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ABSTRACT 
In 1994, the first multimedia extension, MAX-1, was introduced 
to general-purpose processors by HP. Almost ten years have 
passed, the present means of accessing the computing power of 
multimedia extensions are still limited to mostly assembly 
programming and the use of system libraries and intrinsic 
functions. Because of the similarity between multimedia 
extensions and vector processors, it is believed that traditional 
vectorization can be used to compile multimedia extensions. Can 
traditional vectorization effectively vectorize for multimedia 
extensions? If not, what additional techniques are needed? This 
paper tries to answer these two questions. Our experiment shows 
that traditional vectorization is not very effective in compiling 
multimedia applications for multimedia extensions. Based on a 
code study of the Berkeley Multimedia Workload, we identified 
several new challenges arise in vectorizing for multimedia 
extensions, and provide some solutions to these challenges.  

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – code generation, 
compilers, optimization. 

General Terms 
Performance, Experimentation, Languages. 

Keywords 
Multimedia Applications, Multimedia Extensions, Subword 
Parallelism, Vectorization. 

1. INTRODUCTION 
The past decade has witnessed multimedia processing become one 
of the most important computing workloads, especially on 
personal computing systems. To respond to the ever-growing 
performance demand of multimedia workloads, multimedia 
extensions (MME) have been added to general-purpose 
microprocessors to accelerate these workloads [1]. The 
multimedia extensions of most processors have a simple SIMD 
architecture based on short, fixed-length vectors, a large register 
file, and an instruction set targeted at the very specific multimedia 
application domain. 

Although it was almost ten years ago when the first multimedia 
extension, MAX-1, was introduced by HP, today multimedia 

extensions are usually programmed in assembly language and 
using libraries and intrinsic functions [2]. 

A promising alternative is to compile programs written in high-
level languages directly to MME instructions. Because of the 
similarity between multimedia extensions and vector processors, 
one may naturally consider applying traditional vectorization 
techniques to multimedia applications. However, satisfactory 
results are yet to be obtained for the vectorization of realistic 
multimedia programs on MME. Our experiments showed that less 
than 6% of the core loops in the Berkeley Multimedia Workload 
(BMW) can be vectorized by a state-of-the-art commercial MME 
compiler. 

Therefore, this paper sets out to answer two questions: 1) Can 
traditional vectorization techniques effectively vectorize for 
multimedia extensions? If not, 2) what additional techniques are 
needed? To answer these questions, we conducted a code study on 
the BMW benchmark, which is a set of multimedia programs 
written in C [3]. During the code study, we identified the 
differences between MME and traditional vectorization, and 
discuss new analyses and transformations to bridge the difference 
between the two. 

The rest of the paper is organized as follows: Section 2 gives an 
overview of MME architectures and the BMW benchmark. In 
Section 3, we survey current programming models and existing 
compiler supports for multimedia extensions. Section 4 discusses 
the difference between vectorizing for MME and traditional 
vector machines, and presents solutions to address some of these 
differences. Section 5 concludes and outlines the future work. 

2. BACKGROUND 

2.1 Multimedia Extensions (MME) 
Because of the increasing importance of multimedia workloads, 
most major microprocessor vendors have added multimedia 
extensions (MME) to their micro-architectures. Multimedia 
extensions that are available today include MMX/SSE/SSE2 for 
Intel [24][26], VMX/AltiVec for IBM [27], 3DNow! for AMD 
[25], MAX1/2 for HP [21], VIS for SUN [20], DVI for DEC 
[22], and MDMX/MIPS-3D for MIPS [23]. Most multimedia 
extensions are vector units that support operations in fixed-length 
vectors that are short, typically are no longer than 16 bytes. The 
purpose of the SIMD design is to exploit the data parallelism 
inherent in multimedia processing. 
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Multimedia extensions have evolved rapidly in recent years. Early 
MMEs often provided very limited instruction sets. For example, 
the very first multimedia extension, MAX-1, offers only 9 
instructions for processing 64-bit vectors of 16-bit integers [21]. 
Today’s MMEs support wider vector length, more vector types, 
and a much more comprehensive instruction set architecture (ISA). 
VMX, for instance, supports 128-bit vectors of 8-, 16-, and 32-bit 
integers, or 32-bit single-precision float with an ISA of 162 
instructions [27]. 

2.1.1 An Example of MME: Intel’s SSE2 
Announced in 2000 with Pentium 4 processor, SSE2 evolves from 
SSE (Streaming SIMD Extensions) by incorporating double-
precision floating-point support and more instructions [24]. 

SSE2 supports 128-bit vectors of almost all data types, including 
single- and double-precision floating-point and 8-, 16- and 32-bit 
integers as shown in Figure 1. It provides 144 instructions that 
can be grouped into arithmetic, compare, conversion, logical, shift 
or shuffle, and data movement instructions. 

SSE2 instruction set is non-uniform. That is, not all vector types 
are equally supported by the ISA. For example, SSE2 provides 
max and min operations for vectors of signed 16-bit integers and 
unsigned 8-bit integers, but not for vectors of other integer types. 

2.1.2 Multimedia Extensions vs. Vector Processors 
Despite the similarity between multimedia extensions and 
traditional vector processors, there are three key differences 
between the two architectures.  

First, a multimedia extension instruction only processes a small 
number of data elements, limited by its register width, often no 
longer than 16 bytes. This is in contrast with the very long vectors 
typical of traditional vector machines.  

Second, multimedia extensions provide much weaker memory 
units. For cost reasons, multimedia extensions do not support 
gather/scatter type memory operations as vector machines usually 
do. In addition, many multimedia extensions, such as VMX, can 
access memory only at vector-length aligned boundaries. Others 
like SSE2 allow misaligned memory accesses, but such accesses 
incur additional overhead. For example, in SSE2, a misaligned 
load, involves two loads and the execution of several micro-ops 
[26]. 

Finally, multimedia extension ISA tend to be less general-
purpose, less uniform, and more diversified. Many operations are 

very specialized and are only supported for specific vector types. 
A good example is SSE2’s max/min operation mentioned before. 

2.2 Berkeley Multimedia Workload 
Our code study is based on the Berkeley Multimedia Workload 
(BMW) benchmark [3]. The BMW benchmark is written in C and 
evolves from MediaBench [4]. Table 1 lists the BMW benchmark 
programs. 

Table 1. Berkeley Multimedia Workload Applications [3]  

Name Description # of Line 

ADPCM Audio compression: IMA ADPCM 300 

GSM Audio compression: European GSM 5,473 

LAME Audio encoder: MPEG-1 Layer III 19,704 

mpg123 Audio decoder: MPEG-1 Layer III 7,790 

DVJU Image compression: AT&T IW44  25,419 

JPEG Image compression: DCT based 33,714 

MPEG2 Video compression: MPEG-2 17,437 

POVray Persistence of vision ray tracer 151,346 

Mesa OpenGL 3D rendering API clone 120,038 

Doom Classical FPS video game 57,868 

Rsynth Klatt speech synthesizer 7,089 

Timidity MIDI music rendering  40,514 
 

One characteristic of multimedia applications is that a few core 
procedures take up most of the execution time. In fact, the hot-
spot behavior is much more pronounced in multimedia workloads 
than in integer programs or even floating point programs. This 
characteristic makes multimedia programs suitable for both hand 
and compiler optimizations. Table 2 gives the execution time 
distribution of several representative multimedia, integer, and 
floating-point workloads on a 2.0 GHz Pentium IV processor. In 
Table 2, Column “#Proc” gives the number of procedures that 
take up more than 10% of the total execution time, “%Exec” gives 
the total percentage of execution time spent on these procedures 
(excluding the time spent on the procedures they call), and 
“%Line” gives the percentage of total source lines of these 
procedures. 

Table 2. Distribution of Execution Time 

Class Application #Proc %Exec %Line 

Image JPEG (Decoder) 3 77.78 0.9 

Audio GSM (Encoder) 2 73.81 3.0 

Graphics Mesa (Gears) 1 81.34 0.2 

Speech Rsynth 1 70.49 2.7 

Integer 255.vortex 2 28.01 0.1 

Scientific 172.mgrid 3 79.69 29.23 
 

Figure 1. Streaming SIMD Extensions [16]. 
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3. OVERVIEW of MME COMPILATION 

3.1 Programming Multimedia Extensions 
For a long time, assembly language programming or embedding 
inline assembly in C programs has been the dominant means to 
access multimedia extensions. Due to the difficulties in 
programming, debugging, and maintaining assembly programs, 
usually only very important processing kernels are off-loaded to 
multimedia extensions.  

As multimedia extensions become more powerful, the need for 
more efficient programming methods grows in importance. Some 
computer vendors provide high-level language interfaces to 
multimedia extensions through intrinsic functions to facilitate 
accesses to MME. Intrinsic functions embedded in high-level 
programming languages are translated to MME instructions by 
native compilers. Gcc v3.1, for instance, supports intrinsic 
functions for several multimedia extensions including AtliVec, 
SSE2 and 3DNow! [5]. Compared to assembly coding, intrinsic 
function programming model achieves better productivity, 
readability, and portability without sacrificing much performance. 

Programming in standard high-level languages and relying on the 
compiler to produce optimized codes offer programmers a much 
easier way to utilize multimedia extensions. However, this 
approach can only be feasible if the compiled codes match the 
performance of the previous two approaches. 

3.2 Compilers for Multimedia Extensions 
Automatically compiling C programs to multimedia extension 
instructions have been tried out in both academia and industry.  

Because of architectural similarities between vector processors 
and multimedia extensions, traditional vectorization was naturally 
considered to compile programs for multimedia extensions. 
Traditional vectorization techniques were developed for vector 
processors mainly at the end of the 1980's and the beginning of 
the 1990's [6]. It is based on the notion of data dependence, which 
was developed by Kuck and his co-workers at the University of 
Illinois [7]. An overview of vectorizing compiler technology is 
given in [8]. 

In 1997, Cheong and Lam [9] developed an optimizer for VIS, the 
SUN multimedia extension, based on a SUIF vectorizer from 
MERL [10]. The focus of this work was to address alignment 
issues during code generation. Krall and Lelait [11] applied 
traditional vectorization to the code generation for VIS. Sreraman 
and Govindarajan [12] developed a vectorizer for the Intel MMX 
based on SUIF. However, only experiments with small kernels 
were reported. Larsen and Amarasinghe [18] proposed the SLP 
algorithm to do vectorization within basic blocks. Instead of 
vectorizing across loop iterations, SLP algorithm packs 
isomorphic instructions from the same basic block to vector 
instructions. The vectorizer was implemented in SUIF and was 
targeting AltiVec. Speedups were reported on few programs from 
SPECfp. In [17], a domain-specific C-like language, SWARC 
(SIMD-within-a-register), was developed to provide a portable 
way of programming for MMEs. 

To date, only a few commercial compilers that support automatic 
vectorization for multimedia extensions are available. The 
Crescent Bay Software extends VAST to generate codes for 
AltiVec extension [13]. The Portland Group offers the PGI® 

Workstation Fortran/C/C++ compilers that support automatic 
usage of SSE/SSE2 extensions [14]. The Codeplay™  announces 
the VectorC compiler for all x86 extensions [15]. Also, Intel 
extended its own product compiler to vectorize for 
MMX/SSE/SSE2 [16]. 

3.3 A Case Study: Intel Compiler for SSE2 
In this section, we present our findings of the effectiveness of a 
state-of-the-art product compiler for MME. Among all the 
commercial compilers with vectorization support for MME, the 
Intel compiler is one of the most widely used and available. It is 
also well documented in both user manuals [26] and research 
reports [16]. In addition, the Intel compiler can successfully 
vectorize 73 out of 135 loops from the Callahan-Dongarra-Levine 
Fortran test suite [19]. This proves that the Intel compiler is a 
competent vectorizer in the traditional vectorization standard. 
Therefore, we chose the Intel compiler as the target of the study 
and SSE2 as our test platform. 

In the experiments, we use the Intel compiler to compile core 
subroutines from the BMW benchmark. Out of 185 loops, only 10 
can be fully vectorized. The Intel compiler also reports reasons 
why vectorization fails at a particular loop. Table 3 lists the 
number of loops that can and cannot be vectorized and the reasons 
why vectorization fails. 

Table 3. Vectorization in Intel’s Compiler 

Reasons of Vectorization Failures # of Loops 

Fully Vectorized 10 

Outer Loop 53 

Irregular Loop Structure 23 

Data Dependence 55 

Unsupported Instructions 16 

Too Complex 20 

Others 8 

Total Number of Loops 185 
 
Since we do not have access to the compiler source codes, it is 
very hard for us to identify the actual reasons behind these failures. 
However, our manual analysis of some of the loops mentioned in 
Table 3 gives us some insight on the difficulties to vectorize 
multimedia applications. 

4. BRIDGING THE GAP BETWEEN MME 
AND TRADITIONAL VECTORIZATION 
Our studies show that despite the success of the vectorization for 
traditional vector machines, vectorization for multimedia 
extension still has a long way to go. In this section, we identify 
the key differences between traditional and MME vectorizations. 
The difference is the natural result of their differences in 
programming style (Section 4.1), in common data types and 
operations (Section 4.2), in application code patterns (Section 4.3), 
and in the architectures (Section 4.4). 
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4.1 Difference in Programming Styles 
4.1.1 Use of Pointers vs. Arrays  
Traditional vectorization is most effective for programs where 
most cycles are spent on tight loops involving mostly array 
accesses. Multimedia applications, on the other hand, rely on 
pointers and pointer arithmetic to access data in computationally 
intensive loops. Figure 2 gives an example of such pointer 
accesses extracted from LAME, an MPEG audio encoding 
application from the BMW benchmark suite. In this example, xp1 
and xpn point to input buffers, ep and pp point to output buffers, 
and are initially passed into the procedure as parameters.  

All twelve programs in the BMW benchmarks use pointers in 
their core procedures, and six of them also use pointer arithmetic. 
The pervasive use of pointers and pointer arithmetic has a great 
impact on vectorization in terms of memory disambiguation and 
dependence testing. 

Using Figure 2 as an example, before conducting any dependence 
analysis, the compiler needs to determine whether there is any 
overlapping between the regions accessed through variables xpl, 
xpn, ep, and pp during the iterations. This is not exactly a pointer 
aliasing problem. The complication comes from the fact that xpl, 

xpn, ep, pp are changing their values within the loop. A 
conventional alias analysis may determine whether *xpl and *ep 
are aliased at a particular iteration, but not whether *xpl at any 
iteration may be aliased to *ep at any other iterations.   

One may observe that xpl, xpn, ep, and pp change their values in a 
regular way. Not only does each variable change monotonically 
(either increasing or decreasing), but also their values change by a 
constant per iteration. In fact, xpl, xpn, ep, and pp are induction 
variables and can be represented by closed-form expressions of 
the iteration counter i. In Figure 3, we present the loop after 
replacing xpl, xpn, ep, and pp by their closed-form expressions. 
To avoid confusion, we use xpl’, xpn’, ep’, and pp’ to represent 
the values of xpl, xpn, ep, and pp before entering the loop.  

One must keep in mind that, although represented in array syntax, 
xpl’, xpn’, ep’, and pp’ are still pointers. This means that accesses 
through them can still be aliased. In fact, in this example, xp1’ 
and xpn’ are pointing to the first and the last element of an array 
of 1024 double elements, respectively. If the compiler knows that 
xp1’ accesses up-to 512 elements onward and xpn’ accesses up-to 
512 elements backward during the loop, and that xp1’ and xpn’ 
are 1024 elements apart, the compiler can prove that the accesses 
through xp1’ and xpn’ are non-overlapping. The region access 
information can be obtained by analyzing subscripts and loop 
bounds [28]. The task of pointer analysis is then to find out the 
distance between the memory location pointed to by xpl’, xpn’, 
ep’, and pp’.  

Once able to disambiguate the regions accessed by xpl’, xpn’, ep’, 
and pp’, we can apply traditional dependence analyses to resolve 
the dependences in the transformed loop in Figure 3. 

There may be loops that contain pointers with no closed-form 
expressions as shown in Figure 4. In this case, we can still exploit 
the monotonicity of the pointers to estimate the access region as 
well as conducting dependence analysis [29]. 

4.1.2 Manually Unrolled Loops 
Because of the high performance demand of multimedia 
workloads, many multimedia programs are hand-optimized. One 
typical example is manually unrolled loops. For example, six of 

Figure 4. Non-closed-form Pointer Access Example 
from BMW/Mesa. 

for (y=ymin;y<=ymax;y++) { 
  for (x=xmin;x<=xmax;x++) { 
    .... 
    GLfloat dist2 = dx*dx + dy*dy; 
    if (dist2<rmax2) { 
      .... 
      (PB)->x[(PB)->count] = x;  
      (PB)->y[(PB)->count] = y;  
      (PB)->z[(PB)->count] = z;  
      .... 
      (PB)->count++;; 
    } 
  } 
} 

Figure 3. BMW/LAME after Transforming Pointers to 
Closed-form Expressions 

 

for (i=1;i<512;i++) { 
  ep’[i-1]=xp1’[i-1]*xp1’[i-1]+xpn’[1-i]* 
xpn’[1-i]; 
  if (ep’[i-1] < 0.0005) { 
    ep’[i-1] = 0.0005; 
    pp’[i-1] = 0.0; 
  } 
  else  
    pp’[i-1]=atan2(-(double)(xpn’[1-i]), 
(double)(xp1’[i-1])); 
} 

Figure 2. Pointer Access Example from BMW/LAME. 

 

for (i=1;i<512;i++) { 
  *ep = *xp1 * *xp1 + *xpn * *xpn; 
  if (*ep < 0.0005) { 
    *ep++ = 0.0005; 
    *pp++ = 0.0; 
    xpn--; 
    xp1++; 
  } 
  else { 
    ep++; 
    *pp++ = atan2( -(double)(*xpn--), 
           (double)(*xp1++) ); 
 }    
} 
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the BMW benchmark programs contain unrolled inner loops. 
Figure 5 gives an example of a manually unrolled loop extracted 
from mpeg2, a video encoder application, where an inner loop has 
been completely unrolled 16 times to accumulate the absolute 
difference of two input arrays. 

In this example, it is difficult and expensive to vectorize 
statements across loop j because the accesses through p1[0] and 
p2[0] are non-continuous across iterations. The opportunity lies 
in vectorizing the 16 unrolled statements within the loop body. 

One solution is to first reroll the loop body, and then apply 
vectorization. Figure 6 shows the code after rerolling the loop in 
Figure 5.  Fortunately, most of the unrolled loops we have seen in 
BMW benchmark are quite simple. 

Another approach is to vectorize unrolled loops directly. The SLP 
algorithm mentioned in Section 3.2 offers such a solution by 
identifying isomorphic operations within a loop body and groups 
them to form MME SIMD instructions. 

4.2 Limitations of the C Language 
The mismatch between the C language and the underlying MME 
architecture also widens the gap between traditional and MME 
vectorization. 

4.2.1 Integral Promotion and Subword Types 
In ANSI C semantics, all char or short types (i.e., sub-word data 
types) are automatically promoted to integer type before 
conducting any arithmetic operations. This is known as integral 
promotion [3]. In essence, ANSI C supports the storage of sub-
word data types but not operations on them. This design is a 
perfect match for general-purpose architectures because general-
purpose ISA often only support integer operations on whole 

registers. In addition, integer extensions are often combined with 
load operations and incur no additional overhead.  

Table 4. Major Data Type Used in BMW Applications 

Application Type Application Type 

DVJU short ADPCM char/short 

JPEG short GSM short 

MPEG2 char LAME double 

Doom char mpg123 single 

Mesa char Rsynth single 

POVray double Timidity short 
 

On the other hand, since 8- or 16-bit integers are natural 
representation of many types of multimedia data, subword types 
are widely used in multimedia applications. As a result, it is very 
common to see a MME ISA that provides better support for 
subword operations than for 32-bit operations. From the 
vectorization point of view, when dealing with subword data types, 
following integral promotion rule means wasting more than half 
of the total computation bandwidth, and incurring additional 
overhead due to type extension. Vectorization of subword 
operations to word operations may even introduce slowdowns if 
the underlying ISA provides a native support for the former but 
not for the latter.  

Therefore, the issue is to automatically avoiding unnecessary 
integral promotion without affecting program semantics. We need 
a backward data-flow analysis to trace the effective width of the 
result of any operation based on how the result is consumed. The 
effective width of the result operand is propagated to the source 
operands according to the operations. We can then safely convert 
a word operation to a subword operation if all the source operands 
of a word operation have a subword effective width. 

4.2.2 Saturated Operations 

Saturated arithmetic is widely used in multimedia programs, 
especially in audio and image processing applications. Since C 
semantics does not support saturated arithmetic as native 
operators, programmers must express saturated operations in 
native C operations. Figure 7 gives such one example.  

The code sequence in Figure 7 can be vectorized into a sequence 
of compare, mask, subtract and add with the help of if-conversion. 
However, for MME that directly supports saturated add, the best 
performance can only be achieved by recognizing the sequence 
and transforming it into a saturated add instruction.  Idiom 
recognition, which has been used to identify max and min 
operations in scientific applications, can be extended to identify 
these saturated operations [30]. 

Figure 6. Rerolled Loop from Figure 5 

 

for (j=0; j<h; j++){ 
   for(i=0; i<16; i++) { 
     if((v=p1[i]-p2[i])<0) v = -v; 
     s+=v; 
   } 
   if (s >= distlim) break; 
   p1+= lx; 
   p2+= lx; 
} 

Figure 7. Saturated Add Implemented in C  from 
BMW/GSM. 

 

/* short a, b; int ltmp; */ 
#define GSM_ADD(a, b) \ 
((unsigned)((ltmp=(int)(a)+(int)(b)) \ 
  - MIN_WORD) > MAX_WORD - MIN_WORD ?  \ 
 (ltmp>0 ? MAX_WORD : MIN_WORD): ltmp) 

Figure 5. Manually Unrolled Loop from BMW/MPEG2. 

. 

for (j=0; j<h; j++){ 
   if ((v=p1[0]-p2[0])<0) v= -v; s+= v; 
 .... 
   if ((v=p1[15]-p2[15])<0) v= -v; s+= v; 
 
   if (s >= distlim)  break; 
   p1+= lx; 
   p2+= lx; 
} 
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Interestingly, within BMW benchmark, there are other 
implementations of saturated add.  In the example of Figure 8, 
array Clip is generated on-the-fly and it maps a subscript to its 
corresponding saturated 16-bit value. In this case, it becomes very 
difficult for a compiler to recognize this pattern. 

4.3 Code Patterns 
4.3.1 Bit-wise Operations 
Due to the nature of multimedia processing, bit-wise operations 
are often used in multimedia applications. Figure 9 gives an 
example of bit-wise operations extracted from mesa, an OpenGL 
3D graphics library. To vectorize this code, the key techniques are 
if-conversion and recognizing tmpOrMask, and tmpAndMask as 
reduction of bit-wise AND and OR operations.  

 

4.4 Limitations of the MME Architecture 
In Section 2.1.2, we have thoroughly discussed the architectural 
difference between MME and traditional vector architectures. To 
summarize, multimedia extension uses short, fixed-length vectors, 
has a much weaker memory unit, and provides a less uniform and 
general-purpose ISA. We believe that these architectural 
differences lead to many differences between MME and 
traditional vectorization, which oftentimes make the former more 
difficult. Some of the new challenges are still open questions. 

The short fixed-length SIMD architecture (typically with vector 
length less than 16-byte) implies that we can vectorize not only 
across iterations but also within iteration or even within a basic 
block. For the latter, a Super-word Level Parallelism (SLP) 
approach may be more effective [18]. 

The weak memory unit imposes a significant challenge to MME 
vectorization. The lack of native support for gather/scatter type of 
memory operations makes it very difficult to vectorize codes with 
non-continuous memory accesses. Figure 10 gives an simple 
example of stride accesses on tmp [8*k+j]. 

In addition, many multimedia extensions support only vector-
aligned loads and stores. Precise alignment information not only 
benefits vectorization but also simplifies code generation. There 
are two aspects of alignment optimization for vectorization 
purposes: to obtain alignment information and to improve 
alignment by program transformation, such as loop unrolling [31].  
Because of the pervasive use of pointers in multimedia 
applications, alignment analysis is in essence alignment analysis 
of pointers, and may require whole-program analysis. An 
alternative is to version different vectorization of the programs 
according to different alignment assumptions.  

The non-uniform and domain-specific ISA complicates code 
generation. When we identify an expression that satisfies all the 
dependence, continuous access, and alignment requirements, we 
may still find that the expression does not have a direct mapping 
in the underlying ISA. Very likely this is because the operands of 
the expression are of less supported data types. For the 
vectorization to be successful, the vector code generator must be 
able to map a non-supported vectorizable expression into a 
sequence of native vector instructions. In essence, the code 
generator serves as a layer that hides the difference between the 
underlying non-uniform, domain-specific ISA and the uniform 
general-purpose “ISA” of the high-level programming languages. 

4.5 Summary 
All these features we discussed in this section are summarized in 
Table 5 for core procedures from Berkeley Multimedia Workload.   

Figure 10. Strided Memory Access from BMW/mpeg2. 

. 

for (j=0; j<8; j++) 
  for (i=0; i<8; i++) { 
    s = 0.0; 
    for (k=0; k<8; k++) 
      s += c[i][k] * tmp[8*k+j]; 
    block[8*i+j]=(int)floor(s+0.499999);  
} 

Figure 8. Another C Implementation of Saturated Add 
from BMW/MPEG2. 

. 

/* INT16 *bp, UINT8 *rfp */ 
for (i=0; i<8; i++) { 
  for (j=0; j<8; j++) { 
    *rfp = Clip[*bp++ + *rfp]; 
    rfp++; 
  } 

Figure 9. Reduction on bit-wise operations from 
BMW/mesa. 

 

for (i=0;i<n;i++) { 
  .... 
  UINT8 mask = 0; 
  if(cx>cw)   mask|= CLIP_RIGHT_BIT; 
  else if(cx<-cw) mask|= CLIP_LEFT_BIT; 
  if(cy>cw)   mask|= CLIP_TOP_BIT; 
  else if(cy<-cw) mask|= CLIP_BOTTOM_BIT; 
  if(cz>cw)   mask |= CLIP_FAR_BIT; 
  else if(cz<-cw) mask |= CLIP_NEAR_BIT; 
  if (mask) { 
    clipMask[i] |= mask; 
    tmpOrMask |= mask; 
  } 
  tmpAndMask &= mask; 
} 
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Table 5. Code Patterns in Berkeley Multimedia Workload Applications* 

Name Core Procedures # of 
Loop 

Pointer 
Access 

Unrolled 
Loop 

Sat 
Ops 

Mixed 
Types 

Bit-wise 
Reduction 

Func 
Calls 

If-
Inst 

adpcm adpcm_coder 1x1 *  * *   * 
 adpcm_decoder 1x1 *  * *   * 
gsm Calculation_of_the_LTP_parameters 1x2 * *  *    
 Gsm_Short_Term_Analysis_Filter 1x2 *  *     
 Gsm_Short_Term_Synthesis_Filter 1x2 *  *     
lame quantize 3x1 *   *  * * 
 calc_noise2 2x3 *   *  * * 
mpg123 synth_1to1 2x1 * * * *    
jpeg encode_mcu_AC_refine 1x2 *   *  * * 
 encode_mcu_AC_first 1x2 *   *  * * 
 jpeg_idct_islow 2x1 * * * *    
 decode_mcu_AC_refine 1x2 *   *  * * 
 ycc_rgb_convert 1x2 * * * *    
mpeg2 dist1 4x2 * *  *   * 
 fdct 2x3 *   *    
 form_component_prediction 4x2 *   *   * 
 Dither_Frame 4x2 * *  *   * 
 idctcol 1x0 * * * *    
 idctrow 1x0 * * * *    
djvu backward_filter 3x1 *   *    
 forward_filter 3x1 *   *    
 _IWCodec::decode_buckets 4x2 *   * * * * 
 _IWCodec::encode_buckets 4x2 *   * * * * 
 IWPixmap::init 1x2 *  *     
mesa flat_TRUECOLOR_z_triangle 1x3 *     * * 
 smooth_TRUECOLOR_z_triangle 1x3 *     *  
 gl_shade_rgba_fast 1x2 * *  *  * * 
 gl_depth_test_span_generic 12x1 *      * 
 write_span_mono_ximage 1x1 *     * * 
 dist_atten_antialiased_rgba_points 2x3 * *  *   * 
 persp_textured_triangle 17x3 * *  *    
rsynth parwave 1x2      * * 
timidity rs_vib_loop 1x2 *   *    
 rs_bidir 1x2 *   *    
 mix_mystery_signal 2x2 *   *    
 mix_single_signal 2x2 *   *    
povray DNoise 1x0 * *    *  
doom R_DrawColumn 1x1 *       
 R_DrawSpan 1x1 *       
 R_RenderSegLoop 1x1 *   *  * * 
*In column “# of Loop”, “axb” means there are a important loops in the procedure, which are b-level nest loops. “Sat Ops” stands for 
“Saturation Operations”. “Func Calls” and “If-Inst” show whether the function calls and if-statements are used in the loop body, 
respectively.   
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5. CONCLUSION 
Our study showed that despite the success of vectorizing for 
traditional vector processors, the vectorization for multimedia 
extensions still has a long way to go. The gap between MME 
vectorization and traditional vectorization is the natural result of 
both the architectural differences between multimedia extensions 
and traditional vector processors and the differences between 
multimedia applications and numerical applications. 

In this paper, we conducted an in-depth study of the BMW 
benchmark suite. Based on the code study, we identified the key 
differences between MME and traditional vectorization, code 
patterns that are common in multimedia applications and new 
issues that arise in MME vectorization.  We also discussed 
solutions to address some of them.  

This work is only the first step towards unleashing the power of 
multimedia extensions through vectorization. Our study focuses 
more on identifying the new requirements and challenges faced by 
MME vectorization than on providing the actual solutions. 
Therefore our immediate future work is to propose new 
techniques to address the issues we identified and measure the 
effectiveness of these techniques on the BMW benchmark. At the 
same time, we would also like to extend our study on other 
application domain, such as numerical applications. It would be 
interesting to see how numerical programs can be vectorized and 
benefit from multimedia extensions. 
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