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i. Course organization
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• Algorithms. 

Linear algebra algorithms such as matrix multiplication and 

equation solvers.

Symbolic algorithms such as sorting.

N-body

Random number generators.A s y n c h r o n o u s  a l g o r i t h m s .

•Program analysis and transformation

D e p e n d e n c e  a n a l y s i s

R a c e  c o n d i t i o n s

D e a d l o c k  d e t e c t i o n

•Parallel program development and maintenance

Modularity

Performance analysis and tuning

Debugging
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Chapter 1. Introduction
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 Applications

• Traditionally, highly parallel computers have
numerical simulations of complex systems s
weather, mechanical devices, electronic circ
manufacturing processes, chemical reaction

See the 1991 report from the General Accou

http://w4.llnl.gov/asci
gopher://wiretap.spies.com:70/00/Gov/GAO-Tech/REPORT8
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2.1 The Von Neumann computati

Discussion taken from Almasi and Gottlieb: Hig
Computing. Benjamin Cummings, 1988.

• Designed by John Von Neumann about fifty 

• All widely used “conventional” machines follo
is repres4es fnext: 
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previous assignment statement would be tra
sequence of the form:
LD 1,B (load B from memory into register 1)

LD 2,C (load C from memory into register 2)

ADD 3,1,2 (add registers 1 and 2 and put the resul

ST 3,A (store register 3’s contents into variable A’s a

• It is said that the compiler creates a “virtual m
own language and computational model. 

• Virtual machines represented by convention
such as Fortran 77 and C, also follow the Vo
model. 
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2.2 Multicomputers

˘rs ˘rs
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• Another example is the workstation cluster a
which consists of about 400 Silicon Graphic
workstations. The system is used to analyze
events. Analyzing any one of those events h
with analyzing any of the others. Each mach
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2.3 Shared-memory multiprocess
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• VLIW (Very Long Instruction Word) processo
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Chapter 3. Parallel Programmin
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• There are many different parallel programm
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Tasks

Tasks are a central concept in parallel program

A task is a sequential program under execution
programmer may assume that there is a proce
each task. (There may not be a physical proce
operating system will time-share the real proces
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Shared-Memory Parallel Program
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The program starts as a single task program a
second task is initiated.  The second task proc
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Notice that because h is private to the task, a n
will be created every time  start_task sub 

Consider the following program:
read b,c,e,g
start_task sub(b,c,a)
call sub(e,g,d)
wait_for_all_tasks_to_complete
q=f4(d,a)
print q
end

subroutine sub(e,g,d)
local h
h=f2(e)
d=f3(h, g)
end sub

Two copies of sub will be executing simultaneo
will have its own copy of h.
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Parallel loops

One of the most popuar constructs for shared-
programming is the parallel loop. 
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Parallel loops are implemented using tasks. Fo
previous program could be translated by the co
something similar to the following program:

c = sin (d)
start_task sub(a,b,c,1,10)
start_task sub(a,b,c,11,20)
call sub(a,b,c,21,30)
wait_for_all_tasks_to_complete
e = a(20)+ a(15)
...

subroutine sub(a,b,c,k,l)
...
for i=k to l

a(i) = b(i) + c
end for
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SPMD model and parallel loops

Starting a task is usually very time consuming.

For that reason, current implementations of ex
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c = sin (d)
i=my_proc()*10
call sub(a,b,c,i+1,i+10)
call barrier()
if my_proc() .eq. 0 then

e = a(20)+ a(15)
end if
...

subroutine sub(a,b,c,k,l)
...
for i=k to l

a(i) = b(i) + c
end for

end sub
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express parallelism since array operations can
executed in parallel.

Thus, all the arithmetic operations (+, -, * /, **) 
vector expression can be performed in parallel
reduction functions ,such as sum
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Vector program=re easily translated fo(e)r exec
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Going in the other direction, it is not always sim
forall loops into vector operations. For example
transform the following loop into vector form?

parallel do i=1 to n
if c(i) .eq. 1 then

while a(i) .gt. eps do
a(i) = a(i) - a(i) / c

end while
else

while a(i) .lt. upper do
a(i) = a(i) + a(i) * d

end while
end if

end parallel do
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