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i. Course organization
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grams. A.W.
 

Instructor: 

David Padua. 
padua@uiuc.edu, 
3318 DCL, 
3-4223.

Office hours: 

By appointment.

Textbook

Ian Foster. Designing and Building Parallel Pro

Class notes. 

Hyperlinks (mandatory)

URL

http://polaris.cs.uiuc.edu/~padua/cs320



4 of 46

 to complete an 
Grading:
5-8 Machine Problems 50% 
Midterm (March 18) 25%
Final 25%

Graduate students registered for 1 unit need
additional assignment. 
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ii. Topics
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da, pC++, 
• Machine models.

• Parallel programming models.

• Language extensions to express parallelism:

OpenMP (Fortran) and MPI (Fortran or C). 

If time allows: High-Performance Fortran, Lin
SplitC.

• Issues in algorithm design

Parallelism

Load balancing
Communication
Locality
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ltiplication and 

nce
• Algorithms. 

Linear algebra algorithms such as matrix mu
equation solvers.
Symbolic algorithms such as sorting.

N-body
Random number generators.
Asynchronous algorithms.

• Program analysis and transformation

Dependence analysis

Race conditions
Deadlock detection

• Parallel program development and maintena

Modularity

Performance analysis and tuning
Debugging
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Chapter 1. Introduction
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 performing two 

tegy since the 

 conventional 
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 not consider 
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ven by Charles 
 of last century.

 of instructions 
ined. Several 

n proceed 
g increases 
Parallelism

• The idea is simple: improve performance by
or more operations at the same time.

• Has been an important computer design stra
beginning. 

• It takes many (complementary forms) within
systems like uniprocessor PCs and worksta

At the circuit level: Adders and multipliers do
one digit at a time but rather operate on sev
same time. This design strategy was used e
Babbage in his mechanical computer design

At the processor-design level: The execution
and floating-point operations is usually pipel
instructions can execute simultaneously. 

At the system level: Computation and I/O ca
simultaneously. This is why multiprogrammin
throughput.
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s is to attain 
s or even 

re decreasing 
al limits” is not 

ng or physics 
o reason the 
ce will slow.” 

nductor 
g increasingly 
e performance 

nt of parallel 
lability. 
• However, the design strategy of interest to u
parallelism by connecting several processor
several complete computers. 

• The claim in the textbook that “clock times a
slowly and appear to be approaching physic
universally accepted. 

“Assuming that nothing basic in manufacturi
breaks in the next couple of years, there is n
historical trend in microprocessor performan
Robert Colwell, Computer January 1998.

• However, despite all the advances in semico
technology, parallel computers are becomin
popular. It is an important strategy to increas
over what is possible by technology alone.

• Another important reason for the developme
systems of the multicomputer variety is avai
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M

N ore of Intel.

It  integrated circuits 
d

M n end sometime 
a

• usly.

•  new small feature 
.

•  effects will start 
oore’s Law

amed after a 1964 observation by Gordon E. Mo

 holds that “The number of elements in advanced
oubles every year.”

any claim that the era of this law is coming to a
round 2010 for several reasons:

The cost of chip factories will increase enormo

The small number of electrons moved at these
sizes may not be enough for reliable computing

The feature sizes will be so small that quantum
having an impact.
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nting Office on 
peed networks.

gram in parallel 

SCI).
uclear weapons 
mance of the 
l computers 
GI are now 

today. 
stems, web 
plications will 
 Applications

• Traditionally, highly parallel computers have
numerical simulations of complex systems s
weather, mechanical devices, electronic circ
manufacturing processes, chemical reaction

See the 1991 report from the General Accou
Industry uses of supercomputers and high-s

• Perhaps the most important government pro
computing today is the 

Accelerated Strategic Computing Initiative (A
Its main objective is to accurately simulate n
in order to verify safety, reliability, and perfor
US nuclear stockpile. Several highly-paralle
(1000s of processors) from Intel, IBM, and S
being used to develop these simulation

• Commercial applications are also important 
Examples include: transaction processing sy
servers, junk-mail generators, etc. These ap

http://w4.lanl.gov:80/Internal/projects/asci/asci.html
gopher://wiretap.spies.com:70/00/Gov/GAO-Tech/REPORT8
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ind parallel 

to their 

 a third mode of 
ntation and 

neering tool that 
asibility of new 
probably become the main driving force beh
computing in the future.

• We will focus on numerical simulations due 
importance for scientists and engineers.

• Computer simulation is considered today as
scientific research. It complements experime
theoretical analysis.

• Furthermore, simulation is an important engi
provides fast feedback on the quality and fe
designs. 
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Chapter 2. Machine mod
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onal model

hly Parallel 

 years ago.

w this model. It 
2.1 The Von Neumann computati

Discussion taken from Almasi and Gottlieb: Hig
Computing. Benjamin Cummings, 1988.

• Designed by John Von Neumann about fifty

• All widely used “conventional” machines follo
is represented next:

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL
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ch as “add the 
e result in that 

s and data of a 
.
tion after 
 the processor, 
een memory 

rammed in a 
uch as

 a compiler into 
r example, the 
• The machine’s essential features are:

1. A processor that performs instructions su
contents of these two registers and put th
register”

2. A memory that stores both the instruction
program in cells having unique addresses

3. A control scheme that fetches one instruc
another from the memory for execution by
and shuttles data  one word at a time betw
and processor.

• Notice that machines today usually are prog
high level language containing statements s

A = B + C

However, these statements are translated by
the machine instructions just mentioned. Fo
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nslated into a 

t into register 3)

ddress in memory)

achine” with its 

al languages, 
n Neumann 
previous assignment statement would be tra
sequence of the form:

LD 1,B (load B from memory into register 1)

LD 2,C (load C from memory into register 2)

ADD 3,1,2 (add registers 1 and 2 and put the resul

ST 3,A (store register 3’s contents into variable A’s a

• It is said that the compiler creates a “virtual m
own language and computational model. 

• Virtual machines represented by convention
such as Fortran 77 and C, also follow the Vo
model. 
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ollection of 

nd 
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rs: clusters and 
re quite similar, 
2.2 Multicomputers

• The easiest way to get parallelism given a c
conventional computers is to connect them:

• Each machine can proceed independently a
communicate with the others via the intercon
network.

• There are two main classes of multicompute
distributed-memory multiprocessors. They a

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

Interconnect
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r and is sold as 

n of 
 I/O) used as a 

rocessor (such 
urces. 

ervers

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL
but the latter is considered a single compute
such. 

Furthermore, a cluster consists of a collectio
interconnected whole computers (including
single, unified computing resource.
Not all nodes of a distributed memory multip
as IBMs SP-2) need have complete I/O reso

• An example of cluster is a web server

The net

dispatcherrouter

request

S

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL
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t Fermilab, 
s and IBM 
 accelerator 
as nothing to do 
ine runs a 
 at a time. By 
yze many 
• Another example is the workstation cluster a
which consists of about 400 Silicon Graphic
workstations. The system is used to analyze
events. Analyzing any one of those events h
with analyzing any of the others. Each mach
sequential program that analyzes one event
using several machines it is possible to anal
events simultaneously.
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ors

processor is the 
tric we mean 

same abilities. 
ey all have 
ey all can 
effect, from the 
 machine looks 

s. These will be 

I/O

LAN Disks

Interconnect
2.3 Shared-memory multiprocess

• The simplest form of a shared-memory multi
symmetric multiprocessor (SMP). By symme
that each of the processors has exactly the 
Therefore any processor can do anything: th
equal access to every location in memory; th
control every I/O device equally well, etc. In 
point of view of each processor the rest of the
the same, hence the term symmetric.

• An important component of SMPs are cache
discussed later.

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL
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f parallelism 
exist with the 
nd 

ic unit.

 of this type of 
2.4 Other forms of parallelism

• As discussed above, there are other forms o
that are widely used today. These usually co
coarse grain parallelism of multicomputers a
multiprocessors.

• Pipelining of the control unit and/or arithmet

• Multiple functional units

• Most microprocessors today take advantage
parallelism. 

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

registers

Instruction counter

CONTROL
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rs are an 
. The idea is 
rations that are 
 usually 
 to the high-
rogrammer can 
nguage.   

IALU

BRANCH
• VLIW (Very Long Instruction Word) processo
important class of multifunctional processors
that each instruction may involve several ope
performed simultaneously.This parallelism is
exploited by the compiler and not accessible
level language programmer. However, the p
control this type of parallelism in assembly la

Register File

Memory

LD/ST FADD FMUL

LD/ST FADD FMUL IALU
Instruction 

Word

Multifunction Processor (VLIW)
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 machine. Each 
V was 
nsional array  

MEMORY
holds instructions and 
data

ARITHMETIC
UNIT

logic

registers
• Array processors. Multiple arithmetic units

• Illiac IV is the earliest example of this type of
arithmetic unit (processing unit) of the Illiac I
connected to four others to form a two-dime
(torus).

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

MEMORY
holds instructions and 
data

ARITHMETIC
UNIT

logic

registers

ARITHMETIC
UNIT

logic

registers
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hich he picked 
ll four possible 
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ntional Von 

ulticomputers 

y processors.

used and 
2.5 Flynn’s taxonomy

• Michael Flynn published a paper in 1972 in w
two characteristics of computers and tried a
combinations. Two stuck in everybody’s min
others didn’t:

• SISD: Single Instruction, Single Data. Conve
Neumann computers.

• MIMD: Multiple Instruction, Multiple Data. M
and multiprocessors.

• SIMD: Single Instruction, Multiple Data. Arra

• MISD: Multiple Instruction, Single Data. Not 
perhaps not meaningful.
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g Models
 

Chapter 3. Parallel Programmin
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ing paradigms. 

 are likely to 
mmers:

k

• There are many different parallel programm
Most are of academic interest only.

• We will present three paradigms that are (or
become) popular with real application progra

Shared-memory programming

Message-passing programming
Array programming

• We will start by introducing the notion of tas
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ming.

.  The 
ssor devoted to 
ssor, but the 
sors to give the 

t the operating 

. Each task may 
ta that only the 

used frequently 

m Multiple 

y next in the 
g.
Tasks

Tasks are a central concept in parallel program

A task is a sequential program under execution
programmer may assume that there is a proce
each task. (There may not be a physical proce
operating system will time-share the real proces
illusion of one processor per task. It is said tha
system creates a “virtual machine”.) 

Parallel programs consist of two or more tasks
contain private data (local memory). That is, da
tasks can access.

There are two main programming approaches 
to  generate tasks:

1. Explicit spawning.
2. Programming in the SPMD (Single Progra
Data) model.

The SPMD model will be discussed shortly.

We will illustrate the explicitly spawning strateg
context of shared-memory parallel programmin
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ming

ery simple 

nctions, and a, 
s.
Shared-Memory Parallel Program

To illustrate this model ,consider the following v
program
read b,c,e,g
a=f1(b,c)
h=f2(e)
d=f3(h, g)
q=f4(d,a)
print q
end

where f1, f2, f3, and f4 are very complex fu
b, c, d, e, p, and q are complex data structure
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A simple parallel program for this is:

read b,c,e,g
start_task sub(e,g,d)
a=f1(b,c)
wait_for_all_tasks_to_complete
q=f4(d,a)
print q
end

subroutine sub(e,g,d)
local h
h=f2(e)
d=f3(h, g)
end sub
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nd then a 
eeds by 

proceed in 

omplete before 
is necessary to 
is used. 

e shared by the 
e accessed by 
The program starts as a single task program a
second task is initiated.  The second task proc
executing subroutine sub.

The computations of variable a and variable d 
parallel.

The original task waits for the second task to c
proceeding with the computation of q. Waiting 
guarantee that d has been computed before it 

In this program, all variables except for h can b
two tasks.  In fact, only variables e, g, and d ar
both tasks.



32 of 46

ew copy of h 
is executed.

usly, and each 
Notice that because h is private to the task, a n
will be created every time  start_task sub 

Consider the following program:
read b,c,e,g
start_task sub(b,c,a)
call sub(e,g,d)
wait_for_all_tasks_to_complete
q=f4(d,a)
print q
end

subroutine sub(e,g,d)
local h
h=f2(e)
d=f3(h, g)
end sub

Two copies of sub will be executing simultaneo
will have its own copy of h.
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 are private. 
reading” data to 

red-memory 
Channels and Message Passing

In message passing programming, all variables
Variable are shared by explicitly “writing” and “
and from tasks. 

The following code is equivalent to the first sha
code presented above:
read b,c,e,g
start_task sub()
send x(e,g)
a=f1(b,c)
receive y(d)
q=f4(d,a)
print q
end

subroutine sub()
local m,n,r,h
receive x(m,n)
h=f2(m)
r=f3(h, n)
send y(r)
end sub
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he send 
iately.

s execution of 

ions, the values 
ginal task to the 
 in the opposite 

eceive y(d) 

es the names of 
ommunication. 

sk per 
 the SPMD 
 model today. 

e passing:
Here, x and y are communication channels. T
operation is asynchronous: it completes immed

The receive operation is synchronous: it halt
the task until the necessary data is available.

Thus, thanks to the send and receive operat
of variables e and g are tranferred from the ori
created task, and the value of d is transferred
direction.

Notice that no wait operation is needed. The r
operation does the necessary synchronization.

An alternative approach,  message passing, us
the destination tasks rather than channels for c

Usually, message passing systems start one ta
processor, all executing the same code. This is
model mentioned above. It is the most popular

The previous program  in SPMD  and  messag
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ch in more detail
if my_proc().eq. 0 then
read b,c,e,g
send (e,g) to 1
a=f1(b,c)
receive (d) from 1
q=f4(d,a)
print q

else /* my_proc() == 1  */
receive (m,n) from 0
h=f2(m)
r=f3(h, n)
send (r) to 0

end if

Later in the semester we will study this approa
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memory 

tatement, such 
te. Instead, it 
r, using as 

may be 
ally outside the 
Parallel loops

One of the most popuar constructs for shared-
programming is the parallel loop. 

Parallel loops are just like any usual iterative s
as for or do, except that it doesn’t actually itera
says “just get all these things done, in any orde
many processors as possible.”

The number of processors available to the job 
specified or limited in some way, but that’s usu
domain of the parallel loop construct.

An example of a parallel loop is shown next:

c = sin (d)
forall i=1 to 30

a(i) = b(i) + c
end forall
e = a(20)+ a(15)
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r example, the 
mpiler into 

 shared by the 
of the loop.
Parallel loops are implemented using tasks. Fo
previous program could be translated by the co
something similar to the following program:

c = sin (d)
start_task sub(a,b,c,1,10)
start_task sub(a,b,c,11,20)
call sub(a,b,c,21,30)
wait_for_all_tasks_to_complete
e = a(20)+ a(15)
...

subroutine sub(a,b,c,k,l)
...
for i=k to l

a(i) = b(i) + c
end for

end sub

Notice that, in this program, arrays a and b are
three processors cooperating in the execution 
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d segment of 
ling. 

ompiler could 

,i)

pty,i)
This program assigns to each processor  a fixe
the iteration space. This is called static schedu

Scheduling also could be dynamic. Thus, the c
generate the following code instead:
c = sin (d)
start_task sub(a,b,c)
start_task sub(a,b,c)
call sub(a,b,c)
wait_for_all_tasks_to_complete
e = a(20)+ a(15)
...

subroutine sub(a,b,c)
logical empty

...
call get_another_iteration(empty
while .not. empty do

a(i) = b(i) + c
call get_another_iteration(em

end while
end sub
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routine 
ers , gets one of 
terations have 
, the function 

teration() 
teration:

,i,j)

pty,i,j)
Here, the get_another_iteration() sub
accesses a pool containing all n iteration numb
them, and removes it from the pool. When all i
been assigned, and therefore the pool is empty
returns .true. in variable empty.

A third alternative is to have get_another_i
return a range of iterations instead of a single i
subroutine sub(a,b,c,k,l)
logical empty

...
call get_another_iteration(empty
while .not. empty do

for k=i to j
a(k) = b(k) + c

end for
call get_another_iteration(em

end while
end sub
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tensions 
beginning of the 
executed.

uring the 
, outside the 
f the program is 
inds a parallel 
e execution of 

el as illustrated 
SPMD model and parallel loops

Starting a task is usually very time consuming.

For that reason, current implementations of ex
involving parallel loops start a few tasks at the 
program or when the first parallel loop is to be 

These tasks, called implicit tasks, will be idle d
execution of the sequential components (that is
parallel loops). The task that starts exectuiton o
called the master task. When the master task f
loop,  it awakes the implicit tasks who join in th
the parallel loop.

An asternative strategy is to use the SPMD mod
next:
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c = sin (d)
i=my_proc()*10
call sub(a,b,c,i+1,i+10)
call barrier()
if my_proc() .eq. 0 then

e = a(20)+ a(15)
end if
...

subroutine sub(a,b,c,k,l)
...
for i=k to l

a(i) = b(i) + c
end for

end sub
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n in a compact 
.

ows:

Kenneth 

 for parallel 
can be used to 
Array Programming

In these languages, array operations are writte
form that often makes programs more readable

Consider the loop:
s=0
do i=1,n

a(i)=b(i)+c(i)
s=s+a(i)

end do

It can be written (in Fortran 90 notation) as foll

a(1:n) = b(1:n) +c(1:n)
s=sum(a(1:n))

Perhaps the most important array language is 
Iverson’s APL, developed around 1960. 

A popular array language today is MATLAB.

Although these languages were not developed
computing but rather for expressiveness, they 
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 be easily 

 involved in a 
. Intrinsic 
an be 
ner. 

rallel using 
to 
express parallelism since array operations can
executed in parallel.

Thus, all the arithmetic operations (+, -, * /, **) 
vector expression can be performed in parallel
reduction functions ,such as sum above, also c
performed in parallel but in a less obvious man

Vector operations can be easily executed in pa
almost any form of parallelism, from pipelining 
multicomputers.
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tion on shared-
Vector programs are easily translated for execu
memory machines. The code segment:
c = sin(d)
a(1:30)=b(2:31) + c
e=a(20)+a(15)

is equivalent to the following code segement:
c = sin (d)
forall i=1 to 30

a(i) = b(i+1) + c
end forall
e = a(20)+ a(15)
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ple to transform 
, how would you 
Going in the other direction, it is not always sim
forall loops into vector operations. For example
transform the following loop into vector form?

forall i=1 to n
if c(i) .eq. 1 then

while a(i) .gt. eps do
a(i) = a(i) - a(i) / c

end while
else

while a(i) .lt. upper do
a(i) = a(i) + a(i) * d

end while
end if

end forall
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