
1 of 45

2

ming for
rs
© 1998 David A. Padua

CS320/CSE 302/ECE 39

Introduction to Parallel Program
Scientists and Enginee

Spring 2000

2 of 45
© 1998 David A. Padua

i. Course organization

3 of 45
© 1998 David A. Padua

6 o f 4 5

© 1 9 9 8 D a v i d A . P a d u a

• Algorithms.

Linear algebra algorithms such as matrix multiplication and

equation solvers.

Symbolic algorithms such as sorting.

N-body

Random number generators.A s y n c h r o n o u s a l g o r i t h m s .

•Program analysis and transformation

D e p e n d e n c e a n a l y s i s

R a c e c o n d i t i o n s

D e a d l o c k d e t e c t i o n

•Parallel program development and maintenance

Modularity

Performance analysis and tuning

Debugging

7 of 45
© 1998 David A. Padua

Chapter 1. Introduction

11 of 45

12 of 45

 been used for
uch as the
uits,
s, etc.

nting Office on
© 1998 David A. Padua

 Applications

• Traditionally, highly parallel computers have
numerical simulations of complex systems s
weather, mechanical devices, electronic circ
manufacturing processes, chemical reaction

See the 1991 report from the General Accou

http://w4.llnl.gov/asci
gopher://wiretap.spies.com:70/00/Gov/GAO-Tech/REPORT8

15 of 45

onal model

hly Parallel

years ago.

w this model. It
© 1998 David A. Padua

2.1 The Von Neumann computati

Discussion taken from Almasi and Gottlieb: Hig
Computing. Benjamin Cummings, 1988.

• Designed by John Von Neumann about fifty

• All widely used “conventional” machines follo
is repres4es fnext:

17 of 45

nslated into a

t into register 3)

ddress in memory)

achine” with its

al languages,
n Neumann
© 1998 David A. Padua

previous assignment statement would be tra
sequence of the form:
LD 1,B (load B from memory into register 1)

LD 2,C (load C from memory into register 2)

ADD 3,1,2 (add registers 1 and 2 and put the resul

ST 3,A (store register 3’s contents into variable A’s a

• It is said that the compiler creates a “virtual m
own language and computational model.

• Virtual machines represented by convention
such as Fortran 77 and C, also follow the Vo
model.

18 of 45
© 1998 David A. Padua

2.2 Multicomputers

˘rs ˘rs

19 of 45
© 1998 David A. Padua

20 of 45

t Fermilab,
s and IBM
 accelerator
as nothing to do
ine runs a
© 1998 David A. Padua

• Another example is the workstation cluster a
which consists of about 400 Silicon Graphic
workstations. The system is used to analyze
events. Analyzing any one of those events h
with analyzing any of the others. Each mach

21 of 45

ors
© 1998 David A. Padua

2.3 Shared-memory multiprocess

23 of 45

rs are an
© 1998 David A. Padua

• VLIW (Very Long Instruction Word) processo

26 of 45

g Models
© 1998 David A. Padua

Chapter 3. Parallel Programmin

27 of 45

ing paradigms.
© 1998 David A. Padua

• There are many different parallel programm

28 of 45

ming.

. The
ssor devoted to
ssor, but the
sors to give the
© 1998 David A. Padua

Tasks

Tasks are a central concept in parallel program

A task is a sequential program under execution
programmer may assume that there is a proce
each task. (There may not be a physical proce
operating system will time-share the real proces

29 of 45

ming
© 1998 David A. Padua

Shared-Memory Parallel Program

31 of 45

nd then a
eeds by
© 1998 David A. Padua

The program starts as a single task program a
second task is initiated. The second task proc

32 of 45

ew copy of h
is executed.

usly, and each
© 1998 David A. Padua

Notice that because h is private to the task, a n
will be created every time start_task sub

Consider the following program:
read b,c,e,g
start_task sub(b,c,a)
call sub(e,g,d)
wait_for_all_tasks_to_complete
q=f4(d,a)
print q
end

subroutine sub(e,g,d)
local h
h=f2(e)
d=f3(h, g)
end sub

Two copies of sub will be executing simultaneo
will have its own copy of h.

36 of 45

memory
© 1998 David A. Padua

Parallel loops

One of the most popuar constructs for shared-
programming is the parallel loop.

37 of 45

r example, the
mpiler into
© 1998 David A. Padua

Parallel loops are implemented using tasks. Fo
previous program could be translated by the co
something similar to the following program:

c = sin (d)
start_task sub(a,b,c,1,10)
start_task sub(a,b,c,11,20)
call sub(a,b,c,21,30)
wait_for_all_tasks_to_complete
e = a(20)+ a(15)
...

subroutine sub(a,b,c,k,l)
...
for i=k to l

a(i) = b(i) + c
end for

38 of 45

40 of 45

tensions
© 1998 David A. Padua

SPMD model and parallel loops

Starting a task is usually very time consuming.

For that reason, current implementations of ex

41 of 45
© 1998 David A. Padua

c = sin (d)
i=my_proc()*10
call sub(a,b,c,i+1,i+10)
call barrier()
if my_proc() .eq. 0 then

e = a(20)+ a(15)
end if
...

subroutine sub(a,b,c,k,l)
...
for i=k to l

a(i) = b(i) + c
end for

end sub

43 of 45

 be easily

 involved in a
. Intrinsic
© 1998 David A. Padua

express parallelism since array operations can
executed in parallel.

Thus, all the arithmetic operations (+, -, * /, **)
vector expression can be performed in parallel
reduction functions ,such as sum

44 of 45

ution on sh=red-ua
© 1998 David A. Padua

Vector program=re easily translated fo(e)r exec

45 of 45

ple to transform
, how would you
© 1998 David A. Padua

Going in the other direction, it is not always sim
forall loops into vector operations. For example
transform the following loop into vector form?

parallel do i=1 to n
if c(i) .eq. 1 then

while a(i) .gt. eps do
a(i) = a(i) - a(i) / c

end while
else

while a(i) .lt. upper do
a(i) = a(i) + a(i) * d

end while
end if

end parallel do

	CS320/CSE 302/ECE 392
	Introduction to Parallel Programming for Scientists and Engineers
	Spring 2000
	i. Course organization
	ii. Topics
	Chapter 1. Introduction
	Parallelism
	Moore’s Law
	Applications
	Chapter 2. Machine models
	2.1 The Von Neumann computational model
	2.2 Multicomputers
	2.3 Shared-memory multiprocessors
	2.4 Other forms of parallelism
	2.5 Flynn’s taxonomy
	Chapter 3. Parallel Programming Models
	Tasks
	Shared-Memory Parallel Programming
	Channels and Message Passing
	Parallel loops
	SPMD model and parallel loops
	Array Programming

