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i. Course organization
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Instructor: Office Hours:

David Padua. 
padua@uiuc.edu, 
3318 DCL, 
3-4223.

T.A.: Jonathan Booth Office Hours:

Textbooks
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Lectures

Lectures are required reading and will be posted at:  

http://www-courses.cs.uiuc.edu/~cs320/

Grading:

6-9 Machine Problems/Homeworks 50% 
Midterm (Fri. February 22) 25%
Final 25%

Graduate students registered for 1 unit need to complete additional 
work (associated with each MP). 
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ii. Topics
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• Machine models.

• Parallel programming models.

• Language extensions to express parallelism:

OpenMP (Fortran) and MPI (Fortran or C). 
If time allows: High-Performance Fortran, Linda, pC++, SplitC.

• Issues in algorithm design

Parallelism
Load balancing
Communication
Locality
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• Algorithms. 

Linear algebra algorithms such as matrix multiplication and 
equation solvers.
Symbolic algorithms such as sorting.
N-body
Random number generators.
Asynchronous algorithms.

• Program analysis and transformation

Dependence analysis
Race conditions
Deadlock detection

• Parallel program development and maintenance

Modularity
Performance analysis and tuning
Debugging
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Chapter 1. Introduction
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Parallelism

• The idea is simple: improve performance by performing two or 
more operations at the same time.

• Has been an important computer design strategy since the 
beginning. 

• It takes many (complementary forms) within conventional 
systems like uniprocessor PCs and workstations:

At the circuit level: Adders and multipliers do not consider one 
digit at a time but rather operate on several digits at the same time. 
This design strategy was used even by Charles Babbage in his 
mechanical computer design of last century.
At the processor-design level: The execution of instructions and 
floating-point operations is usually pipelined. Several instructions 
can execute simultaneously. 
At the system level: Computation and I/O can proceed 
simultaneously. This is why multiprogramming increases 
throughput.
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• However, the design strategy of interest to us is to attain 
parallelism by connecting several processors or even several 
complete computers. 

• It has also been claimed that parallel computing is necessary for 
continuing performance gains given that  “clock times are 
decreasing slowly and appear to be approaching physical limits”. 
This, however, is not universally accepted. 

• “Assuming that nothing basic in manufacturing or physics breaks 
in the next couple of years, there is no reason the historical trend in 
microprocessor performance will slow.” Robert Colwell, 
Computer January 1998.

• However, despite all the advances in semiconductor technology, 
parallel computers are becoming increasingly popular. It is an 
important strategy to increase performance over what is possible 
by hardware technology alone.
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• Another important reason for the development of parallel systems of the 
multicomputer variety is availability. 

“Having a computer shrivel up into an expensive doorstop can be a whole 
lot less traumatic if it’s not unique, but rather one of a herd. The herd 
should be able to accomodate spares, which can potentially be used to 
keep the work going; or if one chooses to configure sparelessly, the work 
that was done by the dear departed sibling can, potentially, be 
redistributed among the others.” In search of clusters. G. Pfister. 
Prentice Hall.
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Moore’s Law

Named after a 1964 observation by Gordon E. Moore of Intel.

It holds that “The number of elements in advanced integrated circuits 
doubles every year.”

Many claim that the era of this law is coming to an end sometime 
around 2010 for several reasons:

• The cost of chip factories will increase enormously.

• The small number of electrons moved at these new small feature 
sizes may not be enough for reliable computing.

• The feature sizes will be so small that quantum effects will start 
having an impact.
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 Applications

• Traditionally, highly parallel computers have been used for 
numerical simulations of complex systems such as the weather, 
mechanical devices, electronic circuits, manufacturing processes, 
chemical reactions, etc. 

• “ In part because of HPCC technologies, simulation has become recognized as the third 
paradigm of science, the first two being experimentation and theory. In some cases it is the 
only approach available for further advancing knowledge -- experiments may not be possible 
due to size (very big or very small), speed (very fast or very slow), distance (very far away), 
dangers to health and safety (toxic or explosive), or the economics of conducting the 
experiments. In simulations, mathematical models of physical phenomena are translated into 
computer software that specifies how calculations are performed using input data that may 
include both experimental data and estimated values of unknown parameters in the mathematical 
models. By repeatedly running the software using different data and different parameter values, 
an understanding of the phenomenon of interest emerges. The realism of these simulations and 
the speed with which they are produced affect the accuracy of this understanding and its 
usefulness in predicting change. “

From “High Performance Computing and Communications: Foundation for 
America's Information Future”  (See http://www.ccic.gov/pubs/blue96/index.html). 
See also http://www.ccic.gov/pubs/blue94/index.html and http://www.ccic.gov/
pubs/blue95/index.html.
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• Perhaps the most important government program in parallel 
computing today is the 

Accelerated Strategic Computing Initiative (ASCI) ( see http://
www.llnl.gov/asci/).
Its main objective is to accurately simulate nuclear weapons in 
order to verify safety, reliability, and performance of the US 
nuclear stockpile. Several highly-parallel computers (1000s of 
processors) from Intel, IBM, and SGI are now being used to 
develop these simulations

• Commercial applications are also important today. Examples 
include: transaction processing systems, web servers, junk-mail 
generators, etc. These applications will probably become the main 
driving force behind parallel computing in the future.

• We will focus on numerical simulations due to their importance 
for scientists and engineers.

• As mentioned above, computer simulation is considered today as a 
third mode of scientific research. It complements experimentation 
and theoretical analysis.



15 of 49©  1998 David A. Padua

• Furthermore, simulation is an important engineering tool that 
provides fast feedback on the quality and feasibility of new 
designs. 
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Chapter 2. Machine models



17 of 49©  1998 David A. Padua

2.1 The Von Neumann computational model

Discussion taken from Almasi and Gottlieb: Highly Parallel 
Computing. Benjamin Cummings, 1988.

• Designed by John Von Neumann about fifty years ago.

• All widely used “conventional” machines follow this model. It is 
represented next:

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic

registers

Instruction counter

CONTROL
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• The machine’s essential features are:

1. A processor that performs instructions such as “add the 
contents of these two registers and put the result in that 
register”

2. A memory that stores both the instructions and data of a 
program in cells having unique addresses.

3. A control scheme that fetches one instruction after another from 
the memory for execution by the processor, and shuttles data  
one word at a time between memory and processor.

• Notice that machines today usually are programmed in a high 
level language containing statements such as

A = B + C
However, these statements are translated by a compiler into the 
machine instructions just mentioned. For example, the previous 
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assignment statement would be translated into a sequence of the 
form:
LD 1,B (load B from memory into register 1)

LD 2,C (load C from memory into register 2)

ADD 3,1,2 (add registers 1 and 2 and put the result into register 3)

ST 3,A (store register 3’s contents into variable A’s address in memory)

• It is said that the compiler creates a “virtual machine” with its own 
language and computational model. 

• Virtual machines represented by conventional languages, such as 
Fortran 77 and C, also follow the Von Neumann model. 
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For an instruction to be executed, there are several steps that must be 
performed. For example:
1. Instruction Fetch and decode (IF). Bring the instrution from 

memory into the control unit and identify the type of instruction.
2. Read data (RD). Read data from memory.
3. Execution (EX). Execute operation.
4. Write Back (WB). Write the results back.
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2.2 Multicomputers

• The easiest way to get parallelism given a collection of 
conventional computers is to connect them:

• Each machine can proceed independently and communicate with 
the others via the interconnection network.
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• There are two main classes of multicomputers: clusters and 
distributed-memory multiprocessors. They are quite similar, but 
the latter is considered a single computer and is sold as such. 

Furthermore, a cluster consists of a collection of interconnected 
whole computers (including I/O) used as a single, unified 
computing resource.
Not all nodes of a distributed memory multiprocessor (such as 
IBMs SP-2) need have complete I/O resources. 
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• An example of cluster is a web server

• Another example is the workstation cluster at Fermilab, which 
consists of about 400 Silicon Graphics and IBM workstations. The 
system is used to analyze accelerator events. Analyzing any one of 
those events has nothing to do with analyzing any of the others. 
Each machine runs a sequential program that analyzes one event at 
a time. By using several machines it is possible to analyze many 
events simultaneously.

The net

dispatcherrouter

request

Servers

MEMORY
holds instructions and 
data

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL



24 of 49©  1998 David A. Padua

2.3 Shared-memory multiprocessors

• The simplest form of a shared-memory multiprocessor is the 
symmetric multiprocessor (SMP). By symmetric we mean that 
each of the processors has exactly the same abilities. Therefore 
any processor can do anything: they all have equal access to every 
location in memory; they all can control every I/O device equally 
well, etc. In effect, from the point of view of each processor the 
rest of the machine looks the same, hence the term symmetric.

• An important component of SMPs are caches. These will be 
discussed later.
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2.4 Other forms of parallelism

• As discussed above, there are other forms of parallelism that are 
widely used today. These usually coexist with the coarse grain 
parallelism of multicomputers and multiprocessors.

• Pipelining of the control unit and/or arithmetic unit.

• Multiple functional units

• Most microprocessors today take advantage of this type of 
parallelism. 

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

registers

Instruction counter

CONTROL



26 of 49©  1998 David A. Padua

• VLIW (Very Long Instruction Word) processors are an important 
class of multifunctional processors. The idea is that each 
instruction may involve several operations that are performed 
simultaneously.This parallelism is usually exploited by the 
compiler and not accessible to the high-level language 
programmer. However, the programmer can control this type of 
parallelism in assembly language.   

Register File

Memory

LD/ST FADD FMUL IALU

LD/ST FADD FMUL IALU BRANCH
Instruction 

Word

Multifunction Processor (VLIW)
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• Array processors. Multiple arithmetic units

• Illiac IV is the earliest example of this type of machine. Each 
arithmetic unit (processing unit) of the Illiac IV was connected to 
four others to form a two-dimensional array  (torus).
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2.5 Flynn’s taxonomy

• Michael Flynn published a paper in 1972 in which he picked two 
characteristics of computers and tried all four possible 
combinations. Two stuck in everybody’s mind, and the others 
didn’t:

• SISD: Single Instruction, Single Data. Conventional Von 
Neumann computers.

• MIMD: Multiple Instruction, Multiple Data. Multicomputers and 
multiprocessors.

• SIMD: Single Instruction, Multiple Data. Array processors.

• MISD: Multiple Instruction, Single Data. Not used and perhaps 
not meaningful.
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Chapter 3. Parallel Programming Models
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• There are many different parallel programming paradigms. Most 
are of academic interest only.

• We will present three paradigms that are (or are likely to become) 
popular with real application programmers:

Shared-memory programming
Message-passing programming
Array programming

• We will start by introducing the notion of task
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Tasks

Tasks are a central concept in parallel programming.

A task is a sequential program under execution.  The programmer 
may assume that there is a processor devoted to each task. (There 
may not be a physical processor, but the operating system will time-
share the real processors to give the illusion of one processor per 
task. It is said that the operating system creates a “virtual machine”.) 

Parallel programs consist of two or more tasks. Each task may 
contain private data (local memory). That is, data that only the tasks 
can access.

There are two main programming approaches used frequently to  
generate tasks:

1. Explicit spawning.
2. Programming in the SPMD (Single Program Multiple Data) 
model.

The SPMD model will be discussed shortly.

We will illustrate the explicitly spawning strategy next in the context 
of shared-memory parallel programming.
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Shared-Memory Parallel Programming

To illustrate this model ,consider the following very simple program
read b,c,e,g
a=f1(b,c)
h=f2(e)
d=f3(h, g)
q=f4(d,a)
print q
end

where f1, f2, f3, and f4 are very complex functions, and a, b, c, 
d, e, p, and q are complex data structures.
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A simple parallel program for this is:

read b,c,e,g
start_task sub(e,g,d)
a=f1(b,c)
wait_for_all_tasks_to_complete
q=f4(d,a)
print q
end

subroutine sub(e,g,d)
local h
h=f2(e)
d=f3(h, g)
end sub
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The program starts as a single task program and then a second task is 
initiated.  The second task proceeds by executing subroutine sub.

The computations of variable a and variable d proceed in parallel.

The original task waits for the second task to complete before 
proceeding with the computation of q. Waiting is necessary to 
guarantee that d has been computed before it is used. 

In this program, all variables except for h can be shared by the two 
tasks.  In fact, only variables e, g, and d are accessed by both tasks.
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Notice that because h is private to the task, a new copy of h will be 
created every time  start_task sub is executed.

Consider the following program:
read b,c,e,g
start_task sub(b,c,a)
call sub(e,g,d)
wait_for_all_tasks_to_complete
q=f4(d,a)
print q
end

subroutine sub(e,g,d)
local h
h=f2(e)
d=f3(h, g)
end sub

Two copies of sub will be executing simultaneously, and each will 
have its own copy of h.
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Channels and Message Passing

In message passing programming, all variables are private. Variable 
are shared by explicitly “writing” and “reading” data to and from 
tasks. 

The following code is equivalent to the first shared-memory code 
presented above:
read b,c,e,g
start_task sub()
send x(e,g)
a=f1(b,c)
receive y(d)
q=f4(d,a)
print q
end

subroutine sub()
local m,n,r,h
receive x(m,n)
h=f2(m)
r=f3(h, n)
send y(r)



37 of 49©  1998 David A. Padua

end sub



38 of 49©  1998 David A. Padua

Here, x and y are communication channels. The send operation is 
asynchronous: it completes immediately.

The receive operation is synchronous: it halts execution of the 
task until the necessary data is available.

Thus, thanks to the send and receive operations, the values of 
variables e and g are tranferred from the original task to the created 
task, and the value of d is transferred in the opposite direction.

Notice that no wait operation is needed. The receive y(d) 
operation does the necessary synchronization.

An alternative approach,  message passing, uses the names of the 
destination tasks rather than channels for communication. 

Usually, message passing systems start one task per processor, all 
executing the same code. This is the SPMD model mentioned above. 
It is the most popular model today. 

The previous program  in SPMD  and  message passing:

if my_proc().eq. 0 then



39 of 49©  1998 David A. Padua

read b,c,e,g
send (e,g) to 1
a=f1(b,c)
receive (d) from 1
q=f4(d,a)
print q

else /* my_proc() == 1  */
receive (m,n) from 0
h=f2(m)
r=f3(h, n)
send (r) to 0

end if

Later in the semester we will study this approach in more detail
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Parallel loops

One of the most popuar constructs for shared-memory programming 
is the parallel loop. 

Parallel loops are just like any usual iterative statement, such as for or 
do, except that it doesn’t actually iterate. Instead, it says “just get all 
these things done, in any order, using as many processors as 
possible.”

The number of processors available to the job may be specified or 
limited in some way, but that’s usually outside the domain of the 
parallel loop construct.

An example of a parallel loop is:

c = sin (d)
parallel do i=1 to 30

a(i) = b(i) + c
end parallel do
e = a(20)+ a(15)
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Parallel loops are implemented using tasks. For example, the 
previous program could be translated by the compiler into something 
similar to the following program:

c = sin (d)
start_task sub(a,b,c,1,10)
start_task sub(a,b,c,11,20)
call sub(a,b,c,21,30)
wait_for_all_tasks_to_complete
e = a(20)+ a(15)
...

subroutine sub(a,b,c,k,l)
...
for i=k to l

a(i) = b(i) + c
end for

end sub

Notice that, in this program, arrays a and b are shared by the three 
processors cooperating in the execution of the loop.
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This program assigns to each processor  a fixed segment of the 
iteration space. This is called static scheduling. 

Scheduling also could be dynamic. Thus, the compiler could generate 
the following code instead:
c = sin (d)
start_task sub(a,b,c)
start_task sub(a,b,c)
call sub(a,b,c)
wait_for_all_tasks_to_complete
e = a(20)+ a(15)
...

subroutine sub(a,b,c)
logical empty

...
call get_another_iteration(empty,i)
while .not. empty do

a(i) = b(i) + c
call get_another_iteration(empty,i)

end while
end sub
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Here, the get_another_iteration() subroutine accesses a 
pool containing all n iteration numbers , gets one of them, and 
removes it from the pool. When all iterations have been assigned, and 
therefore the pool is empty, the function returns .true. in variable 
empty.

A third alternative is to have get_another_iteration() 
return a range of iterations instead of a single iteration:
subroutine sub(a,b,c,k,l)
logical empty

...
call get_another_iteration(empty,i,j)
while .not. empty do

for k=i to j
a(k) = b(k) + c

end for
call get_another_iteration(empty,i,j)

end while
end sub
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SPMD model and parallel loops

Starting a task is usually very time consuming.

For that reason, current implementations of extensions involving 
parallel loops start a few tasks at the beginning of the program or 
when the first parallel loop is to be executed.

These tasks, called implicit tasks, will be idle during the execution of 
the sequential components (that is, outside the parallel loops). The 
task that starts exectuiton of the program is called the master task. 
When the master task finds a parallel loop,  it awakes the implicit 
tasks who join in the execution of the parallel loop.

An asternative strategy is to use the SPMD model as illustrated next:



45 of 49©  1998 David A. Padua

c = sin (d)
i=my_proc()*10
call sub(a,b,c,i+1,i+10)
call barrier()
if my_proc() .eq. 0 then

e = a(20)+ a(15)
end if
...

subroutine sub(a,b,c,k,l)
...
for i=k to l

a(i) = b(i) + c
end for

end sub
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Array Programming

In these languages, array operations are written in a compact form 
that often makes programs more readable.

Consider the loop:
s=0
do i=1,n

a(i)=b(i)+c(i)
s=s+a(i)

end do

It can be written (in Fortran 90 notation) as follows:

a(1:n) = b(1:n) +c(1:n)
s=sum(a(1:n))

Perhaps the most important array language is Kenneth Iverson’s 
APL, developed ca. 1960. 

A popular array language today is MATLAB.
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Although these languages were not developed for parallel computing 
but rather for expressiveness, they can be used to express parallelism 
since array operations can be easily executed in parallel.

Thus, all the arithmetic operations (+, -, * /, **)  involved in a vector 
expression can be performed in parallel. Intrinsic reduction functions 
,such as sum above, also can be performed in parallel but in a less 
obvious manner. 

Vector operations can be easily executed in parallel using almost any 
form of parallelism, from pipelining to multicomputers.
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Vector programs are easily translated for execution on shared-
memory machines. The code segment:
c = sin(d)
a(1:30)=b(2:31) + c
e=a(20)+a(15)

is equivalent to the following code segement:
c = sin (d)
parallel do i=1 to 30

a(i) = b(i+1) + c
end parallel do
e = a(20)+ a(15)
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Going in the other direction, it is not always simple to transform 
forall loops into vector operations. For example, how would you 
transform the following loop into vector form?

parallel do i=1 to n
if c(i) .eq. 1 then

while a(i) .gt. eps do
a(i) = a(i) - a(i) / c

end while
else

while a(i) .lt. upper do
a(i) = a(i) + a(i) * d

end while
end if

end parallel do


