
1 of 61© 1998 David A. Padua

Chapter 3. OpenMP

2 of 61© 1998 David A. Padua

3.1 Introduction

OpenMP is a collection of compiler directives, library routines, and
environment variables that can be used to specify shared memory
parallelism.

This collection has been designed with the cooperation of many
computer vendors including Intel, HP, IBM, and SGI. So, it is likely
to become the standard (and therefore portable) way of programming
SMPs.

Fortran and C directives have been defined.

3 of 61© 1998 David A. Padua

3.2 The PARALLEL directive

The parallel/end parallel directive pair defines a parallel
region and constitutes as parallel construct.

An OpenMP program begins execution as a single task, called the
master thread. When a parallel construct is encountered, the master
thread creates a team of threads. The statements enclosed by the
parallel construct, including routines called from within the enclosed
construct, are executed in parallel by each thread in the team.

At the end of the parallel construct the threads in the team
synchronize and only the master thread continues execution.

The general form of this construct is:

C$omp parallel [parallel-clause[[,]parallel-clause] ...]
parallel region

C$omp end parallel

There are several classes of parallel-clauses. Next, we discuss the
private(list)clause.

4 of 61© 1998 David A. Padua

All variables are assumed to be shared by all tasks executing the
parallel region. However, there will be a separate copy of each
variable listed in a private clause for each task. There will also be
an additional copy of the variable that can be accessed outside the
parallel region.

Variables defined as private are undefined for the thread entering the
construct and are also undefined for the thread on exit from a parallel
construct.

5 of 61© 1998 David A. Padua

As an example, consider the following code segment

c = sin (d)
forall i=1 to n

a(i) = b(i) + c
end forall
e = a(20)+ a(15)

A simple OpenMP implementation would take the form

c = sin(d)
c$omp parallel private(i,il,iu)

call get_limits(n,il,iu,
* omp_get_num_threads(),
* omp_get_thread_num())

do i=il,iu
a(i) = b(i) + c

end do
c$omp end parallel

e = a(20) + a(15)

6 of 61© 1998 David A. Padua

Notice that the first statement can be incorporated into the parallel
region. In fact, c can be declared as private assuming it is never used
outside the loop.

c$omp parallel private(c,i,il,iu)
c= sin(d)
call get_limits(n,il,iu,

* omp_get_num_threads(),
* omp_get_thread_num())

do i=il,iu
a(i) = b(i) + c

end do
c$omp end parallel

e = a(20) + a(15)

7 of 61© 1998 David A. Padua

3.3 The BARRIER directive

To incorporate e into the parallel region it is necessary to make sure
that a(20) and a(15) have been computed before the statement
executes.

This can be done with a barrier directive which synchronizes all
the threads in the enclosing parallel region. When encountered,
each thread waits until all the others in that team have reached this
point.
c$omp parallel private(c,i,il,iu)

c = sin(d)
call get_limits(n,il,iu,

* omp_get_num_threads(),
* omp_get_thread_num())

do i=il,iu
a(i) = b(i) + c

end do
c$omp barrier

e = a(20) + a(15)
c$omp end parallel

8 of 61© 1998 David A. Padua

3.4 The SINGLE directive

Finally, since e is shared, it is not a good idea for all tasks in the team
to execute the last assignment statement. There will be several
redundant assignments all competing for access to the single memory
location. Only one task needs to execute the assignment.

This can be accomplished with the psingle directive:
c$omp parallel private(c,i,il,iu)

c = sin(d)
call get_limits(n,il,iu,

* omp_get_num_threads(),
* omp_get_thread_num())

do i=il,iu
a(i) = b(i) + c

end do
c$omp barrier
c$omp single

e = a(20) + a(15)
c$omp end single nowait
c$omp end parallel

9 of 61© 1998 David A. Padua

The single directive has the following syntax:

c$omp single [single-clause[[,]single-clause] ...]
block

c$omp end single [nowait]

This directive specifies that the enclosed region of code is to be
executed by one and only one of the tasks in the team.

Tasks in the team not executing the psingle block wait at the end
psingle, unless nowait is specified. In this case, there is no need
for this implicit barrier since one already exists at the end
parallel directive.

One of the two single-clauses is private(list).

10 of 61© 1998 David A. Padua

A better example of psingle:

subroutine sp_1a(a,b,n)
c$omp parallel private(i)
c$omp pdo

do i=1,n
a(i)=1.0/a(i)

end do
c$omp single
 a(1)=min(a(1),1.0)
c$omp end single
c$omp pdo

do i=1,n
b(i)=b(i0/a(i)

c$omp end pdo nowait
c$omp end parallel

end

11 of 61© 1998 David A. Padua

3.5 The DO directive

A simpler way to write the previous code uses the do directive:

c$omp parallel private(c,i,il,iu)
c = sin(d)

c$omp do schedule(static)
do i=1,n

a(i) = b(i) + c
end do

c$omp end do
c$omp single

e = a(20) + a(15)
c$omp end single nowait
c$omp end parallel

The pdo directive specifies that the iteration s of the immediately
following do loop must be executed in parallel.

12 of 61© 1998 David A. Padua

The syntax of the do directive is as follows:

c$omp do [do-clause[[,]do-clause] ...]
do loop

c$omp end do [nowait]

There are several do clauses including private and schedule.

The schedule could assume other values including dynamic.

The nowait clause eliminates the implicit barrier at the end do
directive. In the previous example, the nowait clause should not be
used.

13 of 61© 1998 David A. Padua

An example of do with the nowait directive is
subroutine pdo_2(a,b,c,d,m,n)
real a(n,n),b(n,n),c(m,m), d(m,m)

c$omp parallel private(i,j)
c$omp do schedule(dynamic)

do i=2,n
do j=1,i

b(j,i)=(a(j,i)+a(j,i+1))/2
end do

end do
c$omp end do nowait
c$omp do schedule(dynamic)

do i=2,m
do j=1,i

d(i,j)=(c(j,i)+c(j,i-1))/2
end do

end do
c$omp end do nowait
c$omp end parallel

end

14 of 61© 1998 David A. Padua

3.6 The PARALLEL DO directive

An alternative to the do is the parallel do directive which is no
more than a shortcut for a parallel directive containing a single
pdo directive.

For example, the following code segment
c$omp parallel private(i)
c$omp do schedule(dynamic)

do i=1,n
b(i)=(a(i)+a(i+1))/2

end do
c$omp end do nowait
c$omp end parallel

end

15 of 61© 1998 David A. Padua

could be rewritten
c$omp parallel do
c$omp& private(i)
c$omp& schedule(dynamic)

do i=1,n
b(i)=(a(i)+a(i+1))/2

end do
c$omp end parallel do

end

16 of 61© 1998 David A. Padua

And the routine pdo_2 can be rewritten as follows:

subroutine pdo_2(a,b,c,d,m,n)
real a(n,n),b(n,n),c(m,m), d(m,m)

c$omp parallel do
c$omp& private(i,j)
c$omp& schedule(dynamic)

do i=2,n
do j=1,i

b(j,i)=(a(j,i)+a(j,i+1))/2
end do

end do
c$omp end parallel do
c$omp parallel do
c$omp& private(i,j)
c$omp& schedule(dynamic)

do i=2,m
do j=1,i

d(i,j)=(c(j,i)+c(j,i-1))/2
end do

end do
c$omp end parallel do

end

17 of 61© 1998 David A. Padua

There are two disadvantages to this last version of pdo_2:
1. There is a barrier at the end of the first loop.
2. There are two parallel regions. There is overhead at the beginning

of each.

18 of 61© 1998 David A. Padua

3.7 The SECTIONS directive

An alternative way to write the pdo_2 routine is:
subroutine pdo_2(a,b,c,d,m,n)
real a(n,n),b(n,n),c(m,m), d(m,m)

c$omp parallel private(i,j)
c$omp sections
c$omp section

do i=2,n
do j=1,i

b(j,i)=(a(j,i)+a(j,i+1))/
2

end do
end do

c$omp psection
do i=2,m

do j=1,i
d(i,j)=(c(j,i)+c(j,i-1))/

2
end do

end do
c$omp end sections nowait
c$omp end parallel

end

19 of 61© 1998 David A. Padua

The sections directive specifies that the enclosed sections of
code are to be divided among threads in the team. Each section is
executed by one thread in the team. Its syntax is as follows:

c$omp sections[sections-clause[[,]sections-clause] ...]
[c$omp section]

block
[[c$omp section

block]
.
.
.]

c$omp end sections [nowait]

20 of 61© 1998 David A. Padua

Chapter 4. Parallel Loops in OpenMP

21 of 61© 1998 David A. Padua

Parallel loops are the most frequently used constructs for scientific
computing in the shared-memory programming model.

In this chapter we will discuss omp parallel loops.

We begin with the definition of race.

22 of 61© 1998 David A. Padua

4.1 Races

We say that there is a race when there are two memory references
taking place in two different tasks such that
1. They are not ordered
2. They refer to the same memory location
3. One of them is a memory write (store).

For example, in the following code there is a race due to the two
accesses to a:
c$omp parallel sections
c$omp psection

...
a = x + 5
...

c$omp psection
...
y = a + 1
...

c$omp end parallel sections

23 of 61© 1998 David A. Padua

Another example of a race is:
c$omp parallel

...
if (omp_get_thread_num().eq.0) a=x+5
... [no omp directive here]
if (omp_get_thread_num().eq.1) a=y+1
...

c$omp end parallel

However, there is no race in the following code because the two
references to a are ordered by the barrier.
c$omp parallel

...
if (omp_get_thread_num().eq.0) a=x+5
...

c$omp barrier
...
if (omp_get_thread_num().eq.1) a=y+1
...

c$omp end parallel

24 of 61© 1998 David A. Padua

Another example of a race is:

c$omp parallel do
do i=1,n

...
a = x(i) + 1
...

end do
c$omp end parallel do

Here, a is written in all iterations. There is a race if there are at least
two tasks executing this loop. (It is ok to execute an OpenMP
program with a single processor)

25 of 61© 1998 David A. Padua

Another example is:

c$omp parallel do
do i=1,n

...
a(i) = a(i-1) + 1
...

end do

Here, if at least two tasks cooperate in the execution of the loop,
some pair of consecutive (say iterations j and j+1) iterations will be
executed by different tasks.

Then, one of the iterations will write to an array element (say a(j)
in iteration j) and the other will read the same element in the next
iteration.

26 of 61© 1998 David A. Padua

Sometimes it is desirable to write a parallel program with races. But
most often it is best to avoid races.

In particular, unintentional races may lead to difficult to detect bugs.

Thus, if a has the value 1 and x the value 3 before the following
parallel section starts, y could be assigned either 2 or 9. This would
be a bug if the programmer wanted y to get the value 9. And the bug
could be very difficult to detect if, for example, y were to get the
value 2 very infrequently.
c$omp parallel sections
c$omp section

...
a = x + 5
...

c$omp section
...
y = a + 1
...

c$omp end parallel sections

27 of 61© 1998 David A. Padua

4.2 Race-free parallel loops

Next, we present several forms of parallel loops. In each case, a
conventional (sequential) version of the loop will be presented first.

This does not mean that parallel loops can be written only by starting
with a conventional loop. However, the most important forms of
parallel loops can be easily understood when presented in the context
of conventional loops.

The first form of parallel loop can be obtained quite simply. A
conventional loop can be transformed into parallel form by just
adding a parallel loop directive if the resulting parallel loop
contains no races between any pair of iterations.

An example is the loop
do i=1,n

a(i) = b(i) +1
end do

Notice that this loop computes the vector operation
a(1:n)=b(1:n)+1

28 of 61© 1998 David A. Padua

More complex loops can also be directly transformed into parallel
form. For example:

do i=1,n
if (c(i) .eq. 1) then

do while (a(i) .gt. eps)
a(i) = x(i) - x(i-1) / c

end do
else

do while (a(i) .lt. upper)
a(i) = x(i) + y(i+1) * d

end do
end if

end do

Notice that although consecutive iterations access the same element
of x, there is no race because both accesses are reads.

29 of 61© 1998 David A. Padua

4.3 Privatization

Sometimes the transformation into parallel form requires the
identification of what data should be declared as private.

For example, consider the following loop:

do i=1,n
x = a(i)+1
b(i) = x + 2
c(i) = x ** 2

end do

This loop would be fully parallel if it were not for x which is stored
and read in all iterations.

One way to avoid the race is to eliminate the assignment to x by
forward substituting a(i)+1:

do i=1,n
b(i) = (a(i)+1) + 2
c(i) = (a(i)+1) ** 2

end do

30 of 61© 1998 David A. Padua

A simpler way is to declare x as private:
c$omp parallel do private(i,x)

do i=1,n
x = a(i)+1
b(i) = x + 2
c(i) = x ** 2

end do

In general, a scalar variable can be declared private if
1. It is always assigned before it is read in every iteration of the loop,

and
2. It is never used again, or it is reassigned before used again after

the loop completes.

31 of 61© 1998 David A. Padua

Sometimes it is necessary to privatize arrays. For example, the loop
do i=1,n

do j=1,n
y(j) = a(i,j) + 1)

end do
...
do k=2,n-1

b(i,j) = y(j) ** 2
end do

end do

can be directly parallelized if vector y is declared private.

An array can be declared private if
1. No element of the array is read before it is assigned within the

same iteration of the loop.
2. Any array element used after the loop completed is reassigned

before it is read.

32 of 61© 1998 David A. Padua

An important case arises when the variable to be privatized is read
after the loop completes without reassignment.

For example
do i=1,n

x = a(i)+1
b(i) = x + 2
c(i) = x ** 2

end do

...=x

33 of 61© 1998 David A. Padua

One way to solve this problem is to “peel off” the last iteration of the
loop and then parallelize:
c$omp parallel do private(i,x)

do i=1,n-1
x = a(i)+1
b(i) = x + 2
c(i) = x ** 2

end do
x=a(n)+1
b(n)=x+2
c(n)=x+2

An equivalent, but simpler approach is to declare x as
lastprivate.

c$omp parallel do private(i) lastprivate(x)
do i=1,n

x = a(i)+1
b(i) = x + 2
c(i) = x ** 2

34 of 61© 1998 David A. Padua

end do

35 of 61© 1998 David A. Padua

Variables in lastprivate are private variables; however, in addition, at
the end of the do loop, the thread that executes the last iteration
updates the version of the variable that exists outside the loop.

If the last iteration does not assign a value to the entire variable, the
variable is undefined after the loop.

For example, if c(n) > 5 in the loop:

c$omp parallel do private(i) lastprivate(x)
do i=1,n

if (c(i).lt.5) then
x=b(i)+1
a(i)=x+x**2

end if
end do

then x would not be defined after the loop.

Similarly, if the private variable is a vector, only the elements
assigned in the last iteration will be defined. (in KAI’s version, the
elements not assigned in the last iteration are 0).

36 of 61© 1998 David A. Padua

For example, the program:
real a(100),b(100),c(100)
do i=1,100

a(i)=1
end do
do i=1,100

b(i)=3
end do
print *,a(1),a(2)
b(1)=1

c$omp parallel do lastprivate(a)
do i=1,100

do j=1,100
if (b(j).lt.3) then

a(j)=3
c(j)=a(j)

end if
end do

end do
print *,a(1),a(2)
end

prints

37 of 61© 1998 David A. Padua

1.000000 1.00000
3.000000 0.

38 of 61© 1998 David A. Padua

A similar situation arises when a private variable needs to be initialized
with values from before the loop starts execution. Consider the loop:

do i=1,n
do j=1,i

a(j) = calc_a(j)
b(j) = calc_b(i,j)

end do
do j=1,n

x=a(j)-b(j)
y=b(j)+a(j)
c(i,j)=x*y

end do
end do

To parallelize this loop, x , y , a and b should be declared private.
However, in iteration i the value of a(i+1), a(i+2),...,a(n) and
of b(i+1),b(i+2),...,b(n) are those assigned before the loop
starts.

39 of 61© 1998 David A. Padua

To account for this, a and b should be declared as
firstprivate.
c$omp parallel do private(i,j,x,y)
c$omp& firstprivate(a,b)

40 of 61© 1998 David A. Padua

4.4 Induction variables

Induction variables appear often in scientific programs. These are
variables that assume the values of an arithmetic sequence across the
iterations of the loop:

For example, the loop

do i=1,n
j = j + 2
do k=1,j

a(k,j) = b(k,j) + 1
end do

end do

cannot be directly transformed into parallel form because the
satement j=j+2 produces a race. And j cannot be privatized
because it is read before it is assigned.

However, it is usually easy to express induction veriables as a
function of the loop index. So, the previous loop can be tranformed
into:

41 of 61© 1998 David A. Padua

do i=1,n
m=2*i+j
do k=1,m

a(k,m) = b(k,m) + 1
end do

end do

In this last loop, m can be made private and the loop directly
tranformed into parallel form.

If the last value of variable j within the loop is used after the loop
completes, it is necessary to add the statement

j=2*n+j

immediately after the loop to set the variable j to its correct value.

42 of 61© 1998 David A. Padua

Most induction variables are quite simple, like the one in the previous
example. However, in some cases a more involved formula is
necessary to represent the induction variable as a function of the loop
index:

For example consider the loop:

do i=1,n
do j=1,m

k=k+2
a(k)=b(i,j)+1

end do
end do

The only obstacle for the parallelization of loop i is the induction
variable k. Notice that no two iterations assign to the same element of
array a because k always increases from one iteration to the next.

The formula for k is somewhat more involved than the formula of the
previos example, but still is relatively simple:

c$omp parallel do private(i,j)

43 of 61© 1998 David A. Padua

do i=1,n
do j=1,m

a(2*(m*(i-1)+j)+k)=b(i,j)+1
end do

end do
k=2*n*m+k

As a final example, consider the loop:

do i=1,n
j=j+1
a(j)= b(i)+1
do k=1,i

j=j+1
c(j)=d(i,k)+1

end do
end do

44 of 61© 1998 David A. Padua

Here, again, only the induction variable, j, causes problems. But
now the formulas are somewhat more complex:

c$omp parallel do private(i,k)
do i=1,n

a(i+i*(i-1)/2)= b(i)+1
do k=1,i

c(i+i*(i-1)/2+k)=d(i,k)+1
end do

end do
j=n+n*(n+1)/2

45 of 61© 1998 David A. Padua

Sometimes, it is necessary to do some additional transformations to
remove induction veriables. Consider the following loop:

j=n
do i=1,n

b(i)=(a(j)+a(i))/2.
j=i

end do

Variable j is called a wraparound variable of first order. It is called
first order because only the first iteration uses a value of j from
outside the loop. A wraparound variable is an induction variable
whose value is carried from one iteration to the next.

46 of 61© 1998 David A. Padua

The way to remove the races produced by j is to peel off one
iteration, move the assignment to j from one iteration to the top of
the next iteration (notice that now j must be assigned i-1), and
then privatize :

j=n
if (n>=1) then

b(1)=(a(j)+a(1))/2.
c$omp parallel do private (i),lastprivate(j)

do i=2,n
j=i-1
b(i)=(a(j)+a(i))/2.

end do
end if

Notice that the if statement is necessary to make sure that the first
iteration is executed only if the original loop would have executed it.

Alternatively, the wraparound variable could be an induction
variable. The transformation in this case is basically the same as

47 of 61© 1998 David A. Padua

above except that the induction variable has to be expressed in terms
of the loop index first.

Consider the loop:
j=n
do i=1,n

b(i)=(a(j)+a(i))/2.
j=j+1

end do

As we just said, we first replace the right hand side of the
assignement to j with an expression involving i.

j=n
do i=1,n

b(i)=(a(m)+a(i))/2.
m=i+j

end do
j=n+j

Notice that we changed the name of the variable within the loop to be
able to use the value of j coming from outside the loop.

48 of 61© 1998 David A. Padua

We can now proceed as above to obtain:
j=n
if (n>=1) then

b(1)=(a(j)+a(i))/2.
c$omp parallel do private (i,m)

do i=2,n
m=i-1+j
b(i)=(a(m)+a(i))/2.

end do
j=n+j !this has to be inside the if

end if

49 of 61© 1998 David A. Padua

4.5 Ordered sections.

Sometimes the only way to avoid races is to execute the code serially.
Consider the looP:

do i=1,n
a(i)=b(i)+1
c(i)=sin(c(i-1))+a(i)
d(i)=c(i)+d(i-1)**2

end do

Although there is no clear way to avoid races in this loop, we could
execute in parallel the first statement. In fact, we can in this case
transform the loop into:
c$omp parallel do

do i=1,n
a(i)=b(i)+1

end do
do i=1,n

c(i)=sin(c(i-1))+a(i)
d(i)=c(i)+d(i-1)**2

end do

50 of 61© 1998 David A. Padua

However, there is a way to improve the performance of the whole loop with
the ordered directive whose syntax is as follows:
c$omp ordered[(name)]

block
c$omp end ordered[(name)]

The interleaving of the statements in the ordered sections of different
iterations are identical to that of the sequential program. Ordered sections
without a name are all assumed to have the same name.

Thus, the previous loop can be rewritten as:
c$omp parallel do

do i=1,n
a(i)=b(i)+1

c$omp ordered (x)
c(i)=sin(c(i-1))+1

c$omp end ordered(x)
c$omp ordered (y)

d(i)=c(i)+d(i-1)**2
c$omp end ordered (y)

end do

51 of 61© 1998 David A. Padua

Thus, we have two ways of executing the loop in parallel. Assuming
n=12, and four processors, the following time lines are feasible:

a(1)=

a(5)=

a(2)=

a(6)= a(7)= a(8)=

a(4)=a(3)=

a(9)=a(10)=a(11)=a(12)=

c(1)=

d(1)=

c(3)=

d(3)=

c(2)=

d(2)=

a(1)= a(2)= a(4)=a(3)=

c(1)=

d(1)= c(2)=

d(2)= c(3)=

d(3)= c(4)=

d(4)=

a(5)=

a(6)=

a(7)=

a(8)=c(5)=

d(5)= c(6)=

d(6)= c(7)=

d(7)= ...

...
...

52 of 61© 1998 David A. Padua

Notice that now no races exist because accesses to the same memory
location are always performed in the same order.

Ordered sections may need to include more than one statement. For
example, in the loop:

do i=1,n
...
a(i)=b(i-1)+1
b(i)=a(i)+c(i)
...

end do

the possibility of races would not be avoided unless both statements
are made part of the same ordered section.

53 of 61© 1998 David A. Padua

It is important to make the ordered sections as small as possible
because the overall execution time depends on the size of the longest
ordered section.

54 of 61© 1998 David A. Padua

4.6 Execution time of a parallel do when
ordered sections have constant execution time.

• Consider the loop

c$omp parallel do
do i=1,n

c$omp ordered (a)
aa = ...

c$omp end ordered (a)
c$omp ordered (b)

...
c$omp ordered (c)

...
c$omp ordered (d)

...
c$omp ordered (e)

...
end do

55 of 61© 1998 David A. Padua

• Assume its execution time lines have the following form:

which, in terms of performance, is equivalent to the following

a

a

a

a

b

b

b

b

c

c

c

c

d

d

d

d

e

e

e

e

56 of 61© 1998 David A. Padua

time lines:

where a constant delay D between the start of consecutive
iterations is evident. This delay is equal to the time of the longest
ordered section (i.e., D=T(c) in this case).

a

a

a

b

b

b

b

c

c

c

c

d

d

d

d

e

e

e

e

a

D

D

D

D

D D

57 of 61© 1998 David A. Padua

• The execution time of the previous loop using n processors is:
T(a)+T(b)+nT(c)+T(d)+T(e)

 as can be seen next:

• In general the execution time when there are as many processors
as iterations is

nD+(B-D)=(n-1)D+B
where B is the execution time of the whole loop body.

a

a

a

b

b

b

c

c

c

d

d

d

e

e

e

T(a)+T(b) nT(c)=nD T(d)+T(e)

58 of 61© 1998 David A. Padua

4.7 Critical Regions and Reductions

Consider the following loop:

do i=1,n
do i=1,m

ia(i,j)=b(i,j)+d(i,j)
isum=isum+ia(i,j)

end
end

Here, we have a race due to isum. This race cannot be removed by
the techniques discussed above. However, the + operation used to
compute isum is associative and isum only appears in the
statement that computes its value.

The integer addition operation is not really associative, but in
practice we can assume it is if the numbers are small enough so there
is never any overflow.

59 of 61© 1998 David A. Padua

Under these circumstances, the loop can be transformed into the
following form:

c$omp parallel private(local_isum)
local_isum=0

c$omp pdo
do i=1,n

do j=1,m
local_isum=local_isum + ia(j,i)

end do
end do

c$omp end pdo nowait
c$omp critical

isum=isum+local_isum
c$omp end critical
c$omp end parallel

60 of 61

Here, we use the critical directive to avoid the following problem.

The statement
isum=isum+local_isum

will be translated into a machine language sequence similar to the
following:

load register_1,isum
load register_2,local_isum
add register_3,register_1,register_2
store register_3,isum

Assume now there are two tasks executing the statement
isum=isum+local_isum

simultaneously. In one local_sum is 10, and in the other 15.
Assume isum is 0 when both tasks start executing the statement.
Consider the following sequence of events:

61 of 61

As can be seen, interleaving the instructions between the two tasks
produces incorrect results. The critical directive precludes this
interleaving. Only one task at a time can execute a critical region
with the same name.

The assumption is that it does not matter in which order the tasks
enter a critical region as long as they are never inside a critical region

time task 1 isum task 2

1 load
r1,local_isum

0

2 load r2, isum 0 load
r1,local_isum

3 add r3,r2,r1 0 load r2,isum

4 store r3, isum 10 add r3,r2,r1

15 store r3,isum

