
1 of 49© 1998 David A. Padua

CS320/CSE 302/ECE 392

Introduction to Parallel Programming for
Scientists and Engineers

Spring 2002

2 of 49© 1998 David A. Padua

i. Course organization

3 of 49© 1998 David A. Padua

Instructor: Office Hours:

David Padua.
padua@uiuc.edu,
3318 DCL,
3-4223.

T.A.: Jonathan Booth Office Hours:

Textbooks

4 of 49© 1998 David A. Padua

Lectures

Lectures are required reading and will be posted at:

http://www-courses.cs.uiuc.edu/~cs320/

Grading:

6-9 Machine Problems/Homeworks 50%
Midterm (Fri. February 22) 25%
Final 25%

Graduate students registered for 1 unit need to complete additional
work (associated with each MP).

5 of 49© 1998 David A. Padua

ii. Topics

6 of 49© 1998 David A. Padua

• Machine models.

• Parallel programming models.

• Language extensions to express parallelism:

OpenMP (Fortran) and MPI (Fortran or C).
If time allows: High-Performance Fortran, Linda, pC++, SplitC.

• Issues in algorithm design

Parallelism
Load balancing
Communication
Locality

7 of 49© 1998 David A. Padua

• Algorithms.

Linear algebra algorithms such as matrix multiplication and
equation solvers.
Symbolic algorithms such as sorting.
N-body
Random number generators.
Asynchronous algorithms.

• Program analysis and transformation

Dependence analysis
Race conditions
Deadlock detection

• Parallel program development and maintenance

Modularity
Performance analysis and tuning
Debugging

8 of 49© 1998 David A. Padua

Chapter 1. Introduction

9 of 49© 1998 David A. Padua

Parallelism

• The idea is simple: improve performance by performing two or
more operations at the same time.

• Has been an important computer design strategy since the
beginning.

• It takes many (complementary forms) within conventional
systems like uniprocessor PCs and workstations:

At the circuit level: Adders and multipliers do not consider one
digit at a time but rather operate on several digits at the same time.
This design strategy was used even by Charles Babbage in his
mechanical computer design of last century.
At the processor-design level: The execution of instructions and
floating-point operations is usually pipelined. Several instructions
can execute simultaneously.
At the system level: Computation and I/O can proceed
simultaneously. This is why multiprogramming increases
throughput.

10 of 49© 1998 David A. Padua

• However, the design strategy of interest to us is to attain
parallelism by connecting several processors or even several
complete computers.

• It has also been claimed that parallel computing is necessary for
continuing performance gains given that “clock times are
decreasing slowly and appear to be approaching physical limits”.
This, however, is not universally accepted.

• “Assuming that nothing basic in manufacturing or physics breaks
in the next couple of years, there is no reason the historical trend in
microprocessor performance will slow.” Robert Colwell,
Computer January 1998.

• However, despite all the advances in semiconductor technology,
parallel computers are becoming increasingly popular. It is an
important strategy to increase performance over what is possible
by hardware technology alone.

11 of 49© 1998 David A. Padua

• Another important reason for the development of parallel systems of the
multicomputer variety is availability.

“Having a computer shrivel up into an expensive doorstop can be a whole
lot less traumatic if it’s not unique, but rather one of a herd. The herd
should be able to accomodate spares, which can potentially be used to
keep the work going; or if one chooses to configure sparelessly, the work
that was done by the dear departed sibling can, potentially, be
redistributed among the others.” In search of clusters. G. Pfister.
Prentice Hall.

12 of 49© 1998 David A. Padua

Moore’s Law

Named after a 1964 observation by Gordon E. Moore of Intel.

It holds that “The number of elements in advanced integrated circuits
doubles every year.”

Many claim that the era of this law is coming to an end sometime
around 2010 for several reasons:

• The cost of chip factories will increase enormously.

• The small number of electrons moved at these new small feature
sizes may not be enough for reliable computing.

• The feature sizes will be so small that quantum effects will start
having an impact.

13 of 49© 1998 David A. Padua

 Applications

• Traditionally, highly parallel computers have been used for
numerical simulations of complex systems such as the weather,
mechanical devices, electronic circuits, manufacturing processes,
chemical reactions, etc.

• “ In part because of HPCC technologies, simulation has become recognized as the third
paradigm of science, the first two being experimentation and theory. In some cases it is the
only approach available for further advancing knowledge -- experiments may not be possible
due to size (very big or very small), speed (very fast or very slow), distance (very far away),
dangers to health and safety (toxic or explosive), or the economics of conducting the
experiments. In simulations, mathematical models of physical phenomena are translated into
computer software that specifies how calculations are performed using input data that may
include both experimental data and estimated values of unknown parameters in the mathematical
models. By repeatedly running the software using different data and different parameter values,
an understanding of the phenomenon of interest emerges. The realism of these simulations and
the speed with which they are produced affect the accuracy of this understanding and its
usefulness in predicting change. “

From “High Performance Computing and Communications: Foundation for
America's Information Future” (See http://www.ccic.gov/pubs/blue96/index.html).
See also http://www.ccic.gov/pubs/blue94/index.html and http://www.ccic.gov/
pubs/blue95/index.html.

14 of 49© 1998 David A. Padua

• Perhaps the most important government program in parallel
computing today is the

Accelerated Strategic Computing Initiative (ASCI) (see http://
www.llnl.gov/asci/).
Its main objective is to accurately simulate nuclear weapons in
order to verify safety, reliability, and performance of the US
nuclear stockpile. Several highly-parallel computers (1000s of
processors) from Intel, IBM, and SGI are now being used to
develop these simulations

• Commercial applications are also important today. Examples
include: transaction processing systems, web servers, junk-mail
generators, etc. These applications will probably become the main
driving force behind parallel computing in the future.

• We will focus on numerical simulations due to their importance
for scientists and engineers.

• As mentioned above, computer simulation is considered today as a
third mode of scientific research. It complements experimentation
and theoretical analysis.

15 of 49© 1998 David A. Padua

• Furthermore, simulation is an important engineering tool that
provides fast feedback on the quality and feasibility of new
designs.

16 of 49© 1998 David A. Padua

Chapter 2. Machine models

17 of 49© 1998 David A. Padua

2.1 The Von Neumann computational model

Discussion taken from Almasi and Gottlieb: Highly Parallel
Computing. Benjamin Cummings, 1988.

• Designed by John Von Neumann about fifty years ago.

• All widely used “conventional” machines follow this model. It is
represented next:

MEMORY
holds instructions and
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

18 of 49© 1998 David A. Padua

• The machine’s essential features are:

1. A processor that performs instructions such as “add the
contents of these two registers and put the result in that
register”

2. A memory that stores both the instructions and data of a
program in cells having unique addresses.

3. A control scheme that fetches one instruction after another from
the memory for execution by the processor, and shuttles data
one word at a time between memory and processor.

• Notice that machines today usually are programmed in a high
level language containing statements such as

A = B + C
However, these statements are translated by a compiler into the
machine instructions just mentioned. For example, the previous

19 of 49© 1998 David A. Padua

assignment statement would be translated into a sequence of the
form:
LD 1,B (load B from memory into register 1)

LD 2,C (load C from memory into register 2)

ADD 3,1,2 (add registers 1 and 2 and put the result into register 3)

ST 3,A (store register 3’s contents into variable A’s address in memory)

• It is said that the compiler creates a “virtual machine” with its own
language and computational model.

• Virtual machines represented by conventional languages, such as
Fortran 77 and C, also follow the Von Neumann model.

20 of 49

For an instruction to be executed, there are several steps that must be
performed. For example:
1. Instruction Fetch and decode (IF). Bring the instrution from

memory into the control unit and identify the type of instruction.
2. Read data (RD). Read data from memory.
3. Execution (EX). Execute operation.
4. Write Back (WB). Write the results back.

21 of 49© 1998 David A. Padua

2.2 Multicomputers

• The easiest way to get parallelism given a collection of
conventional computers is to connect them:

• Each machine can proceed independently and communicate with
the others via the interconnection network.

MEMORY
holds instructions and
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

MEMORY
holds instructions and
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

MEMORY
holds instructions and
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

MEMORY
holds instructions and
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

MEMORY
holds instructions and
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

Interconnect

22 of 49© 1998 David A. Padua

• There are two main classes of multicomputers: clusters and
distributed-memory multiprocessors. They are quite similar, but
the latter is considered a single computer and is sold as such.

Furthermore, a cluster consists of a collection of interconnected
whole computers (including I/O) used as a single, unified
computing resource.
Not all nodes of a distributed memory multiprocessor (such as
IBMs SP-2) need have complete I/O resources.

23 of 49© 1998 David A. Padua

• An example of cluster is a web server

• Another example is the workstation cluster at Fermilab, which
consists of about 400 Silicon Graphics and IBM workstations. The
system is used to analyze accelerator events. Analyzing any one of
those events has nothing to do with analyzing any of the others.
Each machine runs a sequential program that analyzes one event at
a time. By using several machines it is possible to analyze many
events simultaneously.

The net

dispatcherrouter

request

Servers

MEMORY
holds instructions and
data

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and
data

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and
data

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and
data

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

24 of 49© 1998 David A. Padua

2.3 Shared-memory multiprocessors

• The simplest form of a shared-memory multiprocessor is the
symmetric multiprocessor (SMP). By symmetric we mean that
each of the processors has exactly the same abilities. Therefore
any processor can do anything: they all have equal access to every
location in memory; they all can control every I/O device equally
well, etc. In effect, from the point of view of each processor the
rest of the machine looks the same, hence the term symmetric.

• An important component of SMPs are caches. These will be
discussed later.

MEMORY
holds instructions and
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

I/O

LAN Disks

Interconnect

25 of 49© 1998 David A. Padua

2.4 Other forms of parallelism

• As discussed above, there are other forms of parallelism that are
widely used today. These usually coexist with the coarse grain
parallelism of multicomputers and multiprocessors.

• Pipelining of the control unit and/or arithmetic unit.

• Multiple functional units

• Most microprocessors today take advantage of this type of
parallelism.

MEMORY
holds instructions and
data

PROCESSOR

ARITHMETIC
UNIT

registers

Instruction counter

CONTROL

26 of 49© 1998 David A. Padua

• VLIW (Very Long Instruction Word) processors are an important
class of multifunctional processors. The idea is that each
instruction may involve several operations that are performed
simultaneously.This parallelism is usually exploited by the
compiler and not accessible to the high-level language
programmer. However, the programmer can control this type of
parallelism in assembly language.

Register File

Memory

LD/ST FADD FMUL IALU

LD/ST FADD FMUL IALU BRANCH
Instruction

Word

Multifunction Processor (VLIW)

27 of 49© 1998 David A. Padua

• Array processors. Multiple arithmetic units

• Illiac IV is the earliest example of this type of machine. Each
arithmetic unit (processing unit) of the Illiac IV was connected to
four others to form a two-dimensional array (torus).

MEMORY
holds instructions and
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL

MEMORY
holds instructions and
data

MEMORY
holds instructions and
data

MEMORY
holds instructions and
data

ARITHMETIC
UNIT

logic

registers

ARITHMETIC
UNIT

logic

registers

ARITHMETIC
UNIT

logic

registers

28 of 49© 1998 David A. Padua

2.5 Flynn’s taxonomy

• Michael Flynn published a paper in 1972 in which he picked two
characteristics of computers and tried all four possible
combinations. Two stuck in everybody’s mind, and the others
didn’t:

• SISD: Single Instruction, Single Data. Conventional Von
Neumann computers.

• MIMD: Multiple Instruction, Multiple Data. Multicomputers and
multiprocessors.

• SIMD: Single Instruction, Multiple Data. Array processors.

• MISD: Multiple Instruction, Single Data. Not used and perhaps
not meaningful.

29 of 49© 1998 David A. Padua

Chapter 3. Parallel Programming Models

30 of 49© 1998 David A. Padua

• There are many different parallel programming paradigms. Most
are of academic interest only.

• We will present three paradigms that are (or are likely to become)
popular with real application programmers:

Shared-memory programming
Message-passing programming
Array programming

• We will start by introducing the notion of task

31 of 49© 1998 David A. Padua

Tasks

Tasks are a central concept in parallel programming.

A task is a sequential program under execution. The programmer
may assume that there is a processor devoted to each task. (There
may not be a physical processor, but the operating system will time-
share the real processors to give the illusion of one processor per
task. It is said that the operating system creates a “virtual machine”.)

Parallel programs consist of two or more tasks. Each task may
contain private data (local memory). That is, data that only the tasks
can access.

There are two main programming approaches used frequently to
generate tasks:

1. Explicit spawning.
2. Programming in the SPMD (Single Program Multiple Data)
model.

The SPMD model will be discussed shortly.

We will illustrate the explicitly spawning strategy next in the context
of shared-memory parallel programming.

32 of 49© 1998 David A. Padua

Shared-Memory Parallel Programming

To illustrate this model ,consider the following very simple program
read b,c,e,g
a=f1(b,c)
h=f2(e)
d=f3(h, g)
q=f4(d,a)
print q
end

where f1, f2, f3, and f4 are very complex functions, and a, b, c,
d, e, p, and q are complex data structures.

33 of 49© 1998 David A. Padua

A simple parallel program for this is:

read b,c,e,g
start_task sub(e,g,d)
a=f1(b,c)
wait_for_all_tasks_to_complete
q=f4(d,a)
print q
end

subroutine sub(e,g,d)
local h
h=f2(e)
d=f3(h, g)
end sub

34 of 49© 1998 David A. Padua

The program starts as a single task program and then a second task is
initiated. The second task proceeds by executing subroutine sub.

The computations of variable a and variable d proceed in parallel.

The original task waits for the second task to complete before
proceeding with the computation of q. Waiting is necessary to
guarantee that d has been computed before it is used.

In this program, all variables except for h can be shared by the two
tasks. In fact, only variables e, g, and d are accessed by both tasks.

35 of 49© 1998 David A. Padua

Notice that because h is private to the task, a new copy of h will be
created every time start_task sub is executed.

Consider the following program:
read b,c,e,g
start_task sub(b,c,a)
call sub(e,g,d)
wait_for_all_tasks_to_complete
q=f4(d,a)
print q
end

subroutine sub(e,g,d)
local h
h=f2(e)
d=f3(h, g)
end sub

Two copies of sub will be executing simultaneously, and each will
have its own copy of h.

36 of 49© 1998 David A. Padua

Channels and Message Passing

In message passing programming, all variables are private. Variable
are shared by explicitly “writing” and “reading” data to and from
tasks.

The following code is equivalent to the first shared-memory code
presented above:
read b,c,e,g
start_task sub()
send x(e,g)
a=f1(b,c)
receive y(d)
q=f4(d,a)
print q
end

subroutine sub()
local m,n,r,h
receive x(m,n)
h=f2(m)
r=f3(h, n)
send y(r)

37 of 49© 1998 David A. Padua

end sub

38 of 49© 1998 David A. Padua

Here, x and y are communication channels. The send operation is
asynchronous: it completes immediately.

The receive operation is synchronous: it halts execution of the
task until the necessary data is available.

Thus, thanks to the send and receive operations, the values of
variables e and g are tranferred from the original task to the created
task, and the value of d is transferred in the opposite direction.

Notice that no wait operation is needed. The receive y(d)
operation does the necessary synchronization.

An alternative approach, message passing, uses the names of the
destination tasks rather than channels for communication.

Usually, message passing systems start one task per processor, all
executing the same code. This is the SPMD model mentioned above.
It is the most popular model today.

The previous program in SPMD and message passing:

if my_proc().eq. 0 then

39 of 49© 1998 David A. Padua

read b,c,e,g
send (e,g) to 1
a=f1(b,c)
receive (d) from 1
q=f4(d,a)
print q

else /* my_proc() == 1 */
receive (m,n) from 0
h=f2(m)
r=f3(h, n)
send (r) to 0

end if

Later in the semester we will study this approach in more detail

40 of 49© 1998 David A. Padua

Parallel loops

One of the most popuar constructs for shared-memory programming
is the parallel loop.

Parallel loops are just like any usual iterative statement, such as for or
do, except that it doesn’t actually iterate. Instead, it says “just get all
these things done, in any order, using as many processors as
possible.”

The number of processors available to the job may be specified or
limited in some way, but that’s usually outside the domain of the
parallel loop construct.

An example of a parallel loop is:

c = sin (d)
parallel do i=1 to 30

a(i) = b(i) + c
end parallel do
e = a(20)+ a(15)

41 of 49© 1998 David A. Padua

Parallel loops are implemented using tasks. For example, the
previous program could be translated by the compiler into something
similar to the following program:

c = sin (d)
start_task sub(a,b,c,1,10)
start_task sub(a,b,c,11,20)
call sub(a,b,c,21,30)
wait_for_all_tasks_to_complete
e = a(20)+ a(15)
...

subroutine sub(a,b,c,k,l)
...
for i=k to l

a(i) = b(i) + c
end for

end sub

Notice that, in this program, arrays a and b are shared by the three
processors cooperating in the execution of the loop.

42 of 49© 1998 David A. Padua

This program assigns to each processor a fixed segment of the
iteration space. This is called static scheduling.

Scheduling also could be dynamic. Thus, the compiler could generate
the following code instead:
c = sin (d)
start_task sub(a,b,c)
start_task sub(a,b,c)
call sub(a,b,c)
wait_for_all_tasks_to_complete
e = a(20)+ a(15)
...

subroutine sub(a,b,c)
logical empty

...
call get_another_iteration(empty,i)
while .not. empty do

a(i) = b(i) + c
call get_another_iteration(empty,i)

end while
end sub

43 of 49© 1998 David A. Padua

Here, the get_another_iteration() subroutine accesses a
pool containing all n iteration numbers , gets one of them, and
removes it from the pool. When all iterations have been assigned, and
therefore the pool is empty, the function returns .true. in variable
empty.

A third alternative is to have get_another_iteration()
return a range of iterations instead of a single iteration:
subroutine sub(a,b,c,k,l)
logical empty

...
call get_another_iteration(empty,i,j)
while .not. empty do

for k=i to j
a(k) = b(k) + c

end for
call get_another_iteration(empty,i,j)

end while
end sub

44 of 49© 1998 David A. Padua

SPMD model and parallel loops

Starting a task is usually very time consuming.

For that reason, current implementations of extensions involving
parallel loops start a few tasks at the beginning of the program or
when the first parallel loop is to be executed.

These tasks, called implicit tasks, will be idle during the execution of
the sequential components (that is, outside the parallel loops). The
task that starts exectuiton of the program is called the master task.
When the master task finds a parallel loop, it awakes the implicit
tasks who join in the execution of the parallel loop.

An asternative strategy is to use the SPMD model as illustrated next:

45 of 49© 1998 David A. Padua

c = sin (d)
i=my_proc()*10
call sub(a,b,c,i+1,i+10)
call barrier()
if my_proc() .eq. 0 then

e = a(20)+ a(15)
end if
...

subroutine sub(a,b,c,k,l)
...
for i=k to l

a(i) = b(i) + c
end for

end sub

46 of 49© 1998 David A. Padua

Array Programming

In these languages, array operations are written in a compact form
that often makes programs more readable.

Consider the loop:
s=0
do i=1,n

a(i)=b(i)+c(i)
s=s+a(i)

end do

It can be written (in Fortran 90 notation) as follows:

a(1:n) = b(1:n) +c(1:n)
s=sum(a(1:n))

Perhaps the most important array language is Kenneth Iverson’s
APL, developed ca. 1960.

A popular array language today is MATLAB.

47 of 49© 1998 David A. Padua

Although these languages were not developed for parallel computing
but rather for expressiveness, they can be used to express parallelism
since array operations can be easily executed in parallel.

Thus, all the arithmetic operations (+, -, * /, **) involved in a vector
expression can be performed in parallel. Intrinsic reduction functions
,such as sum above, also can be performed in parallel but in a less
obvious manner.

Vector operations can be easily executed in parallel using almost any
form of parallelism, from pipelining to multicomputers.

48 of 49© 1998 David A. Padua

Vector programs are easily translated for execution on shared-
memory machines. The code segment:
c = sin(d)
a(1:30)=b(2:31) + c
e=a(20)+a(15)

is equivalent to the following code segement:
c = sin (d)
parallel do i=1 to 30

a(i) = b(i+1) + c
end parallel do
e = a(20)+ a(15)

49 of 49© 1998 David A. Padua

Going in the other direction, it is not always simple to transform
forall loops into vector operations. For example, how would you
transform the following loop into vector form?

parallel do i=1 to n
if c(i) .eq. 1 then

while a(i) .gt. eps do
a(i) = a(i) - a(i) / c

end while
else

while a(i) .lt. upper do
a(i) = a(i) + a(i) * d

end while
end if

end parallel do

