' Theme Feature

William Blume
Ramon Doalic
Rudolf Eigenmann
John Grout

Jay Hoeflinger
Thomas Lawrence
Jaejin Lee

David Padua
Yunheung Paek

Bill Pottenger
Lawrence Rauchwerger
Peng Tu

University of Illinois

Steady improvements in
computer hardware in the
past 40 years have led to
dramatic increases in program
speed. As we reach the
technological limits of
hardware improvement,

we must rely on multiple
processors to improve
programming spéed.

Computer

with Polaris

arallel programming tools are limited, making effective parallel
P programming difficult and cumbersome. Compilers that trans-

late conventional sequential programs into parallel form would
liberate programmers from the complexities of explicit, machine-
oriented parallel programming. Polaris, an experimental translator of
conventional Fortran programs that target machines such as the Cray
T3D, is the first step toward this goal.

POLARIS TECHNIQUES

The most important techniques implemented in Polaris resulted from a
study of the effectiveness of commercial Fortran parallelizers.! We com-
piled the Perfect Benchmarks, a collection of conventional Fortran programs
representing the typical workload of high-performance computers, for the
Alliant FX/80, an eight-processor multiprocessor popular in the late 1980s.

For each program, we measured the quality of the parallelization by
computing the speedup—the ratio of a program’s sequential execution
time to the execution time of the automatically parallelized version. With
a few exceptions, the Alliant Fortran compiler failed to deliver any signif-
icant speedup for the majority of the programs.

The compiler failed to produce a speedup because it could not paral-
lelize some of the most important loops in the Perfect Benchmarks.
Programmers originally developed the parallelization module of the
Alliant compiler for vectorization, then retrofitted it for parallelization.
Vectorizers?focus primarily on innermost loops, while multiprocessor
compilers focus on parallelizing outer loops.
~ Ourstudy showed that extending the four most important analysis and
transformation techniques traditionally used for vectorization leads to
significant increases in speedup.

Dependence analysis ‘ .

A loop can be transformed into parallel form if it contains no cross-
iteration dependencies: The loop must not have two iterations that access
the same memory location if either iteration changes the location’s value.
Dependence analysis techniques analyze every pair of references to the
same array within a loop to check if their subscript expressions might pro-
duce the same value in two different iterations. To guarantee correct code,

0018-9162/96/$5.00 © 1996 I{EEE

dependence analysis techniques must assume cross-
iteration dependencies when they are unable to accurately
analyze the subscripts.

We illustrate these ideas using the loop

DO I=1,N
R: A(2*I) = ...
S: oo = A(2*1)
T: A(2*I+1)
END DO

I

The equality test determines the absence of cross-
iteration dependence whenever the subscripts of two array
references are identical, linear functions of the loop index.
In the previous loop, the equality test will determine that
cross-iteration dependence exists neither between two
executions of statement R nor between R and S. (There
cannot be a cross-iteration dependence between S and T
because there is no assignment to array A in either state-
ment.)

The GCD test equates the linear subscript expressions of
two statements to see if they have an integer solution. If
they don’t, no cross-iteration dependency exists. To ana-
lyze the potential dependence between R and T, the GCD
test considers the equation

21 = 2i"+ 1

No integer solutions to the equation exist when the great-
est common divisor of the coefficients (2, in this case) does
not divide the independent term, 1.

Parallelizing compilers, including Polaris, apply a vari-
ety of these dependence tests in sequence, but most depen-
dence tests only work on linear expressions. We found
nonlinear subscript expressions (some generated by our
transformations and the rest part of the original program)
in the Perfect Benchmarks. To handle these, we expanded
on earlier dependence tests and developed the range test,’
which deals with nonconstant coefficients. The range test
uses computer algebra and data range information
extracted from the structure of the program to test for cross-
iteration dependencies. The test successfully analyzes a
number of complex access patterns that arise in real codes.

For example, in the fragment

DO I=1,N
DO K=1,M
AM*I + K)=...
=A(M*I + M)
END DO
END DO

accessesto A are M elements apart in consecutive itera-
tions of the T loop. The range test determines that there
are no cross-iteration dependencies by noticing that all
the elements read or written in each iteration fit within
this M element-long separation.
Privatization ' ‘
Temporary variables are often used inside loops to carry
values between statements.
An example is variable T in the loop

DO I =1,N
T = A(I) +1
B(I) = T**2
C(I) =T+ 1
END DO

This code contains a cross-iteration dependency
because every iteration reads and writes the same tempo-
rary location, T. However, every iteration assigns to T
before reading it, so we could replace the single copy of T
with one copy for each iteration. The code would still pro-
duce the same result, but the cross-iteration dependence
would be eliminated. We call such replaced temporary
variables loop private.

Vectorizers identify only loop-private scalars. Howevet,
we found many cases in the Perfect Benchmarks where the
temporary variables within multiply-nested
loops were arrays. Identifying private arrays
eliminated many apparent dependencies in
outermost loops.

In Polaris, we implemented a privatiza-
tion technique to deal with both scalars and
arrays.* This algorithm proved to be sub-
stantially more complex than the tradi-
tional scalar privatization algorithm used
for vectorization because the reading and
writing of a single array may occur at mul-
tiple points within the loop and because the
subscript expressions involved may be arbitrarily complex.

Our technique analyzes the subscript expressions of all
array references, finding cases where all elements of an
array are assigned on every iteration before they are used.
Where this happens, privatization can occur.

Induction variable substitution

Induction variables have integer values and are incre-
mented by constants on every loop iteration. An example
is variable J in the loop

J =0

DO I=1,N
J=
J+ 2
u(I)= ...

END DO

Induction variables present parallelization problems for
two reasons: First, the compiler reads and writes induc-
tion variables on every iteration, making them a source of
cross-iteration dependencies. Second, dependence tests
cannot directly analyze a subscript expression involving
induction variables unless their variation is expressed in
terms of the loop indices.

The compiler must transform each occurrence of an
induction variable, replacing it with an expression involv-
ing the loop index. For example, in the previous loop, the
array reference could be replaced by U (2*I).

Many compilers transform only induction variables that
can be expressed in terms of a single loop index. However,
in the multiply-nested loops of real programs, induction
variables can be incremented at several levels of nesting
within a single loop. In Polaris’we have implemented tech-

December 1996

Figure 1. Speedup comparison between Silicon
Graphics Power Fortran Analyzer and Polaris.

niques that produce closed form expressions in terms of
several loop indices for these cases. For example, in

END DO
END DO

I + I*(I-1)/2 may replace all occurrences of the
induction variable after S in the outer loop, and I +
I*(1-1)/2 + Kmay replace those after T within the
inner loop. Once again, a traditional dependence test can-
not analyze these nonlinear expressions, but the range test
applied by Polaris can handle them.5

Reduction substitution

A programmer may reduce the information from an
array by summing it in reduction variables. When this
occurs, the compiler sees that pattern and realizes that it
can parallelize the loop. Reduction variables change incre-
mentally with each iteration (usually by added floating-
point values), which causes cross-iteration dependencies
in the loop. Only if the statements performing the incre-
ment access the reduction variable within the loop and
the reduction operation is associative (may be grouped in
any order), the loop can be parallelized. For example:

DO I=1,N

é;A(K(I))=A(K(I)) + B(I)...
END DO

Polaris could place statement § within a critical section
of the loop. This guarantees no interference between
accesses to the same array element because only one
processor at a time can enter a critical section—all other

Computer

processors are locked out. Or it could create a copy of array
Ain every processor cooperating in the parallel execution
of the loop, perform partial sums in the copies of A, then
add the partial sums to form the final version of A.

Polaris takes into account the number of iterations, the
overhead of critical section locks, and the size of array A
when deciding which strategy to use.

Vectorizers consider only simple reductions, but more
complex patterns occur in many programs. For example, the
reduction variable could be an array, a loop could have mul-
tiple reduction statements, and the subscripts of reduction
arrays could be array elements themselves. We incorporated
advanced techniques into Polaris to handle such cases.

In addition to the four analysis techniques already dis-
cussed, Polaris applies autoinlining® and interprocedural
value propagation. Autoinlining replaces a call to a subrou-
tine with the code for that subroutine, when heuristics deem
it profitable. This process places the code for the subroutines
directly in the calling routine at the calling site, giving Polaris
achance to analyze it. IPVP finds cases in which a subroutine
parameter takes on different values at different call sites. In
these cases, Polaris makes a different copy of the subrou-
tine—a clone—for each different value. Consequently, the
compiler knows the value of the parameter inside a given
clone, which can enable code optimizations.

POLARIS EFFECTIVENESS

Figure 1 shows the speedup comparison between
Polaris and Silicon Graphics’s Power Fortran Analyzer. As
with the Alliant parallelizer, engineers originally devel-
oped the Power Fortran Analyzer as a vectorizer.

The 16 benchmark programs used for the analysis come
from three different sources:

* arc2d, bdna, flo52, mdg, ocean, and trfd from the

Perfect Benchmarks suite;

applu, appsp, hydro2d, su2cor, swim, tfft2, tomcatv,

and wave5 from the SPECfp95 Benchmark suite; and

* cmhog and cloud3d from the National Center for
Supercomputing Applications collection of moder-
ate- size programs (approximately 10,000 lines each)
used in scientific research at NCSA.

We executed the programs (in real-time mode for timing
accuracy) on eight processors of an SGI Challenge with 150-
MHz R4400 processors at NCSA. Figure 1 shows that Polaris
delivered substantially better speedups than the Power
Fortran Analyzer in many cases. The Power Fortran
Analyzer did produce better speedups than Polaris in three
programs because it uses an elaborate code-generation
strategy that includes loop transformations, such as loop
interchanging, unrolling, and fusion. Applying these trans-
formations to the right loops improves performance by
decreasing overhead, enhancing locality, and facilitating
the detection of instruction-level parallelism. However, the
elaborate strategy decreases speedup for other programs.

To evaluate the effectiveness of autoinlining, IPVP, array
privatization, range test, multiply-nested induction substi-
tution, and advanced reduction substitution, we compiled
each program six times, turning off a different technique
each time. Then we compared those results with the pro-
gram compiled with all techniques enabled.

The six compilations contain all that is
new in Polaris with respect to the Alliant
parallelizer, though Power Fortran Ana-
lyzer includes some of these capabilities.
For example, Power Fortran Analyzer can
substitute multiply-nested induction vari-
ables if the bounds of inner loops do not
contain indices of outer loops.

Figure 2 presents the results of the six
experiments conducted for each code. The
height of the bar at the intersection (P,T) rep-
resents, in logarithmic scale, the percentage
of the total number of loops in program P
which became serialized by disabling tech-
nique T. The analysis of programs in the
Perfect Benchmarks inspired these tech-
niques, but Figure 2 shows that these tech-
niques enable parallelization of loops from
other programs in the collection, too.

POLARIS DETECTED MUCH OF THE PARAL-
LELISM available in our set of benchmark
codes. A careful analysis of the remaining
loops that Polaris could parallelize high-
lights areas for improvement.

First, we need a true interprocedural framework for
analysis. Our analysis algorithm requires a large amount
of information, making a traditional global algorithm too
inefficient. Consequently, we are focusing on a highly
accurate demand-driven strategy (Polaris would do an
analysis only when it is neccessary) that doesn’t signifi-
cantly increase the analysis time.

Second, we must improve our analysis techniques for
dependence and privatization. If we generate analysis
code for use at runtime; then we can use it when compile-
time analysis fails. This will allow Polaris to parallelize
loops with access patterns determined by values assigned
during runtime.”

Third, Polaris must account for additional program pat-
terns, such as more complicated forms for induction and
reduction variables, associative recurrences, multiple exit
loops, and loops containing I/0 statements.

Finally, we must improve the efficiency of Polaris so we can
compile very large Fortran programs. Although Polaris can
routinely compile programs with 15,000 lines, we hope to
eventually be able to compile programs 10 or 100 times larger.

Our Polaris project demonstrates that substantial
progress in compiling conventional languages is possible.
Based on our experimental results and hand analysis of real
codes, we believe effective parallelizers for Fortran and sim-
ilar languages will be available within the next decade. i

e

techniques.

Acknowledgments
The research described here was supported by Army
contracts DABT63-92-C-0033 and DABT63-95-C-0097.

References

1. R Eigenmann etal., “Restructuring Fortran Programs for Cedar,”
Concurrecy: Practice and Experience, Oct. 1993, pp. 553-537.

2. D.J.Kucketal., “The Structure of an Advanced Vectorizer for

Pipelined Processors,” Proc. Compsac 80, IEEE CS Press, Los

Figure 2. Percentage of loops serialized when disabling certain

Alamitos, Calif., 1980, pp. 709-715.

3. W.Blume and R. Eigenmann, “The Range Test: A Dependence
Test for Symbolic, Nonlinear Expressions,” Proc. Supercomput-
ing '94, IEEE CS Press, Los Alamitos, Calif., 1994, pp. 528-537.

4. P. Tu and D. Padua, “Automatic Array Privatization,” Lecture
Notes in Computer Science, Springer Verlag, 1993, pp. 500-521.

5. B. Pottenger and R. Eigenmann, “Idiom Recognition in the
Polaris Parallelizing Compiler,” Proc. Ninth Int’l Conf. Super-
computing, ACM Press, New York, 1995, pp. 444-448.

6. J.R.Grout, “Inline Expansion for the Polaris Research Compiler,”
Master’s thesis, Center for Supercomputing Research and Devel-
opment, Univ. of Illinois, Urbana-Champaign, May 1995.

7. L.Rauchwerger and D. Padua, “The LRPD Test: Speculative
Run-Time Parallelization of Loops with Privatization and
Reduction Parallelization,” Proc. SIGPlan 95, ACM Press, New
York, 1995, pp. 218-232.

William Blume is a software engineer in the Computer
Languages Lab at Hewlett-Packard. His research interests
are performance analysis and optimizing and parallelizing
compilers. He received a PhD in computer science at the Uni-
versity of Illinois at Urbana-Champaign. He is a member of
the IEEE Computer Society and ACM.

Ramon Doallois an associate professor in the Department of
Electronics and Systems at the Universidade Da Coruna, Spain.

His research interests include parallelizing compilers, parallel
sparse algorithms design, and effectiveness of cache utilization.

He received his Licenciatura and PhD, both in physics, from the
Universidad de Santiago de Compostela, Spain.

RudolfEigenmann is an assistant professor at the School
of Electrical and Computer Engineering at Purdue University.
His research interests include optimizing compilers, charac-
teristics of computational applications, and performance eval-
uation for high-performance computer architectures;
http://www.ece.purdue.edu/~eigenmann.

December 1996

John Grout is a PhD student at the University of Illinois.
He implemented the inline expansion component of the
Polaris research compiler and is interested in demand-dri-
ven intraprocedural and interprocedural analysis techniques
for parallelizing compilers. Grout received a BS in computer
science from Worcester Polytechnic Institute and an MS in
computer science from the University of Illinois at Urbana-
-Champaign. He is a student member of IEEE.

Jay Hoeflinger is a member of the Compiler Group at the
Center for Supercomputing Research and Development at
the University of Illinois. He worked on the Cedar Fortran
project and now works on the Polaris project. He received a
BS and an MS in computer science from the University of Illi-
nois at Urbana-Champaign.

Thomas Lawrence is a software development engineer at
Microsoft. His research interests include detection and
exploitation of parallelism at runtime. He received a BA in
computer science from the University of Wisconsin, Madi-
son, and an MS in computer science from the University of
Illinois, Urbana-Champaign.

4 Bertrand Meyer, Object Technology

Innavative technofogy for computer professionals

--.Is Changing

Welcome our new
1997 department editors:

¢ James Bach, Software Realities

& Mark Haas, Management
¢ Mike Lutz, New Books

Welcome back to our returning
department editors:

¢ Ron Vetter, Internet Watch

¢ Ted Lewis, (Resident) Binary Critic

& Charles Severance, Standards
¢ J.M. Jagadeesh, Product Reviews

A new comprehensive contributor’s guide is available.
To get one, send an e-mail request to aburgess@computer.org,
or a fax to Angela Burgess at (714) 821-4010.

®

Jaejin Leeis a PhD student in computer science at the Uni-
versity of Illinois and a research assistant at the Center for
Supercomputing Research and Development. His research
interests include optimizing explicitly parallel programs,
parallelizing and optimizing compilers, parallel architec-
tures, programming language theory, formal methods of
code verification, functional programming, and lambda cal-
culus. He received a BS in physics from Seoul National Uni-
versity, Korea, and an MS in computer science from Stanford
University.

David Padua is a professor of computer science at the Uni-
versity of lllinois. His research interests include parallelizing
compilers, software development tools, and parallel computer
organization. Padua received a Licentiate in computer sci-
ence from the Universidad Central de Venezuela and a PhD
in computer science from the University of Illinois at Urbana-
Champaign.

Yunheung Paek is a PhD student in computer science at
the University of Illinois. His research interest is paralleliz-
ing compilers. He received a BS and an MS in computer engi-
neering from Seoul National University. :

Bill Pottenger is a visiting software engineer with the
Polaris project at the University of Illinois. He is also a PhD
student in computer science at the Center for Supercom-
puting Research and Development. He received a BS in com-
puter science from the University of Alaska and an MS in
computer science from the University of llinois at Urbana-
Champaign. .

Lawrence Rauchwerger is an assistant professor in the
Department of Computer Science at Texas A&M University.
He received a Diploma Engineer from the Polytechnic Insti-
tute of Bucharest, Romania, an MS in electrical engineering
from Stanford University, and a PhD in computer science
from the University of Illinois. He is a member of the IEEE
Computer Society and ACM.

Peng Tuis a member of the technical staff at Silicon Graph-
ics. His research interests include program transformation
for concurrency and locality, symbolic evaluation, global
optimization, and loop nest optimization. He received a BS
and an MS in computer science from Shanghai Jiao Tong
University, China, and a PhD in computer science from Uni-
versity of Illinois.

Contact the authors at the Polaris Project, Univ. of Illinois,
1304 W. Springfield Ave., Urbana, IL 61801; polaris@csrd.
uiuc.edu.

