
An Evaluation of Vectorizing Compilers
Saeed Maleki†, Yaoqing Gao‡, Marı́a J. Garzarán†, Tommy Wong‡ and David A. Padua†

†: Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801–2302
Email: {maleki1,garzaran,padua}@illinois.edu

‡: IBM Toronto Laboratory
Markham, Ontario L6G 1C7

Email: {ygao,tomwong}@ca.ibm.com

Abstract—Most of today’s processors include vector units that
have been designed to speedup single threaded programs. Al-
though vector instructions can deliver high performance, writing
vector code in assembly language or using intrinsics in high
level languages is a time consuming and error-prone task. The
alternative is to automate the process of vectorization by using
vectorizing compilers.

This paper evaluates how well compilers vectorize a syn-
thetic benchmark consisting of 151 loops, two application from
Petascale Application Collaboration Teams (PACT), and eight
applications from Media Bench II. We evaluated three compilers:
GCC (version 4.7.0), ICC (version 12.0) and XLC (version 11.01).
Our results show that despite all the work done in vectorization in
the last 40 years 45-71% of the loops in the synthetic benchmark
and only a few loops from the real applications are vectorized
by the compilers we evaluated.

I. INTRODUCTION

The hot spots of many single threaded codes are loops
where the same operation is applied across different array
elements. Vectorization transforms these loops into instruc-
tions that work on multiple data items simultaneously. Typi-
cally, vectorization targets either high-end vector processors or
microprocessor vector extensions. Vector processors were the
main components of the supercomputers of the 1980s and early
1990s. Vector extensions for general purpose microprocessors
such as Intel MMX and IBM AltiVec, emerged in the 1990s to
support multimedia applications. Vector devices are also found
today in video game consoles and graphic cards. Today, vector
extensions and vector devices are not only used for multi
media applications and video games but also for scientific
computations.

The maximum speedup that can be obtained through vector
extensions in microprocessors is a function of the width of
the vector registers and units. Most of today’s machines have
vector units that are 128-bit wide, and the vector operations
over the equivalent sequential operations are up to 2, 4, 8 and
16 times faster than their scalar counterpart depending on the
data type. Thus, vectorization is one of the compiler transfor-
mations that can have significant impact on performance.

There are three major ways to make use of vector units:
by programming in assembly code, by programming with
intrinsic functions in high-level languages such as C, or to use
a vectorizing compiler that automatically translates sequences
of scalar operations, typically represented in the form of loops,
into vector instructions. Programming in assembly language
or using intrinsic functions gives the programmer complete

control of the low level details at the expense of productivity
and portability. On the other hand, vectorizing compilers such
as GCC, the Intel C compiler (ICC) and the IBM XLC
compiler can automatically generate vector code.

In this paper we study the effectiveness of vectorizing
compilers because of its importance for productivity. We first
discuss the main obstacles that limit the capabilities of current
vectorizers and the available solutions, and then evaluate the
vectorization capabilities of GCC, ICC and XLC for different
benchmarks, including a set of synthetic benchmarks [5],
two applications from the Petascale Application Collaboration
Teams PACT [3], [14], and the Media Bench II [2] applications.
Our evaluation methodology was to vectorize the codes using
the compilers, and when they failed, do the vectorization by
hand. Our results show that after 40 years of studies in auto
vectorization, today’s compilers can at most vectorize 45-71%
of the loops in our synthetic benchmark and only 18-30% in
our collection of applications.

As discussed below, we have not found any cases that well-
known compiler techniques cannot handle. When vectorization
failed, the reason was that the compiler did not implement the
necessary techniques, not that automatic vectorization was not
possible.

The rest of this paper is organized as follows: Section II
describes the benchmarks we used; Section III describes the
environment; Section IV discusses the main issues that limit
vectorization; Section V presents the evaluation; Section VI
presents the related work; and finally Section VII concludes.

II. BENCHMARK

We used three different sets of benchmarks to evaluate the
vectorizing capabilities of the compilers.

1) Test Suite for Vectorizing Compilers: One of the bench-
marks for our evaluation is the Test Suite for Vectorizing
Compilers (TSVC) developed by Callahan, Dongarra and
Levine [5], which contains 135 loops. This benchmark was
developed 20 years ago to assess the vectorizing capabilities of
compilers. The original benchmark suite was written in Fortran
and we translated it into C using f2c [9] and manually applied
minor transformations to account for the differences between
the two languages, such as converting arrays to start at 0 to
conform to C convention and aligning all arrays at 16-byte
boundaries. We have extended this benchmarks set with 23
additional loops to assess issues not addressed by the old set
of loops and removed 7 (obsolete) loops that are formed with

Machine double float int short char

Power 7
Vec 1.18 1.10 1.11 1.16 1.14

NoVec 1.59 2.91 2.64 5.46 10.49
Speedup 1.35 2.64 2.37 4.71 9.20

Intel i7
Vec 1.67 1.61 1.67 1.65 1.68

NoVec 2.37 4.81 4.83 9.61 19.22
Speedup 1.42 2.99 2.89 5.82 11.44

TABLE II
RUNNING TIMES AND SPEEDUPS FOR THE OPERATION A[I]=B[I]+1

WITH FIXED ARRAY SIZE 12.5KB.

gotos and conditions. The extended version (which contains
151 loops) is publicly available [1].

2) Codes from Petascale Application Collaboration Teams:
The goal of the Petascale Application Collaboration Teams
(PACT) [4] is to develop codes that meet the performance
milestones set for several Blue Waters applications. For this
study we used MIMD Lattice Computation (MILC version
7.6.2) [3] and Turbulence problem with Direct Numerical
Simulation (DNS) [14] from PACT. Notice that DNS uses FFT
which is going to be replaced by a hand tuned, built-in FFT
from IBM. Therefore, we did not consider the code segment
implementing FFT when we evaluated the compilers.

3) Media Bench II: Media Bench II [2] is a benchmark rep-
resenting multimedia applications. This benchmark contains
encoder/decoder of video/image files. Eight applications from
this benchmark were chosen: the encoders and decoders for
JPEG, H263, MPEG2, and MPEG4. We did not use the other
applications from this benchmark because there is not much
room for improvement through vectorization in them.

III. ENVIRONMENTAL SETUP

A. Target Platforms

We used the IBM Power 7 and Intel Nehalem i7 processors
for our experiments. Table I describes the platforms used. An
estimation of the speedup that we can expect from vectoriza-
tion for the two machines used in our study is presented in
Table II. For the estimation, we compared the execution times
of the vectorized version and its scalar counterpart (i.e. non-
vectorized code) of the simple computation A[i]=B[i]+1
over a large array. We kept the array size fixed (12.5KB) and
changed the data types of the elements. Since we measured the
running time of 400, 000 consecutive executions of this vector
operation and the arrays fully fit in the L1 and L2 caches, the
load latencies can be ignored.

B. Compilers

The compilers used in this experiment were GCC and ICC
on the Intel platform and XLC on the IBM platform. The
version of each compiler and the command line options are
shown in Table III. GCC version 4.7.0 was new at the time of
writing of this paper and it still had some bugs. Because of
this, we were unable to compile DNS benchmark with it and
used GCC 4.4.5 instead.

IV. ISSUES WITH VECTORIZATION AND THEIR SOLUTIONS

To asses how well current compilers vectorize we have
taken the benchmarks listed in Section II and vectorized with
the compilers described in Section III-B. When the compiler
failed, we applied hand vectorization. Our results, reported
in Section V, show that the the hand-vectorized codes run
significantly faster than the compiler-vectorized codes. After
carefully studying the loops that we were able to efficiently
vectorize by hand, we have found the main reasons why the
compilers fail to generate efficient vector code: i) the lack of
accurate analysis, ii) the failure to perform certain compiler
transformations to enable vectorization, and iii) the lack of
accurate profitability analysis. In this Section, we discuss these
issues in detail.

A. Accurate compiler analysis

To generate efficient vector code, the compilers need an
accurate interprocedural analysis of the interactions between
operations. This analysis in turn enables transformations. In
our study, we observed that compilers do not apply three
important transformations, discussed in Section IV-B: memory
layout change, code replacement, and data alignment. The
inability of compilers to do accurate interprocedural pointer
disambiguation and interprocedural array dependence analysis
is at least in part the reason for their inability to perform these
three transformations.

B. Transformations

Compilers need to apply certain transformations to make
vectorization possible and/or profitable. In our study, we found
that there are some scalar-to-scalar transformations which were
not applied by the compiler; however, when the transformation
was manually applied to some of the codes not vectorized by
the compiler, the compiler was able to automatically vectorize.

In the five subsections below (B1-B5), we discuss the
transformations that we applied by hand and outline when they
are needed in the context of vectorization. We classify these
transformations based on the issue they are trying to address.
In Section V we will discuss what compiler transformations
were applied for each of the benchmarks we used.
B1) Non-Unit stride accesses Vector loads and stores of cur-
rent processors can only access elements stored in consecutive
locations. Thus, although it is possible to issue several scalar
loads/store operations to load/store a vector register and then
execute the computations in vector mode, the resulting vector
code obtains low speedups, or even slowdowns, with respect to
its scalar counterpart. Several transformations can be applied
by the compiler to efficiently vectorize loops with non-unit
stride accesses.

1) Memory Layout change. The compiler can change the
memory layout of the data structures. As an example consider
the first loop in Figure 1, where the accesses pt[i].x are
non-unit strides, since variable pt has been declared as an
array of the point structure. To enable efficient vectoriza-
tion the compiler could transform the memory layout of the
variable pt, as shown in the second code in Figure 1, where

Platform Model Frequency (MHz) Vector Unit Vector Length L3 Cache (MB) Operating System
IBM Power7 9179-MHB 3864.00 AltiVec 128 (bit) 32 (4 local) Linux v2.6
Intel Intel Core i7 920 2659.964 SSE4.2 128 (bit) 8 Linux v2.6

TABLE I
SPECIFICATION OF EXPERIMENTAL MACHINES

Specification GCC ICC XLC
Version 4.7.0 12.0 11.1

Baseline Optimization -O3 -fivopts
-funsafe-math-optimizations

-O3 -O3 -qhot -qarch=pwr7 -qtune=pwr7
-qipa=malloc16

Vectorization Options -flax-vector-conversions
-msse4.2

-xSSE4.2 -qenablevmx -qdebug=NSIMDCOST
-qdebug=alwaysspec

Disable Vectorization -fno-tree-vectorize -no-vec -qnoenablevmx
Vectorization Report -ftree-vectorizer-verbose=[n] -vec_report[n] -qreport

TABLE III
COMPILERS SPECIFICATIONS

1 typedef struct{int x,y,z} point;
2 point pt[LEN];
3 for (int i=0; i<LEN; i++)
4 pt[i].x *= scale;

1 int ptx[LEN], int pty[LEN], int ptz[LEN];
2 for (int i=0; i<LEN; i++)
3 ptx[i] *= scale;

Fig. 1. An array of a struct versus an array for each field

there is a separate array for each field of the point structure.
Although both codes can be vectorized, the vectorization of
the first code is inefficient, while vectorizing the second code
obtains an speedup of 3.7 versus the sequential code in the
Intel platform. ICC and GCC do not apply this transforma-
tion in part because they lack interprocedural strategies to
propagate the new layout across different procedures in the
application. XLC can apply this transformation, but it is very
conservative, and as a result, it rarely applies it. Furthermore,
we did not apply this transformation to any benchmark by hand
since it would need global changes to a program, although
applying it to some cases in our benchmark would improve
the performance of the vector code.

2) Data Copying (DC). When interprocedural analysis is not
available and the compiler finds vectorizable loops that operate
on data with non-unit stride, the compiler can copy the data to
local buffers where data are consecutive in memory, and then
copy the results back, after the loop has been vectorized. Of
course, the compiler has to determine if the overhead of this
transformation is amortized by the benefit of the vectorization.
For that the compiler needs a cost model as will be discussed
in Section IV-C.

An example where data copying can be used, is shown in
Figure 2 which accesses the vector dataptr with stride 8.
f0,...,f7 are costly macro functions; therefore, there are
many vectorizable computations if the data is reorganized.
To obtain unit stride accesses we have manually transposed
the 8 × DCTSIZE matrix of data referenced by dataptr

1 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
2 tmp0 = dataptr[0] + dataptr[7];
3 tmp7 = dataptr[0] - dataptr[7];
4 // Repeats with tmp1...tmp6
5 dataptr[0] = f0(tmp0,...,tmp7);
6 dataptr[4] = f1(tmp0,...,tmp7);
7 // Repeats with dataptr[1..3] and dataptr[5..7]
8 dataptr += 8;
9 }

Fig. 2. Function jpeg_idct_islow form CJPEG. All the computations
in this loop are vectorizable, but memory accesses require non-unit strides.

before and after the loop so that we can use the transposed
data inside the loop without affecting the rest of the program.
Our implementation of transposition takes advantage of the
microprocessor vector extensions by efficiently using vector
permutation instructions. Then, the code is automatically vec-
torized by the compiler. This transformation could be easily
implemented by a compiler, since it is a local transformation.
However, the compiler will need the appropriate cost model
to determine when the overheads of copying the data in and
out can be amortized by the speedups obtained.

Another example where data copying is useful, is shown in
Figure 3-(a), where the index to access the array iclp is not a
linear function of the loop variable and f0,...,f7 are costly
macro functions. A possible solution to this problem is to store
the values which are used as indices for array iclp, into a
temporary array to make the main loop auto vectorizable. This
approach requires another loop after the main loop which goes
through the temporary array and stores the correct result back
into the output array, as shown in Figure 3-(b). As in the
previous example this solution has the data copying overhead
and so the cost model needs to determine the profitability of
this transformation.

3) Recomputation (RC). We also found loops with vec-
torizable computations that contain non-unit stride accesses
to a lookup table, where the value of the index to access
the table is statically unknown. One of the reasons that the
programmers use these lookup tables is to save the values

1 for (i=0;i<8;i++){
2 x1 = block[8*1+i]; x7 = block[8*7+i];
3 // Repeats with x0,x2...,x6
4 block[8*0+i] = iclp[f0(x1,...,x7)];
5 // Repeats with block[8*1+i..8*7+i]
6 }

(a) The indirect access to array iclp.

1 for (i=0;i<8;i++){
2 x1 = block[8*1+i]; x7 = block[8*7+i];
3 // Repeats with x0,x2...,x6
4 temp[8*0+i] = f0(x1,...,x7);
5 // Repeats with temp[8*1+i..8*7+i]
6 }
7 for (i=0;i<8;i++){
8 block[8*0+i] = iclp[temp[8*0+i]];
9 // Repeats with block[8*1+i..8*7+i]
10 }

(b) Data copying is applied.

1 void Initialize_Fast_IDCT()
2 {
3 int i;
4 iclp = iclip+512;
5 for (i= -512; i<512; i++)
6 iclp[i]=(i<-256)?-256:((i>255)?255:i);
7 }

(c) The initialization for array iclp.

Fig. 3. Function idctcol from MPEG2. Non-unit stride accesses to a
lookup table.

of expensive mathematical functions, such as sqrt or sin.
However, in some cases it is actually faster to recompute the
functions than to use the lookup table. With the appropriate
interprocedural analysis the compiler could replace the lookup
table with the actual computation used to initially fill the table.
Lin and Padua studied how to calculate the reaching definition
of subscript arrays and apply forward substitution [15].

As an example consider again the loop in Figure 3-(a).
We found that array iclp is a read-only array and it is
only initialized once, as shown in Figure 3-(c). Therefore, a
different possible solution to the one previously described for
the loop in Figure 3-(a) is to replace iclp with the actual
computation in terms of x7 and x1 and let the compiler
vectorize it.

4) Loop Interchange. Loop interchange can be applied when
traversing a matrix along the dimensions with non-unit strides
so that the access moves along consecutive locations. Com-
pilers need to apply data dependence analysis to determine if
the transformation is valid.
B2) Data Alignment. Accesses to vectors whose addresses
are aligned on certain boundaries (which is 16-byte for our
two experimental machines) can in some cases be significantly
faster than the unaligned ones. To perform a vector load/store
of a non-aligned memory address, previous generations of Intel
processors such as Core 2 have an unaligned vector load/store
instruction that incurs a significantly higher latency than the
aligned one. However, the Intel Nehalem processor supports
an unaligned load/store instruction that executes almost as fast
as the aligned load/store. IBM does not have an unaligned

1 for (int i = 1; i < LEN-1; i++){
2 a[i] = b[i-1] + c[i];
3 b[i] = d[i] + e[i];
4 }

Fig. 4. Acyclic backward data dependence.

vector load, but supports it with higher latency using two
loads of consecutive 128-bit of data and shift operations.
To address this issue, compilers need to apply the following
transformations:

1) Padding. Data allocations need to be aligned. Compilers
can make sure that the memory allocation of an array is aligned
by padding i.e. allocating a larger chunk of memory than
needed and using this extra space to guarantee data alignment.
This type of transformation is not always applied automatically
by the compiler and so programmers need to manually apply it.
The compilers could easily apply this transformation, although
care needs to be taken when a program allocates many arrays
of small sizes.

2) Loop Peeling. Peeling off iterations from the beginning
and/or the end of the loop is sometimes needed to generate
vector code with aligned vector loads/stores.

Notice that the compiler needs to know the alignment
of the pointer (which could be an input parameter to the
function containing the loop) so it can determine which vector
load/store instructions to use or how many iterations to peel
off. For this purpose, the compiler needs an accurate interpro-
cedural analysis. Eichenberger et al. presented a compilation
scheme that systematically vectorizes loops in the presence of
misaligned memory references [8].
B3) Data Dependence based Transformations. The correct-
ness of certain compiler transformations is determined by data
dependences. Below we outline some of these transformations.

1) Statement reordering. Compilers need to apply this
transformation to enable vectorization of codes with lexico-
graphically backward dependences within a loop body. As
an example, consider the loop in Figure 4 which has an
acyclic backward dependence. This loop is vectorized by ICC
and XLC, but not by GCC. XLC vectorizes it perfectly by
reordering the statements. The new ICC compiler (v12.0)
can vectorize it, while the previous one (v11.1) could not.
However, ICC v12.0 only vectorizes it partially because it
distributes the loop over the statements and reorders the loops
and vectorizes them as opposed to reordering the statements,
strip-mining, and vectorizing. This introduces overhead and
less locality for array b. GCC vectorizes neither the original
loop nor the reordered one.

2) Algorithm and Reduction Substitution. Algorithm and
reduction substitution can be used to vectorize computations
that form a cycle of flow dependences in the dependence
graph. Although algorithm substitution encompasses reduction
substitution, we deal with reductions separately since these
seem to be by far the most frequent kernels that compilers
must replace for vectorization.

2.1) Algorithm Substitution. An example where substitution

1 for (int i = 1; i < LEN-1; i++)
2 A[i] = A[i-1] + B[i];

Fig. 5. Prefix sum

of an algorithm that is not a simple reduction, is necessary
for vectorization, is shown in Figure 5. For substitutions of all
classes of algorithms, a typical strategy is for the compiler to
isolate the cycle and then pattern match the computation in the
cycle to one of the frequently occurring kernels. In numerical
computations these kernels include simple computations such
as the loop shown in Figure 5 which is also known as Prefix
Sum, and can include several classes of reductions and even
complex kernels such as matrix-matrix multiplication. Prefix
sum is a kernel computation that occurs with some frequency
and its vector implementation has been extensively studied.
For example, Chen and Kuck studied algorithms to parallelize
and vectorize these types of computations [12], [6]. However,
none of the compilers we evaluated vectorize this loop. We
implemented a manually vectorized prefix sum for the float
data type and an array of size 32, 000 that runs 4.61 and
1.46 faster on our experimental IBM and Intel platforms,
respectively, than the code generated by the compiler for the
loop in Figure 5.

2.2) Reduction Substitution (RE). Compilers are capable
of recognizing reductions and substituting them with vector
versions. Common examples of reductions are the sum or max
of an array. The compilers recognize many of them, but not
all.

In the cases where reduction is not recognized automatically
by the compilers, we found that if we first apply scalar
expansion, then the compiler can automatically vectorize them.
For example, the loop in Figure 6-(a) is vectorized by ICC, but
not by XLC or GCC. By manually applying scalar expansion,
as shown in Figure 6-(b), the compilers can vectorize the inner
loop, as there are no dependences. Notice that in this example
there is some extra code before and after the loop, but it is
not shown to keep the example short.

3) Node Splitting. This transformation can break cycles
in the dependence graph where not all of the dependences
are flow-dependences. This transformation is similar to data
copying except it breaks dependences. In Section V, we
grouped node splitting and algorithm substitution together
since both resolve the issue with cyclic dependences.

4) Loop Peeling (LP). Besides its use for alignment, loop
peeling can also be used to remove dependences. Thus, peeling
off first and last few iterations is helpful to break dependences
which only exists for those iterations.

5) Symbolic Resolution (SR). The compilers does not always
generate multiple versions of a loop for the cases where a
data dependence is assumed due to a symbolic variable such
as for(i=...) {A[i]=A[i+k]+...;}. In this example,
the compiler can vectorize the loop in a simple manner
for positive values of k but for negative values either more
complicated transformations are needed or the loop cannot be

1 int index = 0;
2 float min = A[0];
3 for (int i = 0; i < LEN; i++)
4 if (A[i] < min){
5 min = A[i];
6 index = i;
7 }

(a) Finding maximum element with its index in an array (MaxLoc).

1 int index[64];
2 float min[64];
3 ...
4 for (int i=0; i<LEN; i+=64)
5 for (int ii=i,j=0; ii < i+64; ii++,j++)
6 if (A[ii] < min[j]){
7 min[j] = A[ii];
8 index[j] = i;
9 }
10 ..

(b) Scalar expanded MaxLoc.

Fig. 6. MaxLoc Reduction

speeded up with vectorization. Therefore, they need to add a
runtime check to run a vectorized code for positive values of
k and a scalar code for negative values.

6) Recognition of Induction Pointers (IP). An induction
pointer, is a pointer that is increased by a constant value in
each iteration. As an example, assume that pointer A is an
induction pointer whose dereferenced value *A is used inside a
loop and it is incremented by 1 in each iteration A++. Instead,
A[i] can be used, where i is the loop induction variable.
Compilers do not always recognize induction pointers as array
accesses and programmers need to change them manually into
their array counterpart.

7) Wrap Around Variable Detection. The compilers need to
express wrap around variables in terms of the loop induction
variable to enable vectorization. This transformation may need
peeling off a few iterations.

8) Loop Distribution. Distributing a loop over the statements
inside it can enable vectorization of some of the statements in
the loop body. It is useful for those cases where one (or more)
of the statements are vectorizable, but the other (or others) are
not. This transformation may result in limited performance
benefit (or even slowdowns) if the loop distribution decreases
cache and/or register locality. Profitability analysis, which is
discussed later, should determine when this transformation
should be applied.

9) Loop Interchange. This transformation can enable vec-
torization when dependences are carried across the iterations
of the inner loop, but not of the outer one. Since loop
interchanging may change the access pattern, care must be
taken to not introduce non-unit stride access.

10) If-Conversion. If-conversion is a technique used to re-
place control dependences by data dependences. The compiler
converts programs with conditional branches to code contain-
ing predicated instructions. Instructions previously guarded by
a branch are guarded by a predicate. Therefore, the statements
inside a branch are now executed regardless of the outcome

1 for (int i = 0; i < LEN; i++)
2 if (A[i] < B[i]){
3 C[i] = D[i]+E[i];
4 }

(a) A loop containing conditional statements

1 for (int i = 0; i < LEN; i++)
2 C[i] = (A[i]<B[i]) ? (D[i]+E[i]) : C[i];

(b) Converted version

Fig. 7. If-Conversion example

1 for (int i=0; i<N; i++)
2 if (C[i] == 0)
3 A[i] = FAST_FUNCTION(B[i]);
4 else
5 A[i]=C[i]*SLOW_FUNCTION(D[i])
6 +FAST_FUNCTION(B[i]);

(a) Short circuiting to prevent from computing the slow function.

1 for (int i=0; i<N; i++)
2 A[i] = FAST_FUNCTION(B[i]);
3 #pragma novector
4 for (int i=0; i<N; i++)
5 if (C[i] != 0)
6 A[i]=C[i]*SLOW_FUNCTION(D[i])+A[i];

(b) Removing the short circuit to generate an efficient vector code.

Fig. 8. A loop containing conditional statement

of the branch and the predicate is used to store the correct
result back into memory by using bitwise mask operations
such as logical and/or/not operations. Figure 7-(a) shows a
loop containing conditional statements and Figure 7-(b) shows
its converted version. Clearly this transformation may execute
unnecessary instructions depending on values of the input, but
it makes the loop vectorizable. Therefore, compilers need to
use profiling information to estimate its profitability.

An example of a loop containing branches in our benchmark
set is shown in Figure 8-(a). The branch to prevent the
computation of the slow function in order to improve the
scalar performance is added because it is known that for many
iterations C[i] is zero. To vectorize this loop there are three
possible options: i) execute both parts of the branch in vector
fashion and only store the appropriate one; ii) remove the
condition and the first statement and vectorize only the second
statement. This option does not take advantage of the fact that
C[i] can be 0 for many iterations but it is better than the first
one; iii) apply loop distribution across the statements, vectorize
the first loop and run the second loop in scalar mode, as shown
in Figure 8-(b). As it will be discussed later in Section V,
some functions in Media Bench II applications have this type
of computation. We refer to this type of loops by Fast-Slow
Function (FSF).

To determine the best way to vectorize a loop with if
conditions the compiler needs profile information, as the
decision on which is the best option, is input data dependent.
B4) Generation of efficient vector code. Some transforma-
tions are required to increase the amount of parallelism or to

minimize the overheads of the vectorization.
1) Data Permutations (DP). This transformations is nec-

essary when a vector operation on two vector registers is
such that the corresponding elements of the operation are not
aligned. In that situation, permutation instructions need to be
used. It is important to minimize the number of permutations
instructions, as they are expensive, and not doing so, can result
in the vector code running slower than the original sequential
code. Although several works have been published on this
topic such as [10], [17], [18], current compilers do not apply
this optimization efficiently.

As an example, consider the code in Figure 9-(a) from
MILC. In this application the data types of the arrays are
double and the elements of the matrices are complex
numbers stored in an array of pairs representing complex
numbers. The compiler can easily vectorize the computation
of a0r*b0r,a0r*b0i and a0i*b0i,-a0i*b0r which
are the first and the second terms, respectively, of the two
statements on line 8 and 11, but need permutation operations
to add the results of the vector multiplication, as the data
do not have the right alignment in the vector registers. To
minimize the number of permutations, the compiler needs to
carefully regroup the additions of the results that have the same
alignment (this makes permutations unnecessary), as shown
in the computations of variables cpr,cpi and cmi,cmr
in Figure 9-(b). In this computation, a single permutation is
performed to compute the sum in lines 7 and 8. In addition,
we avoid individual multiplications by −1, by factoring out
the minus in the computation of cmi, as shown in line 5 of
Figure 9-(b). Another solution to this problem is to change
the layout of the complex structure as discussed earlier. In
other words, if the real and imaginary parts of the complex
numbers of the matrices had been stored in different matrices,
vectorizing this code would have been straight forward. But as
it was discussed before, changing the layout of a structure re-
quires global changes. Permutation minimization was required
in several loops in DNS and MILC.

2) Data Type Promotion (DTP). On integer codes it is
not uncommon for programmers to cast operations in a loop
on a data type to a larger data type, to avoid overflows.
However, sometimes the programmer cast to a larger type than
necessary, which results in less parallelism for vectorization.
Since casting to different data types requires shuffling of vector
registers, we can also classify it as data permutation.

As an example consider the code in Figure 10. In this partic-
ular example, since 16× (2×MAX_CHAR) < MAX_SHORT, it
is possible to perform the computation in the loop temporarily
as 16-bit short, instead of using the 32-bit integer data type
specified by the programmer and then add the result back
to sum. As we will see later in Section V, there are many
occurrences of this type of computation in the Media Bench
II applications.

3) Loop Invariant Recognition (LIR). We have observed that
in some cases compilers fail to recognize a loop invariant
that can be moved outside of the loop. In particular, we have
observed that XLC and GCC failed to recognize that a constant

1 for (int i=0; i<3; i++){
2 a0r=a->e[0][i].real;
3 a0i=a->e[0][i].imag;
4 b0r=(*b)->h[0].c[0].real;
5 b0i=(*b)->h[0].c[0].imag;
6 ...
7 c->h[0].c[i].real=
8 a0r*b0r+a0i*b0i+a1r*b1r
9 +a1i*b1i+a2r*b2r+a2i*b2i;
10 c->h[0].c[i].imag=
11 a0r*b0i-a0i*b0r+a1r*b1i
12 -a1i*b1r+a2r*b2i-a2i*b2r;
13 }

(a) Original code without regrouping.

1 for (int i=0; i<3; i++){
2 cpr=a0r*b0r+a1r*b1r+a2r*b2r;
3 cpi=a0r*b0i+a1r*b1i+a2r*b2i;

5 cmi=-(a0i*b0r+a1i*b1r+a2i*b2r);
6 cmr= (a0i*b0i+a1i*b1i+a2i*b2i);
7 c->h[0].c[i].real=cpr+cmr;
8 c->h[0].c[i].imag=cpi+cmi;
9 }

(b) Same code with regrouping.

Fig. 9. A loop from a function in MILC that requires optimizing data
permutations

1 //int sum;
2 //unsigned char* pix1,pix2;
3 for (int i=0; i<16; i++)
4 sum += abs(pix1[i] - pix2[i]);

Fig. 10. A common type of computation in Media Bench II

vector that was obtained from replicating a constant could be
moved outside the loop. We manually moved them out for
these cases.
B5) Other transformations

1) Reroll (RR). Rerolling manually unrolled loops in some
cases enables vectorization. Thus, unless the compiler can
vectorize basic blocks, fully unrolled loops cannot be vec-
torized and partially unrolled loops could lead to inefficient
vectorization. Of course, vectorization of basic blocks is in
some way a superset of loop rerolling.

2) Vectorization of while loops. While loops where the
condition of the loop is not predictable at compile/run time,
such as while(a[i]<b[i]), or for loops that have a
break instruction, are not vectorized by the compilers we
evaluated. We vectorized these loops manually by checking the
conditional expression of while(a[i]<b[i]) for consecu-
tive iterations in a vector manner and doing an AND reduction.
If the outcome of the reduction was true, a vector code for the
body of the loop runs; otherwise, a scalar code runs.

C. Profitability

Compilers use cost models to determine whether a trans-
formation is profitable, i.e., whether the transformed code
runs faster than the original. To determine if vectorization
is profitable, the compiler might need information about the

input data, the number of iterations of the loop, or whether
the overheads associated with the extra code added to enable
vectorization can be amortized with the benefit of the vector-
ization.

In some cases profiling information can be important to
guide the compiler. For example, profiling information can
be used to determine the most likely outcome of a branch.
In fact, loops with if conditions can be vectorized using the
if-conversion method discussed before. However, vectorizing
loops with if statements may result in slowdowns. Thus, the
profitability of vectorization of loops with if statements is
usually input data dependent, and only profile information can
be used to determine whether they should be vectorized.

V. EVALUATION OF VECTORIZING COMPILERS

A. Methodology

In this section, we evaluate the vectorization capabilities of
XLC, ICC and GCC. All arrays in the codes used in this
study are 16-byte aligned and contain the restrict attribute
and alignment assertions. One intention was to provide the
compiler with as much information as possible. The restrict
attribute for a pointer such as float* __restrict__ A
tells the compiler that no other pointer will access the same
memory addresses that A accesses. Alignment assertions are
instructions that inform the compiler about the alignment of
a pointer. We believe that in many cases the restrict attribute
and the alignment assertion could be automatically inserted by
the compiler but we have not studied this issue.

To obtain our experimental results we first compiled the
codes with vectorization disabled to generate scalar versions
(baseline) and with vectorization enabled to generate vector
codes (see compiler flags in Table III). Scalar and vector
codes were timed. When the obtained speedups were lower
than the expectation according to Table II, we transformed it
manually. First, we transformed the code at the source level
and then recompiled with vectorization options; if that also
failed, we wrote vector code using vector intrinsics. We will
use the following terminology for the evaluation:
• Speedup: Speedup of a code is the ratio of the running
time of the baseline, which is the original code compiled with
vectorization disabled, over the running time of the code (un-
transformed or transformed) compiled with the vectorization
options in Table III.
• Auto Vectorized: A code is auto vectorized when it is
automatically vectorized by the compiler and the speedup is
at least 1.15.
• Perfectly Auto Vectorized: A code is perfectly auto vector-
ized when it is auto vectorized by the compiler and we could
not obtain a higher speedup by hand.
• Not Vectorizable: A code is not vectorizable when neither
the compiler nor the manual transformations are helpful in ob-
taining a speedup of greater than 1.15 due to vectorization. In
our evaluation, the classification of a loop as not vectorizable
is done based on the target platforms (Intel or IBM), and not
on the compilers.

20

17

4

4

44

ICC

XLCXLC

GCC

3
6

Not Vectorizable

Auto Vectorized

2

3

Vectorizable

Vectorizable but none of the
compilers auto vectorized

20

6 18 4

Intel IBM

Fig. 11. Compilers evaluation for TSVC.

Notice that none of the evaluated compilers used profiling
to improve their capabilities in vectorization, except in one
case where XLC used the profiling data to apply symbolic
resolution transformation. The use of profiling changed the
performance of both the scalar and vectorized code (sometimes
increased and sometimes decreased). As a result, we have
not used the profile information for our evaluation. Next, we
present the evaluation for each of the benchmarks described
in Section II.

B. Test Suite for Vectorizing Compilers

Figure 11 shows a Venn diagram that graphically illustrates
the loops that are auto vectorized by each compiler and
the loops that are not vectorizable on the Intel or the IBM
platform. The diagram also shows graphically the number
of loops that are vectorized by all the compilers, the ones
vectorized by only one compiler, or the ones vectorized by
two of the compilers, but not the other one. The numbers
show that ICC is the compiler that auto vectorizes a higher
number of loops, 90, versus the 68 of XLC or the 59 of
GCC. The numbers 3 and 2 in the shaded rectangles in the
auto vectorized sets correspond to the loops that we classified
as not vectorizable for the IBM platform, but they are auto
vectorized on the Intel platform. There are 18 loops that cannot
be vectorized for any of the platforms because most of them
require sophisticated gather or scatter hardware support to
efficiently vectorize them. The number 20 which is not in
any of these sets, shows the loops that were not vectorized
by any of the compilers but are vectorizable by hand on both
platforms.

Table IV shows how much programmer effort is required
to vectorize the extended TSVC loop collection [1] described
in Section II, based on the compiler (XLC or ICC) used. In
particular the table shows how many loops were perfectly
auto vectorized by the XLC or ICC compiler, by applying
transformations at the source level or by writing vector code
using intrinsics. The transformations that we used are the ones
discussed in Section IV. We did not consider GCC for this
study, as our results show that GCC fails to vectorize many

Method XLC ICC
Vectorizable 124(82.12%) 127(84.11%)

Perfectly Auto Vectorized 66(43.71%) 82(54.31%)
Source Level Transformation 42(27.82%) 38(25.17%)

Intrinsics 16(10.6%) 7(4.64%)

TABLE IV
LOOP CLASSIFICATION BASED ON THE METHOD USED TO ACHIEVE THE

BEST SPEEDUP.

more code snippets than ICC. Notice that the diagram in
Figure 11 shows the auto vectorized loops, while Table IV
shows the loops that were perfectly auto vectorized.

Table VI shows the transformations we had to apply to
perfectly auto vectorize the loops in TSVC. Table VII shows
the number of loops that were perfectly auto vectorized by
one compiler, but not by the other one, and the transformation
that was required. For instance, the column XLC-ICC indicates
the loops vectorized by XLC, but not by ICC. This column
shows that XLC vectorized 3 loops that were not vectorized
by the ICC compiler where statement reordering was required.
When comparing ICC versus XLC we can observe that ICC
vectorized 9 loops that were not vectorized by XLC that
required if-conversion. The reason is that in most cases,
XLC only vectorizes loops with conditional statements when
the programmer has applied the if-conversion transformation
manually. Finally, the other 4 loops that XLC did not vectorize
but ICC did, are loops with non-unit stride accesses that
we vectorized using the data copying transformation. ICC
vectorized these loops because Intel platforms can use scalar
loads to build a vector register in case of non-unit stride
accesses. Table VIII shows the average speedup obtained
based on the vectorization method used over all loops in this
benchmark (speedup 1.0 is considered for the loops which
were not vectorized).

We also compared the compilers used in this study with the
compilers used in the evaluation made in 1991 by Callahan,
Dongarra, and Levine TSVC [7]. Since the machines used in
their study had support for vector instructions not available
today in the microprocessor vector extensions, such as gath-
er/scatter, and the collection we used had more loops than
the original collection, we removed the loops which did not
exist in the original collection and the loops which were not
vectorizable on neither Intel platform nor IBM platform. We
ended up with 85 loops and Table V how many loops were
vectorized by each compiler. In this table, a loop is considered
vectorized by a today’s compiler if a speedup of at least 1.15
is obtained (auto vectorized by our definition) and considered
vectorized by a compiler from Callahan’s collection if the
loop was either vectorized or partially vectorized according
to their model described in section 7 of [7]. Also, we refer
to XLC, ICC and GCC as New Compilers and the compilers
from Callahan’s collection as Old Compilers. As it is clear,
only ICC is comparable with the old compilers and that XLC
and GCC vectorized significantly fewer loops.

Overall, compilers have much room for improvement in vec-

Compilers Vectorized

N
ew

XLC 45 (52.94%)
ICC 61 (71.77%)
GCC 38 (44.71%)

O
ld

fc 6.1 65 (76.47%)
cft77 4.0.1.1 53 (62.35%)

CF77 4.0 70 (82.35%)
FORTRAN V5.5 54 (62.53%)

f77 4.3 67 (78.82%)
Fortran77EX 60 (70.59%)

fort77 62 (72.94%)
VS FORTRAN 2.4.0 66 (77.65%)

f77sx 010 63 (74.12%)

TABLE V
COMPARISON BETWEEN NEW AND OLD COMPILERS

Transformation Required XLC ICC GCC
Total 58 45 70

if-conversion 10 0 14
Vectorization of While and GOTO loops 3 0 0
Algorithm substitution and Node Splitting 9 8 6

Statement Reordering 0 3 3
Data Copying 9 8 12

Wrap Around Variable Detection 5 2 5
Reduction 4 5 10
Rerolling 0 4 1

Symbolic Resolution 3 3 3
Loop Interchanging 3 2 5
Loop Distribution 1 1 2

Other 11 9 9

TABLE VI
TRANSFORMATIONS REQUIRED TO PERFECTLY AUTO VECTORIZE THE

LOOPS IN TSVC.

torizatoin with regard to our results from TSVC benchmark.
There are three main reasons why today’s compilers fail in
vectorizing the loops in the TSVC benchmark. The first reason
is the hardware limitations of the current vector extensions.
For example, non-unit stride accesses are more challenging
for today’s compilers than they were for the compilers of 20
years ago, as the machines back then had hardware support
that is not available in today’s microprocessors. The second
reason is that today’s compilers are not designed to support
some programming patterns such as loops with wrap around
variables. The third reason is that compilers fail in the presence
of data dependences graphs that require statement reordering
or algorithm substitution, but we do not really know how
common they are today. We believe that this is because the
compilers are now concerned with a different set of patterns.

Our final observation is that if there was an imaginary
compiler which could vectorize all the cases that XLC, ICC
and GCC auto vectorized, it would auto vectorize about
83.05% of the loops which can take advantage of the vector
instructions of both platforms. In contrast XLC, ICC and GCC
can separately auto vectorize 54.84%, 70.87% and 46.46% of
the vectorizable loops in each platform. This number proves
that compiler technology to vectorize most of the loops already
exists, but the different compilers are developed by following
different directions.

X
L

C
-I

C
C

IC
C

-X
L

C

IC
C

-G
C

C

G
C

C
-I

C
C

X
L

C
-G

C
C

G
C

C
-X

L
C

Total 9 25 36 13 19 12
Statement Reordering 3 0 1 2 2 0

Loop Interchange 0 1 3 0 2 0
Rerolling 3 0 0 2 1 0
Reduction 1 2 6 1 4 0

if-conversion 0 9 14 0 9 3
Wrap Around Variable Detection 0 3 3 0 0 0

Data Copying 0 4 4 3 0 3
Other 2 6 5 5 1 6

TABLE VII
COMPILER COMPARISON BASED ON THE TRANSFORMATIONS REQUIRED

TO PERFECTLY AUTO VECTORIZE THE TSVC LOOPS.

Method XLC ICC GCC
Auto Vectorization 1.66 1.84 1.58

Transformations 2.97 2.38
Intrinsics 3.15 2.45

TABLE VIII
THE AVERAGE SPEEDUPS OBTAINED BY EACH METHOD.

C. PACT and Media Bench II Applications

Table X shows results for the functions in the PACT
and Media Bench II benchmark that consume most of the
execution time of the applications. We found these functions
by using gprof [11]. For each application, the table shows the
name of the function (the number that appears in front of some
of them represents the loop number in that function, since
some of them have multiple loops); the percentage of time
the application spent in each function (Perc); the speedups for
each compiler when the loops where automatically vectorized
(Auto columns) and the speedup when the code was manually
transformed or manually vectorized with intrinsics (Manual
columns). The numbers in bold in the Auto columns indicate
that the compiler perfectly auto vectorized this code. Notice
that Table X shows all speedups not just those above 1.15. Fi-
nally, the column Transformation indicates the transformation
(described in Section VI) that we had to apply to perfectly
auto vectorize a loop.

The DNS and MILC part of the table X shows the im-
portance of the optimization of the data permutations. As it
is clear from the table, XLC only obtains 1.02x speedup in
DNS application, while 6.98x can be obtained with manual
transformations; ICC does not obtain any speedup for MILC,
while manual transformations obtained 1.23x. GCC obtains
speedup of 1.25 for DNS which improves to 1.96 after manual
transformations. GCC does not obtain any speedup for MILC
before the manual transformations. Therefore, compilers need
to improve their capabilities in vectorizing cases where data
permutations are necessary. The imaginary compiler that we
mentioned above, can auto vectorize (with threshold 1.15) 10
out of 13 loops (76.92%). XLC auto vectorized 6 out of 13
loops (46%), as well as ICC.

Overall, the compilers vectorized few loops in the appli-

Method XLC ICC GCC
Auto Vectorization 1.154 1.279 1.232

Manual 2.101 2.743 2.692

TABLE IX
THE AVERAGE SPEEDUP OBTAINED WITH AUTO VECTORIZATION AND

MANUAL VECTORIZATION FOR PACT AND MEDIA BENCH II.

cations in PACT and Media Bench II. XLC, ICC and GCC
only auto vectorized 6 (18.18%), 10 (30.30%) and 7 (21.21%)
loops, respectively, out of total 33 loops. However, the imag-
inary compiler could vectorize 16 (48.48%) loops. Notice
that the data in Table X shows that the main transformations
compilers need to apply to avoid data dependence issues in
PACT and Media Bench II are recognition of induction point-
ers, reductions, symbolic resolution, and loop peeling which
are simple to apply since they need only local information.
However, the other transformations are the ones that deal
with non-unit stride accesses including recomputation and data
copying which requires interprocedural data and profitability
information. Also, the number of loops that require shuffling
transformations including data permutation and data type
promotion, shows that the compilers fail in efficiently using
vector permutations. Finally, Table IX shows by how much
the speedup obtained by each compiler improves after manual
transformations.

VI. RELATED WORK

Many papers were published in the 70’s, 80’s, and 90’s
about vectorization. Due to lack of space we do not discuss
them here. Apart from those papers, the closest work to our
work is that by Callahan, Donagarra and Levine where they
designed a benchmark (TSVC benchmark in our study) to as-
sess vectorizing compilers [5]. This benchmark only contains
synthetic loops and the compilers they used are now 20 years
old. Another similar empirical study on vectorization was done
by Ren et al. [16] where they evaluated how well ICC (version
8.0) vectorized the Berkeley Multimedia Workload suite [19].
That benchmark only has integer operations, so the capabilities
of the compiler to vectorize floating point operations was not
assessed in that study. In this paper, in addition to ICC we
also evaluated XLC and GCC. Finally, there is also a similar
study by Knuth where he studied the impact on performance
of several optimizations that he applied by hand [13]. That
study did not consider loop vectorization.

VII. CONCLUSION

Our study shows that some of today’s best compilers fail to
vectorize many patterns. It is also clear that it is possible to
attain significant improvements. In fact, XLC and ICC only
auto vectorized 45-71% of our synthetic benchmarks and only
about 18-30% of the loops extracted from the PACT and Media
Bench II codes. However, at the same time these compilers can
collectively vectorize about 83.05% of the synthetic bench-
mark and 48.49% of the PACT and Media Bench II. Our
hand analysis indicates that well-known techniques would be

successful on many of the loops that could not be vectorized
by these compilers.

One reason for the current situation seems to be lack of
resources. Compilers include a limited number of analyses and
transformations. Just adding several optimization modules to
compilers should lead to significant improvements. However,
the uneven behavior of the compilers across the benchmarks
indicates a second serious limitation: there is no universal
criteria to determine what are the important patterns. Given
limited resources the ability to identify what transformation
should be given priority is of course of great importance,
but there does not seem to exist a good methodology to
asses the importance of patterns and therefore no methodology
to determine what compiler transformations are the most
important ones.

ACKNOWLEDGMENT

This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Science
Foundation (award number OCI 07-25070) and the state of Illi-
nois. Blue Waters is a joint effort of the University of Illinois
at Urbana-Champaign, its National Center for Supercomputing
Applications, IBM, and the Great Lakes Consortium for Petas-
cale Computation. This research was supported in part by the
National Science Foundation under Award CCF 0702260.

REFERENCES

[1] Extended Test Suite for Vectorizing Compilers.
http://polaris.cs.uiuc.edu/˜maleki1/TSVC.tar.gz.

[2] Media Bench II. http://euler.slu.edu/˜fritts/mediabench/.
[3] MIMD Lattice Computation (MILC) Collaboration.

http://physics.indiana.edu/˜sg/milc.html.
[4] Petascale Application Collaboration Teams.

http://www.ncsa.illinois.edu/BlueWaters/pacts.html.
[5] D. Callahan, J. Dongarra, and D. Levine. Vectorizing compilers: a test

suite and results. In Supercomputing, Supercomputing ’88, pages 98–
105. IEEE Computer Society Press, 1988.

[6] S.-C. Chen and D. Kuck. Time and parallel processor bounds for linear
recurrence systems. IEEE Trans. on Computers, pages 701–717, 1975.

[7] D. L. David, D. Callahan, and J. Dongarra. A comparative study of
automatic vectorizing compilers. Parallel Computing, 17:1223–1244,
1991.

[8] A. E. Eichenberger, P. Wu, and K. O’Brien. Vectorization for simd
architectures with alignment constraints. In PLDI, pages 82–93, 2004.

[9] S. I. Feldman, D. M. Gay, M. W. Maimone, and N. L. Schryer.
Availability of f2c-a fortran to c converter. SIGPLAN Fortran Forum,
10:14–15, July 1991.

[10] F. Franchetti and M. Pschel. Generating simd vectorized permutations.
[11] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a call graph

execution profiler. SIGPLAN Not., 39:49–57, April 2004.
[12] W. D. Hillis and J. Guy L. Steele. Data parallel algorithms. Commun.

ACM, 29:1170–1183, December 1986.
[13] D. E. Knuth. An empirical study of fortran programs. Software: Practice

and Experience, 1(2):105–133, 1971.
[14] S. Kurien and M. Taylor. Direct numerical simulation of turbulence:

Data generation and statistical analysis. Los Alamos Science, 29:142–
151, 2005.

[15] Y. Lin and D. A. Padua. A simple framework to calculate the reaching
definition of array references and its use in subscript array analysis. In
Proc. of the 11 IPPS/SPDP’99 Workshops, pages 1036–1045, 1999.

[16] G. Ren, P. Wu, and D. Padua. An empirical study on the vectorization
of multimedia applications for multimedia extensions. In IPDPS, page
89.2. IEEE Computer Society, 2005.

[17] G. Ren, P. Wu, and D. Padua. Optimizing data permutations for simd
devices. In PLDI, pages 118–131, New York, NY, USA, 2006. ACM.

[18] L. Shen, L. Huang, N. Xiao, and Z. Wang. Implicit data permutation for
simd devices. In Embedded and Multimedia Computing, 2009. EM-Com
2009. 4th International Conference on, pages 1 –6, dec. 2009.

[19] N. T. Slingerland and A. J. Smith. Design and characterization of the
berkeley multimedia workload. Multimedia Syst., 8:315–327, July 2002.

App Function Perc XLC ICC GCC XLC ICC GCC XLC ICC GCC
Auto Auto Auto Manual Manual Manual Transf Transf Transf

DNS

multadd 26.5% - - - 1.86 1.85 1.86 DP DP DP
outerproduct3 16.7% 1.17 2.20 1.51 1.27 - 2.16 LIR - DP
axpy 15.1% 1.50 2.41 2.51 - - - - - -
axpy2 20.3% - 1.19 2.06 1.15 - - LIR - -
vorticity_x 7.4% - 1.59 - 1.64 1.68 2.60 DP DP DP
vorticity_y 7.4% - 1.59 - 1.63 1.69 2.05 DP DP DP
vorticity_z 6.5% - 1.91 - 2.63 2.16 2.13 DP DP DP
Application Speedup 1.02 1.21 1.25 6.98 1.26 1.96 - - -

MILC

mult_su3_nn 26.6% 2.26 - - - 1.11 1.13 - DP DP
add_lathwvec_proj 18.2% - - - - 1.20 1.12 - DP DP
mult_su3_na 29.9% 2.49 - - - 1.13 1.21 - DP DP
fieldlink_lathwvec 4.0% 1.15 - - - 1.84 1.26 - DP DP
sitelink_lathwvec 4.1% 1.05 - - 1.16 1.54 1.09 DP DP DP
mult_su3_an 2.1% 2.46 - - - 1.63 1.43 - DP DP
Application Speedup - 1.46 - - 1.46 1.23 1.14 - - -

JPEG Encoder

forward_DCT 1 38.5% - - - 1.13 1.67 - RR RR -
forward_DCT 3 - 1.74 - 3.59 3.70 3.23 FSF FSF FSF
jpeg_fdct_islow 1 30.8% - 1.32 1.63 - - - - - -
jpeg_fdct_islow 2 - - 2.58 - 2.49 - - IP -
grayscale_convert 2.9% - 1.59 - 13.60 16.08 15.22 SR SR SR
Application Speedup - 1.33 1.15 1.39 2.13 1.79 - - -

JPEG Decoder
jpeg_idct_islow 1 62.1% - - - - 1.27 - - FSF-IP -
jpeg_idct_islow 2 - - - - 1.26 1.20 - DC-RC-IP DC-RC
Application Speedup - - - - 1.14 1.03 - - -

H263 Encoder SAD_Macroblock 86.5% - - - 1.26 3.18 2.64 DTP-RR DTP-RR DTP-RR
Application Speedup - - - - 1.25 2.28 1.98 - - -

H263 Decoder
conv420to422 44.4% - - - 2.2 3.67 3.60 RC RC RC
conv422to444 44.4% - - - 1.73 1.87 2.99 LP-RC LP-RC LP-RC
Application Speedup - - - - 1.313 1.45 1.51 - - -

MPEG2 Encoder dist1 77.3% - - - 1.15 2.57 2.45 DTP-RR DTP-RR DTP-RR
Application Speedup - - - - 1.06 1.96 1.86 - - -

MPEG2 Decoder

conv422to444 17.61% - - - 2.19 1.38 2.82 LP-RC LP-RC LP-RC
conv420to422 14.81% - - - 1.99 3.64 3.74 RC RC RC
Saturate 9.84% - - 2.04 1.56 2.10 2.29 RE DP RE
idctcol 9.30% - - - 1.97 3.23 3.43 RC RC RC
Application Speedup - - - 1.13 1.37 1.45 1.63 - - -

MPEG4 Encoder

pix_abs16_c 34.7% - - - 2.11 3.42 3.01 DTP-RR DTP-RR DTP-RR
pix_abs16_xy2_c 7.4% - - - 2.73 4.89 3.15 DTP-RR DTP-RR DTP-RR
pix_abs16_y2_c 3.0% - - - 1.95 3.48 3.59 DTP-RR DTP-RR DTP-RR
pix_abs16_x2_c 2.6% - - - 1.64 4.00 3.28 DTP-RR DTP-RR DTP-RR
Application Speedup - - - - 1.43 1.81 1.65 - - -

MPEG4 Decoder v_resample 19.3% - 3.66 2.34 2.34 - 3.37 IP-LIR - DP-IP
Application Speedup - - 1.15 - 1.12 - - - - -

TABLE X
RESULTS FOR PACT AND MEDIA BENCH II APPLICATIONS AND TRANSFORMATION APPLIED TO VECTORIZE IT. THE DESCRIPTION FOR ALL OF THE

ACRONYMS CAN BE FOUND IN SECTION VI.

