Chapter 3. OpenM P

© 1998 David A. Padua 1 of 61

3.1 Introduction

OpenMP is a collection of compiler directives, library routines, and
environment variables that can be used to specify shared memory
parallelism.

This collection has been designed with the cooperation of many
computer vendors including Intel, HP, IBM, and SGI. So, itislikely

to become the standard (and therefore portable) way of programming
SM Ps.

Fortran and C directives have been defined.

© 1998 David A. Padua 2 of 61

3.2 The PARALLEL directive

Theparal | el /lend par al | el directive pair defines a parallel
region and constitutes as parallel construct.

An OpenM P program begins execution as a single task, called the
master thread. When a parallel construct is encountered, the master
thread creates a team of threads. The statements enclosed by the
parallel construct, including routines called from within the enclosed
construct, are executed in parallel by each thread in the team.

At the end of the parallel construct the threads in the team
synchronize and only the master thread continues execution.

The general form of this construct is:

Chonp parall el [parallel-clause| [,] parallel-clause] ...]
parallel region
Cfonp end parall el

There are several classes of parallel-clauses. Next, we discuss the
pri vat e(list) clause.

© 1998 David A. Padua 3 of 61

All variables are assumed to be shared by all tasks executing the
parallel region. However, there will be a separate copy of each
variablelisted in apri vat e clause for each task. There will also be
an additional copy of the variable that can be accessed outside the
parallel region.

V ariables defined as private are undefined for the thread entering the
construct and are also undefined for the thread on exit from a paralléel
construct.

© 1998 David A. Padua 4 of 61

As an example, consider the following code segment

cC = sin (d)

forall 1 =1 to n
a(i) = b(i) + c

end forall

e = a(20)+ a(1b5)

A simple OpenM P implementation would take the form

cdonp

*

*

c$honp

c = sin(d)

parall el private(i,il,iu)

call get limts(n,il,1iu,
onp_get num_t hreads(),
onp_get thread nun())

do i=il,iu

a(i) = b(i) + c
end do

end parall el
e = a(20) + a(1lb)

© 1998 David A. Padua 5 of 61

Notice that the first statement can be incorporated into the parall el
region. In fact, c can be declared as private assuming it is never used
outside the loop.

cdonp

c$onp

parall el private(c,i,il,iu)
c= sin(d)
call get limts(n,il, I u,

onp_get num_t hreads(),
onp_get thread nun())
do i=il,iu
a(it) = b(i) + c
end do
end parall el

e = a(20) + a(1lb)

© 1998 David A. Padua 6 of 61

3.3 The BARRI ER directive

To incorporate e into the parallel region it is necessary to make sure
that a(20) and a(15) have been computed before the statement
executes.

This can be done with abar ri er directive which synchronizes all
the threads in the enclosing par al | el region. When encountered,
each thread waits until all the othersin that team have reached this

point.
c$honp parall el private(c,i,il,iu)
cC = sin(d)
call get limts(n,il, I u,
* onp_get num_t hreads(),
* onp_get thread nun())
do i=il,iu
a(it) = b(i) + c
end do

c$onp barri er
e = a(20) + a(1lb)
c$honp end parall el

© 1998 David A. Padua 7 of 61

3.4 The SI NGLE directive

Finally, sincee isshared, it isnot agood ideafor all tasks in the team
to execute the last assignment statement. There will be several
redundant assignments all competing for access to the single memory
location. Only one task needs to execute the assignment.

This can be accomplished with the psi ngl e directive:

c$onp parall el private(c,i,il,iu)
cC = sin(d)
call get limts(n,il,iu,
* onp_get num_t hreads(),
* onp_get thread nun())
do i=il,iu
a(it) = b(i) + c
end do

c$honp barri er
c$honp si ngl e

e = a(20) + a(1lb)
c$honp end si ngl e nowait
c$honp end parall el

© 1998 David A. Padua 8 of 61

The si ngl e directive has the following syntax:

cfonp si ngl e [single-clause] [,] single-clause] ...]
block
c$honp end single [nowait]

This directive specifies that the enclosed region of code isto be
executed by one and only one of the tasks in the team.

Tasksin the team not executing thepsi ngl e block wait at theend
psi ngl e, unlessnowai t isspecified. In this case, there is no need
for thisimplicit barrier since one already exists at the end

par al | el directive.

One of the two single-clausesispri vat e(list) .

© 1998 David A. Padua 9 of 61

A better example of psi ngl e:

c$onp
cdonp

c$onp
cdonp
c$onp

c$onp
c$onp

subrouti ne sp_1la(a, b, n)
parall el private(i)

pdo
do 1 =1, n
a(i)=1.0/a(i)
end do
si ngl e

a(l)=mn(a(l), 1. 0)
end si ngl e
pdo
do 1 =1, n
b(i)=b(i 0/a(i)
end pdo nowait
end parall el
end

© 1998 David A. Padua

10 of 61

3.5 The DOdirective

A simpler way to write the previous code uses the do directive:

c$onp parall el private(c,i,il,iu)
cC = sin(d)
c$honp do schedul e(stati c)
do 1 =1, n
a(i) = b(i) + c
end do

c$honp end do
c$onp si ngl e

e = a(20) + a(1lb)
c$onp end si ngl e nowai t
c$honp end parall el

The pdo directive specifies that the iteration s of the immediately
following do loop must be executed in parallel.

© 1998 David A. Padua 11 of 61

The syntax of the do directive is as follows:

c$honp do [do-clause] [,] do-clause] ...]
do loop
c$honp end do [nowai t]

There are several do clausesincluding pri vat e and schedul e.
The schedule could assume other values including dynam c.

Thenowai t clause eiminatestheimplicit barrier atthe end do
directive. In the previous example, thenowai t clause should not be
used.

© 1998 David A. Padua 12 of 61

An example of do with the nowai t directiveis
subrouti ne pdo 2(a, b,c,d, mn)
real a(n,n),b(n,n),c(mm, d(m m
c$onp parall el private(i,j)
c$honp do schedul e(dynam c)
do i =2, n
do j =1,
b(j,i)=(Ca(j,i)+a(j,i+1))/2
end do
end do
c$honp end do nowai t
c$honp do schedul e(dynam c)
do I =2, m
do j =1, 1
d(i,j)=(c(),i1)+c(],1-1))/2
end do
end do
c$honp end do nowai t
chonp end parall el
end

© 1998 David A. Padua 13 of 61

3.6 The PARALLEL DOdirective

An aternativetothedo isthepar al |l el do directivewhichisno
more than a shortcut for a par al | el directive containing asingle
pdo directive.

For exampl e, the following code segment
c$honp parall el private(i)

c$onp do schedul e(dynam c)
do 1 =1, n
b(i)=(Ca(i)+a(i+1))/2
end do
c$onp end do nowai t
c$honp end parall el

end

© 1998 David A. Padua 14 of 61

could be rewritten

c$honp parall el do
cbonmp & private(i)

cbonp& schedul e(dynam c)

do i1 =1, n
b(i)=(Ca(i)+a(i+1))/2
end do

c$honp end parall el do
end

© 1998 David A. Padua 15 of 61

And theroutine pdo_ 2 can be rewritten as follows:

subrouti ne pdo 2(a, b,c,d, mn)
real a(n,n),b(n,n),c(mm, d(mm
c$honp parall el do
cbonp& private(i,j)
cbonp& schedul e(dynam c)
do i =2, n
do j =1, i
b(j.1)=Ca(j,1)+a(],i1+1))/2
end do
end do
c$onp end parallel do
c$honp parall el do
cbonmp& private(i,j)
cbonp& schedul e(dynam c)

do i =2, m
do j =1, i
d(i,))=(c()j,1)+c(j,1-1))/2
end do
end do
c$onp end parallel do

end

© 1998 David A. Padua 16 of 61

There are two disadvantages to this last version of pdo_2:
1. Thereisabarrier at the end of the first loop.

2. There are two parallel regions. There is overhead at the beginning
of each.

© 1998 David A. Padua 17 of 61

3.7 The SECTI ONS directive

An alternative way to writethe pdo_2 routineis:
subrouti ne pdo 2(a, b,c,d, mn)
real a(n,n),b(n,n),c(mm, d(m m
c$onp parall el private(i,j)

c$honp secti ons
c$honp secti on
do I =2, n
do j =1, i
, b(j.1)=Ca(j,1)+a(),1+1))/
end do
end do
chonp psecti on
do i =2, m
do j =1, i
, d(i,))=(c()j,1)+c()j,1-1))/
end do
end do
c$honp end secti ons nowait
c$honp end parall el

end

© 1998 David A. Padua 18 of 61

Thesecti ons directive specifies that the enclosed sections of
code are to be divided among threads in the team. Each section is
executed by one thread in the team. Its syntax is as follows:

cfonp secti ons]| sections-clause] [,] sections-clause] ...]
[cbonp secti on]

block
[[chonp secti on

bl ock]

]

c$onp end sections [nowait]

© 1998 David A. Padua 19 of 61

Chapter 4. Parallel Loopsin OpenMP

© 1998 David A. Padua 20 of 61

Parallel loops are the most frequently used constructs for scientific
computing in the shared-memory programming model.

In this chapter we will discuss omp parallel 1oops.

We begin with the definition of race.

© 1998 David A. Padua 21 of 61

4.1 Races

We say that there is arace when there are two memory references
taking place in two different tasks such that

1. They are not ordered
2. They refer to the same memory location
3. One of them is a memory write (store).

For example, in the following code there is a race due to the two
accesses to a:

c$onp parall el secti ons
c$honp psecti on
a=x+5
c$honp psééfion
y = a + 1

c$onp end parallel sections

© 1998 David A. Padua 22 of 61

Another example of araceis.
c$honp par al | el

f f | (onp_get thread nun().eqg. 0) a=x+5
. . . [no onp directive here€]
I T (onp_get thread nun().eq.1l) a=y+1

c$honp end -p.ar al | el
However, there is no race in the following code because the two
references to a are ordered by the barrier.
c$honp par al | el

f f | (onp_get thread nun().eqg. 0) a=x+5
c$onp bar ri er

f f | (onp_get _thread num().eq.1l) a=y+1

c$onp end -p.ar al | el

© 1998 David A. Padua 23 of 61

Another example of araceis.

c$onp parall el do
do i =1, n

a = x(i) + 1
end do
c$onp end parallel do

Here, a iswritten in all iterations. Thereisarace if there are at |east
two tasks executing this loop. (It is ok to execute an OpenM P
program with a single processor)

© 1998 David A. Padua 24 of 61

Another exampleis.

c$honp parall el do
do 1 =1, n

a(it) = a(i-1) + 1
end do
Here, if at least two tasks cooperate in the execution of the loop,

some pair of consecutive (say iterations| and j+1) iterationswill be
executed by different tasks.

Then, one of the iterations will write to an array element (say a(j)
in iteration j) and the other will read the same element in the next
Iteration.

© 1998 David A. Padua 25 of 61

Sometimes it is desirable to write a parallel program with races. But
most often it is best to avoid races.

| N particular, unintentional races may |lead to difficult to detect bugs.

Thus, if a hasthe value 1 and x the value 3 before the following
parallel section starts, y could be assigned either 2 or 9. Thiswould
be a bug if the programmer wanted y to get the value 9. And the bug
could be very difficult to detect if, for example, y wereto get the
value 2 very infrequently.

c$onp parall el secti ons
c$honp secti on
a=x+5
c$honp sect i on
y = a + 1

c$onp end parall el sections

© 1998 David A. Padua 26 of 61

4.2 Race-free parallel loops

Next, we present several forms of parallel loops. |n each case, a
conventiona (sequential) version of the loop will be presented first.

This does not mean that parallel loops can be written only by starting
with a conventional loop. However, the most important forms of
parallel loops can be easily understood when presented in the context
of conventional loops.

The first form of parallel loop can be obtained quite ssmply. A
conventional loop can be transformed into parallel form by just
adding apar al | el | oop directiveif the resulting parallel loop
contains No races between any pair of iterations.

An exampleisthe loop
do i =1, n
a(i) = b(i) +1
end do

Notice that this loop computes the vector operation
a(l:n)=b(1l:n)+1

© 1998 David A. Padua 27 of 61

M ore complex loops can also be directly transformed into parall el
form. For example:
do i =1, n
1 f (c(i) .eq. 1) then
do while (a(i) .gt. eps)
a(ir) = x(i1) - x(i-1) / c
end do
el se
do while (a(i) .l1t. upper)
a(i) = x(1) +y(i+1) * d

end do
end i f
end do

Notice that although consecutive iterations access the same element
of X, thereis no race because both accesses are reads.

© 1998 David A. Padua 28 of 61

4.3 Privatization

Sometimes the transformation into parallel form requires the
identification of what data should be declared as pri vat e.

For example, consider the following loop:

do i1 =1, n
x = a(i)+1
b(i) = x + 2
c(i) = x ** 2
end do

Thisloop would be fully parallel if it were not for x which is stored
and read in all iterations.

One way to avoid the race is to eliminate the assignment to X by
forward substituting a(i) +1.:

do 1 =1, n
b(i) = (a(i)+1) + 2
c(i) = (a(i)+1) =*=* 2

end do

© 1998 David A. Padua 29 of 61

A simpler way isto declare x as private:
c$honp parall el do private(i, x)

do i1 =1, n
Xx = a(i)+1
b(i) = x + 2
c(i) = x ** 2
end do

INn general, ascalar variable can be declared private if
1. Itisalways assigned before it isread in every iteration of the loop,

and
2. Itis never used again, or it isreassigned before used again after

the loop compl etes.

© 1998 David A. Padua 30 of 61

Sometimes it is necessary to privatize arrays. For example, theloop
do i =1, n
do j =1, n
y(j) = a(i,)j) + 1)
end do

do k=2, n-1
b(i,j) =vy(]j) ** 2
end do
end do

can be directly parallelized if vector y isdeclared pri vat e.

An array can be declared private if

1. No element of the array isread before it is assigned within the
same iteration of the loop.

2. Any array element used after the loop completed is reassigned
beforeit is read.

© 1998 David A. Padua 31 of 61

An important case arises when the variable to be privatized is read
after the loop compl etes without reassignment.

For example
do 1 =1, n

a +

IR

1
+ 2
*k D

O T X

=)
(i) %
(i) X

end do

. =X

© 1998 David A. Padua 32 of 61

One way to solve this problem isto “peel off” the last iteration of the
loop and then parallelize:
c$honp parall el do private(i, x)
do 1 =1,n-1
x = a(i)+1

b(i) = x + 2
c(i) = x ** 2
end do
x=a(n) +1
b(n) =x+2

c(n)=x+2
An equivalent, but ssmpler approach isto declare x as
| ast pri vat e.

c$onp parall el do private(i) | astprivate(x)

© 1998 David A. Padua 33 of 61

end do

© 1998 David A. Padua 34 of 61

Variablesin lastprivate are private variables; however, in addition, at
the end of the do loop, the thread that executes the last iteration
updates the version of the variable that exists outside the loop.

If the last iteration does not assign a value to the entire variable, the
variable is undefined after the loop.

For example, if c(n) > 5 intheloop:

cfonp parall el do private(i) | astprivate(x)
do 1 =1, n
1 f (c(i).lt.5) then
X=b(i) +1
a(l) =xX+x**2
end if
end do

then x would not be defined after the loop.

Similarly, if the private variable is a vector, only the elements
assigned in the last iteration will be defined. (in KAI’s version, the
elements not assigned in the last iteration are O).

© 1998 David A. Padua 35 of 61

For example, the program:

cdonp

prints

real a(100), b(100), c(100)
do i =1, 100

a(i) =1
end do
do 1 =1, 100
b(i1) =3
end do
print *,a(l), a(2)
b(1l)=1

parall el do | astprivate(a)
do i =1, 100
do j =1, 100
1T (b(j).1t.3) then
a(j)=3
c(j)=a(])
end if
end do
end do
print *,a(l), a(2)
end

© 1998 David A. Padua

36 of 61

1. 000000 1. 00000
3. 000000 0.

© 1998 David A. Padua 37 of 61

A similar situation arises when a private variable needs to be initialized
with values from before the loop starts execution. Consider the |oop:

do 1 =1, n
do j =1,
a(j) = calc_a(j)
b(j) = calc b(i,])
end do
do j =1, n
x=a(j)-b(j)
y=b(]) +a(])
c(i,])=x*y
end do
end do
To parallelizethisloop, X ,y , a and b should be declared private.
However, in iteration i thevalueof a(i +1), a(i +2),...,a(n) and
of b(i +1), b(i +2), ..., b(n) arethose assigned before the |oop

starts.

© 1998 David A. Padua 38 of 61

To account for this, a and b should be declared as
firstprivate.

c$honp parall el do private(i,j, X,VY)
cbonmp& firstprivate(a, b)

© 1998 David A. Padua 39 of 61

4.4 | nduction variables

| nduction variables appear often in scientific programs. These are
variables that assume the values of an arithmetic sequence across the
Iterations of the loop:

For example, the loop

do 1 =1, n
] =] + 2
do k=1, j
a(k,j) = b(k,j) + 1
end do
end do

cannot be directly transformed into parallel form because the
satement] =) +2 producesarace. Andj cannot be privatized
because it isread before it is assigned.

However, it is usually easy to express induction veriables as a
function of the loop index. So, the previous |loop can be tranformed
INto:

© 1998 David A. Padua 40 of 61

do i1 =1, n
ME2* 1 +j
do k=1, m
a(k m = b(k, m + 1
end do
end do

In thislast loop, Mm can be made private and the loop directly
tranformed into parallel form.

If the last value of variablej within theloop is used after the loop
completes, it is necessary to add the statement
i =2 n+]

iImmediately after the loop to set the variable to itscorrect value.

© 1998 David A. Padua 41 of 61

M ost induction variables are quite ssmpl e, like the one in the previous
example. However, in some cases a more involved formulais
necessary to represent the induction variable as a function of the loop
Index:

For example consider the loop:

do 1 =1, n
do j =1, m
k=k+2
a(k)=b(i,j)+1
end do
end do

The only obstacle for the parallelization of loop i istheinduction
variable k. Notice that no two iterations assign to the same element of
array a because k always increases from one iteration to the next.

The formulafor k is somewhat more involved than the formula of the
previos example, but still isrelatively simple:

cfonp parall el do private(i,]j)

© 1998 David A. Padua 42 of 61

do n

1 =1,
do j m
a
end do
end do
k=2* n* m+k

As afina example, consider the |oop:

do 1 =1, n
] = +1
a(j)= b(i)+1
do k=1, i
] = +1
c(j)=d(i, k) +1
end do

© 1998 David A. Padua

(2 (ﬂf(l-l)+l)+k) =b(1,))+1

43 of 61

Here, again, only the induction variable, j , causes problems. But
now the formulas are somewhat more complex:

c$onp parall el do private(i, k)

do i1 =1, n
a(i +1*(i-1)/2)= b(i)+1
do k=1, i
c(i +1*(i-1)/2+k)=d(i, k) +1
end do
end do

j=n+n*(n+1)/ 2

© 1998 David A. Padua 44 of 61

Sometimes, it Is hecessary to do some additional transformations to
remove induction veriables. Consider the following loop:

j =n

do i1 =1, n
b(i)=Ca())+a(i))/2.
] =l

end do

Variable j iscalled awraparound variable of first order. It iscalled
first order because only the first iteration uses avalue of | from
outside the loop. A wraparound variable is an induction variable
whose value is carried from one iteration to the next.

© 1998 David A. Padua 45 of 61

The way to remove the races produced by | isto peel off one
iteration, move the assignment toj from one iteration to the top of
the next iteration (notice that now j must beassigned i1 - 1), and
then privatize :

J:
I f (n>=1) then
b(1l)=(a())+a(l1))/2.
c$onp parall el do private (i),lastprivate(])
do i =2, n
j =i -1
b(r)=Ca())+a(1))/2.
end do
end if

Notice that the if statement is necessary to make sure that the first
iteration is executed only if the original loop would have executed it.

Alternatively, the wraparound variable could be an induction
variable. The transformation in this case is basically the same as

© 1998 David A. Padua 46 of 61

above except that the induction variable has to be expressed in terms
of the loop index first.

Consider the loop:
] =n
do i =1,
b(i)
] =)+
end do

)

(a(y)+a(i))/ 2.

|

Aswe just said, we first replace the right hand side of the
assignement toj with an expression involving i .

] =n

do 1 =1, n
b(i)=(a(m +a(i))/ 2.
M=l +j

end do

] =n+j

Notice that we changed the name of the variable within the loop to be
ableto usethevalueof | coming from outside the loop.

© 1998 David A. Padua 47 of 61

We can now proceed as above to obtain:
j =n
I f (n>=1) then _
b(l):(a(j)+a(|_))/2. _
c$honp parall el do private (i, m

do i =2, n
M=l - 1+
b(i)=(a(m +a(i))/ 2.
end do
] =N+ l'this has to be i nside the

end i f

© 1998 David A. Padua

| f

48 of 61

4.5 Order ed sections.

Sometimes the only way to avoid races isto execute the code serially.
Consider the |looP.

do i1 =1, n
a(i)=b(i)+1
c(i)=sin(c(i-1))+a(i)
d(i)=c(i)+d(i-1)**2
end do

Although there is no clear way to avoid races in this loop, we could
execute in parallel the first statement. In fact, we can in this case
transform the loop into:

c$onp parall el do

do i1 =1, n
a(i)=b(i)+1

end do

do i1 =1, n

c(i)=sin(c(i-1))+a(i)
d(i)=c(i)+d(i-1)**2
end do

© 1998 David A. Padua 49 of 61

However, there is away to improve the performance of the whole |loop with
the or der ed directive whose syntax is as follows:.
c$honp or der ed[(name)]
bl ock
c$honp end or der ed[(name)]

The interleaving of the statements in the ordered sections of different
iterations are identical to that of the sequential program. Ordered sections
without a name are all assumed to have the same name.

Thus, the previous loop can be rewritten as:
c$honp parall el do

do i =1, n
a(i)=b(i)+1
c$honp ordered (x)
c(i)=sin(c(i-1))+1
c$onp end order ed(x)
c$honp ordered (y)
d(i)=c(i)+d(i-1)**2
c$onp end ordered (y)

end do

© 1998 David A. Padua 50 of 61

Thus, we have two ways of executing the loop in parallel. Assuming
Nn=12, and four processors, the following time lines are feasibl e:

a(l) =

a(2) =

a(3) =

a(4) =

a(5) =

a(6) =

a(7)=

a(8) =

a(l) =

a(2)=

a(3) =

a(4) =

a(9) =

a(10) =

a(11) =

c(1l)=

a(12) 5

c(l)=

d(1) =

c(2)=

d(2) =

c(3)=

d(3) =

© 1998 David A. Padua

d(1) =

c(2)=

a(b) =

d(2) =

c(3)=

a(6)=

d(3) =

c(4)=

c(5)=

a(7)=

d(4) =

d(5) =

c(6)=

a(8) =

d(e6) =

c(7)=

d(7)=

51 of 61

Notice that now No races exist because accesses to the same memory
location are always performed in the same order.

Ordered sections may need to include more than one statement. For
example, in the loop:

do i =1, n

a(i)=b(i-1)+1
b(i)=a(i)+c(i)
end.do
the possibility of races would not be avoided unless both statements
are made part of the same ordered section.

© 1998 David A. Padua 52 of 61

It isimportant to make the ordered sections as small as possible
because the overall execution time depends on the size of the longest
ordered section.

© 1998 David A. Padua 53 of 61

4.0 Execution timeot aparall el do when

or der ed sections have constant execution time.

® Consider the loop

c$honp parall el do

do 1 =1, n

c$honp ordered (a)

aa = ...
c$honp end ordered (a)
c$honp ordered (Db)
c$honp ordéfed (c)
c$honp or der ed (d)
c$honp or der ed (e)

end do

© 1998 David A. Padua

54 of 61

* Assume its execution time lines have the following form:

d Je

C d Je
o o
o o
o o

which, in terms of performance, isequivaent to the following

© 1998 David A. Padua 55 of 61

time lines;

2l ofc | d]e]

«—D—la‘ b C d‘e‘

—D — D ia‘ b C d‘e‘

—D — D — D ia‘ b C ‘ d‘e‘
° °
° °
° °

where a constant delay D between the start of consecutive

iterations is evident. Thisdelay is equal to the time of the longest
ordered section (i.e., D=T(c) in this case).

© 1998 David A. Padua 56 of 61

* The execution time of the previous |oop using N Processors is:
T(@+T(b)+nT(c)+T(d)+T(e)
as can be seen next:

T(a)+T(b) nT(c)=nD T(d)+T(e)
‘a ‘ b C d ‘e ‘
2] »
000 ‘ o q ‘e ‘
‘a ‘ b C d ‘e ‘

* |n general the execution time when there are as many processors
asiterationsis

nD+(B-D)=(n-1)D+B
where B is the execution time of the whole |loop body.

© 1998 David A. Padua 57 of 61

4.7 Critical Regions and Reductions

Consider the following loop:

do i1 =1, n
do I =1, m
La(i,])=b(i,])+d(i,])
| sunFi sumti a(i, j)
end
end

Here, we have arace duetoi sum This race cannot be removed by
the techniques discussed above. However, the + operation used to
computei sumisassociative andi sumonly appearsin the
statement that computes its value.

The integer addition operation is not really associative, but in
practice we can assume it isif the numbers are small enough so there
IS never any overflow.

© 1998 David A. Padua 58 of 61

Under these circumstances, the loop can be transformed into the

following form:

c$onp
cdonp

cdonp
c$onp

cdonp
c$onp

parall el private(local isum

| ocal i sun=0

pdo

1, n
] =1, m

| ocal i sunrl ocal _i1isum+ ia(j,i)

end do
end do
end pdo nowai t
critical
| sun=i sum+l ocal i sum
end critical
end parall el

© 1998 David A. Padua

59 of 61

Here, we use the critical directive to avoid the following problem.

The statement
| sun=i sum+|l ocal 1 sum

will be trandated into a machine language sequence similar to the

following:
| oad regi ster 1,1 sum
| oad regi ster_ 2,1l ocal i sum
add regi ster 3, reqgister_1,reqgister_2
store regi ster 3,1 sum

Assume now there are two tasks executing the statement
| sun=i sum+l ocal i sum

simultaneously. Inonel ocal sumis 10, and in the other 15.
Assumei sumis O when both tasks start executing the statement.
Consider the following sequence of events:

60 of 61

ti ne task 1 |l sum task 2
1 | oad (@)
rl, | ocal |1 sum
2 | oad r2, i sum 0] | oad
rl,l ocal i1 sum
3 add r3,r2, r1l 0] | oad r2,i sum
4 store r3, 1sum 10 add r3,r2,r1
15 store r3,1 sum

As can be seen, interleaving the instructions between the two tasks
produces incorrect results. The critical directive precludes this
Interleaving. Only one task at atime can execute a critical region
with the same name.

The assumption isthat it does not matter in which order the tasks
enter acritical region aslong asthey are never inside acritical region

61 of 61

