CS320/CSE 302/ECE 392

Introduction to Parallel Programming for
Scientists and Engineers

Spring 2000

© 1998 David A. Padua 1 of 45

I. Course organization

© 1998 David A. Padua 2 of 45

© 1998 David A. Padua 3 of 45

Chapter 1. Introduction

© 1998 David A. Padua 7 of 45

11 of 45

Applications

Traditionally, highly parallel computers have been used for

numerical simulations of complex systems such as the
weather, mechanical devices, electronic circuits,
manufacturing processes, chemical reactions, etc.

See the 1991 report from the General Accounting Office on

© 1998 David A. Padua 12 of 45

http://w4.llnl.gov/asci
gopher://wiretap.spies.com:70/00/Gov/GAO-Tech/REPORT8

2.1 The Von Neumann computational model

Discussion taken from Almasi and Gottlieb: Highly Parallel
Computing. Benjamin Cummings, 1988.

e Designed by John Von Neumann about fifty years ago.

e All widely used “conventional” machines follow this model. It
IS repres4des fnext:

© 1998 David A. Padua 15 of 45

previous assignment statement would be translated into a
sequence of the form:

LD 1, B (load B from memory into register 1)
LD 2, C (load C from memory into register 2)
ADD 3, 1, 2 (add registers 1 and 2 and put the result into register 3)

ST 3, A (store register 3’s contents into variable A's address in memory)

* |tis said that the compiler creates a “virtual machine” with its
own language and computational model.

* Virtual machines represented by conventional languages,

such as Fortran 77 and C, also follow the Von Neumann
model.

© 1998 David A. Padua 17 of 45

2.2 Multicomputers

Is’rs

© 1998 David A. Padua 18 of 45

© 1998 David A. Padua 19 of 45

* Another example is the workstation cluster at Fermilab,

which consists of about 400 Silicon Graphics and IBM
workstations. The system is used to analyze accelerator
events. Analyzing any one of those events has nothing to do
with analyzing any of the others. Each machine runs a

© 1998 David A. Padua 20 of 45

2.3 Shared-memory multiprocessors

© 1998 David A. Padua 21 of 45

* VLIW (Very Long Instruction Word) processors are an

© 1998 David A. Padua 23 of 45

Chapter 3. Parallel Programming Models

© 1998 David A. Padua 26 of 45

* There are many different parallel programming paradigms.

© 1998 David A. Padua 27 of 45

Tasks

Tasks are a central concept in parallel programming.

A task is a sequential program under execution. The
programmer may assume that there is a processor devoted to
each task. (There may not be a physical processor, but the
operating system will time-share the real processors to give the

© 1998 David A. Padua 28 of 45

Shared-Memory Parallel Programming

© 1998 David A. Padua 29 of 45

The program starts as a single task program and then a
second task is initiated. The second task proceeds by

© 1998 David A. Padua 31 of 45

Notice that because h is private to the task, a new copy of h
will be created every time start _t ask sub is executed.

Consider the following program:

read b, c, e, g

start_task sub(b, c, a)

call sub(e, g, d)

wait _for_all _tasks to _conpl ete
q=f 4(d, a)

print g

end

subrouti ne sub(e, g, d)
| ocal h

h=f 2(e)

d=f 3(h,)

end sub

Two copies of sub will be executing simultaneously, and each
will have its own copy of h.

© 1998 David A. Padua 32 of 45

Parallel loops

One of the most popuar constructs for shared-memory
programming is the parallel loop.

© 1998 David A. Padua 36 of 45

Parallel loops are implemented using tasks. For example, the
previous program could be translated by the compiler into
something similar to the following program:

c = sin (d)

start _task sub(a, b,c, 1, 10)
start _task sub(a, b, c, 11, 20)
call sub(a, b, c, 21, 30)

wait for_ _all _tasks to conpl ete
e = a(20)+ a(lb)

subrouti ne sub(a, b, c, k, 1)
for i=k to I
a(i) = b(i) + c
end f or

© 1998 David A. Padua 37 of 45

38 of 45

SPMD model and parallel loops

Starting a task is usually very time consuming.

For that reason, current implementations of extensions

© 1998 David A. Padua 40 of 45

c = sin (d)

Il =y _proc()*10

call sub(a, b,c,i+1,i1+10)

call barrier()

I T my proc() .eq. O then
e = a(20)+ a(15)

end if

subrouti ne sub(a, b, c, k, 1)

for 1=k to |
a(i) = b(i) + c
end f or
end sub

© 1998 David A. Padua 41 of 45

express parallelism since array operations can be easily
executed in parallel.

Thus, all the arithmetic operations (+, -, */, **) involved in a
vector expression can be performed in parallel. Intrinsic
reduction functions ,such as sum

© 1998 David A. Padua 43 of 45

Vector program=re easily translated fo(e)r execution on sh=red-ua

© 1998 David A. Padua 44 of 45

Going in the other direction, it is not always simple to transform
forall loops into vector operations. For example, how would you

transform the following loop into vector form?

parallel do i=1 to n
I f c(i) .eq. 1 then
while a(i) .gt. eps do
a(i) = a(i) - a(i) / c
end whil e
el se
while a(i) .lt. upper do
a(i) = a(i) + a(i) * d
end whil e
end if
end parall el do

© 1998 David A. Padua 45 of 45

	CS320/CSE 302/ECE 392
	Introduction to Parallel Programming for Scientists and Engineers
	Spring 2000
	i. Course organization
	ii. Topics
	Chapter 1. Introduction
	Parallelism
	Moore’s Law
	Applications
	Chapter 2. Machine models
	2.1 The Von Neumann computational model
	2.2 Multicomputers
	2.3 Shared-memory multiprocessors
	2.4 Other forms of parallelism
	2.5 Flynn’s taxonomy
	Chapter 3. Parallel Programming Models
	Tasks
	Shared-Memory Parallel Programming
	Channels and Message Passing
	Parallel loops
	SPMD model and parallel loops
	Array Programming

