Guide Drivers « 4

FORTRAN files with capitalized suffixes (efdename.F) are first passed

through the C preprocessor before Guide is invoked. The C preprocessor will create
files with acppG__ suffix (e.g.cppG_filename.F). As mentioned above, Guide

will create an output file whose name is based on the original source file name.

Driver Options

The Guidef driver recognizes the FORTRAN compiler options and several driver-
specific options. If Guidef fails to recognize a command line option, it is ignored
and passed directly to the compiler.

Default driver-specific options are located in a file nargaitlefrc in either the
current directory or your home directory. All driver-specific options listed in this
chapter can be placed in tlgaidefrc file. These options must be separated by
white space or new lines. All instances<fife> in these options must contain the
full path to the new executable, which should include the filename of the execut-
able.

In the following descriptionssinteger> indicates an integer numbepath> indi-
cates a directorgname>indicates an argument namdile> indicates a filename,
<character>indicates a single character, argiring> indicates a string of charac-
ters.

Displaying the Driver Usage Message

The-h option displays the usage message for the driver. This flag will cause GUi
to abort execution.

Displaying All Command Lines

The-v option causes the driver to display all command lines executed. This fla
passed on to the compiler.

:G—)
=
S
(@)
)
=
3>
)
)
<
|_

Suppressing Guidef Warnings

Use the-w option to suppress mild Guidef warnings. This flag is passed on to the
compiler.

guide@kai.com 35

4 « The Guide Drivers Driver-Specific Options

Driver-Specific Options

The following driver-specific options anet passed on to the FORTRAN com-
piler.

WG,guide_option_1[[[,guide_option_2],guide_option_3],...]
This flag prefixes any specified Guide option(s). Multiple Guide options may be
appended using commas as delimiters.

For instance, to pass the=1 and-real=8 options to Guide, the appropriate
Guidef driver option would beG,-0=1,-real=8

WGcompiler=<path>

The-WGcompiler option allows you to specify an alternageath> for the
FORTRAN compiler executable. This option can also be specified with the
-WGftn, -WGfortran , -WGf77, and-WGf90 arguments.

WGcpp=<path>

The-WGcpp option allows you to specify an alternate path for the C preproces-
sor executable.

WGf77=<path>

See the definition of th&VGcompiler option above.

WG90=<file>

See the definition of th&VGcompiler option above.

WGfortran=<path>

See the definition of th&VGcompiler option above.

WGftn=<path>

See the definition of th&VGcompiler option above.

36

http://www.kai.com/kpts/guide/

Driver-Specific Options The Guide Drivers « 4

WGkeep

If -WGkeepis stated, output files generated by Guide and temporary files created
by the C preprocessor will not be unlinked after compilation. By default, these files
are automatically removed after a successful compilation.

WGkeepcpp

If -WGkeepcppis stated, output files generated by the preprocessor will not be
removed after a successful compilation.

WGId=<file>

The-WGId option allows you to specify an alternate path for the linker executable.

WGlibpath=<path>

This option specifies an alternatgath> in which to search for the Guide libraries.
For dynamic/shared compilation, be sure to |plath> to your
LD_LIBRARY_PATHenvironment variable before running an executable created
by Guide.

WGlink=<path>
The-WGIink option allows you to specify an alternate path for the linker execut-

able.

WGnocpp

-WGnocpp prevents Guidef from calling the C preprocessor for FORTRAN sou
files with the.F suffix. By default, the driver will automatically call the C prepro
cessor for all files with thé= suffix.

WGnokeep

Use-WGnokeepto force output and temporary C preprocessor files to be remo
The presence of this flag overrides any instane@/@keep on the command line,
including the-WGkeep implied from-g and-WGonly.

The Guide DriverfixS

guide@kai.com 37

4 « The Guide Drivers Driver-Specific Options

WGnoprocess

Guide will not process any of the specified source fileg/tbnoprocessis
present on the command line. This flag can be used to compile source code that
has already been processed by Guide.

WGnorc

This flag will turn off any driver-specific options that were found in your
$HOME/.guidefrc file. Since this option will also cancel any driver-specific
options that precede WyWGnorc should be the first driver-specific option to
appear on the command line.

WGonly

When-WGonly is used, Guide will process the source code in all specified
source files, but neither the compiler nor linker will be executed. Like
-WGkeep, this option retains output files and temporary files generated by
Guide and the C preprocessor.

WGpath=<path>

-WGpath specifies an alternate path to the Guide executable.

WGprefix=<string>

The-WGprefix option changes the prefix string added to the Guide and prepro-
cessor output files. For instance, if you specify the following:

guidef -WGprefix=qqq -WGcpp -WGkeep filel.F
the results areppqqgfilel.f andqqqfilel.f instead ofG_filel.f
andcppG_filel.f

WGsrcdir

-WGsrcdir specifies that the preprocessor and Guide output files should be in
the same directory as the source file.

38

http://www.kai.com/kpts/guide/

Guide Options The Guide Drivers « 4

WGversion

The Guidef driver displays its internal version number and other information to
stderr when-WGversion is used. Using this option will abort execution.

Guide Options

The-WG driver option specifies additional Guide arguments. To state a Guide

option, the long (full) name, short name, or any portion of the long name, starting
from the beginning, which uniquely identifies the option may be used. Multiple
options must be separated by a comma. For example, to change the scheduling des-
ignator and the chunk size, u8®¥G,-scheduling=d,-chunk=4

Guide Options Functional Categories

Table 4-1 lists the Guide options. These options are grouped into the following
functional categories:

General Optimization

These options control large classes of optimizations.

Input-Output

These options affect the input file selection and output file naming, placement
characteristics.

Listing
These options control listing information that is provided about the transformat
and optimizations performed.

®
=2
(@)
)
9
3>
)
)
<
|_

Advanced Optimization

These options customize and fine-tune the optimizer for maximum performance.

guide@kai.com 39

4 « The Guide Drivers Guide Options Table

FORTRAN Dialect

These options help customize for particular dialects of FORTRAN.

Hardware

These options inform Guide about your target architecture. The default settings
have been chosen to take advantage of the architecture of the target machine. In
most cases, you will not need to change the default settings.

Directive Recognition

These options enable or disable recognition and processing of directives that can
be placed in the code.

Guide Options Table

In Table 4-1, Guide options are listed alphabetically within each functional cate-

gory. The default settings are also listed. Guide options that require an argument
list the default argument. For more information on Guide options, see the section
“Guide Options Alphabetic Listing” on page 43.

40

http://www.kai.com/kpts/guide/

Guide Options Table The Guide Drivers 4

Table 4-1 Guide Options

Long Name Short Name Default Setting
General Optimization:

optimize=<integer> o=<integer>

roundoff=<integer> r=<integer> 0
scalaropt=<integer> so=<integer> 0

Input-Output:

cmp[=<file>] cmp[=<file>] G_<file>
input=<file> i=<file> <file>
[no]list=<file> [n]I=<file> none

Listing:

lines=<integer> In=<integer> 55
listoptions=<string> lo=<string> k
suppress=<string> su=<string> no suppress

Advanced Optimization:

[no]Jassume [nJas=<string> cel
[no]concurrentize [no]conc noconcurrentize
minconcurrent=<integer> mc=<integer> 1000

O
=
(@)
)
9
3>
)
)
<
|_

guide@kai.com 41

4 « The Guide Drivers

Guide Options Table

Table 4-1 Guide Options (Continued)

Long Name

FORTRAN Dialect:
alignmax=<integer>
[no]blank_padding
[no]case
[no]datasave
[no]dlines

[no]free
include=<path>
integer=<integer>
logical=<integer>
[no]onetrip
real=<integer>
[no]recursion
save=<string>
scan=<integer>
syntax=<string>
[no]type

Directive Recognition:
[no]directives=<string>
[no]ignoreoptions
[noJopenmpcc_lines
default=<string>

Hardware:

heaplimit=<integer>

Scheduling:
chunk=<integer>

scheduling=<character>

Short Name

alignmax=<integer>
[n]bp
[n]case
[n]ds
[ndI
[no]free
inc=<path>
int=<integer>
log=<integer>
[n1
rl=<integer>
[n]rc
sv=<string>
scan=<integer>
sy=<string>
[ty

[n]dr=<string>
[nlig
[noJompcc_lines

default=<string>

heap=<integer>

chk=<integer>
schd=<character>

Default Setting

16
blank_padding
nocase
datasave
nodlines
nofree

no include

4

4
noonetrip

4
norecursion

manual

72
no syntax

notype

p
noignoreoptions

ompcc_lines
shared

500

e

http://www.kai.com/kpts/guide/

Guide Options Alphabetic Listing The Guide Drivers 4

The-listoptions=k command line option can be used to determine what your
default settings are.

Guide Options Alphabetic Listing

This section lists the Guide options that can be specified by usiAg/Gealriver

option. To make these options easy to find, they are listed alphabetically rather than
by functional category. The headings in the following sections list the full and short
names for each option.

alignmax=<integer>

This option selects the maximum size datatype that will be naturally aligned. The
integer argument represents the boundary size in bytes. The default is
-alignmax=16

assume=<string> or a=<string>

noassume or nas

The-assumeoption instructs Guide to make certain global assumptions about the

program being processed. Tassumeoption switch values are the following:

a Different subroutine or function parameters may refer to the same object.
Array subscripts may go outside the declared bounds.

¢ Constants used in subroutine or function calls will be placed in temporary
ables.
e EQUIVALENCEstatements may cause different names to refer to the same
memory location.

I Unless Guide can prove they are unneeded, Guide must insert code to ass
variables in transformed loops the values they would have had after the orig
serial loop.

IN

The Giiige Driver

The default value isassume=celTo disable all the above assumptions, specify
-noassumeon the command line.

guide@kai.com 43

4 « The Guide Drivers Guide Options Alphabetic Listing

blank _padding or bp
noblank_padding or nbp

The-blank_padding option instructs Guide to pad the input line with blanks.
This option is on by default.

case or case
nocase or ncase

The-caseoption instructs Guide to distinguish between upper and lowercase in
identifier names. The defautiocaseinstructs Guide to be case-insensitive in
variable names.

When Guide inserts or modifies lines in a program, it usually creates the new
code in capital letters. Theaseoption requires Guide to preserve the original
case of variables in the new code. Making Guide case-sensitive can be impor-
tant. If, for example, there is a variable namezhd a variable nameéd in the
original source code, Guide will change tht aN when it optimizes the code
unless-caseis specified, causing a conflict between two different variables
which now have the same name.

chunk=<integer> or chk=<integer>

This option specifies a parameter for parallel loop scheduling, and is to be used
in conjunction with theschedulingoption. Together, theschedulingand the

-chunk options establish default scheduling for all the parallel loops for this
Guide run. Individual loops can override this default scheduling mechanism
using the scheduling options on fRARALLELDOor PDOdirective. The

default chunk size is 1. See “Scheduling Options” on page 27 for descriptions of
the-chunk options.

cmp[=<file>]

The-cmp=<file> option instructs Guide to place the optimized FORTRAN pro-
gram in a specified transformed program file @tbmpilefile). The default

name of the FORTRAN output file is derived from the input flename by Guide
addingG__to the beginning of the filename and changing the extensibn. id
-cmp=<file> is specified, the FORTRAN output file is written to the specified
file. If -cmp is specified, then the output is written to standard output.

44

http://www.kai.com/kpts/guide/

Guide Options Alphabetic Listing The Guide Drivers 4

concurrentize, conc
noconcurrentize, noconc

Guide uses theconcurrentize switch to enable parallelizaion of loops derived
from array syntax only. Theoncurrentize option also impliesscalaropt=1

datasave or ds

nodatasave or nds

The-datasaveoption instructs Guide to treat local variables in a subroutine or
function which appear iDATAstatements as if they were als®GiiVEstatements.

That is, their values will be retained between invocations of the subroutine or func-

tion. This is the practice of many commercial FORTRAN compilers;datdsave
is on by default. This choice affects certain optimizations performed by Guide.

The negative optionnodatasave complies with the FORTRAN standard. See also
the description of thesavecommand line option.

directives=p or dr=p
nodirectives or ndr
The-directives=p or -dr=p option enables parallel programming directives. This

option is on by default. To disable parallel programming directives, use
-nodirectivesor -ndr.

dlines or dl
nodlines or ndl

The-dlines option instructs Guide to treaDdn column 1 as a space character. T
rest of that line will then be parsed as a normal FORTRAN statement. By defa
Guide treats these lines as comments. This option is useful for the inclusion o
exclusion of debugging lines.

In the following example, the first (default) case shows thaDtire is ignored:

do10i=1,n
a()=b()
d write (*,*) a (i)
10 continue

The Guide DriverfixS

becomes

guide@kai.com 45

4 « The Guide Drivers Guide Options Alphabetic Listing

do 10i=1,n
a(i) = b(i)

10 continue

But when-dlinesis specified, Guide seed¥RITE statement:

do 10 i=1,n
a(i) = b(i)
write (*, *) a(i)
10 continue
free
nofree

The-free option removes the standard column restrictions for FORTRAN
source code. Continuation lines are indicated with an “&” as the last character of
the continued line and as the first character of the continuation line.

The-free option is off by default, and the usual FORTRAN 77 conventions
apply.

heaplimit=<integer> or heap=<integer>

Guide may require large amounts of memory in order to process your source
code. Theheaplimit option specifies the maximum size in megabytes that the
Guide heap can grow. If this limit is breached, Guide will stop processing the
source code and try to exit gracefully with an “out of memory” error message.
The default size is 500 megabytes.

If the -heaplimit setting is greater than the amount of available memory, Guide
may run out of memory before it reaches-eaplimit.

Guide relies upon the operating system to tell it that the OS has run out of mem-
ory before that problem occurs. Some operating systems kill Guide without first
telling Guide that there is insufficient memory. In that case, Guide may stop pro-
cessing the code and exit in an undefined manner. Ltsiaglimit makes a

graceful exit more likely.

46

http://www.kai.com/kpts/guide/

Guide Options Alphabetic Listing The Guide Drivers 4

ignoreoptions or ig
noignoreoptions or nig

The-ignoreoptionsoption directs Guide to ignore any$*options or *$*options
line that may appear at the top of the input file. Normally, Guide reads the
c*$*options or *$*options instruction for further command line options, as
explained in the description of tikg$*options line below.

Setting-noignoreoptionsdirects Guide to acknowledge tt#$*options line in the
source program. That is, Guide will accept the command line options given on the
c*$*options line.

include=<directory> or inc=<directory>

By default, Guide looks only in the current directory to locate files specified in
INCLUDE statements. Thénclude option allows an alternate directory to be spec-
ified for locating those files. ANCLUDE file whose name does not begin with a
slash (/) is sought first in the directory containing the file being processed, then in
the directory named in thénclude option.

input=<file> or i=<file>

When running Guide in stand-alone mode on UNIX systems, simply enter the
source filename on the command line. This option is available for special circum-
stances and for compatibility with other operating systems.

On UNIX systems, if theinput option is specified without a filename, Guide will
read its source from standard input and write the transformed code to standar
put. In this case, no listing file will be generated unless a filename is explicitly
vided with the-list option.

integer=<integer> or int=<integer>

This option specifies a size in bytsfor the default size dINTEGERvariables.
WhenN=2 or 4, takeINTEGER*N as the defaulNTEGERtype. When
-integer=0, Guide uses the ordinary default lengthifdTEGERVvariables. The
default is-integer=4.

,'50._
=
(@)
)
9
3>
)
)
<
|_

guide@kai.com 47

4 « The Guide Drivers Guide Options Alphabetic Listing

lines=<integer> or In=<integer>

The-lines option enables Guide’s listing to be paginated for printing in different
formats. The number of lines per page on the listing may be changed using the
-lines option. The settingines=0instructs Guide to paginate only at subroutine
boundaries. The default settinglines=55

list[=<file>] or I=[<file>]
nolist or nl

The-list option informs Guide where to place the listing file. Guide derives the
default name of the listing file from the input filename by ad@ndgo the
beginning of the filename and changing the extensidstto . If only this

option is stated, then the listing file is written to the specified file. To disable
generation of the listing file, entarolist on the command line. The default is
-nolist.

listoptions=<string> or lo=<string>

The-listoptions option tells Guide what optional information to include in the
listing, transformed code, and error files.

Any of the following information can be selected:

Value Prints
k Guide options used, printed at the end of each program unit
o] Original source program annotated listing
t Transformed program annotated listing

To disable all of the above switches and produce no listing file, <@oiést on
the command line. The default valuelistoptions=Kk.

logical=<integer> or log=<integer>

This option specifies a size in bytés for the default size dfOGICAL vari-
ables. WheiN=1, 2, or4, takeLOGICAL*N as the default OGICAL type. The
value assigned tdogical should be equal to the value assignedrtieger. The
default is-logical=4.

48

http://www.kai.com/kpts/guide/

Guide Options Alphabetic Listing The Guide Drivers 4

minconcurrent=<integer> or mc=<integer>

Executing a loop in parallel incurs overhead which varies with different systems. If

a loop has little work, parallel execution may be slower than serial execution
because of the overhead. However, beyond a certain level, performance gain may be
obtained through parallel execution. This level is passed to Guide with the
-minconcurrent option.

The range of values for this option is all numbers greater than or equal to 0. The
higher theminconcurrent value, the larger the loop body must be (have more iter-
ations, more statements, or both) to run concurrently.

At compilation time, Guide estimates the amount of computation inside a loop by
multiplying the loop iteration count by the sum of the nonindex operands/results
and the nonassignment operators and compares this value witirthencurrent

value. If the estimated amount of work is greater thanrtiieconcurrent value,

Guide generates concurrent code for the loop. Otherwise, it leaves the loop serial. If
theDOloop bounds are known at compilation time, the exact iteration count can be
computed. However, if thBOloop bounds are unknown, Guide generate$an
expression in the directive. This is interpreted by the compiler as a request to gener-
ate two loops, one concurrentized and one left serial, alt BHEN-ELSE to

make a run time check to decide whether or not to execute the loop in parallel. (This
case is called a two-version loop.)

To disable the generation of two-version loops throughout the program, use the
command line optioAaminconcurrent=0.

The-minconcurrent option only applies to parallel loops created by Guide fro
array syntax. Theminconcurrent option implies theconcurrentize switch.

onetrip or 1
noonetrip or nl

The-onetrip option allowsone-tripDOloops to be specified. Many pre-FORTRA
77 compilers implementddOloops which would always have at least one itera-
tion, even if the initial value of the loop control variable was higher than the fin
value. This option informs Guide that the program being processed contains loops
which need thene-tripfeature. This option is off by default.

The Guide DriverfixS

guide@kai.com 49

4 « The Guide Drivers Guide Options Alphabetic Listing

optimize=<integer> or o=<integer>

The-optimize option sets the base optimization and analysis level.

The meaning of the different optimization levels is as follows:

0 Guide performs no optimizations on parallel directives.
1 Guide optimizes parallel directives.

The default isoptimize=1

real=<integer> or rl=<integer>

This option specifies a size in bytes, for the default siRE#L variables.
When thereal option is present, Guide udREAL*<integer> as the default
REALLtype.

The default value iseal=4.

NOTE: This option merely informs Guide about the defRHAL size; it does
NOT ask Guide to convert froREAL*4 to REAL*8.

recursion or rc
norecursion or nrc

The-recursion option informs Guide that subroutines and functions in the
source program may be called recursively (that is, a subroutine or function calls
itself, or it calls another routine which calls it). Recursion affects storage alloca-
tion decisions and the interpretation of thaveoption. This option is off by
default.

The-recursion option must be in force in each recursive routine that Guide pro-
cesses or unsafe transformations could result.

roundoff=<string> or r=<string>

The-roundoff option specifies the amount of change from serial roundoff error
that is tolerable in the program. If an arithmetic reduction is accumulated in a
different order in the processed program than it was in the original program,
then the roundoff error is accumulated differently, and the final result may differ
from that of the original program. In most cases, the difference is insignificant.

50

http://www.kai.com/kpts/guide/

Guide Options Alphabetic Listing The Guide Drivers 4

However, if the source program is numerically unstable or if it requires extreme
precision, certain restructuring transformations performed by Guide must be dis-
abled in order to obtain exactly the same results as those obtained in the original
program.

The-roundoff option has the values O or 1.

The-/roundoff levels are defined as follows:

0 Guide allows no roundoff-changing transformations. Wineandoff=0, the
transformed code is in strict conformance to the FORTRAN standard. When
-roundoff>0, the standards are relaxed. This is the default.

1 Guide enables expression simplification and code floating.

save=<string> or sv=<string>

The-saveoption instructs Guide on how to handle the storage class of local scalar
variables. In particular, Guide can be instructed to perfivervariable analysiso

help Guide decide whether to save the value of a local scalar variable between invo-
cations of a function or a routine by generatir®f&/Estatement. Guide can also

be instructed to treat the default storage class of all local scalar variables as either
AUTOMATIQrSTATIC. In any case, Guide will not delete or ignore a hand coded
SAVEstatement.

There are four possible settings for thaveoption:

Specifying-save=all(-save=3 tells Guide not to perform live variable analysis.
However, all variables local to a function or a routine @aVMODlocks will be
treated as if they are saved. Fhave=alloption is not affected by thfno]recur-
sion option.

The defaultsave=manual(-save=n) tells Guide not to perform live variable anal
ysis. Guide assumes that the necesSalfEstatements have been inserted into t
code and it performs no corresponding analysis of its own. Hand &#dégstate-
ments are assumed to be correct and sufficient:Sdwe=manualsetting is not
affected by therecursion option.

O
=
(@)
)
9
3>
)
)
<
|_

Specifying-save=manual_adjust-save=ma instructs Guide to perform live vari-
able analysis. The effect eflave=manual_adjustdepends on thgno]recursion
setting:

guide@kai.com 51

4 « The Guide Drivers Guide Options Alphabetic Listing

With -norecursion, SAVE statements will be added for variables
which are used before being defined on at least one path from one
entry point to the routine.

With -recursion, SAVE statements will be added for variables which
are used before being defined on all paths from all entry points to the
routine.

Specifying-save=all_adjust(-save=aa instructs Guide to perform live variable
analysis. The effect efave=all_adjustdepends on thgno]recursion setting:

With -norecursion, treat all local variables as saved, except those
which are defined before use in all paths from all entry points and
which are not in hand cod&AVEstatements.

With -recursion, this is the same asave=all

Saving local variables may be required for correct execution, but can restrict
Guide optimizations. Accordinglysave=mashould be used with caution.

scalaropt=<integer> or so=<integer>

The-scalaropt option sets the level of scalar transformations performed. The
allowed values and their meanings are:

0 No scalar optimizations are performed. This is the default.

1 Forward substitution and backward elimination are performed.

scan=<integer> or scan=<integer>

The-scanoption allows the length of the FORTRAN input lines to be set. Guide
will ignore (by treating as a comment) characters on columns beyond the value
of the-scanoption. The value must be one of 72, 120, or 132. The default is
-scan=72

scheduling=<character> or schd=<character>

The-schedulingoption tells the compiler what kind of scheduling to use for
loop iterations on a multiprocessor machine. This option is used in conjunction
with the-chunk option. See “Scheduling Options” on page 27 for a description
of the-schedulingoptions.

52

http://www.kai.com/kpts/guide/

Guide Options Alphabetic Listing The Guide Drivers 4

suppress=<string> or su=<string>

The-suppressoption disables the printing of individual classes of Guide messages.
These message classes range from syntax warning and error messages to messages
about the optimizations performed. The allowed values ofstigpressoption are

as follows:

Value Disables

d Data Dependence messages
Syntax Error messages
Informational messages
Not Optimized messages
Questions
Standardized messages
Syntax Warning messages

S nwa s —o

The default instructs Guide to report all message types listed above.

syntax=<string> or sy=<string>

The-syntax option directs Guide to check for compliance with certain syntactic
rules. If you are familiar with a different implementation of FORTRAN, then using
a dialect switch can prevent a construct from being translated differently than
expected. The default is to accept a superset FORTRAN 77 and FORTRAN 90
except foMODULE&ndINTERNAL PROCEDURES

With -syntax=a Guide checks for strict compliance with the ANSI FORTRAN
77/90 standard. Warning and error messages are issued for syntax which doeg n
conform to the standard.

Note: With-syntax=g syntax errors are issued for array references without sub
scripts.

With -syntax=v, Guide accepts the extensions and interpretations of Digital or
FORTRAN 77/90.

The Guide Driver

type or ty
notype or nty

The-type option instructs Guide to issue error messages for variables not explicitly
typed. The-notype default suppresses this checking.

guide@kai.com 53

4 « The Guide Drivers Guide Options Alphabetic Listing

c*$*options Line

When a source file should always be run with the same command line options,
the first line of the file may be used to specify them. The format of this line is as
follows:

c*$*options option[=value] [option[=value]]...

Thec*$*options (or *$*options) must appear in columns 1-11 (or 1-10) with a
character space between this command and the options that follow.

Only the first line may be used fot$*options. Short or long option names may
be used on this line.

Options of the formoption=<name>(e.g.,-cmp or-inline) cannot be specified
on thec*$*options line of the source file. These options may be specified on the
command line only.

If conflicting options are specified on the command line and ocr#iteptions
line, thec*$*options line takes precedence. If additional options are specified
on thec*$*options line, these are used in addition to those specified on the
command line.

If the command line optiofignoreoptionsis set, anyx*$*options line in the
source file is treated as a comment.

54

http://www.kai.com/kpts/guide/

Selecting a Library Libraries 5

CHAPTER 5 lerarles

Selecting a Library

Guide supplies two libraries, an end-user library and a development library. The
end-user library iguide It should be used for normal or performance-critical runs
on applications that have already been tuned. The development library is
guide_statslt provides performance information about the code, but it slightly
degrades performance. It should be used to tune the performance of applications.
Both theguideandguide_statdibraries contain the serial, turnaround, and through-
put libraries described below (these libraries are selected by using the
KMP_LIBRARYenvironment variable, see “KMP_LIBRARY=<string>" on

page 29).

Serial
The serial library forces parallel applications to be run on a single processor.

guide@kai.com 55

5 ¢ Libraries The Guide_stats Library

Turnaround

In a dedicated (batch or single user) parallel environment where all of the pro-
cessors for a program are exclusively allocated to the program for its entire run,
it is most important to effectively utilize all of the processors all of the time. The
turnaround library is designed to keep all of the processors active and involved
in the parallel computation to minimize the execution time of a single job.

NOTE: Avoid over-allocating system resources. This occurs if either too many
processors have been specified, or if too few processors are available at run time.
If system resources are over-allocated, this library will cause poor performance.
The throughput library should be used if this occurs.

Throughput

In a multi-user environment where the load on the parallel machine is not con-
stant or where the job stream is not predictable, it may be better to design and
tune for throughput. This minimizes the total time to run multiple jobs simulta-
neously, or to mix sequential and parallel jobs on the same machine.

The throughput library is designed to let the program be aware of it's environ-
ment (i.e. the system load) and to adjust the resources used to produce efficient
execution in a dynamic environment.

The Guide_stats Library

Theguide_statdibrary is designed to provide the user with detailed statistics
about a program’s execution. These statistics help the user to “see inside” the
program to analyze performance bottlenecks and to make parallel performance
predictions. With this information, it is possible to modify the program (or the
execution environment) to make more efficient use of the parallel machine.

When a program is compiled with Guidef, linked with tjuide_statdibrary,

and executed, statistics are output to the file specified with the
KMP_STATSFILEenvironment variable (the default file nag&de_statss

used if this environment variable is not specified). In addition, running with the
guide_statdibrary enables additional runtime checks that may aid in program
debugging. When using tlgeiide_statdibrary, make sure that the main pro-
gram, and any subroutines that cause program termination, are compiled by
using Guidef.

56

http://www.kai.com/kpts/guide/

Linking the Libraries Libraries 5

The resulting statistics are most easily viewed and analyzed by using GuideView,
discussed in Chapter 6, “GuideView,” beginning on page 61.

Linking the Libraries

Guide uses thguidelibrary by default. To use ttguide_statdibrary, use the
-WGstats command line option to Guidef. For example, the following command
line can be used to compile a source file withghiele statdibrary:

guidef -WGstats source.f

External Routines

The following library routines can be used for low-level debugging to verify that
the library code and the user’s application are functioning as intended.

The use of these routines is discouraged; using them requires that the application be
linked with theguidelibrary, even when the code is being executed sequentially. In
addition, using these routines makes validating the program with Assure more diffi-
cult.

In most cases, directives can be used in place of these routines. For example,
thread-private storage should be implemented by usingRWATE() clause of

the PARALLELdirective or thef ASKCOMMG@titective, rather than by explicit
expansion and indexing. Appendix A, “Examples,” beginning on page 81, contains
examples of coding styles that avoid the use of these routines.

mppbeg(), mppend()

These routines are not necessary if a program is written entirely in FORTRAN and
compiled by using Guidef. In a mixed language environment, however, the pro-
gram’s entry or exit points might be written in a different language. In this case, the
user must ensure thappbeg() is called at the beginning of the main program (f

the main program is not compiled by using Guidef) andriipgtend() is called at 5
all points that cause program termination (if those routines are not compiled b
using Guidef).

guide@kai.com 57

5 Libraries External Routines

Calling these routines from another language requires knowledge of the cross-
language calling standards on your platform. The following convention is typi-
cally used with the C language. An underscore is appended to names that are
declared in FORTRAN subroutines. Thus, a main program in C that can be used
with Guide FORTRAN code might look like:

void
main(int argc, char *argv[])
{
extern mppbeg_(), mppend_();

mppbeg_();
work();

mppend_();
exit(0);
}

The calls tanppbeg() andmppend() must occur when the program is exe-
cuting sequentially, not when a parallel region is active.

omp_get_max_threads()

This routine returns the maximum number of threads that are available on the
parallel machine. The returned value is a positive integer, and is equal to the
value of theOMP_NUM_THREARSvironment variable, if set.

omp_get_num_procs()

This routine returns the maximum number of processors that are available on the
parallel machine. The returned value is a positive integer.

omp_get_num_threads()

This routine returns the number of threads that are being used in the current par-
allel region. The returned value is a positive integer.

NOTE: The number of threads used may change from one parallel region to the
next. When designing parallel programs it is best to not introduce assumptions
that the number of threads is constant across different instances of parallel
regions. The number of threads may increase of decrease between parallel
regions, but will never exceed tVIP_ NUM_THREARSvironment variable
value.

58

http://www.kai.com/kpts/guide/

External Routines Libraries 5

omp_get thread_num()

This routine returns the thread id of the calling thread. The returned value is an inte-
ger between zero amminp_get_num_threads()-1

guide@kai.com 59

5 e Libraries

External Routines

60

http://www.kai.com/kpts/guide/

6

Introduction GuideView ¢ 6

CHAPTER 6 GL"de\/ieW

Introduction

GuideView is a graphical tool that presents a window into the performance details
of a program’s parallel execution. Performance anomalies can be understood at a
glance with the intuitive, color coded display of parallel performance bottlenecks.

GuideView graphically illustrates what each processor is doing at various levels of
detail by using a hierarchical summary. Statistical data are collapsed into relevant
summaries which focus on the actions to be taken.

Using GuideView

GuideView uses as input a statistics file that was output when a Guide instrumented
program was run. An optional file with library overhead information and an

optional configuration file can also be provided. The syntax for invoking

GuideView is as follows:

guideview [<guideview_options>] <file>

guide@kai.com 61

6 ¢ GuideView GuideView Options

Theguideview_optionsepresents optional GuideView options, andfillee
argument is the name of the statistics file created by a Guide run that used the
guide_statdibrary (see Chapter 6).

The GuideView browser looks for a configuration file named

.guideviewrc orguide.ini when it starts up. It first looks in the cur-

rent directory, then in your home directory, and then in each directory in turn
that appears in yo8CLASSPATHenvironment variable setting. Using this

file you can configure several options that will control fonts, colors, window
sizes, window locations, line numbering, tab expansion in source, and other fea-
tures of the GUI.

An example of an initialization file is provided with your Guide installation.

This example file contains comments that explain the meaning and usage of the
supported options. If Guide is installed in direct¥rgn your machine, the

example of an initialization file that explains the options available in it will be in
X/guide35/class/example.guideviewrc

The default location for this example initialization file is in the directory
lusr/local/KAl/guide/class . If the default location is different

from the installed location, then a symbolic link will be created from the default
location to the installed location if the default location is writable at install time.
The easiest way to use this file is to copy it and then edit the copy as needed,
uncommenting lines you want and/or setting the options to values you prefer or
need.

Detailed information about GuideView's operation can be found under the help
menu of the GUIL.

GuideView Options

mhz=<integer>

The-mhz=<integer>option denotes the MHz rate for the machine used for cal-
culating statistics.

62

http://www.kai.com/kpts/guide/

6

JAVA Options GuideView < 6

ovh=<file>

The-ovh=<file> specifies an overheads file for the input statistics file. There ar
small overheads that exist in the GuideView library. These overheads can be
sured in terms of the number of cycles for each library call or event. You can over-
ride the default values to get more accurate overhead values for your machine by
using the-ovh=<file> option to create a file that contains machine-specific values.

An example overheads file is provided with your Guide installation. This example
file contains comments that explain the meaning and usage of the supported
options. If Guide was installed in directoyon your machine, this example file
resides inX/guide/class/guide.ovh

WJ,[java_option]
The GuideView GUI is implemented in JAVA. TR&/J flag prefixes any specified
JAVA option. The JAVA options are passed to the JAVA interpreter.

Any valid JAVA interpreter option may be used; however, the options listed below
may be particularly beneficial when used with GuideView to enhance the perfor-
mance of the GUI:

JAVA Options

The-WJ flag must prefix any specified JAVA option. For example, to pass the
-ms5moption to the JAVA interpreter, usé/J,-ms5m.

ms<integer>[{k,m}]

The-ms option specifies how much memory is allocated for the heap when the
interpreter starts up. The initial memory is specified either in bytes, kilobytes (with
the suffixk), or megabytes (with the suffiy. For example, to specify one mega-
byte, usemsim

mx<integer>[{k,m}]

The-mx option specifies the maximum heap size the interpreter will use for
dynamically allocated objects. The maximum heap size is specified either in bytes,
kilobytes (with the suffixk), or megabytes (with the suffiR. For example, to

specify two megabytes, usex2m.

guide@kai.com 63

6 « GuideView

JAVA Options

64

http://www.kai.com/kpts/guide/

The Guide_stats Report « 7

CHAPTER 7 The Guide_stats
Report

Theguide_statdibrary can be used to gain insight into how a parallel program is
behaving — or misbehaving. Tlyeiide_statdibrary contains monitoring software

that collects statistics during the execution of a Guide instrumented program. When
a program is compiled with Guidef, linked with tipgide_statdibrary, and exe-

cuted, a statistics report file is produced in a file named dgiiie STATSFILE
environment variable. See Chapter 5, “Libraries,” beginning on page 55 for more
details on using thguide_statsibrary.

This chapter documents the format and content of the statistics report produced by
theguide_statdibrary. The easiest way to view and interpret these statistics is by
using GuideView, described in Chapter 6, “GuideView,” beginning on page 61.

The use of thguide_statdibrary does introduce some overhead into the execution
of a parallel program, so tlyelide_statdibrary should not be used for production

runs that require peak performance. The statistics report, however, reflects the pro-
portion of time that would be spent in each part of a parallel program if that pro-
gram had been run without using théide_statdibrary.

guide@kai.com 65

7 » The Guide_stats Report Settings

In the following description, output from the library will be showrcou-

rier font. If an entire line of the statistics report contains zeros, that line is not
displayed. Also, the following examples show whole program statistics, but the
actual statistics report will contain information for each individual parallel
region. The whole program statistics are totals over all of the parallel regions.

The statistics report provides timings in real (wall clock) time, which includes
both system time (for system calls) and user time (for computation and Guide
library calls).

It is important to consider tHdAX MIN range of values for each statistic. If

there is a large difference betwddiXandMIN, it may indicate a load imbal-
ance due to poor scheduling. If static scheduling is being used, consider reduc-
ing the chunk size or employing dynamic scheduling.

Settings

KMP_STATSFILE = stats
KMP_PARALLEL =4
KMP_STACKSIZE = 1048576
KMP_SCHEDULING = <default>
KMP_CHUNK = <default>
KMP_SPINLOCKS = <default>

The statistics report starts with a description of the environment variables set
during the run. See “Environment Variables” on page 29 for a description of
these variables.

Parallel Region

whole program time spent in parallel region (seconds):
MAX AVG MIN #00 #01 #02 #03
realtme 123 11.8 115 123 115 11.7 117

This section lists the time spent in parallel regions for each of the processors this
run was made with. (Processors are number consecutively stasi@ 3t

66

http://www.kai.com/kpts/guide/

Synchronized Code The Guide_stats Report ¢ 7

Synchronized Code

whole program time spent in synchronized code (seconds):
MAX AVG MIN #00 #01 #02 #03
realtme 00 0.0 00 0.0 00 0.0 00

Time is accumulated in synchronized code after a thread has acquired a lock
before it releases the lock. Attempt to reduce the sigeRITICAL sections,
ORDEREIBections, and PINGLE regions as much as possible. Even if the ti
spent in these regions is small, reducing their size may provide insight into ho@ig
eliminate them entirely. Eliminating synchronized code can save time spent wa
at locks as well. Keep in mind that using dynamic scheduling causes implicit I¢
acquisition, and therefore accumulates time in synchronized code.

Synchronization

There are three classes of synchronization overhead reported: locks, barriers, and
join barriers.

Locks

whole program time spent in waiting at locks (seconds):
MAX AVG MIN #00 #01 #02 #03
realtme 05 04 03 03 05 03 03

Time is accumulated in locks whenever a lock is acquired, either explicitly, with the
use of CRITICAL sectionORDEREIBection, oPSINGLE directives, or

implicitly, with the use of the Guide library (for example, implicit locking occurs
when using dynamic scheduling). A large proportion of parallel region time spent
waiting for locks indicates contention for lock resources. If nGRYTICAL sec-
tions, ORDEREI[Bections, oPSINGLE regions are used, consider naming each
region separately, or try to merge regions if the time spent in the associated syn-
chronized code is small.

Barriers

whole program time spent in waiting at barriers (seconds):
MAX AVG MIN #00 #01 #02 #03
realtme 12 10 06 06 12 12 11

guide@kai.com 67

7 » The Guide_stats Report Average Statistics

Time is accumulated here when waiting at barriers foBIARRIERdirectives.

Join Barriers

whole program time spent in waiting at join barriers (seconds):
MAX AVG MIN #00 #01 #02 #03
realtme 0.8 03 00 08 00 00 04

Time is accumulated here when waiting at implicit barriers. These implicit barri-
ers occur at the end of parallel regions and at other places in the Guide library.

Average Statistics

whole program average statistics (seconds):
Total Parallel Lock Barrier Sync Joining
realtme 395 118 04 10 00 03

whole program estimated parallelism:
63.0 to 64.6 percent parallel

Whole program statistics estimate the amount of parallelism obtained during a
given parallel execution. This estimate allows the success of your parallelization
efforts to be measured. The estimate is computed by dividirgatallel

time, which is the average of the time spent in parallel regions across all proces-
sors, by thel'otal time, with correction factors fdrock , Barrier , and

Sync time. Two estimates are given; the low parallelism estimate assumes high
lock overhead, and the high parallelism estimate assumes low lock overhead.

Performance Projections

whole program speedup projections (estimated):

#01 #02 #03 #04 #05 #06 #07 #08
63.0% parallel 1.0 1.5 1.7 1.9 20 21 22 2.2
64.6% parallel 1.0 1.5 1.8 1.9 21 22 22 23

The%Parallel time is used to estimate the speedup that would be obtained
if more processors were available.

68

http://www.kai.com/kpts/guide/

Event Counts The Guide_stats Report ¢ 7

Amdahl's Law is used:

Total Time
Serial Time + (Parallel Time / Processors)

Speedups

This number can be optimistic because parallel overhead may not scale linealfl
with the number of processors used. If these speedup numbers are considere g
ficient, despite this built-in optimism, explore finding more parallelism in your g
gram.

Report

Event Counts

The Guide st

The event counts section lists the total number of parallel processing events t
occurred on each processor. This information can be useful for debugging the pro-
gram. If more or fewer events of a certain type occur than expected, it may indicate
a bug in the program. If too much time is being spent in parallel overhead functions
such as waiting at barriers, it may be either that too many of these operations are
being used or that the operations themselves are taking too long due to system load.
Compare the time spent in the function to the number of events in those types of
functions to the estimate the time spent per event to help decide which is the case.

Program Start/Finish

whole program event counts (zero event counts not shown):

TOTAL MAX AVG MIN #00 #01 #02 #03
Initialize 1 1 0 0 1 0 0 0
Terminae 1 1 0 0 1 0 0 0

These events mark the beginning and end of the program as a whole for statistics
initialization and reporting. They should occur only once and should be executed by
the first processor.

guide@kai.com 69

7 » The Guide_stats Report Event Counts

Internal Checks

TOTAL MAX AVG MIN #00 #01 #02 #03

Check Active 36 36 9 0 &3 0 0 0
Check Task 94382 39994 23595 16509 39994 19776 18103 16509

Check Stak 0 0 0 0 0 0 0 0

These are internal checks on program stéllmeck Active tests whether a
thread is running in paralleCheck Task requests the thread’s unique identi-

fier. Check Stack determines whether there is sufficient stack space to con-
tinue execution.

Fork
TOTAL MAX AVG MIN #00 #01 #02 #03
Fork 36 36 9 0 36 0 0 0
Fork Join 36 36 9 0 3} 0 0 0

Fork counts the entries to parallel regions. These should be executed by thread
#00.

Private Commons with INSTANCE PARALLEL or THREAD

PRIVATE
TOTAL MAX AVG MIN #00 #01 #02 #03
InstPar qAlle 0 0 0 0 0 0 0 0
InstPar qCop 0 0 0 0 0 0 0 0
InstPar qSeto 0 0 0 0 0 0 0 0

These are counts of internal events wWid8 TANCEPARALLELIs used for
declaringCOMMOMocks.InstPar gAlloc is a count o£OMMOINock
allocationsInstPar qCopy is a count of times th& OMMOocks are

copied and allocatedinstPar gSetup is a count of times th&OMMON
blocks are set up and declared.

TOTAL MAX AVG MIN #00 #01 #02 #03
InstTsk gAllac 0 0 0 0 0 0 0 0
InstTsk qCopg 0 0 0 0 0 0 0 0

70 http://www.kai.com/kpts/guide/

Event Counts The Guide_stats Report ¢ 7

These are counts of internal events whetREALPRIVATE is used for declar-
ing COMMOMocks.InstTsk gAlloc is a count o£OMMOMock alloca-
tions.InstTsk qCopy is a count of times th&&OMMOMNocks are copied and

allocated.

TOTAL MAX AVG MIN #00 #01 #02 #03 %

InstTsk tAlloc 160878 44659 40219 37285 38061 44659 40873 373
InstPar tCop 0 0 0 0 0 0 0 0 B
InstPar tSetp 0 0 0 0 0 0 0 N S
InstTsk tAlloc 0 0 0 0 0 0 0 0 N@)
InstTsk tCopy 0 0 0 0 0 0 0 0 I
=
|_

These are counts of internal events very similar to those above. These are slig
more efficient and Guide will use them when possible.

Dynamic Scheduling

TOTAL MAX AVG MIN #00 #01 #02 #03
Loop Setup 136 34 34 34 34 34 34 34
Loop Dispatch 4514 1214 1128 1048 1102 1214 1150 1048

These two events indicate the number of dynamic scheduling operations that have
been performed.oop Setup counts the entries to a lodpoop dispatch
counts the number of times additional iterations are scheduled.

Synchronization Events

TOTAL MAX AVG MIN #00 #01 #02 #03
Barrier 272 68 68 68 68 68 68 68
Enter Critical 4530 1218 1132 1052 1106 1218 1154 1052
Exit Critical 4530 1218 1132 1052 1106 1218 1154 1052
Begin Singé 0 0 0 0 0 0 0 0
End Singé 0 0 0 0 0 0 0 0

These events indicate synchronization events that have ocddasrter indi-
catesBARRIERs, Enter Critical andExit Critical indicate

CRITICAL sections, anBegin Single andEnd Single indicate FSIN-
GLEs.

guide@kai.com 71

7 » The Guide_stats Report Event Counts

Internal Synchronization Events

TOTAL MAX AVG MIN #00 #01 #02 #03
Variable Sy 0 0 0 0 0 0 0 0

These are synchronization events internal to the Guide runtime library.

Routine Events

TOTAL MAX AVG MIN #00 #01 #02 #03

Task ID 94382 39994 23595 16509 39994 19776 18103 16509
Max CPWs 1 1 0 0 1 0 0 0
Num Thread 0 0 0 0 0 0 0 0
Max Thread 0 0 0 0 0 0 0 0

This is a count of the number of calls to external routinesTHsK ID sec-
tion refers to th@mp_get_thread_num() routine.Max CPUsrefers to
theomp_get_num_procs() routine.NumThreads refers to the
omp_get _num_threads() routine, andMax Threads refers to the
omp_get_max_threads() routine.

Library Calls
TOTAL MAX AVG MIN #00 #01 #02 #03
Region Nare 6 6 1 0 6 0 0 0

This is a count of the number of calls to the library to register the source line
number and file corresponding to a particular parallel region. This is used by the
statistics library to give context sensitive information for the timers and events.

Internal Events

TOTAL MAX AVG MIN #00 #01 #02 #03
Yield 0 0 0 0 0 0 0 0
Sleg 0 0 0 0 0 0 0 0

These are internal events. High numbersyfimld or Sleep indicate that

the program is not working as efficiently as it could. This may be due to load
imbalance, lock contention, or over-allocation of system resources. Try to obtain
moreYields thanSleeps on an efficiently running system by reducing the
number of processors requested with@dP_NUM_THREABSvironment
variable or by reducing or eliminating critical sections. A null call is basically an
empty function.

72 http://www.kai.com/kpts/guide/

KAP/Pro Parallel Directive to OpenMP Directive Translator — Directive Translation *8

CHAPTER 8 Directive Translation

KAP/Pro Parallel Directive to OpenMP Directive Translata

Programs which have been parallelized with KAP/Pro Toolset directives can b
used as the basis for a port to the new OpenMP version of Guide. The
kpts2omp.pl program will help translate KAP/Pro Parallel directives into
OpenMP directives that Guide accepts.

[
2.9
£

wn
O =
= G
A —
|_

Thekpts2omp.pl program accepts as an argument the name of a file with
KAP/Pro Toolset directives. The translated file is writtestttout with OpenMP
directives added. Thetdout can be redirected to capture the translated file. Any
directives or constructs that cannot be handled automatically cause diagnostics to
be added inline in the translated output. $tuerr output contains a synopsis of
the diagnostics.

Thekpts2omp.pl translation is a totally automatic process because all of the
functionality provided by KAP/Pro Toolset directives is available in the KAP/Pro
Toolset implementation of OpenMP directives.

guide@kai.com 73

8 « Directive Translation Cray Directive to OpenMP Directive

Table 8-1, “kpts2omp.pl Translator Options,” below lists the options that are
available when runningpts2omp.pl

Table 8-1 kpts2omp.pl Translator Options

Option Description

-[hH?] print usage info

-i ifdef mode, generategifdef _ OPENMP/#endif "around
directives

-l disablesfdef mode (default setting)

-0 original directives included in output
-0 original directives not included in output (default setting)
-t <num> number of spaces for continuation directiv@s€ num <= 8,
default =4)
v verbose mode, give messages about likely errors (default setting)
-V disables verbose messages

NOTE: Perl must be installed on the system to kgts2omp.pl

Cray Directive to OpenMP Directive Translator

Programs which have been parallelized with Cray directives can be used as the
basis for a port to Guide. Tlveay2omp.pl program will help translate Cray
Autotasking directives into OpenMP directives that Guide accepts. It is assumed
that the Cray program with Autotasking directives has been ported to work on
the target machine and compiler in serial mode.

Thecray2omp.pl program accepts as an argument the name of a file with
Cray Autotasking directives. The translated file is writtesttiout ~ with
OpenMP directives added. Thielout can be redirected to capture the trans-
lated file. Any directives or constructs that cannot be handled automatically
cause diagnostics to be added inline in the translated outpustdére out-

put contains a synopsis of the diagnostics.

Thecray2omp.pl translation is not a totally automatic process because of
some semantic differences between the two directive sets. However, this transla-
tion performs a majority of the work required for migration, and most programs

74

http://www.kai.com/kpts/guide/

Cray Directive to OpenMP Directive Translator Directive Translation *8

will not require manual intervention. If manual intervention is required, searching
for “cray2omp ” in the output will lead to places wheteay2omp.pl had trou-
ble performing translations automatically.

Table 8-2, “cray2omp.pl Translator Options,” below lists the options that are avail-
able when runningray2omp.pl

Table 8-2 cray2omp.pl Translator Options

Option Description

-[hH?] print usage info

-i ifdef mode, generategifdef _ OPENMP/#endif "around direc-
tives

-l disablesfdef mode (default setting)

-0 original directives included in output (default setting)
-0 original directives not included in output

-t <num> number of spaces for continuation directiv@s€ num <= 8, g
default = 4) _g =
v verbose mode, give messages about likely errors (default setting) o D
Vv disables verbose messages g %
a —
—

Table 8-3, “Cray to OpenMP Translations,” below listsdtey2omp.pl transla-
tions that are performed. Many of the directives in the table have optional clau
that are translated lgray2omp.pl when possible. A diagnostic is produced
when there is not an equivalent OpenMP directive.

Table 8-3 Cray to OpenMP Translations

Cray OpenMP

cmic$ taskcommon tch c$omp threadprivate (/tch/)
cdir$ taskcommon tcb c$omp threadprivate (/tch/)
cdir$ ivdep *$* assert no recurrence
cdir$ no recurrence *$* assert no recurrence
cmic$ guard c$omp critical

cmic$ end guard c$omp end critical

cmic$ parallel c$omp parallel

guide@kai.com 75

8 « Directive Translation Cray Directive to OpenMP Directive

Table 8-3 Cray to OpenMP Translations (Continued)

Cray OpenMP

First cmic$ case c$omp psections
c$omp section

Subsequent cmic$ case c$omp section

cmic$ endcase c$omp end psections

cmic$ do parallel c$omp pdo

cmic$ enddo c$omp barrier

cmic$ doall c$omp parallel do

single schedule(dynamic)

guided schedule(guided,64)

vector schedule(guided,64)

guided(n) schedule(guided,n)

chunksize(n) schedule(dynamic,n)

The following directives are not directly translatable into OpenMP syntax:

cmic$ process
cmic$ also process
cmic$ end process
cmic$ stop all process
cmic$ do global
cmic$ continue
cmic$ getcpus
cmic$ numcpus
cmic$ relcpus
cmic$ soft exit
cmic$ micro

NOTE: Perl must be installed on the system to assy2omp.pl

Cray TASKCOMMON as opposed to OpenMP THREAD PRIVATE

The tools provided with Guide perform a semi-automatic translation of Cray
FORTRAN prallel directives into OpenMP directives. However, some hand edit-
ing of the resulting program may be necessary.

Craytaskcommon also has a semantic feature that is not supported in the
OpenMP syntax. Individual elements afaakcommon can be placed in the
private list of gparallel do.

http://www.kai.com/kpts/guide/

SGI Directive to KAP/Pro Parallel Directive Translator Directive Translation 8

In the following example, the scalar elementsaskcommon /tcbl/ , which
arex andy, are on the private list but the large arzaig not. With OpenMP, one
could use theopyin clause to achieve this effect. Since all the elements of
taskcommon /tcb2/ are on the private list, the entiteb2/ can be placed on
thecopyin clause.

For example, this Cray version

cmic$ taskcommon tch1, tch2
common /tcb1/ x,y,z(10000)
common /tch2/ a,b,c

x=1

y=2

cmic$ do parallel private(i,x,y,a,b,c) shared(n)
doi=1,n

eﬁado
should be translated into:

c$omp thread private tchl, tch2
common /tch1/ x,y,z(10000)
common /tcb2/ a,b,c

x=1

y=2
c$omp parallel do private(i) shared(n)
copyin(x,y,/tch2/)

doi=1,n

[
2.9
£

wn
L -
= G
A —
|_

eﬁado

SGI Directive to KAP/Pro Parallel Directive Translator

Programs which have been prallelized with $&ldirectives can be used as the
basis for a port to Guide. Tlsgi2par.pl program will help translate SGI direc-
tives into KAP/Pro parallel processing directives. These KAP/Pro directives may
then be translated automatically into OpenMP directives that Guide accepts using
thekpts2omp.pl program described earlier on page 73.

Thesgi2par.pl program accepts as an argument the name of a file with SGI
directives. The translated file is writtenstolout with KAP/Pro parallel process-

guide@kai.com 77

8 « Directive Translation SGI Directive to KAP/Pro Parallel Direc-

ing directives added. Tregdout can be redirected to capture the translated
file. Any directives or consutructs that cannot be handled automatically cause
diagnostics to be added inline in the translated outputsfileer output con-
tains the synopsis of the diagnostics.

Most of the common SGI directives are handled automatically by this program.
Whenever manual intervention is required, searchingsgi2par.pl " in the
output will lead to places whesgi2par.pl had trouble performing transla-
tions.

Table 8-4, “SGI to KAP/Pro Translations,” below lists the SGI directives and
their translations that are performed. Many of the directives in the table have
optional clauses that are translatedsgi?par.pl when possible. A diagnos-
tic is produced when there is not an equivalent KAP/Pro parallel processing
directive.

None of the SGI scheduling keywords are automatically translated my
sgi2par.pl . Sgi2par.pl produces a diagnostic to assist in manually
inserting scheduling keywords into the program.

Table 8-4 SGI to KAP/Pro Translations

SGI directive or clause or library routine KAP/Pro Translation

c$doacross c$par parallel do

c$ call mp_barrier c$par barrier

c$ call mp_setlock c$par critical section

¢$ call mp_unsetlock c$par end critical section

mp_my_threadnum Not translated automatically, but can be trans-

lated using mpptid

mp_numthreads Not translated automatically, but can be trans-
lated using mppnth

c$copyin Not translated automatically, but can be trans-
lated manually

¢$ mp_schedtype clause Not translated automatically, but can be trans-
lated manually

c$mp_schedtype directive No translation, have to propagate scheduling
type to rest of file manually

NOTE: Perl must be installed on your system to agepar.pl

http://www.kai.com/kpts/guide/

KAP Directive to OpenMP Directive Translator Directive Translation *8

KAP Directive to OpenMP Directive Translator

Programs which contain the older PCF directives of the fgu#P* can be used as
the basis for a port to OpenMP. Thkepp2omp.pl program will help translate
KAP directives into OpenMP directives.

Thekap2omp.pl program accepts the name of a file with KAP directives. The
translated file is written tetdout with OpenMP directives added. Thtelout

can be redirected to capture the translated file. Any directives or constructs that can-
not be handled automatically cause diagnostics to be added inline in the translated
output. Thestderr output contains the synopsis of the diagnostics. All

cray2omp.pl translator options given in Table 8-2, “cray2omp.pl Translator
Options,” on page 75, are also available forkle2omp.pl program.

NOTE: Perl must be installed on the system to kap2omp.pl

c
2.9

7
L -
= @
R
|_

guide@kai.com 79

8 « Directive Translation

KAP Directive to OpenMP Directive Trans-

80

http://www.kai.com/kpts/guide/

Examples « A

APPENDIX A Examples

For your convenience, the following examples have been adapted from the ANSI
X3H5 Parallel Extensions for FORTRANcument.

A

guide@kai.com 81

A « Examples

PDO: A Simple Difference Operator

This example shows a simple parallel loop where the amount of work in each
iteration is different. We used dynamic scheduling to get good load balancing.
Theendpdo has amowait because there is an implibérrier at theend
parallel . Alternately, using the optiomptimize=1would have also elimi-
nated théarrier

subroutine pdo_1 (a,b,n)
real a(n,n), b(n,n)

c$omp parallel
c$omp& shared(a,b,n)
c$ompé& private(i,)
c$omp pdo schedule(dynamic,1)
doi=2,n
doj=1,i
b(j,)) = (ag,i) + a(,i-1))/ 2
enddo
enddo
c$omp end pdo nowait
c$omp end parallel
end

82

http://www.kai.com/kpts/guide/

Examples « A

PDO: Two Difference Operators

Shows two parallel regions fused to reduce fork/join overhead. Therfigpdo
has anowait because all the data used in the seguiudis different than all the
data used in the firgido.

subroutine pdo_2 (a,b,c,d,m,n)
real a(n,n), b(n,n), c(m,m), d(m,m)

c$omp parallel
c$omp& shared(a,b,c,d,m,n)
c$omp& private(i,j)
c$omp pdo schedule(dynamic,1)
doi=2,n
doj=1,i
b@.,) = (a(,i) + aj,i-1)) /2
enddo
enddo
c$omp end pdo nowait
c$omp pdo schedule(dynamic,1)
doi=2,m
doj=1,i
d(ii) = (i) + ciji-1)) /2
enddo
enddo
c$omp end pdo nowait
c$omp end parallel
end

guide@kai.com 83

A « Examples

PDO: Reduce Fork/Join Overhead

Routinespdo_3a andpdo_3b perform numerically equivalent computations,
but because thearallel directive in routingpdo_3b is outside thelo j

loop, routinepdo_3b probably forms teams less often, and thus reduces over-
head.

subroutine pdo_3a (a,b,m,n)
real a(n,m), b(n,m)

doj=2,m
c$omp parallel
c$omp& shared(a,b,n,j)
c$omp& private(i)
c$omp pdo
doi=1,n
a(ij) =b(ij)/ adij-1)
enddo
c$omp end pdo nowait
c$omp end parallel
enddo
end

subroutine pdo_3b (a,b,m,n)
real a(n,m), b(n,m)

c$omp parallel
c$omp& shared(a,b,m,n)
c$ompé& private(i,)
doj=2,m
c$omp pdo
doi=1,n
a(i,) = b(ij)/ a(ij-1)
enddo
c$omp end pdo nowait
enddo
c$omp end parallel
end

http://www.kai.com/kpts/guide/

Examples « A

PSECTIONS: Two Difference Operators

Identical to “PDO: Two Difference Operators” on page 83 but psestions

instead oppdo. Here the speedup is limited to 2 because there are only 2 units of
work whereas in “PDO: Two Difference Operators” on page 83 there hrem-1
units of work .

subroutine psections_1 (a,b,c,d,m,n)
real a(n,n), b(n,n), c(m,m), d(m,m)

c$omp parallel
c$ompé& shared(a,b,c,d,m,n)
c$omp& private(i,j)
c$omp psections
c$omp psection
doi=2,n
doj=1,i
b(,i) = (ag.i) + agii-1)) /2
enddo
enddo
c$omp psection
doi=2,m
doj=1,i
d(ii) = (i) + ciji-1)) / 2
enddo
enddo
c$omp end psections nowait
c$omp end parallel
end

guide@kai.com 85

A « Examples

PSINGLE: Updating a Shared Scalar

This example demonstrates how to ugsiagle construct to update an ele-
after the firspdo
is omitted because we need to wait at the end gidbebefore proceeding into

ment of the shared array The optionaénd pdo nowait

thepsingle

subroutine sp_1a (a,b,n)
real a(n), b(n)

c$omp parallel
c$omp& shared(a,b,n)
c$ompé& private(i)
c$omp pdo
doi=1,n
a(i) =1.0/a()
enddo
c$omp psingle
a(l) =min(a(l1),1.0)
c$omp end psingle
c$omp pdo
doi=1,n
b(i) = b(i) / a(i)
enddo
c$omp end pdo nowait
c$omp end parallel
end

86

http://www.kai.com/kpts/guide/

Examples « A

PSECTIONS: Updating a Shared Scalar

Identical to “PSINGLE: Updating a Shared Scalar” on page 86 but using different
directives.

subroutine psection_sp_1 (a,b,n)
real a(n), b(n)

c$omp parallel
c$omp& shared(a,b,n)
c$omp& private(i)
c$omp pdo
doi=1,n
a(i)=1.0/a()
enddo
c$omp psections
a(l) =min(a(l),1.0)
c$omp end psections
c$omp pdo
doi=1,n
b() = b() / a(i)
enddo
c$omp end pdo nowait
c$omp end parallel
end

guide@kai.com 87

A « Examples

PDO: Updating a Shared Scalar

Identical to “PSINGLE: Updating a Shared Scalar” on page 86 but using differ-
ent directives.

subroutine pdo_sp_1 (a,b,n)
real a(n), b(n)

c$omp parallel
c$omp& shared(a,b,n)
c$omp& private(i)
c$omp pdo
doi=1,n
a() =1.0/a)
enddo
c$omp end pdo
c$omp pdo
doi=1,1
a(l) =min(a(l1),1.0)
enddo
c$omp end pdo
c$omp pdo
doi=1,n
b(i) = b() / a(i)
enddo
c$omp end pdo nowait
c$omp end parallel
end

88

http://www.kai.com/kpts/guide/

Examples « A

PARALLEL DO: A Simple Difference Operator

Identical to “PDO: A Simple Difference Operator” on page 82 but using different
directives.

subroutine paralleldo_1 (a,b,n)
real a(n,n), b(n,n)

c$omp parallel do
c$omp& shared(a,b,n)
c$omp& private(i,j)
c$omp& schedule(dynamic,1)
doi=2,n
doj=1,i
b(,i) = (ag,i) + a(,i-1))/ 2
enddo
enddo
end

guide@kai.com 89

A « Examples

PARALLEL SECTIONS: Two Difference
Operators

Identical to “PSECTIONS: Two Difference Operators” on page 85 but using dif-
ferent directives. The maximum performance improvement is limited to the
number of sections run in parallel, so this example has a maximum parallelism
of 2.

subroutine psections_2 (a,b,c,d,m,n)
real a(n,n), b(n,n), c(m,m), d(m,m)

c$omp parallel sections
c$omp& shared(a,b,c,d,m,n)
c$omp& private(i,)
c$omp psection
doi=2,n
doj=1,i
b(,i) = (a(,i) + agi-1)) / 2
enddo
enddo
c$omp psection
doi=2,m
doj=1,i
d(i,i) = (i) + cii-1)) / 2
enddo
enddo
c$omp end parallel sections
end

90

http://www.kai.com/kpts/guide/

Examples « A

Simple Reduction

This demonstrates how to perform a reduction using partial sums while avoiding
synchronization in the loop body.

subroutine reduction_1 (a,m,n,sum)
real a(m,n)

c$omp parallel
c$omp& shared(a,m,n,sum)
c$omp& private(i,j,local_sum)
local_sum=0.0
c$omp pdo
doi=1,n
doj=1,m
local_sum =local_sum + a(j,i)
enddo
enddo
c$omp end pdo nowait
c$omp critical
sum = sum + local_sum
c$omp end critical
c$omp end parallel
end

The above reduction could also useREDUCTION) clause as follows:

subroutine reduction_2 (a,m,n,sum)
real a(m,n)

c$omp parallel do
c$omp& shared(a,m,n)
c$omp& private(i,j)
c$omp& reduction(+:sum)
doi=1,n
doj=1,m
local_sum = local_sum + a(j,i)
enddo
enddo
end

guide@kai.com 91

A « Examples

TASKCOMMON: Private Common

This example demonstrates the useaskcommon privatizablecommon
blocks.

subroutine tc_1 (n)
common /shared/ a
real a(100,100)
common /private/ work
real work(10000)
c$omp thread private (/private/) ! this privatizes the
I common /private/
c$omp parallel
c$omp& shared(n)
c$omp& private(i)
c$omp pdo
doi=1,n
call construct_data() ! fills in array work()
calluse_data() !uses array work()
enddo
c$omp end pdo nowait
c$omp end parallel
end

92

http://www.kai.com/kpts/guide/

Examples « A

THREAD PRIVATE: Private Common and Master
Thread

In this example, the valugis printed since the master thread's copy of a variable in
athread private privatizablecommonblock is accessed withinmaster

section or in serial code sections. fsngle was used in place of tlmeaster
section, some single thread, but not necessarily the master thread, wpuld Zet
and the printed result would be indeterminate.

subroutine tc_2
common /blk/ j
c$omp thread private (/blk/)

i=1
c$omp parallel
c$omp master
i=2
c$omp end master
c$omp end parallel

print *, j
end

guide@kai.com 93

A « Examples

INSTANCE PARALLEL: As a Private Common

This demonstrates the useimdtance parallel
blocks.

subroutine ip_1 (n)
common /shared/ a
real a(100,100)
common /private/ work
real work(10000)
c$omp instance parallel (/private/)

c$omp parallel
c$omp& shared(n)
c$omp& private(i)

c$omp new (/private/) I this privatizes the
c$omp pdo I common /private/
doi=1,n

call construct_data()! fills in array work()
calluse_data() !uses array work()
enddo
c$omp end pdo nowait
c$omp end parallel
end

privatizable common

94

http://www.kai.com/kpts/guide/

Examples « A

INSTANCE PARALLEL: As a Shared and then a
Private Common

This demonstrates the use ofiastance parallel common block first as a
shareccommonblock and then as a privatemmonblock. This would not be pos-
sible withtaskcommon blocks sincéaaskcommon blocks are always private.

subroutine ip_2 (n,m)
common /shared/ a,b
real a(100,100), b(100,100)
common /private/ work
real work(10000)

c$omp instance parallel (/private/)

c$omp parallel I common /private/ is
c$omp& shared(a,b,n) I shared here since
c$omp& private(i) ! no new appears
c$omp pdo

doi=1,n

work(i) = b(i,i) / 4.0

enddo
c$omp end pdo nowait
c$omp end parallel

doi=1,n
doj=1,m
a(j,i) = work() * (a(-1,i) + a(+1,i)
X +a(,-1) +a(,i+1))
enddo
enddo

c$omp parallel
c$omp& shared(m)
c$omp& private(i)

c$omp new (/private/) I this privatizes the
c$omp pdo ! common /private/
doi=1,m

call construct_data() ! fills in array work()
calluse_data() !uses array work()
enddo
c$omp end pdo nowait
c$omp end parallel
end

guide@kai.com 95

A « Examples

Avoiding External Routines: Reduction

This example demonstrates two coding styles for reductions, one using the
external routinesmp_get_max_threads() and
omp_get_thread_num() and the other using only OpenMP directives.

subroutine reduction_3a (n)
real gx(0:7) !assume 8 processors

doi=0, omp_get max_threads()-1
gx())=0
enddo

c$omp parallel
c$omp& shared(a)
c$omp& private(i,Ix)
Ix=0
c$omp pdo
doi=1,n
Ix = Ix + a(i)
enddo
c$omp end pdo nowait
gx(omp_get_thread_num()) = Ix
c$omp end parallel

x=0

doi=0, omp_get max_threads()-1
X =X+ gx(i)

enddo

print *, X
end

As is shown below, this example could have been written without the external
routines.

96

http://www.kai.com/kpts/guide/

Examples « A

subroutine reduction_3b (n)

x=0
c$omp parallel
c$omp& shared(a,x)
c$omp& private(i,Ix)
Ix=0
c$omp pdo
doi=1,n
Ix = Ix + a(i)
enddo
c$omp end pdo nowait
c$omp critical
X=X+IX
c$omp end critical
c$omp end parallel

print *, X
end

This example could have also been written more simply usingduetion ()
clause as follows:

subroutine reduction_3c (n)

x=0
c$omp parallel
c$omp& shared(a)
c$omp& private(i)
c$omp pdo reduction(+:x)
doi=1,n
x=x+a(i)
enddo
c$omp end pdo nowait
c$omp end parallel

print *, X
end

guide@kai.com 97

A « Examples

Avoiding External Routines: Temporary Storage

This example demonstrates three coding styles for temporary storage, one using
the external routine armmp_get_thread_num() and the other two using
only directives.

subroutine local_1a (n)
dimension a(100)
common /cmn/ t(100, 0:7) ! assume 8 processors
max.
c$omp parallel do
c$omp& shared(a,t)
c$omp& private(i)
doi=1,n
doj=1,n
t(j, omp_get_thread_num()) = a(j) ** 2
enddo
call work(t(1,omp_get_thread num()))
enddo
end

If t is not global, then the above could be accomplished by puttimghe
private clause:

subroutine local_1b (n)
dimension t(100)

c$omp parallel do
c$omp& shared(a)
c$omp& private(i,t)
doi=1,n
doj=1,n
t() = a) * 2
enddo
call work(t)
enddo
end

If t is global, then thinstance parallel andnew directives can be used
instead.

98 http://www.kai.com/kpts/guide/

Examples « A

subroutine local_1c (n)
dimension t(100)
common /cmn/ t

c$omp instance parallel (fcmn/)

c$omp parallel do
c$omp& shared(a)
c$omp& private(i)
c$omp new (/cmn/)
doi=1,n
doj=1,n
tG) =a() 2
enddo
call work !access tfrom common /cmn/
enddo
end

guide@kai.com

99

A « Examples

FIRSTPRIVATE: Copying in Initialization Values

Not all of the values ad andb are initialized in the loop before they are used
(the rest of the values are producedriy a andinit_b). Using

firstprivate for a andb causes the initialization values produced by
init a andinit b to be copied into private copiesafindb for use in the
loops.

subroutine dsg3_b (c,n)
integer n
real a(100), b(100), c(n,n), X, y
callinit_a(a, n)
callinit_b(b, n)
c$omp parallel do shared(c,n) private(i,j,x,y)
firstprivate(a,b)
doi=1,n
doj=1,i
a(j) = calc_a(i)
b(j) = calc_b(i)
enddo
doj=1,n
x = a(i) - b(i)
y = b(i) + ai)
c(iy=x*y
enddo
enddo
c$omp end parallel do
print*, X, y
end

100 http://www.kai.com/kpts/guide/

Examples « A

THREAD PRIVATE: Copying in Initialization
Values

Similar to “FIRSTPRIVATE: Copying in Initialization Values” on page 100 except
usingthread private common blocks. Fahread private ,copyin is
used instead dfrstprivate to copy initialization values from the shared
(master) copy ofblk/ to the private copies.

subroutine dsg3_b_tc (c,n)
integer n
real a(100), b(100), c(n,n), X, y
common /blk/ a,b

c$omp thread private (/blk/)

callinit_a(a, n)
callinit_b(b, n)
c$omp parallel do shared(c,n) private(i,j,x,y)
copyin(a,b)
doi=1,n
doj=1,i
a(j) = calc_a(i)
b(j) = calc_b(j)
enddo
doj=1,n
x =a(i) - b(i)
y = b(i) + a(i)
c()=x*y
enddo
enddo
c$omp end parallel do
print*, X, y
end

guide@kai.com 101

A « Examples

INSTANCE PARALLEL: Copying in Initialization
Values

Similar to “FIRSTPRIVATE: Copying in Initialization Values” on page 100
except usingnstance parallel privatizable common blocks. For
instance parallel , copy new is used instead dirstprivate to
privatize the common block and to copy initialization values from the shared
(master) copy ofblk/ to the private copies.

subroutine dsg3_b_ip (c,n)
integer n
real a(100), b(100), c(n,n), X, y
common /blk/ a,b

c$omp instance parallel (/blk/)

callinit_a(a, n)
callinit_b(b, n)
c$omp parallel do shared(c,n) privatei,j,x,y)
c$omp copy new (/blk/)
doi=1,n
doj=1,i
a(j) = calc_a(i)
b(j) = calc_b(j)
enddo
doj=1,n
x =a(i) - b(i)
y = b(i) + a(j)
c(i)y=x*y
enddo
enddo
c$omp end parallel do
print*, x, y
end

102

http://www.kai.com/kpts/guide/

Timing Guide Constructs + B

APPENDIX B Timing Guide
Constructs

The table contained in this appendix demonstrates the amount of time expended for
OpenMP directives in comparison to a null call for a typical RISC processor based
SMP. A null call is a call to an empty function.

SUBROUTINE NULL
RETURN
END

In the table below, it took about 10 cycles to call the null functioBBARRIER

construct ($OMP BARRIER) is about 10 times slower for 1 processor, and about
70 times slower for 2 processors.

guide@kai.com 103

)
TS 2
5 O
@ 2

o
o N
€ S
E0O
I_

B « Timing Guide Constructs

Typical Overhead

1 processor 2 processor 3 processor 4 processor
Guide Construct X null call cycles X null call cycles X null call cycles X null call cycles
function call 1 10 1 10 1 10 1 10
barrier 10 100 70 700 90 900 100 1000
psingle 20 200 90 900 110 1100 130 1300
critical section 30 300 70 700 150 1500 210 2100
parallel region 50 500 190 1900 220 2200 280 2800

This information can be used to draw the following general conclusions:

* A BARRIERstatement is 30 to 50 percent less expensive tR&RALLEL
region.
* BARRIERs andPSINGLEs have roughly the same overhead.
* After 2 processors, all the costs follow a linear pattern as you add processors.

104 http://www.kai.com/kpts/guide/

Index

A
advanced optimization 391
command line options 381
alignmax 4243
all
save option 51
all_adjust
save option 52
as 4143
assume 4143
ATOMIC 26

B
BARRIER 27
barrier 7

reported overhead 67
blank_padding 4244
bold typeface 3
bp 4244

C
c*$*options 47 54

case 4244

chk 42 44

chunk 2842 44

cmp 4144

command line options 450
14249
advanced optimization 381
alignmax 4243
alphabetic listing 4354
as 4143
assume 4143
blank_padding 4244
bp 42 44
case 4244
chk 42 44
chunk 4244
cmp 4144
conc 4145
concurrentize 4145
datasave 425
directives 4245
dl 42 45

guide@kai.com

105

Index

dlines 4245

dr 42 45

ds 4245

free 42

heap 4246
heaplimit 4246
i 41,47

ig 42,47
ignoreoptions 4247
inc 42 47
include 4247
input 41,47

int 42, 47
integer 4247

| 41,48

lines 4148

list 41,48
listoptions 4148
In 41,48

lo 41,48

log 42 48
logical 42 48
mc 41
minconcurrent 41
0 41,50

onetrip 4249
optimize 4150
rc 42 50

real 4250
recursion 4250
rl 42,50
roundoff 4150
save 4251
scalaropt 4152
scan 4252
schd 4252
scheduling 4252
so 4152
specifying 4754
su 4153
suppress 453
sv 4251

sy 4253

syntax 4253

ty 42,53

type 4253

common blocks
allocating private 24
declaring private 23
privatizing 1Q 23

common privatization 22
allocating private commons 24
declaring private commons 23
INSTANCE PARALLEL 23

common privatization directives
THREAD PRIVATE 23

conc 4145

concurrentize 445

control directives 152
COPYIN 22
END PARALLEL 15
END PARALLEL DO 18
END PARALLEL SECTIONS 19
END PDO 16
END PSECTIONS 17
END PSINGLE 17
FIRSTPRIVATE 21
LASTPRIVATE 21
PARALLEL 15
PARALLEL DO 18
PARALLEL SECTIONS 19
PDO 16
PSECTIONS 17
PSINGLE 17
REDUCTION 21

COPYIN 22

courier font 3

CRITICAL 25

D
datasave 4245
debugging code 45
DEC

FORTRAN extensions 53
Digital

FORTRAN extensions 53
directives 4245

ATOMIC 26

BARRIER 27

control 1522

106

http://www.kai.com/kpts/guide/

Index

COPYIN 22
CRITICAL 25
END CRITICAL 25
END MASTER 26
END ORDERED 25
END PARALLEL 15
END PARALLEL DO 18
END PARALLEL SECTIONS 19
END PDO 16
END PSECTIONS 17
END PSINGLE 17
FIRSTPRIVATE 21
FLUSH 26
INSTANCE PARALLEL 23
LASTPRIVATE 21
MASTER 26
ORDERED 25
PARALLEL 15
PARALLEL DO 18
PARALLEL SECTIONS 19
PDO 16
PSECTIONS 17
PSINGLE 17
recognition 45
REDUCTION 21
synchronization 25
THREAD PRIVATE 23

dl 42,45

dlines 4245

dr 42 45

driver options
h 35
v 35
w 35
WG 36
WGcompiler 36
WGcpp 36
WGf77 36
WG90 36
WGfortran 36
WGftn 36
WGkeep 37
WGkeepcpp 37
WGId 37
WGlibpath 37

WGlink 37
WGnocpp 37
WGnokeep 37
WGnoprocess 38
WGnorc 38
WGonly 38
WGpath 38
WGprefix 38
WGsrcdir 38
WGversion 39

ds 4245

E

eliminating 7

END CRITICAL 25
END MASTER 26

END ORDERED 25
END PARALLEL 15
END PARALLEL DO 18

END PARALLEL SECTIONS 19

END PDO 16

END PSECTIONS 17

END PSINGLE 17
environment variables 290, 31

kmp_library 29
kmp_scheduling 29
kmp_stacksize 30
kmp_statsfile 30
Id_library_path 30
omp_dynamic 30
omp_num_threads 31
omp_schedule 31
scheculing options 29

error messages 53

suppressing 53

external routines 57

F

mppbeg() 57

mppend() 57
omp_get_max_threads() 58
omp_get_num_procs() 58
omp_get_num_threads() 58
omp_get _thread_num() 59

FIRSTPRIVATE 21

guide@kai.com

107

Index

FLUSH 26
FORTRAN

dialects 4053
free 42

G
guidefrc 35

H
heap 4246
heaplimit 4246

M
manual
save option 51
manual_adjust
save option 51
MASTER 26
mc 41
messages
suppressing 53
minconcurrent 41
mppbeg() 57
mppend() 57

i 41,47]
ig 42,47 0 41,50
ignoreoptions 4247 omp_dynamic 30
inc 42 47 omp_get_max_threads() 58
include 4247 omp_get_num_procs() 58
input 41,47 omp_get_num_threads() 58
_INSTANCE PARALLEL 23 omp_get_thread_num() 59
int 42,47 omp_num_threads 31
integer 4247 omp_schedule 31
onetrip 4249
K _ optimize 4150
kmp_library 29 options 4754
kmp_scheduling 29 ORDERED 25
kmp_stacksize 30
kmp_statsfile 30 P
PARALLEL 15

L PARALLEL DO 18
| 41,48 PARALLEL SECTIONS 19
LASTPRIVATE 21 PDO 16
Id_library_path 30 private commons
libraries 5557 allocating 24

linking 57 declaring 23
~ selecting 55 privatization
lines 41 48 directives 1023
linking PSECTIONS 17

libraries 57 PSINGLE 17
list 41,48
listoptions 4148 R
In 41,48 r 41,50
lo 41,48 rc 42 50
Iog_ 42 48 real 4250
logical 42 48 recursion 4250

108 http://www.kai.com/kpts/guide/

Index

REDUCTION 21 WGkeep 37

roundoff 4150 WGkeepcpp 37
WwaGld 37
S WGlibpath 37
save 4251 WGIink 37
all 51 WGnocpp 37
all_adjust 52 WGnokeep 37
manual 51 WGnoprocess 38
manual_adjust 51 WGnorc 38
scalaropt 4152 WGonly 38
scan 4252 WGpath 38
schd 4252 WGprefix 38
scheduling 4252 WGsrcdir 38
scheduling options 27 WGversion 39

chunk size 28
environment variables 29
so 4152
su 4153
suppress 453
sv 4251
sy 4253
synchronization directives 236
ATOMIC 26
BARRIER 27
CRITICAL 25
FLUSH 26
MASTER 26
ORDERED 25
syntax 4253

T
THREAD PRIVATE 23
ty 42,53

type 4253

W
warnings
suppressing 53
WG 36
WGcompiler 36
WGcpp 36
WGf77 36
WG90 36
WGfortran 36
WGftn 36

guide@kai.com

109

	CHAPTER 1 Introduction
	About Guide
	Using this Reference Manual
	Reference Manual Contents
	Reference Manual Conventions

	Guide On-line
	Technical Support
	Comments

	CHAPTER 2 Using Guide
	Parallel Processing Model
	Overview
	Increasing Efficiency
	Data Sharing

	Using Guide to Develop Parallel Programs
	Analyze
	Restructure
	Tune

	Orphaned Directives
	A Few Rules About the “Orphaned” Directives

	CHAPTER 3 OpenMP Directives
	Control Directives
	PARALLEL/END PARALLEL
	PDO/END PDO
	PSECTIONS/END PSECTIONS
	PSINGLE/END PSINGLE
	PARALLEL DO/END PARALLEL DO
	PARALLEL SECTIONS/END PARALLEL SECTIONS
	IF(if_expr)
	DEFAULT(SHARED|PRIVATE|NONE) SHARED(shared_vars) P...
	FIRSTPRIVATE (firstprivate_vars)
	LASTPRIVATE (lastprivate_vars)
	REDUCTION(operator:reduction_vars) REDUCTION(intri...
	COPYIN (copyin_vars)

	Common Privatization
	INSTANCE PARALLEL
	THREAD PRIVATE
	Declaring Private Commons
	Allocating Private Commons

	Synchronization Directives
	CRITICAL/END CRITICAL
	ORDERED/END ORDERED
	MASTER/END MASTER
	ATOMIC
	FLUSH[(string)]
	BARRIER

	Scheduling Options
	Scheduling Options Using Directives
	Scheduling Options Using Environment Variables

	Environment Variables
	KMP_LIBRARY=<string>
	KMP_STACKSIZE=<integer>[,<character>]
	KMP_STATSFILE=<file>
	LD_LIBRARY_PATH=<path>
	OMP_DYNAMIC=<boolean>
	OMP_NUM_THREADS=<integer>
	OMP_SCHEDULE=<string>[,<integer>]

	CHAPTER 4 The Guide Drivers
	About Guidef77 and Guidef90
	Using the Drivers
	Driver Options
	Displaying the Driver Usage Message
	Displaying All Command Lines
	Suppressing Guidef Warnings

	Driver-Specific Options
	WG,guide_option_1[[[,guide_option_2],guide_option_...
	WGcompiler=<path>
	WGcpp=<path>
	WGf77=<path>
	WGf90=<file>
	WGfortran=<path>
	WGftn=<path>
	WGkeep
	WGkeepcpp
	WGld=<file>
	WGlibpath=<path>
	WGlink=<path>
	WGnocpp
	WGnokeep
	WGnoprocess
	WGnorc
	WGonly
	WGpath=<path>
	WGprefix=<string>
	WGsrcdir
	WGversion

	Guide Options
	Guide Options Functional Categories
	General Optimization
	Input-Output
	Listing
	Advanced Optimization
	FORTRAN Dialect
	Hardware
	Directive Recognition

	Guide Options Table
	Guide Options Alphabetic Listing
	alignmax=<integer>
	assume=<string> or a=<string> noassume or nas
	blank_padding or bp noblank_padding or nbp
	case or case nocase or ncase
	chunk=<integer> or chk=<integer>
	cmp[=<file>]
	concurrentize, conc noconcurrentize, noconc
	datasave or ds nodatasave or nds
	directives=p or dr=p nodirectives or ndr
	dlines or dl nodlines or ndl
	free nofree
	heaplimit=<integer> or heap=<integer>
	ignoreoptions or ig noignoreoptions or nig
	include=<directory> or inc=<directory>
	input=<file> or i=<file>
	integer=<integer> or int=<integer>
	lines=<integer> or ln=<integer>
	list[=<file>] or l=[<file>] nolist or nl
	listoptions=<string> or lo=<string>
	logical=<integer> or log=<integer>
	minconcurrent=<integer> or mc=<integer>
	onetrip or 1 noonetrip or n1
	optimize=<integer> or o=<integer>
	real=<integer> or rl=<integer>
	recursion or rc norecursion or nrc
	roundoff=<string> or r=<string>
	save=<string> or sv=<string>
	scalaropt=<integer> or so=<integer>
	scan=<integer> or scan=<integer>
	scheduling=<character> or schd=<character>
	suppress=<string> or su=<string>
	syntax=<string> or sy=<string>
	type or ty notype or nty
	c*$*options Line

	CHAPTER 5 Libraries
	Selecting a Library
	Serial
	Turnaround
	Throughput

	The Guide_stats Library
	Linking the Libraries
	External Routines
	mppbeg(), mppend()
	omp_get_max_threads()
	omp_get_num_procs()
	omp_get_num_threads()
	omp_get_thread_num()

	CHAPTER 6 GuideView
	Introduction
	Using GuideView
	GuideView Options
	mhz=<integer>
	ovh=<file>
	WJ,[java_option]

	JAVA Options
	ms<integer>[{k,m}]
	mx<integer>[{k,m}]

	CHAPTER 7 The Guide_stats CHAPTER 7 Report
	Settings
	Parallel Region
	Synchronized Code
	Synchronization
	Locks
	Barriers
	Join Barriers

	Average Statistics
	Performance Projections
	Event Counts
	Program Start/Finish
	Internal Checks
	Fork
	Private Commons with INSTANCE PARALLEL or THREAD P...
	Dynamic Scheduling
	Synchronization Events
	Internal Synchronization Events
	Routine Events
	Library Calls
	Internal Events

	CHAPTER 8 Directive Translation
	KAP/Pro Parallel Directive to OpenMP Directive Tra...
	Cray Directive to OpenMP Directive Translator
	Cray TASKCOMMON as opposed to OpenMP THREAD PRIVAT...

	SGI Directive to KAP/Pro Parallel Directive Transl...
	KAP Directive to OpenMP Directive Translator

	APPENDIX A Examples
	PDO: A Simple Difference Operator
	PDO: Two Difference Operators
	PDO: Reduce Fork/Join Overhead
	PSECTIONS: Two Difference Operators
	PSINGLE: Updating a Shared Scalar
	PSECTIONS: Updating a Shared Scalar
	PDO: Updating a Shared Scalar
	PARALLEL DO: A Simple Difference Operator
	PARALLEL SECTIONS: Two Difference Operators
	Simple Reduction
	TASKCOMMON: Private Common
	THREAD PRIVATE: Private Common and Master Thread
	INSTANCE PARALLEL: As a Private Common
	INSTANCE PARALLEL: As a Shared and then a Private ...
	Avoiding External Routines: Reduction
	Avoiding External Routines: Temporary Storage
	FIRSTPRIVATE: Copying in Initialization Values
	THREAD PRIVATE: Copying in Initialization Values
	INSTANCE PARALLEL: Copying in Initialization Value...

	APPENDIX B Timing Guide APPENDIX B Constructs
	Typical Overhead

