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A key step in program optimization is the estimation of optimal
values for parameters such as tile sizes and loop unrolling fac-
tors. Traditional compilers use simple analytical models to compute
these values. In contrast, library generators like ATLAS use global
search over the space of parameter values by generating programs
with many different combinations of parameter values, and run-
ning them on the actual hardware to determine which values give
the best performance. It is widely believed that traditional model-
driven optimization cannot compete with search-based empirical
optimization because tractable analytical models cannot capture all
the complexities of modern high-performance architectures, but few
quantitative comparisons have been done to date.

To make such a comparison, we replaced the global search engine
in ATLAS with a model-driven optimization engine and measured
the relative performance of the code produced by the two systems
on a variety of architectures. Since both systems use the same code
generator, any differences in the performance of the code produced
by the two systems can come only from differences in optimization
parameter values. Our experiments show that model-driven opti-
mization can be surprisingly effective and can generate code with
performance comparable to that of code generated by ATLAS using
global search.
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I. INTRODUCTION

The sciences do not try to explain, they hardly even
try to interpret, they mainly make models. By a model
is meant a mathematical construct which, with the
addition of certain verbal interpretations, describes
observed phenomena. The justification of such a math-
ematical construct is solely and precisely that it is
expected to work.

—John Von Neumann

It is a fact universally recognized that current restruc-
turing compilers do not generate code that can compete with
hand-tuned code in efficiency, even for a simple kernel like
matrix multiplication. This inadequacy of current compilers
does not stem from a lack of technology for transforming
high-level programs into programs that run efficiently on
modern high-performance architectures; over the years, the
compiler community has invented innumerable techniques
such as linear loop transformations [5], [11], [14], [29], [42],
loop tiling [27], [28], [43], and loop unrolling [4], [32] for
enhancing locality and parallelism. Other work has focused
on algorithms for estimating optimal values for parameters
associated with these transformations, such as tile sizes
[7], [13], [36] and loop unroll factors [4]. Nevertheless,
performance-conscious programmers must still optimize
their programs manually [15], [19].

The simplest manual approach to tuning a program for a
given platform is to write different versions of that program,
evaluate the performance of these versions on the target plat-
form, and select the one that gives the best performance.
These different versions usually implement the same algo-
rithm, but differ in the values they use for parameters such
as tile sizes and loop unroll factors. The architectural in-
sights and domain knowledge of the programmer are used
to limit the number of versions that are evaluated. In effect,
the analytical techniques used in current compilers to derive
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Fig. 1. Architecture of ATLAS and model-driven ATLAS.

optimal values for such parameters are replaced by an em-
pirical search over a suitably restricted space of parameter
values (by empirical search, we mean a three-step process:
1) generating a version of the program corresponding to each
combination of the parameters under consideration; 2) ex-
ecuting each version on the target machine and measuring
its performance; and 3) selecting the version that performs
best). This approach has been advocated most forcefully by
F. Gustavson and his coworkers at IBM, who have used it
for many years to generate the highly optimized ESSL and
PESSL libraries for IBM machines [34]. Recently, a number
of projects such as FFTW [17], [18], PhiPAC [2], [6], ATLAS
[1], [41], and SPIRAL [26], [33] have automated the gener-
ation of the different program versions whose performance
must be evaluated. Experience shows that these library gen-
erators produce much better code than native compilers do
on modern high-performance architectures.

Our work was motivated by a desire to understand the
performance gap between the Basic Linear Algebra Subpro-
grams (BLAS) codes produced by ATLAS and by restruc-
turing compilers, with the ultimate goal of improving the
state of the art of current compilers. One reason why com-
pilers might be at a disadvantage is that they are general-pur-
pose and must be able to optimize any program, whereas
a library generator like ATLAS can focus on a particular
problem domain. However, this is somewhat implausible be-
cause dense numerical linear algebra, the particular problem
domain of ATLAS, is precisely the area that has been studied
most intensely by the compiler community, and there is an
extensive collection of well-understood transformations for
optimizing dense linear algebra programs. Another reason
for the inadequacy of current compilers might be that new
transformations, unknown to the compiler community, are
required to produce code of the same quality as the code
produced by ATLAS. Finally, it is possible that the analyt-
ical models used by compilers to estimate optimal values
for transformation parameters are overly simplistic, given the
complex hardware of modern computers, so they are not able
to produce good values for program optimization parameters.

No definitive studies exist to settle these matters. Our re-
search is the first quantitative study of these issues.

Fig. 1 shows our experimental setup, which makes use of
the original ATLAS system (top of the figure) and a modified
version (bottom of the figure) that uses analytical models in-
stead of empirical search. Like any system that uses empir-
ical search, ATLAS has: 1) a module that controls the search,
which is used to determine optimal values for code optimiza-
tion parameters (mmsearch), and 2) a module that generates
code, given these values (mmcase). The parameters used by
ATLAS are described in more detail in Section II; for ex-
ample, is the tile size to be used when optimizing code
for the L1 data cache. In general, there is an unbounded
number of possible values for a parameter like so it
is necessary to bound the size of the search space. When
ATLAS is installed, it first runs a set of microbenchmarks to
determine hardware parameters such as the capacity of the L1
data cache and the number of registers. These hardware pa-
rameters are used to bound the search space. The mmsearch
module enumerates points within this bounded search space,
invokes the mmcase module to generate the appropriate code
(denoted by mini-MMM in the figure), runs this code on the
actual machine, and records its execution time. At the end
of the search, the parameter values that gave the best per-
formance are used to generate the library code. This library
is coded in a simple subset of C, which can be viewed as
portable assembly code, and it is compiled to produce the
final executable.

We first studied the code generation module1 and de-
termined that the code it produces can be viewed as the
end result of applying standard compiler transformations
to high-level BLAS codes. As we describe in Section II,
the code produced by ATLAS is similar to what we would
get if we applied cache tiling, register tiling, and operation
scheduling to the standard three-loop matrix multiplication

1The description of ATLAS in this paper was arrived at by studying the
ATLAS source code. In case of any discrepancy between this description
and how the ATLAS system is actually implemented, the documentation of
the ATLAS project should be considered to be authoritative [39]–[41].
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code. This exercise ruled out the possibility that ATLAS
incorporated some transformation, unknown to the compiler
community, that was critical for obtaining good perfor-
mance. We then modified ATLAS by replacing the search
module, described in more detail in Section III, with a
module (mmmodel) that uses standard analytical models to
estimate optimal values for the optimization parameters, as
described in Section IV. Since both ATLAS and the modified
ATLAS use the same code generator, we are assured that any
difference in the performance of the generated code results
solely from different choices for optimization parameter
values. In Section V, we present experimental results on ten
different platforms, comparing:

• the time spent to determine the parameter values;
• the values of the parameters;
• the relative performance of generated code.

Our results show that on all ten platforms, a relatively
simple and very intuitive model is able to estimate near-
optimal values for the optimization parameters used by the
ATLAS Code Generator. We conclude in Section VI with a
discussion of our main findings and suggest future directions
for research.

One feature of ATLAS is that it can make use of hand-
tuned BLAS routines, many of which are included in the
ATLAS distribution. When ATLAS is installed on a machine,
these hand-coded routines are executed and evaluated. If the
performance of one of these hand-coded routines surpasses
the performance of the code generated by the ATLAS Code
Generator, the hand-coded routine is used to produce the li-
brary. For example, neither the ATLAS Code Generator nor
the C compilers on the Pentium IV exploit the SSE2 vector
extensions to the x86 instruction set, so ATLAS-generated
matrix multiplication code on the Pentium IV runs at around
1.5 Gflops. However, the matrix multiplication routine in the
library produced by ATLAS runs at 3.3 Gflops because it
uses carefully hand-coded kernels, contributed by expert pro-
grammers and part of the ATLAS distribution, which use
these vector extensions.

Our concern in this paper is not with handwritten code, but
with the code produced by the ATLAS Code Generator and
with the estimation of optimal values for the parameters that
are inputs to the code generator. To make clear distinctions,
we use the following terminology in the rest of this paper.

• ATLAS CGw/S: This refers to the ATLAS system in
which all code is produced by the ATLAS Code Gen-
erator with Search to determine parameter values. No
handwritten, contributed code is allowed.

• ATLAS Model: This refers to the modified ATLAS
system we built in which all code is produced by
the ATLAS Code Generator, using parameter values
produced from analytical models.

• ATLAS Unleashed: This refers to the complete ATLAS
distribution, which may use handwritten codes and
predefined parameter values (architectural defaults) to
produce the library. Where appropriate, we include, for
completeness, the performance graphs for the libraries
produced by ATLAS Unleashed.

Fig. 2. Naive MMM code.

II. ATLAS CODE GENERATOR

In this section, we use the framework of restructuring com-
pilers to describe the structure of the code generated by the
ATLAS Code Generator. While reading this description, it
is important to keep in mind that ATLAS is not a compiler.
Nevertheless, thinking in these terms helps clarify the signif-
icance of the code optimization parameters used in ATLAS.

We concentrate on matrix–matrix multiplication (MMM),
which is the key routine in the BLAS. Naive MMM code
is shown in Fig. 2. In this, and all later codes, we use the
MATLAB notation to represent the set
of all integers between and in steps of .

A. Memory Hierarchy Optimizations

The code shown in Fig. 2 can be optimized for locality by
blocking for the L1 data cache and registers. Blocking is an
algorithmic transformation that converts the matrix multipli-
cation into a sequence of small matrix multiplications, each
of which multiplies small blocks of the original matrices.
Blocking matrix multiplication for memory hierarchies was
discussed by McKellar and Coffman as early as 1969 [31].
The effect of blocking can be accomplished by a loop trans-
formation called tiling, which was introduced by Wolfe in
1987 [43].

• Optimization for the L1 data cache: ATLAS im-
plements an MMM as a sequence of mini-MMMs,
where each mini-MMM multiplies submatrices of size

. is an optimization parameter whose
value must be chosen so that the working set of the
mini-MMM fits in the cache.

In the terminology of restructuring compilers, the
triply nested loop of Fig. 2 is tiled with tiles of size

, producing an outer and an inner
loop nest. For the outer loop nest, code for both the
JIK and IJK loop orders are implemented. When the
MMM library routine is called, it uses the shapes of
the input arrays to decide which version to invoke, as
described later in this section. For the inner loop nest,
only the JIK loop order is used, with as con-
trol variables. This inner loop nest multiplies subma-
trices of size , and we call this computation
a mini-MMM.

• Optimization for the register file: ATLAS represents
each mini-MMM into a sequence of micro-MMMs,
where each micro-MMM multiplies an 1 subma-
trix of by a 1 submatrix of and accumulates
the result into an submatrix of .
and are optimization parameters that must be
chosen so that a micro-MMM can be executed without
floating-point register spills. For this to happen, it is
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Fig. 3. MMM tiled for L1 data cache and registers.

necessary that , where
is the number of floating-point registers.

In terms of restructuring compiler terminology, the
loops of the mini-MMM from the previous

step are tiled with tiles of size , pro-
ducing an extra (inner) loop nest. The JIK loop order is
chosen for the outer loop nest after tiling, and the KJI
loop order for the loop nest of the mini-MMM after
tiling.

The resulting code after the two tiling steps is shown
in Fig. 3. To keep this code simple, we have assumed
that all step sizes in these loops divide the appropriate
loop bounds exactly (so divides , , and ,
etc.). In reality, code should also be generated to
handle the fractional tiles at the boundaries of the three
arrays; we omit this cleanup code to avoid compli-
cating the description. The strategy used by ATLAS
to copy blocks of the arrays into contiguous storage
is discussed later in this section. Fig. 4 is a pictorial
view of a mini-MMM computation within which a
micro-MMM is shown using shaded rectangles. In this
figure, the values assigned to variable are produced
by executing the two for loops in Fig. 3 corresponding
to indexes and .

To perform register allocation for the array variables ref-
erenced in the micro-MMM code, ATLAS uses techniques
similar to those presented in [8]: the micro-MMM loop nest

in Fig. 3 is fully unrolled, producing mul-
tiply and add statements in the body of the middle loop nest.
In the unrolled loop body, each array element is accessed
several times. To enable register allocation of these array el-
ements, ATLAS uses scalar replacement [9] to introduce a
scalar temporary for each element of , , and that is ref-
erenced in the unrolled micro-MMM code and replaces array
references in the unrolled micro-MMM code with references
to these scalars. Appropriate assignment statements are in-
troduced to initialize the scalars corresponding to and
elements. In addition, assignment statements are introduced
before and after the loop to initialize the scalars corre-
sponding to elements and to write the values back into the

Fig. 4. Mini-MMM and micro-MMM.

array, respectively. It is expected that the back-end compiler
will allocate floating-point registers for these scalars.

B. Pipeline Scheduling

The resulting straight-line code in the body of the loop
is scheduled to exploit instruction-level parallelism. Note
that the operations in the loop are the loads
of and elements required for the micro-MMM and the
corresponding multiplications and additions.
On hardware architectures that have a fused multiply–add
instruction, the scheduling problem is much simpler because
multiplies and adds are executed together. Therefore, we
only discuss the more interesting case when a multiply–add
instruction is not present. An optimization parameter
tells the code generator whether to assume that a fused
multiply–add exists. The scheduling of operations can be
described as follows.

• Construct two sequences of length ( ), one
containing the multiply operations (we will denote
them by ) and the other
containing the add operations (we will denote them by

).
• Interleave the two sequences as shown below to create a

single sequence that is obtained by skewing the adds by a
factor of , where is an optimization parameter. In-
tuitively, this interleaving separates most dependent mul-
tiplies and adds by 2 independent instructions to
avoid stalling the processor pipeline.
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• Inject the loads of the elements of and into
the resulting sequence of arithmetic operations by sched-
uling a block of (Initial Fetch) loads in the beginning
and blocks of loads thereafter as needed. and
are optimization parameters.

• Unroll the loop completely. The parameter must
be chosen to be large enough to reduce loop overhead, but
not so large that the body of the loop overflows the L1
instruction cache.

• Reorganize the loop to enable the target machine to
overlap the loads from one iteration with arithmetic op-
erations from previous iterations. Techniques for accom-
plishing this are known as software pipelining or modulo
scheduling [35].
Note that skewing of dependent adds and multiplies

increases register pressure; in particular, the following in-
equality must hold to avoid register spills (that is, saving in
memory the value stored in a processor register)

(1)

C. Additional Details

There are several details we have not discussed so far.

• ATLAS considers a primitive form of L2 cache tiling,
driven by a parameter called . ATLAS em-
pirically finds the best value of and uses it
to compute , based on inequality (2)

(2)

is further trimmed to be a multiple of . The
computed value of is used to block the dimen-
sion of the original problem for one additional level of
the memory hierarchy. We will not discuss
and in further detail as they are outside the scope
of the paper.

• ATLAS chooses the outermost loop order (shown as
JIK in Fig. 3) during runtime. This technique is known
as versioning, because it requires both versions of the
code to be compiled in the library.

The decision of which loop order to choose is based
on the size of matrices and . If is smaller than
( ), ATLAS chooses the JIK loop order. This
guarantees that if fits completely in L2 or higher
cache level, it is reused successfully by the loop nest.

Similarly, if is the smaller matrix ( ), ATLAS
chooses the IJK loop order.

For brevity, we consider only the JIK loop order in
the rest of the paper.

• Unless the matrices are too small or too large, ATLAS
copies tiles of matrices , , and to sequential
memory to reduce the number of conflict misses and
TLB misses during the execution of a mini-MMM.
Copying is performed in a manner that allows the
copied tiles to be reused by different mini-MMMs.
The comments in Fig. 3 and the discussion below ex-
plain how this goal is achieved for the JIK loop order.
– Copy all tiles of before the beginning of the out-

ermost loop. This is necessary, as these tiles are
fully reused in each iteration of the loop.

– Copy all tiles from the vertical panel of before
the beginning of the loop. This is necessary, as this
panel is fully reused by each iteration of the loop.

– The single tile of is copied before the be-
ginning of the loop if . This may
reduce TLB misses, which may be beneficial, since
this tile is reused by each iteration of the loop,
provided that the cost of copying the tile of to a
temporary buffer and back can be amortized by the
computation (large enough ).

If the matrices are very small or if there is insuffi-
cient memory for copying tiles, the cost of copying
might outweigh the benefits of reducing conflict misses
during the computation. Therefore, ATLAS generates
noncopying versions of mini-MMM as well, and de-
cides at runtime which version to use. Without copying,
the number of conflict misses and TLB misses may
rise, so it makes sense to use a smaller tile size for
the noncopying mini-MMM. In ATLAS, this tile size
is another optimization parameter called (non-
copying ). Roughly speaking, the noncopy version
is used if: 1) the amount of computation is less than
some threshold ( in Fig. 2 is less than
some threshold) and 2) at least one dimension of one
of the three matrices is smaller than 3 . The
noncopy version is used also when there is insufficient
memory to perform the copying.

D. Discussion

Table 1 lists the optimization parameters for future
reference.

It is intuitively obvious that the performance of the gener-
ated mini-MMM code suffers if the values of the optimiza-
tion parameters in Table 1 are too small or too large. For ex-
ample, if and are too small, the block of
computation instructions might not be large enough to hide
the latency of the loads. On the other hand, if these
parameters are too large, register spills happen. Similarly, if
the value of is too small, there is more loop overhead,
but if this value is too big, the code in the body of the loop
will overflow the instruction cache. The goal now is to de-
termine optimal values of these parameters for obtaining the
best mini-MMM code.
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Table 1
Summary of Optimization Parameters

III. EMPIRICAL OPTIMIZATION IN ATLAS

ATLAS performs a global search to determine optimal
values for the optimization parameters listed in Table 1. In
principle, the search space is unbounded because most of the
parameters, such as , are integers. Therefore, it is neces-
sary to bound the search space, using parameters of the ma-
chine hardware; for example, and , the dimensions
of the register tile, must be less than the number of registers.

Since ATLAS is self-tuning, it does not require the user
to provide the values of such machine parameters; instead,
it runs simple microbenchmarks to determine approximate
values for these parameters. It then performs a global search,
using the machine parameter values to bound the search
space.

A. Estimating Machine Parameters

The machine parameters measured by ATLAS are the
following.

• : the size of L1 data cache.
• : the number of floating-point registers.
• : the availability of a fused multiply–add

instruction.
• : although this is not a hardware parameter per se,

it is directly related to the latency of floating-point
multiplication, as explained in Section II-B. ATLAS
measures this optimization parameter directly using a
microbenchmark.

The microbenchmarks used to measure machine parame-
ters are independent of matrix multiplication. For example,
the microbenchmark for estimating is similar to the one
discussed in Hennessy and Patterson [23].

Two other machine parameters are critical for perfor-
mance: 1) the L1 instruction cache size and 2) the number
of outstanding loads that the hardware supports. ATLAS
does not determine these explicitly using microbenchmarks;
instead, they are considered implicitly during the optimiza-
tion of matrix multiplication code. For example, the size
of the L1 instruction cache limits the parameter in
Fig. 3. Rather than estimate the size of the instruction cache
directly by running a microbenchmark and using that to
determine the amount of unrolling, ATLAS generates a suite
of mini-MMM kernels with different values and selects
the kernel that achieves best performance.

B. Global Search for Optimization Parameter Values

To find optimal values for the optimization parameters in
Table 1, ATLAS uses orthogonal line search, which finds

an approximation to the optimal value of a function
, an -dimensional optimization problem,

by solving a sequence of one-dimensional optimization
problems corresponding to each of the parameters. When
optimizing the value of parameter , it uses reference values
for parameters that have not yet been
optimized. Orthogonal line search is heuristic because it does
not necessarily find the optimal value even for a convex func-
tion, but with luck, it might come close.

To specify an orthogonal line search, it is necessary to
specify: 1) the order in which the parameters are optimized;
2) the set of possible values considered during the opti-
mization of each parameter; and 3) the reference value
used for parameter during the optimization of parameters

.
The optimization sequence used in ATLAS is the

following.

1) Find best .
2) Find best and .
3) Find best .
4) Find best .
5) Find best , , and .
6) Find best : a noncopy version of .
7) Find best cleanup codes.
We now discuss each of these steps in greater detail.
1) Find Best : In this step, ATLAS generates a

number of mini-MMMs for matrix sizes where
is a multiple of four that satisfies the following in-

equality:

(3)

The reference values of and are set to the values
closest to each other that satisfy (1). For each matrix size,
ATLAS tries two extreme cases for —no unrolling
( ) and full unrolling ( ).

The value that produces highest megaflops is chosen
as “best ” value, and it is used from this point on in all
experiments as well as in the final versions of the optimized
mini-MMM code.

2) Find Best and : This step is a straightforward
search that refines the reference values of and that
were used to find the best . ATLAS tries all possible com-
binations of and that satisfy inequality (1). Cases
when or is one are treated specially. A test is per-
formed to see if 1 9 unrolling or 9 1 unrolling is better
than 3 3 unrolling. If not, unrolling factors of the form
1 and 1 for values of greater than three are not
checked.

3) Find Best : This step is another simple search.
Unlike and , does not depend on the number
of available registers, so it can be made as large as desired
without causing register spills. The main constraint is in-
struction cache size. ATLAS tries values for between
four and as well as the special values one and .
The value that gives best performance (based on ,
and as determined from the previous steps) is declared
the optimal value for .
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4) Find Best : In this step, ATLAS uses values
in the interval [1], [6] to schedule the computations in the
micro-MMM of Fig. 3 to determine the best choice for . It
also ensures that the chosen value divides
to facilitate instruction scheduling.

5) Find Best , , and : In this step, ATLAS
searches for the values of , , and . First, ATLAS
determines the value of (zero or one). Then, it searches
for the best value of the pair where is in
the interval and is in the interval

.
6) Find Best : For the noncopying version of

mini-MMM, ATLAS uses the same values of , , ,
, and that it uses for the copying version. Without

copying, the likelihood of conflict misses is higher, so it
makes sense to use a smaller L1 cache tile size than in
the version of mini-MMM that performs copying. ATLAS
searches for an optimal value of in the range

. We would expect performance to increase
initially as the tile size is decreased, but decrease when
the tile size becomes too small. ATLAS terminates the
search when the performance falls by 20% or more from the
best performance it finds during this search. Finally, some
restricted searches for better values of and are done.

7) Find Best Cleanup Codes: If the tile size is not a mul-
tiple of the original matrix size, there may be leftover rows
and columns, at the boundaries of the matrices, forming frac-
tional tiles. To handle these fractional tiles, ATLAS generates
cleanup code—a special mini-MMM in which one or more
of the dimensions of the three tiles is smaller than . For
and cleanup, only the corresponding dimension is smaller
than , while for cleanup, any of the three dimensions
can be smaller than .

For example, ATLAS generates cleanup codes as fol-
lows. For each value of , representing the size of the
dimension, starting with and going down, it
generates a specialized version of the mini-MMM code in
which some of the loops are fully unrolled. Full unrolling is
possible because the shapes of the operands are completely
known. When the performance of the general version falls
within 1% of the performance of the current specialized ver-
sion, the generation process is terminated. The current is
declared to be the Crossover Point. At runtime, the special-
ized versions are invoked when the dimension of the leftover
tile is greater than , while the general version is invoked for
tile sizes smaller than .

For and cleanup ATLAS produces only a general
version, as these are outer loops in the outermost loop nest
in Fig. 3 and they are not as crucial to performance as
cleanup is. The use of cleanup code in ATLAS is discussed
in more detail in [39].

C. Discussion

In optimization problems, there is usually a tradeoff be-
tween search time and the quality of the solution. For ex-
ample, we can refine the parameters found by ATLAS by
repeating the orthogonal line search some number of times,

Fig. 5. Schematic pseudocode for mini-MMM.

using the values determined by one search as the reference
values for the next search. It is also possible to use more
powerful global search algorithms like simulated annealing.
However, the potential for obtaining better solutions must be
weighed carefully against the increase in installation time.
We will address this point in the conclusion.

IV. MODEL-BASED OPTIMIZATION

In this section, we present analytical models for estimating
optimal values for the parameters in Table 1. To avoid over-
whelming the reader, we first present models that ignore in-
teractions between different levels of the memory hierarchy
(in this case, L1 data cache and registers). Then, we refine
the models to correct for such interactions.

A. Estimating Hardware Parameters

Model-based optimization requires more machine param-
eters than the ATLAS approach because there is no search.
The hardware parameters required by our model are as
follows.

• , : the capacity and the line size of the L1 data
cache.

• : The capacity of the L1 instruction cache.
• : hardware latency of the floating-point multiply in-

struction
• : number of floating-point functional units
• : the number of floating-point registers.
• : the availability of a fused multiply–add

instruction.

Empirical optimizers use the values of machine parame-
ters only to bound the search space, so approximate values for
these parameters are adequate. In contrast, analytical models
require accurate values for these parameters. Therefore, we
have developed a tool called X-Ray [44], which accurately
measures these values.

B. Estimating

We present our model for estimating using a sequence
of refinements for increasingly complex cache organizations.
We start with the mini-MMM code in Fig. 5, and then adjust
the model to take register tiling into account.

The goal is to find the value of that optimizes the use
of the L1 data cache. First, we consider a simple cache of
capacity , which is fully associative with optimal replace-
ment policy and unit line-size. There are no conflict misses,
and spatial locality is not important.

The working set in memory of the mini-MMM loop nest
in Fig. 5 consists of three tiles, one from each of
the matrices , , and . For the rest of this section, we will
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refer to these tiles just as , , and . This working set fits
entirely in the cache if inequality (4) holds

(4)

A more careful analysis shows that it is not actually neces-
sary for all three blocks to reside in the cache for
the entire duration of the mini-MMM computation. Consider
the mini-MMM code shown in Fig. 5. Because is the inner-
most loop, elements of are computed in succession; once a
given element of has been computed, subsequent iterations
of the loop nest do not touch that location again. Therefore,
with this loop order, it is sufficient to hold a single element
of in the cache, rather than the entire array. The same rea-
soning shows that it is sufficient to hold a single column of

in the cache. Putting these facts together, we see that with
this loop order, there will be no capacity misses if the cache
can hold all of , a single column of , and a single element
of . This leads to inequality (5)

(5)

1) Correcting for Nonunit Line Size: In reality, caches
have nonunit line size. Assume that the line size is . If
the three tiles are stored in column major order, both and

are walked by columns and is in cache for the entire du-
ration of the mini-MMM. This leads to the refined constraint
shown in inequality (6)

(6)

2) Correcting for LRU Replacement Policy: We can fur-
ther relax the restrictions of our cache organization to allow
for least recently used (LRU) replacement instead of optimal
replacement. To determine the effects of LRU replacement
on the optimal tile size , we must examine the history of
memory accesses performed by the loop nest. This analysis
is in the spirit of Mattson et al. [30], who introduced the no-
tions of stack replacement and stack distance.

We start with the innermost loop of the mini-MMM loop
nest. A single iteration of this loop touches elements

where the most recently accessed element is written right-
most in this sequence.

Extending this analysis to the middle loop, we see that the
sequence of memory access for a given value of the outer
loop indexes is the following (as before, the most re-
cently accessed element is rightmost):

Note that the location is touched repeatedly, so the cor-
responding history of memory accesses from least recently
accessed to most recently accessed is the following:

Extending this to a single iteration of the outermost loop,
we see that the sequence of memory accesses is the following
(in left-to-right, top-to-bottom order):

...

Note that the column of is reused times and, thus,
the corresponding history of memory accesses from least re-
cently accessed to most recently accessed is

...

We do not want to evict the oldest element of this his-
tory ( ) because, as we discussed before, is completely
reused in all iterations of the outermost loop. Therefore, we
need to choose is such a way that this whole history fits
in the cache.

Furthermore, after the th iteration of the outermost loop
is complete, the st iteration will bring in the st

column of , which participates in an inner product with all
the rows of . Because of LRU, this new column will not be
able to “optimally” replace the old th column of , since
the old column of has been used quite recently. For the
same reason the new element of , namely, , will not
be able to optimally replace the old . To account for this,
we need extra storage for an extra column of and an extra
element of .

Putting this all together, we see that if the cache is fully
associative with capacity , line size and has an LRU
replacement policy, we need to cache all of , two columns
of and a column plus an element of . This result is ex-
pressed formally in inequality (7)

(7)

Finally, to model the mini-MMM code of Fig. 3, which
includes register tiling, we need to take into account inter-
actions between the register file and the L1 cache. Thus far,
we implicitly assumed that the computation works directly
on the scalar elements of the tiles. As Fig. 3 shows, the
mini-MMM loop nest actually works on register tiles. We
refine inequality (7) by recognizing that considerations of
rows, columns, and elements of , , and respectively
must be replaced by considerations of horizontal panels,
vertical panels, and register tiles instead. Taking this into
account, we get inequality (8)

(8)

3) Correcting to Avoid Micro-MMM Cleanup Code:
Note that estimating using inequality (7), it is possible
to get a value for which is not an exact multiple of

and . This requires the generation of cleanup code
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for fractional register tiles at the boundaries of mini-MMM
tiles. This complicates code generation, and generally lowers
performance. We avoid these complications by trimming
the value of determined from inequality (7) so that it
becomes a multiple of and . The ATLAS Code
Generator requires to be an even integer, so we enforce
this constraint as well.

If is the tile size obtained by using inequality
(7), we set to the value

.
Note this requires that the value of be determined after

the values of and have been determined as described
below.

4) Other Cache Organizations: If the cache organization
is not fully associative, conflict misses must be taken into
account. Although there is some work in the literature on
modeling conflict misses [10], [12], these models are not
computationally intractable. Therefore, we do not model
conflict misses, although there are some general remarks we
can make.

If , , and are copied to contiguous storage lo-
cations, inequality (4) can also be viewed as determining the
largest value of for which there are no capacity or conflict
misses during the execution of the mini-MMM in any cache
organization. Although ATLAS usually copies tiles, the code
in Fig. 3 shows that the three copied tiles are not necessarily
adjacent in memory. However, if the set-associativity of the
L1 data cache is at least three, there will be no conflict misses.

Inequality (5) determines the largest for which there
are no capacity misses during the execution of the mini-
MMM, although there may be conflict misses if the cache
is direct-mapped or set-associative. Notice that these con-
flict misses arise even if data from all three matrix tiles is
copied into contiguous memory, because the amount of the
data touched by the program is more than the capacity of the
cache, and some elements will map to the same cache set.

C. Estimating and

One can look at the register file as a software-controlled,
fully associative cache with unit line size and capacity equal
to the number of available registers . Therefore, we can
use a variant of inequality (5), to estimate the optimal register
file tile size value.

The ATLAS Code Generator uses the KIJ loop order to tile
for the register file and, thus, we need to cache the complete

tile of , an 1 row of and a single element
of . Therefore, the analog of inequality (5) for registers is
inequality (9), shown below

(9)

Because the register file is software controlled, the ATLAS
Code Generator is free to allocate registers differently than
inequality (9) prescribes. In fact, as discussed in Section II,
it allocates to registers a 1 column of , rather than
a single element of . Furthermore, it needs registers
to store temporary values of multiplication operations to

schedule for optimal use of the floating-point pipelines.
Taking into account these details, we refine inequality (9) to
obtain inequality (10)

(10)

is a hardware parameter, which is measured by the mi-
crobenchmarks. The value of the optimization parameter
is estimated as discussed in Section IV-E. Therefore, the only
unknowns in inequality (10) are and . We estimate
their values using the following procedure.

• Let . Solve inequality (10) for .
• Let . Solve inequality (10) for .
• Let
• Let .

D. Estimating

Although is structurally similar to and , it is
obviously not limited by the size of the register file. There-
fore, the only practical limit for is imposed by the size of
the instruction cache. To avoid micro-MMM cleanup code,
we trim so that is a multiple of . Note that if

, it is left unchanged by this update.
Therefore, our model for estimating is to unroll the

loop as far as possible within the size constraints of the L1
instruction cache, while ensuring that divides . On
most platforms, we found that the loop can be unrolled com-
pletely ( ).

E. Estimating

is the optimization parameter that represents the skew
factor the ATLAS Code Generator uses when scheduling de-
pendent multiplication and addition operations for the CPU
pipeline.

Studying the description of the scheduling in Section II,
we see that the schedule effectively executes independent
multiplications and independent additions between
a multiplication and the corresponding addition .
The hope is that these 2 independent instructions
will hide the latency of the multiplication. If the floating-
point units are fully pipelined and the latency of multipli-
cation is , we get the following inequality, which can be
solved to obtain a value for :

(11)

On some machines, there are multiple floating-point units.
If is the number of floating-point ALUs, inequality
(11) gets refined as follows:

(12)

Solving inequality (12) for , we obtain inequality (13)

(13)

Of the machines in our study, only the Intel Pentium ma-
chines have floating-point units that are not fully pipelined; in
particular, multiplications can be issued only once every two
cycles. Nevertheless, this does not introduce any error in our
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model because ATLAS does not schedule back-to-back mul-
tiply instructions, but intermixes them with additions. There-
fore, inequality (11) holds.

F. Estimating Other Parameters

Our experience shows that performance is insensitive
to the values of , , and optimization parameters.
Therefore, we set true , and .

FMA is a hardware parameter, independent of the specific
application. If our microbenchmarks determine that the ar-
chitecture supports a fused multiply–add instruction, we set
this parameter appropriately.

Finally, we set . That is, we use the same
tile size for the noncopying version of mini-MMM as we
do for the copying version. In our experiments, ATLAS al-
ways decided to use the copying version of mini-MMM,2 so
the value of this parameter was moot. A careful model for

is difficult because it is hard to model conflict misses
analytically. There is some work on this in the compiler lit-
erature but most of the models are based on counting integer
points within certain parameterized polyhedra and appear to
be intractable [10], [12]. Fraguela et al. have proposed an-
other approach to modeling conflict misses when the sizes of
matrices are known [16]. In some compilers, this problem
is dealt with heuristically by using the effective cache ca-
pacity, defined to be a fraction (such as 1/3) of the actual
cache capacity, when computing the optimal tile size. In our
context, we could set to the value determined from
inequality (7) with replaced with . We recommend
this approach should it become necessary to use a smaller tile
size on some architectures.

G. Discussion

We have described a fairly elaborate sequence of models
for estimating the optimal value of . In practice, the value
found by using inequality (6), a relatively simple model, is
close to the value found by using more elaborate models such
as Inequalities (7) and (8).

V. EXPERIMENTAL RESULTS

Models are to be used, not believed.

—H. Theil, “Principles of Econometrics”

In this section, we present the results of running ATLAS
CGw/s and ATLAS Model on ten common platforms. For
all experiments we used the latest stable version of ATLAS,
which as of this writing is 3.6.0. Where appropriate, we
also present numbers for ATLAS Unleashed and vendor
supported, native BLAS.

We did our experiments on the following platforms.

• RISC, Out-of-order:
– DEC Alpha 21 264.
– IBM Power 3.
– IBM Power 4.
– SGI R12K.

2Using the noncopy version is mainly beneficial when the matrices in-
volved in the computation are either very small or are long and skinny [37].

• RISC In-order:
– Sun UltraSPARC IIIi.
– Intel Itanium2.

• CISC, Out-of-order:
– AMD Opteron 240.
– AMD Athlon MP.
– Intel Pentium III.
– Intel Pentium 4.

For each platform, we present the following results.

• Times:
– X-Ray: time taken by X-Ray to determine hardware

parameters.
– ATLAS Microbenchmarks: time taken by the mi-

crobenchmarks in ATLAS to determine hardware
parameters.

– ATLAS Optimization Parameter Search: time taken
by global search in ATLAS for determining opti-
mization parameter values.

We do not report the actual installation time of any of
the versions of ATLAS because most of this time is
spent in optimizing other BLAS kernels, generating li-
brary code, building object modules, etc.

We do not discuss the timing results in detail, as they
are not particularly surprising. X-Ray is faster than
ATLAS in measuring hardware parameters on nine
out of the ten platforms and has comparable timing
(10% slower) on one (IBM Power 3). Moreover, while
ATLAS CGw/S spends considerable amount of time,
ranging between 8 min on the DEC Alpha to more than
8 h on the Intel Itanium 2, to find optimal values for
optimization parameters, the model-based approach
takes no measurable time.

• Performance:
– Optimization parameter values: values determined

by ATLAS CGw/S and ATLAS Model. Where ap-
propriate, we also report these values for ATLAS
Unleashed.

– mini-MMM performance: performance of
mini-MMM code produced by ATLAS CGw/S,
ATLAS Model, and ATLAS Unleashed.

– MMM performance: for matrices sized 100 100 to
5000 5000. We report performance of complete
MMM computations using: 1) vendor supported,
native BLAS, and the code produced by 2) ATLAS
CGw/S; 3) ATLAS Model; 4) ATLAS Unleashed;
and 5) the native Fortran compiler. On each plat-
form, the code produced by ATLAS is compiled
with the best C compiler we could find on that plat-
form. The input to the FORTRAN compiler is the
standard triply nested loop shown in Fig. 2.

For vendor supported, native BLAS (labeled
“BLAS” on all figures), we used the following
libraries and corresponding versions, which were
current at the time of our experiments:

a) DEC Alpha: CXML 5.2.
b) DEC Alpha: CXML 5.2.
c) IBM Power 3/4: ESSL 3.3.
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d) SGI R12K: SCSL 6.5.
e) SUN UltraSPARC IIIi: Sun One Studio 8.
f) Intel Itanium 2, Pentium III/4: MKL 6.1.
g) AMD Opteron, Athlon: ACML 2.0.

• Sensitivity Analysis: this describes the relative change
of performance as we change one of the optimization
parameters, keeping all other parameters fixed to the
values found by ATLAS CGw/S. Sensitivity analysis
explains how variations in the values of optimization
parameters influence the performance of the generated
mini-MMM kernel.
– : change in mini-MMM performance when the

value of is changed.
– , : change in mini-MMM performance when

values of and are changed. Because op-
timal values of and depend on the same
hardware resource ( ), we vary them together.

– : change in min-MMM performance when value
of is changed.

– : change in mini-MMM performance when is
changed.

– , and : we do not show sensitivity graphs
for these parameters because performance is rela-
tively insensitive to their values.

A. DEC Alpha 21 264

1) Mini-MMM: On this machine the model-determined
optimization parameters provided performance of about
100 Mflops (7%) slower than the ones determined by search.
The reason of the difference is the suboptimal selection
of the parameter (84 for ATLAS Model versus 72 for
ATLAS CGw/S), as can be seen in the sensitivity graph
of Fig. 6(g).

2) MMM Performance: Fig. 6(d) shows the MMM
performance.

ATLAS Unleashed produces the fastest BLAS implemen-
tation because it uses highly-optimized, hand-tuned BLAS
kernels written by Goto. A newer version of these kernels is
described in [25]. The native BLAS library is only margin-
ally slower.

Although the gap in performance of the mini-MMM
codes produced by ATLAS CGw/S and ATLAS Model is
100 Mflops, the gap in performance of complete MMM
computations is only about 50 Mflops (4%) for large ma-
trices. Finally, we note that the GNU FORTRAN compiler is
unable to deliver acceptable performance. We did not have
access to the Compaq FORTRAN compiler, so we did not
evaluate it.

3) Sensitivity Analysis: Fig. 6(e) shows the sensitivity of
performance to the values of and . The optimal value
is (4, 4), closely followed by (3, 6), and (6, 3). These match
our expectations that optimal unroll factors are as close to
square as possible, while dividing the tile size
without reminder.

Fig. 6(f) shows the sensitivity of performance to the value
of . Fig. 6(g) shows a scaled-up version of this graph in
the region of the optimal value. The optimal value for

is 88. ATLAS does not find this point because it does not

explore tile sizes greater than 80, as explained in Section III,
but it chooses a tile size of 72, which is close to optimal. If
we use inequality (8) to determine analytically, we obtain

. Note that using the simpler model of inequality
(6), we obtain , which appears to be almost as good
as the value determined by the more complex model.

The sensitivity graph of Fig. 6(g) has a sawtooth of
periodicity 4, with notable peaks occurring with a periodicity
of 8. The sawtooth of periodicity 4 arises from the interaction
between cache tiling and register tiling—the register tile is (4,
4), so whenever is divisible by four, there is no cleanup
code for fractional register tiles in the mini-MMM code, and
performance is good. We do not yet understand why there are
notable peaks in the sawtooth with periodicity 8.

Fig. 6(h) shows the sensitivity of performance to the value
of . On this machine the entire mini-MMM loop body
can fit into the L1 instruction cache for values of up to

. Performance is relatively insensitive to as long as
the value of this parameter is sufficiently large ( ).

Fig. 6(i) shows the sensitivity of performance to the value
of . The graph is convex upwards, with a peak at four. The
multiplier on this machine has a latency of four cycles, so the
model for in Section IV, computes , which is close
to optimal. The inverted-U shape of this graph follows our
expectations. For very small values of , dependent mul-
tiplications and additions are not well separated and CPU
pipeline utilization is low. As grows, the problem gradu-
ally disappears, until the performance peak is reached when
the full latency of the multiplication is hidden. Increasing
further does not improve performance as there is no more la-
tency to hide. On the contrary, more temporary registers are
needed to save multiplication results, which causes more reg-
ister spills to memory, decreasing performance.

B. IBM Power 3

1) Mini-MMM: On this machine, mini-MMM code
produced by ATLAS Model is about 40 Mflops (3%)
slower than mini-MMM code produced by ATLAS CGw/S.
Fig. 7(g) shows that one reason for this difference is the
suboptimal choice of ; fixing the values of all parameter
other than to the ones chosen by ATLAS CGw/S and
using the model-predicted value of 84 for results in
mini-MMM code that performs about 100 Mflops worse
than the mini-MMM code produced by ATLAS CGw/S.

2) MMM Performance: For multiplying large matrices,
the handwritten BLAS as well as the codes produced by
ATLAS CGw/S, ATLAS Model, and ATLAS Unleashed per-
form almost identically.

3) Sensitivity Analysis: Fig. 7(f) shows the sensitivity of
performance to the value of . Fig. 7(g) shows a scaled-up
version of this graph in the region of the optimal value.

Fig. 7(e) shows the sensitivity of performance to the values
of and .

Fig. 7(h) shows the sensitivity of performance to the value
of . On this machine, the entire mini-MMM loop body
can fit into the L1 instruction cache for values of up to

. Performance is relatively insensitive to as long as
the value of this parameter is sufficiently large ( ).
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Fig. 6. DEC Alpha 21 264. (a) Platform Specification. (b) Optimization Parameters. (c) Timings.
(d) MMM performance. (e) Sensitivity of performance toM andN . (f) Sensitivity of performance
to N . (g) Sensitivity of performance to N (zoomed). (h) Sensitivity of performance to K .
(i) Sensitivity of performance to L .

We do not understand the sudden drop in performance at
.

Fig. 7(i) shows the sensitivity of performance to the value
of . The Power 3 platform has a fused multiply–add in-
struction, which the ATLAS microbenchmarks and X-Ray
find, and the Code Generator exploits, so performance does
not depend on the value of .

C. IBM Power 4

1) Mini-MMM: On this machine, mini-MMM code pro-
duced by ATLAS Model is about 70 Mflops (2%) slower than
mini-MMM code produced by ATLAS CGw/S. Fig. 8(g)
shows that one reason for this difference is a slightly subop-
timal choice of ; fixing the values of all parameter other
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Fig. 7. IBM Power 3. (a) Platform Specification (b) Optimization Parameters (c) Timings.
(d) MMM performance (e) Sensitivity of performance toM andN (f) Sensitivity of performance
to N . (g) Sensitivity of performance to N (zoomed). (h) Sensitivity of performance to K
(i) Sensitivity of performance to L .

than to the ones chosen by ATLAS CGw/S and using the
model-predicted value of 56 for results in mini-MMM
code that performs slightly worse than the mini-MMM code
produced by ATLAS CGw/S.

2) MMM Performance: Fig. 8(d) shows MMM perfor-
mance. For large matrices, the hand-tuned BLAS perform
the best, although by a small margin. The code produced by

ATLAS Model, ATLAS CGw/S, and ATLAS Unleashed per-
form almost identically. On this machine the native IBM XL
Fortran compiler produced relatively good results for small
matrices.

3) Sensitivity Analysis: Fig. 8(e) shows the sensitivity
of performance to changes in the values of and .
The parameter values (4, 4) perform best, and these are
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Fig. 8. IBM Power 4. (a) Platform Specification (b) Optimization Parameters (c) Timings.
(d) MMM performance (e) Sensitivity of performance toM andN (f) Sensitivity of performance
to N . (g) Sensitivity of performance to N (zoomed). (h) Sensitivity of performance to K
(i) Sensitivity of performance to L .

the values used by both ATLAS CGw/S and ATLAS
Model.

Fig. 8(f) shows the sensitivity of performance to the value
of . Fig. 8(g) shows a scaled-up version of this graph in
the neighborhood of the value determined by ATLAS
CGw/S. Fig. 8(f) shows that on this machine, values
between 150 and 350 give the best performance of roughly

3.5 Gflops. Using inequality (4) for the L2 cache (capacity
of 1.5 MB) gives , while inequality (8) gives

, showing that on this machine, it is better to tile
for the L2 cache rather than the L1 cache.

Fig. 8(h) shows the sensitivity of performance to the value
of . The L1 instruction cache on this machine is large
enough that we can set to . As on the Power 3, un-
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Fig. 9. SGI R12K. (a) Platform Specification (b) Optimization Parameters (c) Timings. (d) MMM
performance (e) Sensitivity of performance to M and N (f) Sensitivity of performance to
N . (g) Sensitivity of performance to N (zoomed). (h) Sensitivity of performance to K
(i) Sensitivity of performance to L .

rolling by three gives poor performance for reasons we do
not understand.

Fig. 8(i) shows the sensitivity of performance to the value
of . The Power 4 platform has a fused multiply–add in-
struction, which the ATLAS microbenchmarks find and the
Code Generator exploits, so performance does not depend on
the value of .

D. SGI R12K

1) Mini-MMM: On this machine, mini-MMM code pro-
duced by ATLAS Model is about 20 Mflops (4%) slower than
mini-MMM code produced by ATLAS CGw/S. The perfor-
mance of both codes is similar to that of mini-MMM code
produced by ATLAS Unleashed.
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2) MMM Performance: Fig. 9(d) shows MMM perfor-
mance. The hand-coded BLAS perform best by a small
margin. On this machine the native compiler (in this case,
the SGI MIPSPro) generated relatively good code that was
only 20% lower in performance than the hand-coded BLAS,
at least for small matrices.

3) Sensitivity Analysis: Fig. 9(e) shows the sensitivity of
performance to the values of and . This machine has
a relatively large number of registers (32), so there is a fairly
broad performance plateau in this graph.

Fig. 9(f) shows the sensitivity of performance to the value
of the . Fig. 9(g) shows a scaled-up version of this graph
in the region of the optimal value. Fig. 9(f) shows that
on this machine, values between 300 and 500 give the
best performance of roughly 510 Mflops. Using inequality
(4) for the L2 cache (capacity of 4MB) gives ,
while inequality (8) gives , showing that on this
machine, it is better to tile for the L2 cache rather than the
L1 cache.

Fig. 9(h) shows the sensitivity of performance to the value
of the . On this machine, the instruction cache is large
enough that full unrolling ( ) is possible.

Fig. 9(i) shows the sensitivity of performance to the value
of the . The R12K processor has a fused multiply–add
instruction, so we would expect performance of the gener-
ated code to be insensitive to the value of . While this is
borne out by Fig. 9(i), notice that Fig. 9(b) shows that the
microbenchmark used by ATLAS did not discover the fused
multiply–add instruction on this machine It is
worth mentioning that on this platform the FMA instruction,
while present in the ISA, is not backed up by a real FMA
pipeline in hardware. Instead it allows the two separate func-
tional units (for multiplication and addition respectively) to
be used sequentially saving one latency cycle. Therefore, in
theory, peak performance is achievable even by using sepa-
rate multiply and add instructions. Although ATLAS Code
Generator schedules code using , the SGI MIPSPro
compiler is clever enough to discover the separated multi-
plies and adds, and fuse them. In fact the compiler is able to
do this even when , which is impressive.

E. Sun UltraSPARC IIIi

1) Mini-MMM: On this machine, mini-MMM code pro-
duced by ATLAS Model is about 160 Mflops (17%) faster
than mini-MMM code produced by ATLAS CGw/S. The
main reason for this is that the microbenchmarks used by
ATLAS incorrectly measured the capacity of the L1 data
cache as 16 KB, rather than 64 KB. Therefore, ATLAS only
searched for values less than 44. Our microbenchmarks
on the other hand correctly measured the capacity of the L1
cache, so the model estimated , which gave better
performance as can be seen in Fig. 10(g).

2) MMM Performance: Fig. 10(d) shows the MMM
performance. On this machine, the hand-coded BLAS and
ATLAS Unleashed performed roughly 50% better than
the code produced by ATLAS CGw/S. The reason for this

difference is that the mini-MMM code in ATLAS Unleashed
(and perhaps the hand-coded BLAS) prefetches portions of
the and matrices required for the next mini-MMM. This
may be related to the Level-3 prefetching idea of Gustavson
et al. [3].

3) Sensitivity Analysis: Fig. 10(e) shows the sensitivity
of performance to the values of and .

Fig. 10(f) shows the sensitivity of performance to the value
of the . Fig. 10(g) shows a scaled-up version of this graph
in the region of the optimal value. On this machine, as
on many other machines, it is better to tile for the L2 cache,
as can be seen in Fig. 10(f). Using inequality (4) for the L2
cache (capacity of 1 MB), we obtain , which gives
roughly 1380 Mflops. Using inequality (8), we obtain

, which is close to the value in Fig. 10(f) where the
performance drops rapidly.

Fig. 10(h) shows the sensitivity of performance to the
value of the . On this machine, the instruction cache is
large enough that full unrolling ( ) is possible.

Fig. 10(i) shows the sensitivity of performance to the value
of the . This machine does not have a fused multiply–add
instruction, so the value of the parameter affects perfor-
mance. Both the model and ATLAS CGw/S find good values
for this parameter.

F. Intel Itanium 2

1) Mini-MMM: On this machine, the mini-MMM code
produced by ATLAS Model is about 2.2 Gflops (55%) slower
than mini-MMM code produced by ATLAS CGw/S. This is
a rather substantial difference in performance, so it is neces-
sary to examine the sensitivity graphs to understand the rea-
sons why ATLAS Model is doing so poorly.

Fig. 11(g) shows that one reason for this difference is that
ATLAS Model used , whereas ATLAS CGw/S used

. ATLAS CGw/S uses because it disre-
gards the L1 data cache size (16 KB) and considers directly
the L2 cache size (256 KB) and, therefore, the expression

in inequality (3) evaluates to 80, the largest
possible value of in the search space used by ATLAS.

While the value used by ATLAS Model is cor-
rect with respect to the L1 data cache size, Intel Itanium 2
does not allow storing floating-point numbers in the L1 data
cache and, thus, L2 has to be considered instead. Once we in-
corporate in X-Ray the ability to measure this specific hard-
ware feature, the shortcoming of ATLAS Model will be re-
solved.

2) MMM Performance: Fig. 11(d) shows MMM per-
formance. The handwritten BLAS and ATLAS Unleashed
give the best performance. The code produced by ATLAS
CGw/S runs about 1.5 GFlops slower than the handwritten
BLAS, while the code produced by ATLAS Model runs
about 3.5 GFlops slower.

3) Sensitivity Analysis: Fig. 11(e) shows the sensitivity
of performance to the values of and . The Itanium has
128 general-purpose registers, so the optimal register tiles are
relatively large. There is a broad plateau of values
that give excellent performance.
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Fig. 10. Sun UltraSPARC IIIi. (a) Platform Specification (b) Optimization Parameters (c) Timings.
(d) MMM performance (e) Sensitivity of performance toM andN (f) Sensitivity of performance
to N . (g) Sensitivity of performance to N (zoomed). (h) Sensitivity of performance to K
(i) Sensitivity of performance to L .

Fig. 11(f) shows the sensitivity of performance to the value
of the . Fig. 11(g) shows a scaled-up version of this graph
in the region of the optimal value. Fig. 11(f) shows that
on this machine, the best performance is obtained by tiling
for the L3 cache. Indeed, using inequality (4) for the L3
cache (capacity of 3 MB), we obtain , which gives
roughly 4.6 Gflops. Fig. 11(f) shows that this value is close to

optimal. Using inequality (8), we obtain , which
is close to the value in Fig. 11(f) where the performance
starts to drop.

Fig. 11(h) shows the sensitivity of performance to the
value of . On the Itanium, unlike on other machines
in our study, performance is highly sensitive to the
value of . The main reason is the large register tile
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Fig. 11. Intel Itanium 2. (a) Platform Specification (b) Optimization Parameters (c) Timings.
(d) MMM performance (e) Sensitivity of performance toM andN (f) Sensitivity of performance
to N . (g) Sensitivity of performance to N (zoomed). (h) Sensitivity of performance to K
(i) Sensitivity of performance to L .

; after unrolling the micro-MMM
loops, we get a very long straight-line code sequence.
Furthermore, unrolling of the loop creates numerous
copies of this code sequence. Unfortunately, the L1
instruction cache on this machine has a capacity of
32 KB, so it can hold only about nine copies of the
micro-MMM code sequence. Therefore, performance

drops off dramatically for values of greater than
nine or ten.

Since this is the only machine in our study in which the
parameter mattered, we decided to investigate the sensitivity
graph more carefully. Fig. 12 shows a magnified version of
Fig. 11(h) in the interval . We would expect the

sensitivity graph to exhibit the typical inverted-U shape,
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Fig. 12. Intel Itanium 2: Sensitivity of performance to K .

and it more or less does. However, performance for
is significantly worse than the performance for , and

, which appears anomalous.

The anomaly arises from cleanup code that is required
when does not divide evenly (see the loop in the
tiled code in Fig. 3). If we unroll the loop by , the
number of times the completely unrolled micro-MMM code
is replicated inside the mini-MMM is not , but

( is the reminder from integer division). The first
term in the sum is the expected number of repetitions inside
the unrolled loop, while the second part is the cleanup code
which takes care of the case when does not divide ex-
actly. This second piece of code is still part of the mini-MMM
loop nest, and it has to be stored in the L1 instruction cache
during execution to achieve optimal performance.

For , performance increases initially as
increases because loop overhead is reduced. When ,
there are eight copies of the unrolled micro-MMM code
in the mini-MMM, and this is close to the I-cache limit.
When , there are copies of the
micro-MMM code, which exceeds the I-cache limit, and
performance drops substantially. However, when ,
there is no cleanup code, and there are only eight copies
of the unrolled micro-MMM code, so performance goes
up again. Beyond this point, the code sizes overflows the
I-cache and grows larger, and performance degrades gradu-
ally. Ultimately, performance is limited by the rate at which
L1 I-cache misses can be serviced. For , the
trends are similar, but the effect of cleanup code is less
because the cleanup code performs a smaller fraction of the
computations of the loop (less than 1% compared to about
5% for ).

Fig. 11(i) shows the sensitivity of performance to the value
of the . The Itanium has a fused multiply–add instruction,
so performance is insensitive to the parameter.

In summary, the code produced by ATLAS Model on this
machine did not perform as well as the code produced by
ATLAS CGw/S. However, this is because ATLAS Model
tiled for the L1 cache, whereas on this machine, the best per-
formance is obtained by tiling for L3 cache. ATLAS CGw/S

gets better performance because the tile size is set to a larger
value than the value used by ATLAS Model.

G. AMD Opteron 240

1) Mini-MMM: Fig. 13(c) shows that on this machine,
the mini-MMM code generated by ATLAS Model runs
roughly 38% slower than the code generated by ATLAS
CGw/S. The values of almost all optimization parameters
determined by the two systems are different, so it is not
obvious where the problem is. To get some insight, it is
necessary to look at the sensitivity graphs.

Fig. 13(f) shows the performance sensitivity graph for
. Both 60 and 88 appear to be reasonable values, so

the problem with ATLAS Model is not in its choice of
. Because is bound to the value of , the only

remaining differences are those between , , , and
. Fig. 13(b) shows that ATLAS Model chose ,

, , while ATLAS CGw/S chose ,
, . We verified experimentally that if the

model had chosen and , keeping the rest
of the parameters the same, the mini-MMM performance
becomes 2050 Mflops, closing the performance gap with
ATLAS CGw/S.

The parameters values used by ATLAS CGw/S are puz-
zling for several reasons. First, the Opteron does not have
an FMA instruction, so it is not clear why ATLAS CGw/S
chose to set . Second, choosing six and one for
the values of and violates inequality (10), since the
Opteron has only eight registers.

We address the problem of the register-tile size first. Recall
that inequality (10) stems from the fact that ATLAS uses reg-
isters to multiply an 1 vector-tile of matrix (which
we call ) with a 1 vector-tile of matrix (which we
call ), accumulating the result into an tile of ma-
trix (which we call ). Notice that if , then is a
single scalar that is multiplied by each element of . There-
fore, no reuse exists for elements of . This observation lets
us generate the code in Fig. 14, which uses one register for
( ), six registers for ( ) and one temporary reg-
ister to hold elements of .
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Fig. 13. AMD Opteron 240. (a) Platform Specification. (b) Optimization Parameters. (c) Timings.
(d) MMM performance (e) Sensitivity of performance toM andN (f) Sensitivity of performance
to N . (g) Sensitivity of performance to N (zoomed). (h) Sensitivity of performance to K
(i) Sensitivity of performance to L .

Even if there are enough logical registers, this kind of
scheduling may be beneficial if the ISA is two-address
rather than three-address, because one of the operands is
overwritten. This is true on the Opteron when the 16 SSE
vector registers are used to hold scalar values, which is
GCC’s default behavior. Even though inequality (1) pre-
scribes 3 3 register tiles, the refined model prescribes

14 1 tiles. Experiments show that this performs better
[38].

One might expect that this code will not perform well be-
cause there are dependences between most of the instructions
that arise from the use of temporary register . In fact, exper-
iments show that the code in Fig. 14 performs well because
of two architectural features of the Opteron.
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Fig. 14. (M ;N ) = (6; 1) code for x86 CISC.

1) Out-of-order execution: it is possible to schedule
several multiplications in successive cycles without
waiting for the first one to complete.

2) Register renaming: the single temporary register is
renamed to a different physical register for each pair of
multiply–add instructions.

Performing instruction scheduling as described in
Section II requires additional logical registers for tem-
poraries, which in turn limits the sizes of the register tiles.
When an architecture provides out-of-order execution and
a small number of logical registers, it is better to use the
logical registers for allocating larger register tiles and
leave instruction scheduling to the out-of-order hardware
core, which can use the extra physical registers to hold the
temporaries.

These insights permit us to refine the model described in
Section IV as follows: for processors with out-of-order exe-
cution and a small number of logical registers, set ,

, .
To finish this story, it is interesting to analyze how the

ATLAS search engine settled on these parameter values.
Note that on a processor that does not have a fused mul-
tiply–add instruction, is equivalent to
and . The code produced by the ATLAS Code Gen-
erator is shown schematically in Fig. 15. Note that this code
uses six registers for ( ), one register for ( ),
six registers for ( ), and one temporary register
(implicitly by the multiply–add statement). However, the
back-end compiler (GCC) reorganizes this code into the
code pattern shown in Fig. 14.

Notice that the ATLAS Code Generator itself is not aware
that the code of Fig. 14 is optimal. However, setting

(even though there is no fused-multiply instruction) pro-
duces code that triggers the right instruction reorganization

Fig. 15. ATLAS unroll (M ;N ) = (6;1) code for x86 CISC.

heuristics inside GCC, and performs well on the Opteron.
This illustrates the well-known point that search does not
need to be intelligent to do the right thing. Nevertheless,
our refined model explains the observed performance data,
makes intuitive sense, and can be easily incorporated into a
compiler.

2) MMM Performance: Fig. 13(d) shows the MMM
performance. ATLAS Unleashed is once again the fastest
implementation here, as it uses the highly optimized,
hand-tuned BLAS kernels, using the SSE2 single-instruc-
tion, multiple-data (SIMD) instructions, for which the
ATLAS Code Generator does not generate code. The na-
tive BLAS library is about 200 Mflops slower on average.
ATLAS CGw/S and ATLAS Model perform at the same
level as their corresponding mini-MMM kernels.

Refining the model as explained above brings ATLAS
Model on par with ATLAS CGw/s. To bridge the gap be-
tween ATLAS CGw/S and user contributed code, we would
need a different code generator—one that understands SIMD
and prefetch instructions. GCC exposes these as intrinsic
functions and we plan to explore this in our future work.

3) Performance Sensitivity Analysis: Fig. 13(f) shows
the sensitivity of performance to the value of the op-
timization parameter. The first drop in performance is the
result of L1 data cache misses starting to occur. This fact
is accurately captured by our model for in inequality
(8). Solving the inequality for (the L1 data cache
capacity in double-sized floating-point values), we obtain

. Similarly, the second drop in performance in
Fig. 13(f) can be explained by applying the same model to
the 1MB L2 cache.

Fig. 13(e) shows the performance sensitivity to the values
of the and optimization parameters. As discussed in
Section V-G1, the optimal value is (6, 1). From the graph we
can see that the only plausible values are those with

. Furthermore, performance increases while we grow
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Fig. 16. AMD Athlon MP. (a) Platform Specification. (b) Optimization Parameters. (c) Timings.
(d) MMM performance (e) Sensitivity of performance toM andN (f) Sensitivity of performance
to N . (g) Sensitivity of performance to N (zoomed). (h) Sensitivity of performance to K .
(i) Sensitivity of performance to L .

from one to six, while it suddenly drops for . This
is easily explained by our refined model, as
would require nine registers, while only eight are available.

Fig. 13(h) shows the performance sensitivity to the value
of the optimization parameter. On this machine the entire
mini-MMM loop body can fit into the L1 instruction cache

for arbitrary values (up to ). Performance is
relatively insensitive to as long as this unroll factor is
sufficiently large ( ).

Fig. 13(i) shows the performance sensitivity to the value
of the optimization parameter. As we mentioned before,
when , the optimization parameter does not in-
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Fig. 17. AMD Athlon MP: Sensitivity of performance to K .

fluence the generated code. Therefore, performance is con-
stant with respect to .

H. AMD Athlon MP

The AMD Athlon implements the x86 instruction set, so
we would expect the experimental results to be similar to
those on the Opteron.

1) Mini-MMM: Fig. 16(c) shows that on this machine,
the mini-MMM code generated by ATLAS Model runs
roughly 20% slower than the code generated by ATLAS
CGw/S. Fig. 16(f) shows that the choice of made by
the model is reasonable, while Fig. 16(e) shows that the
register-tile values were not chosen optimally by the model,
as on the Opteron. The problem and its solution are similar
to those on the Opteron.

2) MMM Performance: Fig. 16(d) shows MMM perfor-
mance. ATLAS Unleashed outperforms the other approaches
by a significant margin. The hand-coded BLAS do almost as
well, followed by ATLAS CGw/S.

3) Sensitivity Analysis: Fig. 16(e) shows the sensitivity
of performance to the values of and .

Fig. 16(f) shows the sensitivity of performance to the value
of . Fig. 16(g) shows a scaled-up version of this graph in
the region of the optimal value. Both ATLAS Model and
ATLAS CGw/S choose good values of . In Fig. 16(g), the
sawtooth with period 2 arises from the overhead of executing
cleanup code when the value of is odd and, therefore, not
divisible by the value of . As on other machines, we
do not understand the sawtooth with period 4 that has larger
spikes in performance.

Fig. 16(h) shows the sensitivity of performance to the
value of . The L1 I-cache is large enough to permit
full unrolling ( ). However, the sensitivity graph
of is anomalous; performance is relatively low for all
values of other than . By examining the
code produced by the native compiler (GCC), we found that
this anomaly arose from interference between instruction
scheduling in ATLAS and instruction scheduling in GCC.
Notice that ATLAS CGw/S uses , so it attempts to
schedule instructions and perform software pipelining in the
mini-MMM code. Fully unrolling the loop ( )

produces straight-line code which is easier for GCC to
schedule.

To verify this conjecture, we redid the sensitivity study
with set to 1. Fig. 17 shows the results. Setting

dissuades the ATLAS Code Generator from attempting to
schedule code, so GCC has an easier job, producing a
sensitivity graph that is in line with what we would expect.

Notice that our refined model, described in the context
of the Opteron, does exactly on this. Using this model,
mini-MMM performance is 1544 Mflops, which is faster
than the performance of the mini-MMM produced by
ATLAS CGw/S.

Fig. 16(i) shows the sensitivity of performance to the value
of the .

I. Pentium III

1) Mini-MMM: On this machine, mini-MMM code pro-
duced by ATLAS Model is about 50 Mflops (6%) slower than
mini-MMM code produced by ATLAS CGw/S. The code
produced by ATLAS Unleashed performs roughly 50 Mflops
better than the code produced by ATLAS CGw/S.

The difference in performance between the codes pro-
duced by ATLAS CGw/S and ATLAS Model arises mostly
from the suboptimal register tile chosen by the model, as ex-
plained in the context of the Opteron in Section V-G. Using
(6, 1) as the register tile raises mini-MMM performance to
916 Mflops.

2) MMM Performance: Fig. 18(d) shows MMM per-
formance. The hand-coded BLAS perform at roughly
1100 Mflops, whereas the codes produced by ATLAS CGw/S
and ATLAS Unleashed perform roughly at 900 Mflops. The
code produced by ATLAS Model runs roughly at 850 Mflops;
using the refined model improves performance to a point
that is slightly above the performance of code produced by
ATLAS CGw/S.

3) Sensitivity Analysis: Fig. 18(e) shows the sensitivity
of performance to the values of and . Like all x86
machines, the Pentium III has a limited number of logical
registers. Our baseline model picked (2, 1) for the register
tile, whereas ATLAS CGw/S chose (4, 1). If we use the re-
fined model described in Section V-G, the size of the reg-
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Fig. 18. Pentium III. (a) Platform Specification. (b) Optimization Parameters. (c) Timings.
(d) MMM performance (e) Sensitivity of performance toM andN (f) Sensitivity of performance
to N . (g) Sensitivity of performance to N (zoomed). (h) Sensitivity of performance to K
(i) Sensitivity of performance to L .

ister tile becomes (6, 1), and mini-MMM performance rises
to 916 Mflops.

Fig. 18(f) shows the sensitivity of performance to the value
of . Fig. 18(g) shows a scaled-up version of this graph
in the region of the optimal value. The broad peak in
Fig. 18(f) arises from the influence of the L2 cache (capacity

of 512 KB). Using inequality (4) for the L2 cache, we obtain
, which is the values where the peak starts,

while inequality (8) gives , which corresponds
to the value where the peak ends. The L2 cache on the
Pentium III is eight-way set-associative, so the drop in per-
formance between and is small.
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Fig. 19. Pentium 4. (a) Platform Specification. (b) Optimization Parameters. (c) Timings.
(d) MMM performance (e) Sensitivity of performance toM andN (f) Sensitivity of performance
to N . (g) Sensitivity of performance to N (zoomed). (h) Sensitivity of performance to K
(i) Sensitivity of performance to L .

Fig. 18(h) shows the sensitivity of performance to the
value of the . On this machine, the L1 instruction cache
is large enough to permit full unrolling ( ).

Fig. 18(i) shows the sensitivity of performance to the
value of the . There is no fused multiply–add instruction,
so performance is sensitive to the value of , but both
ATLAS Model and ATLAS CGw/S find reasonable values

for this parameter. If we use the refined model described
in Section V-G, we set , and the value of the
parameter becomes irrelevant.

J. Pentium 4

1) Mini-MMM: On this machine, mini-MMM code pro-
duced by ATLAS Model is about 600 Mflops (40%) slower
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than mini-MMM code produced by ATLAS CGw/S. This
is mostly because of the suboptimal register tile used by
ATLAS Model; changing it to (6, 1) improves the perfor-
mance of mini-MMM code produced by ATLAS Model to
1445 Mflops, which is only 50 Mflops (3%) less than the
performance of the mini-MMM code produced by ATLAS
CGw/S.

The mini-MMM produced by ATLAS Unleashed is
roughly twice as fast as the mini-MMM produced by
ATLAS Model because this code uses the SSE2 vector
extensions to the x86 instruction set.

2) MMM Performance: Fig. 19(d) shows the MMM per-
formance. The hand-coded BLAS routines for this machine
perform best, followed by the code produced by ATLAS Un-
leashed. Both the hand-coded BLAS and the code produced
by ATLAS Unleashed use the SSE2 vector extensions, and
this accounts for most of the gap between these codes and
the codes produced by ATLAS Model and ATLAS CGw/S.
We do not know why the hand-coded BLAS perform substan-
tially better than the code produced by ATLAS Unleashed.

The gap in performance between the codes produced by
ATLAS CGw/S and ATLAS Model disappears if the refined
model for register tiles is used.

3) Sensitivity Analysis: Fig. 19(e) shows the sensitivity
of performance to the values of and . This figure
shows that the best register tile is (5, 1), which produces
mini-MMM code that runs at 1605 Mflops. Using (6, 1) as
the register tile is not as good because it reduces performance
to 1521 Mflops.

Fig. 19(f) shows the sensitivity of performance to the value
of the . Fig. 19(g) shows a scaled-up version of this graph
in the region of the optimal value. Both ATLAS Model
and ATLAS CGw/S choose good tile sizes for the L1 cache.
Tiling for the L2 cache gives slightly better performance. The
L2 cache on this machine has a capacity of 256 KB; using
Inequalities (4) and (8), we get and ,
which agree well with the data.

Fig. 19(h) shows the sensitivity of performance to the
value of . On this machine, the L1 instruction cache is
large enough to permit full unrolling ( ).

Fig. 19(i) shows the sensitivity of performance to the value
of .

K. Discussion

The experimental results in this section can be summarized
as follows. Fig. 20 describes the analytical models used to
compute values for the optimization parameters. This figure
also shows the refined model used to compute register tile
values for the x86 architectures.

Fig. 21 shows the relative performance of the mini-MMM
codes produced by ATLAS Model and by ATLAS Un-
leashed, using the performance of the codes produced by
ATLAS CGw/S as the base line (the 100% line in this
figure represents the performance of ATLAS CGw/S on all
machines). All the performance numbers for ATLAS Model
in this graph are obtained by tiling for the L1 cache.

Fig. 20. Summary of model.

Fig. 21. Summary of mini-MMM performance. Performance
numbers are normalized to that of ATLAS CGw/S, which is
presented as 100%.
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We see that on all machines other than the Itanium, the
codes produced by using the analytical models perform al-
most as well or slightly better than the codes produced using
global search. On the Itanium, we saw that it is best to tile
for the L3 cache, rather than the L1 cache. By using the L2
cache instead, ATLAS CGw/S was able to obtain some of the
benefits of tiling for the L3 cache. If we use this value in the
model of Fig. 20, we produce mini-MMM code of compa-
rable performance. Using the actual capacity of the L3 cache
gives even better performance.

In our experiments we noticed that on several platforms,
we get better MMM performance by tiling for a lower cache
level, such as L2 or L3, rather than L1. This may result in
a large value for , which may hurt overall performance
if the resulting MMM library routine is invoked from other
routines such as LU and Cholesky factorizations [22]. It is
unclear to us that this is an issue in the context of compilers,
where codes like LU and Cholesky would be optimized di-
rectly, rather than built upon MMM.

VI. CONCLUSION AND FUTURE WORK

The experimental results in this paper demonstrate that it
is possible to use analytical models to determine near-op-
timal values for the optimization parameters needed in the
ATLAS system to produce high-quality BLAS codes. The
models in this paper were designed to be compatible with
the ATLAS Code Generator; for example, since ATLAS uses
square cache tiles, we had only one parameter , whereas
a different Code Generator that uses general rectangular tiles
may require three cache tile parameters. Van de Geijn and
coworkers have considered such models in their work on op-
timizing matrix multiplication code for multilevel memory
hierarchies [20], [21], [24].

Our results show that using models to determine values for
the optimization parameters is much faster than using em-
pirical search. However, this does not imply that search has
no role to play in the generation of high-performance code.
Systems like FFTW and SPIRAL use search not to choose
optimal values for transformation parameters, but to choose
an optimal algorithm from a whole suite of algorithms. We
do not know if model-driven optimization is effective in this
context. Even in the relatively simple context of the BLAS,
there are aspects of program behavior that may not be worth
modeling in practice even if they can be modeled in principle.
For example, the analytical models for described in Sec-
tion IV ignore conflict misses. Although there is some work
in the compiler literature on modeling conflict misses [10],
[12], these models appear to be computationally intractable.
Fortunately, the effect of conflict misses on performance can
be reduced by appropriate copying. If necessary, the value of

found by the model can be refined by local search in the
neighborhood of the value predicted by the model. This
combination of modeling and local search may be the most
tractable approach for optimizing large programs for com-
plex high-performance architectures.

At the end of this paper, we are left with the same ques-
tion that we asked at its beginning: how do we improve the

state of the art of compilers? Conventional wisdom holds that
current compilers are unable to produce high-quality code
because the analytical models they use to estimate optimiza-
tion parameter values are overly simplistic compared to the
complexity of modern high-performance architectures. The
results in this paper contradict this conventional wisdom, and
suggest that there is no intrinsic reason why compilers cannot
use analytical models to generate excellent code, at least for
the BLAS.

However, it is important not to underestimate the challenge
in improving general-purpose compilers to bridge the current
performance gap with library generators. Although the tech-
niques used by ATLAS, such as loop tiling, unrolling, and
instruction scheduling, have been in the compiler literature
for many years, it is not easy to incorporate them into gen-
eral-purpose compilers. For example, transformations such
as tiling are not always legal, so a general-purpose com-
piler must perform dependence analysis before transforming
a program. In contrast, the implementor of a library generator
focuses on one application and knows the precise structure of
the code to be generated for that application, so he is not en-
cumbered by the baggage required to support restructuring
of general codes. At the very least, improving the state of
the art of compilation technology will require an open com-
piler infrastructure which permits researchers to experiment
easily with different transformations and to vary the parame-
ters of those transformations. This has been a long-standing
problem, and no adequate infrastructure exists in spite of
many attempts.

An equally important conclusion of this study is that there
is still a significant gap in performance between the code
generated by ATLAS CGw/S and the vendor BLAS routines.
Although we understand some of the reasons for this gap, the
problem of automating library generation remains open. The
high cost of library and application tuning makes this one of
the most important questions we face today.
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