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I. Course organization
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Chapter 1. Introduction
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Applications

Traditionally, highly parallel computers have been used for

numerical simulations of complex systems such as the
weather, mechanical devices, electronic circuits,
manufacturing processes, chemical reactions, etc.

See the 1991 report from the General Accounting Office on
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http://w4.llnl.gov/asci
gopher://wiretap.spies.com:70/00/Gov/GAO-Tech/REPORT8







2.1 The Von Neumann computational model

Discussion taken from Almasi and Gottlieb: Highly Parallel
Computing. Benjamin Cummings, 1988.

e Designed by John Von Neumann about fifty years ago.

e All widely used “conventional” machines follow this model. It
IS repres4des fnext:
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previous assignment statement would be translated into a
sequence of the form:

LD 1, B (load B from memory into register 1)
LD 2, C (load C from memory into register 2)
ADD 3, 1, 2 (add registers 1 and 2 and put the result into register 3)

ST 3, A (store register 3’s contents into variable A's address in memory)

* |tis said that the compiler creates a “virtual machine” with its
own language and computational model.

* Virtual machines represented by conventional languages,

such as Fortran 77 and C, also follow the Von Neumann
model.
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2.2 Multicomputers

Is’rs
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* Another example is the workstation cluster at Fermilab,

which consists of about 400 Silicon Graphics and IBM
workstations. The system is used to analyze accelerator
events. Analyzing any one of those events has nothing to do
with analyzing any of the others. Each machine runs a

© 1998 David A. Padua 20 of 45



2.3 Shared-memory multiprocessors

© 1998 David A. Padua 21 of 45






* VLIW (Very Long Instruction Word) processors are an
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Chapter 3. Parallel Programming Models

© 1998 David A. Padua 26 of 45



* There are many different parallel programming paradigms.
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Tasks

Tasks are a central concept in parallel programming.

A task is a sequential program under execution. The
programmer may assume that there is a processor devoted to
each task. (There may not be a physical processor, but the
operating system will time-share the real processors to give the
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Shared-Memory Parallel Programming
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The program starts as a single task program and then a
second task is initiated. The second task proceeds by
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Notice that because h is private to the task, a new copy of h
will be created every time start _t ask sub is executed.

Consider the following program:

read b, c, e, g

start_task sub(b, c, a)

call sub(e, g, d)

wait _for_all _tasks to _conpl ete
q=f 4(d, a)

print g

end

subrouti ne sub(e, g, d)
| ocal h

h=f 2( e)

d=f 3(h, )

end sub

Two copies of sub will be executing simultaneously, and each
will have its own copy of h.
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Parallel loops

One of the most popuar constructs for shared-memory
programming is the parallel loop.
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Parallel loops are implemented using tasks. For example, the
previous program could be translated by the compiler into
something similar to the following program:

c = sin (d)

start _task sub(a, b,c, 1, 10)
start _task sub(a, b, c, 11, 20)
call sub(a, b, c, 21, 30)

wait for_ _all _tasks to conpl ete
e = a(20)+ a(lb)

subrouti ne sub(a, b, c, k, 1)
for i=k to I
a(i) = b(i) + c
end f or
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SPMD model and parallel loops

Starting a task is usually very time consuming.

For that reason, current implementations of extensions
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c = sin (d)

Il =y _proc()*10

call sub(a, b,c,i+1,i1+10)

call barrier()

I T my proc() .eq. O then
e = a(20)+ a(15)

end if

subrouti ne sub(a, b, c, k, 1)

for 1=k to |
a(i) = b(i) + c
end f or
end sub
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express parallelism since array operations can be easily
executed in parallel.

Thus, all the arithmetic operations (+, -, */, **) involved in a
vector expression can be performed in parallel. Intrinsic
reduction functions ,such as sum
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Vector program=re easily translated fo(e)r execution on sh=red-ua
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Going in the other direction, it is not always simple to transform
forall loops into vector operations. For example, how would you

transform the following loop into vector form?

parallel do i=1 to n
I f c(i) .eq. 1 then
while a(i) .gt. eps do
a(i) = a(i) - a(i) / c
end whil e
el se
while a(i) .lt. upper do
a(i) = a(i) + a(i) * d
end whil e
end if
end parall el do
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