
 1

A Preliminary Study On the Vectorization of Multimedia
Applications for Multimedia Extensions

Gang Ren
University of Illinois at Urbana-

Champaign

gangren@uiuc.edu

Peng Wu
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598

pengwu@us.ibm.com

David A. Padua
University of Illinois at Urbana-

Champaign

padua@cs.uiuc.edu

ABSTRACT
In 1994, the first multimedia extension, MAX-1, was introduced
to general-purpose processors by HP. Almost ten years have
passed, the present means of accessing the computing power of
multimedia extensions are still limited to mostly assembly
programming and the use of system libraries and intrinsic
functions. Because of the similarity between multimedia
extensions and vector processors, it is believed that traditional
vectorization can be used to compile multimedia extensions. Can
traditional vectorization effectively vectorize for multimedia
extensions? If not, what additional techniques are needed? This
paper tries to answer these two questions. Our experiment shows
that traditional vectorization is not very effective in compiling
multimedia applications for multimedia extensions. Based on a
code study of the Berkeley Multimedia Workload, we identified
several new challenges arise in vectorizing for multimedia
extensions, and provide some solutions to these challenges.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – code generation,
compilers, optimization.

General Terms
Performance, Experimentation, Languages.

Keywords
Multimedia Applications, Multimedia Extensions, Subword
Parallelism, Vectorization.

1. INTRODUCTION
The past decade has witnessed multimedia processing become one
of the most important computing workloads, especially on
personal computing systems. To respond to the ever-growing
performance demand of multimedia workloads, multimedia
extensions (MME) have been added to general-purpose
microprocessors to accelerate these workloads [1]. The
multimedia extensions of most processors have a simple SIMD
architecture based on short, fixed-length vectors, a large register
file, and an instruction set targeted at the very specific multimedia
application domain.

Although it was almost ten years ago when the first multimedia
extension, MAX-1, was introduced by HP, today multimedia

extensions are usually programmed in assembly language and
using libraries and intrinsic functions [2].

A promising alternative is to compile programs written in high-
level languages directly to MME instructions. Because of the
similarity between multimedia extensions and vector processors,
one may naturally consider applying traditional vectorization
techniques to multimedia applications. However, satisfactory
results are yet to be obtained for the vectorization of realistic
multimedia programs on MME. Our experiments showed that less
than 6% of the core loops in the Berkeley Multimedia Workload
(BMW) can be vectorized by a state-of-the-art commercial MME
compiler.

Therefore, this paper sets out to answer two questions: 1) Can
traditional vectorization techniques effectively vectorize for
multimedia extensions? If not, 2) what additional techniques are
needed? To answer these questions, we conducted a code study on
the BMW benchmark, which is a set of multimedia programs
written in C [3]. During the code study, we identified the
differences between MME and traditional vectorization, and
discuss new analyses and transformations to bridge the difference
between the two.

The rest of the paper is organized as follows: Section 2 gives an
overview of MME architectures and the BMW benchmark. In
Section 3, we survey current programming models and existing
compiler supports for multimedia extensions. Section 4 discusses
the difference between vectorizing for MME and traditional
vector machines, and presents solutions to address some of these
differences. Section 5 concludes and outlines the future work.

2. BACKGROUND

2.1 Multimedia Extensions (MME)
Because of the increasing importance of multimedia workloads,
most major microprocessor vendors have added multimedia
extensions (MME) to their micro-architectures. Multimedia
extensions that are available today include MMX/SSE/SSE2 for
Intel [24][26], VMX/AltiVec for IBM [27], 3DNow! for AMD
[25], MAX1/2 for HP [21], VIS for SUN [20], DVI for DEC
[22], and MDMX/MIPS-3D for MIPS [23]. Most multimedia
extensions are vector units that support operations in fixed-length
vectors that are short, typically are no longer than 16 bytes. The
purpose of the SIMD design is to exploit the data parallelism
inherent in multimedia processing.

 2

Multimedia extensions have evolved rapidly in recent years. Early
MMEs often provided very limited instruction sets. For example,
the very first multimedia extension, MAX-1, offers only 9
instructions for processing 64-bit vectors of 16-bit integers [21].
Today’s MMEs support wider vector length, more vector types,
and a much more comprehensive instruction set architecture (ISA).
VMX, for instance, supports 128-bit vectors of 8-, 16-, and 32-bit
integers, or 32-bit single-precision float with an ISA of 162
instructions [27].

2.1.1 An Example of MME: Intel’s SSE2
Announced in 2000 with Pentium 4 processor, SSE2 evolves from
SSE (Streaming SIMD Extensions) by incorporating double-
precision floating-point support and more instructions [24].

SSE2 supports 128-bit vectors of almost all data types, including
single- and double-precision floating-point and 8-, 16- and 32-bit
integers as shown in Figure 1. It provides 144 instructions that
can be grouped into arithmetic, compare, conversion, logical, shift
or shuffle, and data movement instructions.

SSE2 instruction set is non-uniform. That is, not all vector types
are equally supported by the ISA. For example, SSE2 provides
max and min operations for vectors of signed 16-bit integers and
unsigned 8-bit integers, but not for vectors of other integer types.

2.1.2 Multimedia Extensions vs. Vector Processors
Despite the similarity between multimedia extensions and
traditional vector processors, there are three key differences
between the two architectures.

First, a multimedia extension instruction only processes a small
number of data elements, limited by its register width, often no
longer than 16 bytes. This is in contrast with the very long vectors
typical of traditional vector machines.

Second, multimedia extensions provide much weaker memory
units. For cost reasons, multimedia extensions do not support
gather/scatter type memory operations as vector machines usually
do. In addition, many multimedia extensions, such as VMX, can
access memory only at vector-length aligned boundaries. Others
like SSE2 allow misaligned memory accesses, but such accesses
incur additional overhead. For example, in SSE2, a misaligned
load, involves two loads and the execution of several micro-ops
[26].

Finally, multimedia extension ISA tend to be less general-
purpose, less uniform, and more diversified. Many operations are

very specialized and are only supported for specific vector types.
A good example is SSE2’s max/min operation mentioned before.

2.2 Berkeley Multimedia Workload
Our code study is based on the Berkeley Multimedia Workload
(BMW) benchmark [3]. The BMW benchmark is written in C and
evolves from MediaBench [4]. Table 1 lists the BMW benchmark
programs.

Table 1. Berkeley Multimedia Workload Applications [3]

Name Description # of Line

ADPCM Audio compression: IMA ADPCM 300

GSM Audio compression: European GSM 5,473

LAME Audio encoder: MPEG-1 Layer III 19,704

mpg123 Audio decoder: MPEG-1 Layer III 7,790

DVJU Image compression: AT&T IW44 25,419

JPEG Image compression: DCT based 33,714

MPEG2 Video compression: MPEG-2 17,437

POVray Persistence of vision ray tracer 151,346

Mesa OpenGL 3D rendering API clone 120,038

Doom Classical FPS video game 57,868

Rsynth Klatt speech synthesizer 7,089

Timidity MIDI music rendering 40,514

One characteristic of multimedia applications is that a few core
procedures take up most of the execution time. In fact, the hot-
spot behavior is much more pronounced in multimedia workloads
than in integer programs or even floating point programs. This
characteristic makes multimedia programs suitable for both hand
and compiler optimizations. Table 2 gives the execution time
distribution of several representative multimedia, integer, and
floating-point workloads on a 2.0 GHz Pentium IV processor. In
Table 2, Column “#Proc” gives the number of procedures that
take up more than 10% of the total execution time, “%Exec” gives
the total percentage of execution time spent on these procedures
(excluding the time spent on the procedures they call), and
“%Line” gives the percentage of total source lines of these
procedures.

Table 2. Distribution of Execution Time

Class Application #Proc %Exec %Line

Image JPEG (Decoder) 3 77.78 0.9

Audio GSM (Encoder) 2 73.81 3.0

Graphics Mesa (Gears) 1 81.34 0.2

Speech Rsynth 1 70.49 2.7

Integer 255.vortex 2 28.01 0.1

Scientific 172.mgrid 3 79.69 29.23

Figure 1. Streaming SIMD Extensions [16].

 3

3. OVERVIEW of MME COMPILATION

3.1 Programming Multimedia Extensions
For a long time, assembly language programming or embedding
inline assembly in C programs has been the dominant means to
access multimedia extensions. Due to the difficulties in
programming, debugging, and maintaining assembly programs,
usually only very important processing kernels are off-loaded to
multimedia extensions.

As multimedia extensions become more powerful, the need for
more efficient programming methods grows in importance. Some
computer vendors provide high-level language interfaces to
multimedia extensions through intrinsic functions to facilitate
accesses to MME. Intrinsic functions embedded in high-level
programming languages are translated to MME instructions by
native compilers. Gcc v3.1, for instance, supports intrinsic
functions for several multimedia extensions including AtliVec,
SSE2 and 3DNow! [5]. Compared to assembly coding, intrinsic
function programming model achieves better productivity,
readability, and portability without sacrificing much performance.

Programming in standard high-level languages and relying on the
compiler to produce optimized codes offer programmers a much
easier way to utilize multimedia extensions. However, this
approach can only be feasible if the compiled codes match the
performance of the previous two approaches.

3.2 Compilers for Multimedia Extensions
Automatically compiling C programs to multimedia extension
instructions have been tried out in both academia and industry.

Because of architectural similarities between vector processors
and multimedia extensions, traditional vectorization was naturally
considered to compile programs for multimedia extensions.
Traditional vectorization techniques were developed for vector
processors mainly at the end of the 1980's and the beginning of
the 1990's [6]. It is based on the notion of data dependence, which
was developed by Kuck and his co-workers at the University of
Illinois [7]. An overview of vectorizing compiler technology is
given in [8].

In 1997, Cheong and Lam [9] developed an optimizer for VIS, the
SUN multimedia extension, based on a SUIF vectorizer from
MERL [10]. The focus of this work was to address alignment
issues during code generation. Krall and Lelait [11] applied
traditional vectorization to the code generation for VIS. Sreraman
and Govindarajan [12] developed a vectorizer for the Intel MMX
based on SUIF. However, only experiments with small kernels
were reported. Larsen and Amarasinghe [18] proposed the SLP
algorithm to do vectorization within basic blocks. Instead of
vectorizing across loop iterations, SLP algorithm packs
isomorphic instructions from the same basic block to vector
instructions. The vectorizer was implemented in SUIF and was
targeting AltiVec. Speedups were reported on few programs from
SPECfp. In [17], a domain-specific C-like language, SWARC
(SIMD-within-a-register), was developed to provide a portable
way of programming for MMEs.

To date, only a few commercial compilers that support automatic
vectorization for multimedia extensions are available. The
Crescent Bay Software extends VAST to generate codes for
AltiVec extension [13]. The Portland Group offers the PGI®

Workstation Fortran/C/C++ compilers that support automatic
usage of SSE/SSE2 extensions [14]. The Codeplay™ announces
the VectorC compiler for all x86 extensions [15]. Also, Intel
extended its own product compiler to vectorize for
MMX/SSE/SSE2 [16].

3.3 A Case Study: Intel Compiler for SSE2
In this section, we present our findings of the effectiveness of a
state-of-the-art product compiler for MME. Among all the
commercial compilers with vectorization support for MME, the
Intel compiler is one of the most widely used and available. It is
also well documented in both user manuals [26] and research
reports [16]. In addition, the Intel compiler can successfully
vectorize 73 out of 135 loops from the Callahan-Dongarra-Levine
Fortran test suite [19]. This proves that the Intel compiler is a
competent vectorizer in the traditional vectorization standard.
Therefore, we chose the Intel compiler as the target of the study
and SSE2 as our test platform.

In the experiments, we use the Intel compiler to compile core
subroutines from the BMW benchmark. Out of 185 loops, only 10
can be fully vectorized. The Intel compiler also reports reasons
why vectorization fails at a particular loop. Table 3 lists the
number of loops that can and cannot be vectorized and the reasons
why vectorization fails.

Table 3. Vectorization in Intel’s Compiler

Reasons of Vectorization Failures # of Loops

Fully Vectorized 10

Outer Loop 53

Irregular Loop Structure 23

Data Dependence 55

Unsupported Instructions 16

Too Complex 20

Others 8

Total Number of Loops 185

Since we do not have access to the compiler source codes, it is
very hard for us to identify the actual reasons behind these failures.
However, our manual analysis of some of the loops mentioned in
Table 3 gives us some insight on the difficulties to vectorize
multimedia applications.

4. BRIDGING THE GAP BETWEEN MME
AND TRADITIONAL VECTORIZATION
Our studies show that despite the success of the vectorization for
traditional vector machines, vectorization for multimedia
extension still has a long way to go. In this section, we identify
the key differences between traditional and MME vectorizations.
The difference is the natural result of their differences in
programming style (Section 4.1), in common data types and
operations (Section 4.2), in application code patterns (Section 4.3),
and in the architectures (Section 4.4).

 4

4.1 Difference in Programming Styles
4.1.1 Use of Pointers vs. Arrays
Traditional vectorization is most effective for programs where
most cycles are spent on tight loops involving mostly array
accesses. Multimedia applications, on the other hand, rely on
pointers and pointer arithmetic to access data in computationally
intensive loops. Figure 2 gives an example of such pointer
accesses extracted from LAME, an MPEG audio encoding
application from the BMW benchmark suite. In this example, xp1
and xpn point to input buffers, ep and pp point to output buffers,
and are initially passed into the procedure as parameters.

All twelve programs in the BMW benchmarks use pointers in
their core procedures, and six of them also use pointer arithmetic.
The pervasive use of pointers and pointer arithmetic has a great
impact on vectorization in terms of memory disambiguation and
dependence testing.

Using Figure 2 as an example, before conducting any dependence
analysis, the compiler needs to determine whether there is any
overlapping between the regions accessed through variables xpl,
xpn, ep, and pp during the iterations. This is not exactly a pointer
aliasing problem. The complication comes from the fact that xpl,

xpn, ep, pp are changing their values within the loop. A
conventional alias analysis may determine whether *xpl and *ep
are aliased at a particular iteration, but not whether *xpl at any
iteration may be aliased to *ep at any other iterations.

One may observe that xpl, xpn, ep, and pp change their values in a
regular way. Not only does each variable change monotonically
(either increasing or decreasing), but also their values change by a
constant per iteration. In fact, xpl, xpn, ep, and pp are induction
variables and can be represented by closed-form expressions of
the iteration counter i. In Figure 3, we present the loop after
replacing xpl, xpn, ep, and pp by their closed-form expressions.
To avoid confusion, we use xpl’, xpn’, ep’, and pp’ to represent
the values of xpl, xpn, ep, and pp before entering the loop.

One must keep in mind that, although represented in array syntax,
xpl’, xpn’, ep’, and pp’ are still pointers. This means that accesses
through them can still be aliased. In fact, in this example, xp1’
and xpn’ are pointing to the first and the last element of an array
of 1024 double elements, respectively. If the compiler knows that
xp1’ accesses up-to 512 elements onward and xpn’ accesses up-to
512 elements backward during the loop, and that xp1’ and xpn’
are 1024 elements apart, the compiler can prove that the accesses
through xp1’ and xpn’ are non-overlapping. The region access
information can be obtained by analyzing subscripts and loop
bounds [28]. The task of pointer analysis is then to find out the
distance between the memory location pointed to by xpl’, xpn’,
ep’, and pp’.

Once able to disambiguate the regions accessed by xpl’, xpn’, ep’,
and pp’, we can apply traditional dependence analyses to resolve
the dependences in the transformed loop in Figure 3.

There may be loops that contain pointers with no closed-form
expressions as shown in Figure 4. In this case, we can still exploit
the monotonicity of the pointers to estimate the access region as
well as conducting dependence analysis [29].

4.1.2 Manually Unrolled Loops
Because of the high performance demand of multimedia
workloads, many multimedia programs are hand-optimized. One
typical example is manually unrolled loops. For example, six of

Figure 4. Non-closed-form Pointer Access Example
from BMW/Mesa.

for (y=ymin;y<=ymax;y++) {
 for (x=xmin;x<=xmax;x++) {

 GLfloat dist2 = dx*dx + dy*dy;
 if (dist2<rmax2) {

 (PB)->x[(PB)->count] = x;
 (PB)->y[(PB)->count] = y;
 (PB)->z[(PB)->count] = z;

 (PB)->count++;;
 }
 }
}

Figure 3. BMW/LAME after Transforming Pointers to
Closed-form Expressions

for (i=1;i<512;i++) {
 ep’[i-1]=xp1’[i-1]*xp1’[i-1]+xpn’[1-i]*
xpn’[1-i];
 if (ep’[i-1] < 0.0005) {
 ep’[i-1] = 0.0005;
 pp’[i-1] = 0.0;
 }
 else
 pp’[i-1]=atan2(-(double)(xpn’[1-i]),
(double)(xp1’[i-1]));
}

Figure 2. Pointer Access Example from BMW/LAME.

for (i=1;i<512;i++) {
 *ep = *xp1 * *xp1 + *xpn * *xpn;
 if (*ep < 0.0005) {
 *ep++ = 0.0005;
 *pp++ = 0.0;
 xpn--;
 xp1++;
 }
 else {
 ep++;
 *pp++ = atan2(-(double)(*xpn--),
 (double)(*xp1++));
 }
}

 5

the BMW benchmark programs contain unrolled inner loops.
Figure 5 gives an example of a manually unrolled loop extracted
from mpeg2, a video encoder application, where an inner loop has
been completely unrolled 16 times to accumulate the absolute
difference of two input arrays.

In this example, it is difficult and expensive to vectorize
statements across loop j because the accesses through p1[0] and
p2[0] are non-continuous across iterations. The opportunity lies
in vectorizing the 16 unrolled statements within the loop body.

One solution is to first reroll the loop body, and then apply
vectorization. Figure 6 shows the code after rerolling the loop in
Figure 5. Fortunately, most of the unrolled loops we have seen in
BMW benchmark are quite simple.

Another approach is to vectorize unrolled loops directly. The SLP
algorithm mentioned in Section 3.2 offers such a solution by
identifying isomorphic operations within a loop body and groups
them to form MME SIMD instructions.

4.2 Limitations of the C Language
The mismatch between the C language and the underlying MME
architecture also widens the gap between traditional and MME
vectorization.

4.2.1 Integral Promotion and Subword Types
In ANSI C semantics, all char or short types (i.e., sub-word data
types) are automatically promoted to integer type before
conducting any arithmetic operations. This is known as integral
promotion [3]. In essence, ANSI C supports the storage of sub-
word data types but not operations on them. This design is a
perfect match for general-purpose architectures because general-
purpose ISA often only support integer operations on whole

registers. In addition, integer extensions are often combined with
load operations and incur no additional overhead.

Table 4. Major Data Type Used in BMW Applications

Application Type Application Type

DVJU short ADPCM char/short

JPEG short GSM short

MPEG2 char LAME double

Doom char mpg123 single

Mesa char Rsynth single

POVray double Timidity short

On the other hand, since 8- or 16-bit integers are natural
representation of many types of multimedia data, subword types
are widely used in multimedia applications. As a result, it is very
common to see a MME ISA that provides better support for
subword operations than for 32-bit operations. From the
vectorization point of view, when dealing with subword data types,
following integral promotion rule means wasting more than half
of the total computation bandwidth, and incurring additional
overhead due to type extension. Vectorization of subword
operations to word operations may even introduce slowdowns if
the underlying ISA provides a native support for the former but
not for the latter.

Therefore, the issue is to automatically avoiding unnecessary
integral promotion without affecting program semantics. We need
a backward data-flow analysis to trace the effective width of the
result of any operation based on how the result is consumed. The
effective width of the result operand is propagated to the source
operands according to the operations. We can then safely convert
a word operation to a subword operation if all the source operands
of a word operation have a subword effective width.

4.2.2 Saturated Operations

Saturated arithmetic is widely used in multimedia programs,
especially in audio and image processing applications. Since C
semantics does not support saturated arithmetic as native
operators, programmers must express saturated operations in
native C operations. Figure 7 gives such one example.

The code sequence in Figure 7 can be vectorized into a sequence
of compare, mask, subtract and add with the help of if-conversion.
However, for MME that directly supports saturated add, the best
performance can only be achieved by recognizing the sequence
and transforming it into a saturated add instruction. Idiom
recognition, which has been used to identify max and min
operations in scientific applications, can be extended to identify
these saturated operations [30].

Figure 6. Rerolled Loop from Figure 5

for (j=0; j<h; j++){
 for(i=0; i<16; i++) {
 if((v=p1[i]-p2[i])<0) v = -v;
 s+=v;
 }
 if (s >= distlim) break;
 p1+= lx;
 p2+= lx;
}

Figure 7. Saturated Add Implemented in C from
BMW/GSM.

/* short a, b; int ltmp; */
#define GSM_ADD(a, b) \
((unsigned)((ltmp=(int)(a)+(int)(b)) \
 - MIN_WORD) > MAX_WORD - MIN_WORD ? \
 (ltmp>0 ? MAX_WORD : MIN_WORD): ltmp)

Figure 5. Manually Unrolled Loop from BMW/MPEG2.

.

for (j=0; j<h; j++){
 if ((v=p1[0]-p2[0])<0) v= -v; s+= v;

 if ((v=p1[15]-p2[15])<0) v= -v; s+= v;

 if (s >= distlim) break;
 p1+= lx;
 p2+= lx;
}

 6

Interestingly, within BMW benchmark, there are other
implementations of saturated add. In the example of Figure 8,
array Clip is generated on-the-fly and it maps a subscript to its
corresponding saturated 16-bit value. In this case, it becomes very
difficult for a compiler to recognize this pattern.

4.3 Code Patterns
4.3.1 Bit-wise Operations
Due to the nature of multimedia processing, bit-wise operations
are often used in multimedia applications. Figure 9 gives an
example of bit-wise operations extracted from mesa, an OpenGL
3D graphics library. To vectorize this code, the key techniques are
if-conversion and recognizing tmpOrMask, and tmpAndMask as
reduction of bit-wise AND and OR operations.

4.4 Limitations of the MME Architecture
In Section 2.1.2, we have thoroughly discussed the architectural
difference between MME and traditional vector architectures. To
summarize, multimedia extension uses short, fixed-length vectors,
has a much weaker memory unit, and provides a less uniform and
general-purpose ISA. We believe that these architectural
differences lead to many differences between MME and
traditional vectorization, which oftentimes make the former more
difficult. Some of the new challenges are still open questions.

The short fixed-length SIMD architecture (typically with vector
length less than 16-byte) implies that we can vectorize not only
across iterations but also within iteration or even within a basic
block. For the latter, a Super-word Level Parallelism (SLP)
approach may be more effective [18].

The weak memory unit imposes a significant challenge to MME
vectorization. The lack of native support for gather/scatter type of
memory operations makes it very difficult to vectorize codes with
non-continuous memory accesses. Figure 10 gives an simple
example of stride accesses on tmp [8*k+j].

In addition, many multimedia extensions support only vector-
aligned loads and stores. Precise alignment information not only
benefits vectorization but also simplifies code generation. There
are two aspects of alignment optimization for vectorization
purposes: to obtain alignment information and to improve
alignment by program transformation, such as loop unrolling [31].
Because of the pervasive use of pointers in multimedia
applications, alignment analysis is in essence alignment analysis
of pointers, and may require whole-program analysis. An
alternative is to version different vectorization of the programs
according to different alignment assumptions.

The non-uniform and domain-specific ISA complicates code
generation. When we identify an expression that satisfies all the
dependence, continuous access, and alignment requirements, we
may still find that the expression does not have a direct mapping
in the underlying ISA. Very likely this is because the operands of
the expression are of less supported data types. For the
vectorization to be successful, the vector code generator must be
able to map a non-supported vectorizable expression into a
sequence of native vector instructions. In essence, the code
generator serves as a layer that hides the difference between the
underlying non-uniform, domain-specific ISA and the uniform
general-purpose “ISA” of the high-level programming languages.

4.5 Summary
All these features we discussed in this section are summarized in
Table 5 for core procedures from Berkeley Multimedia Workload.

Figure 10. Strided Memory Access from BMW/mpeg2.

.

for (j=0; j<8; j++)
 for (i=0; i<8; i++) {
 s = 0.0;
 for (k=0; k<8; k++)
 s += c[i][k] * tmp[8*k+j];
 block[8*i+j]=(int)floor(s+0.499999);
}

Figure 8. Another C Implementation of Saturated Add
from BMW/MPEG2.

.

/* INT16 *bp, UINT8 *rfp */
for (i=0; i<8; i++) {
 for (j=0; j<8; j++) {
 *rfp = Clip[*bp++ + *rfp];
 rfp++;
 }

Figure 9. Reduction on bit-wise operations from
BMW/mesa.

for (i=0;i<n;i++) {

 UINT8 mask = 0;
 if(cx>cw) mask|= CLIP_RIGHT_BIT;
 else if(cx<-cw) mask|= CLIP_LEFT_BIT;
 if(cy>cw) mask|= CLIP_TOP_BIT;
 else if(cy<-cw) mask|= CLIP_BOTTOM_BIT;
 if(cz>cw) mask |= CLIP_FAR_BIT;
 else if(cz<-cw) mask |= CLIP_NEAR_BIT;
 if (mask) {
 clipMask[i] |= mask;
 tmpOrMask |= mask;
 }
 tmpAndMask &= mask;
}

 7

Table 5. Code Patterns in Berkeley Multimedia Workload Applications*

Name Core Procedures # of
Loop

Pointer
Access

Unrolled
Loop

Sat
Ops

Mixed
Types

Bit-wise
Reduction

Func
Calls

If-
Inst

adpcm adpcm_coder 1x1 * * * *
 adpcm_decoder 1x1 * * * *
gsm Calculation_of_the_LTP_parameters 1x2 * * *
 Gsm_Short_Term_Analysis_Filter 1x2 * *
 Gsm_Short_Term_Synthesis_Filter 1x2 * *
lame quantize 3x1 * * * *
 calc_noise2 2x3 * * * *
mpg123 synth_1to1 2x1 * * * *
jpeg encode_mcu_AC_refine 1x2 * * * *
 encode_mcu_AC_first 1x2 * * * *
 jpeg_idct_islow 2x1 * * * *
 decode_mcu_AC_refine 1x2 * * * *
 ycc_rgb_convert 1x2 * * * *
mpeg2 dist1 4x2 * * * *
 fdct 2x3 * *
 form_component_prediction 4x2 * * *
 Dither_Frame 4x2 * * * *
 idctcol 1x0 * * * *
 idctrow 1x0 * * * *
djvu backward_filter 3x1 * *
 forward_filter 3x1 * *
 _IWCodec::decode_buckets 4x2 * * * * *
 _IWCodec::encode_buckets 4x2 * * * * *
 IWPixmap::init 1x2 * *
mesa flat_TRUECOLOR_z_triangle 1x3 * * *
 smooth_TRUECOLOR_z_triangle 1x3 * *
 gl_shade_rgba_fast 1x2 * * * * *
 gl_depth_test_span_generic 12x1 * *
 write_span_mono_ximage 1x1 * * *
 dist_atten_antialiased_rgba_points 2x3 * * * *
 persp_textured_triangle 17x3 * * *
rsynth parwave 1x2 * *
timidity rs_vib_loop 1x2 * *
 rs_bidir 1x2 * *
 mix_mystery_signal 2x2 * *
 mix_single_signal 2x2 * *
povray DNoise 1x0 * * *
doom R_DrawColumn 1x1 *
 R_DrawSpan 1x1 *
 R_RenderSegLoop 1x1 * * * *
*In column “# of Loop”, “axb” means there are a important loops in the procedure, which are b-level nest loops. “Sat Ops” stands for
“Saturation Operations”. “Func Calls” and “If-Inst” show whether the function calls and if-statements are used in the loop body,
respectively.

 8

5. CONCLUSION
Our study showed that despite the success of vectorizing for
traditional vector processors, the vectorization for multimedia
extensions still has a long way to go. The gap between MME
vectorization and traditional vectorization is the natural result of
both the architectural differences between multimedia extensions
and traditional vector processors and the differences between
multimedia applications and numerical applications.

In this paper, we conducted an in-depth study of the BMW
benchmark suite. Based on the code study, we identified the key
differences between MME and traditional vectorization, code
patterns that are common in multimedia applications and new
issues that arise in MME vectorization. We also discussed
solutions to address some of them.

This work is only the first step towards unleashing the power of
multimedia extensions through vectorization. Our study focuses
more on identifying the new requirements and challenges faced by
MME vectorization than on providing the actual solutions.
Therefore our immediate future work is to propose new
techniques to address the issues we identified and measure the
effectiveness of these techniques on the BMW benchmark. At the
same time, we would also like to extend our study on other
application domain, such as numerical applications. It would be
interesting to see how numerical programs can be vectorized and
benefit from multimedia extensions.

6. REFERENCES
[1] Keith Diefendorff and Pradeep K. Dubey. How Multimedia

Workloads Will Change Processor Design. IEEE Computer,
Vol. 30, No 9, 43-45, September 1997.

[2] Andreas Krall and Sylvain Lelait. Compilation Techniques
for Multimedia Processors. International Journal of Parallel
Programming, Vol. 18, No 4, 347-361, 2000.

[3] Nathan T. Slingerland and Alan J. Smith. Design and
characterization of the Berkeley multimedia workload.
Multimedia Systems, Vol. 8, No 4, 315-327, 2002.

[4] Chunho Lee, Miodrag Potkonjak and William H. Mangione-
Smith. MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems. Proceedings of
Micro '97, 330-335.

[5] Using the GNU Compiler Collection (GCC). Free Software
Foundation, Boston, MA, 2002.

[6] David A. Patterson and John L. Hennessy. Computer
Architecture :A Quantitative Approach. Morgan Kaufmann
Publishers, San Mateo, California, 1996.

[7] David J. Kuck at all. Measurements of Parallelism in
ordinary FORTRAN programs. IEEE Computer, Vol. 7, 37-
46, Jan. 1974.

[8] David Padua and Micheal Wolfe. Advanced Compiler
Optimizations for Supercomputers. ACM Communication,
Vol. 29, No 12, 1184-1201, Dec. 1986.

[9] Gerald Cheong and Monica S. Lam. An Optimizer for
Multimedia Instruction Sets. Second SUIF Compiler
Workshop, Stanford, August 1997.

[10] Venkat Konda, Hugh Lauer, Katsunobu Muroi, Kenichi
Tanaka, Hirono Tsubota, Ellen Xu, Chris Wilson. A
SIMDizing C Compiler for the Mitsubishi Electric Neuro4
Processor Array. First SUIF Compiler Workshop, Stanford,
January 1996.

[11] Andreas Krall and Sylvain Lelait. Compilation Techniques
for Multimedia Processors. International Journal of Parallel
Programming, Vol. 28, No 4, 347-361, 2000.

[12] N. Sreraman and R. Govindarajan. A Vectorizing Compiler
for Multimedia Extensions. International Journal of Parallel
Programming, Vol. 28, No 4, 363-400, 2000.

[13] Crescent Bay Software Corp.
http://www.psrv.com/vast_altivec.html.

[14] The Portland Group Compiler Technology.
http://www.pgroup.com/products/workpgi.htm.

[15] Codeplay Software Limited.
http://www.codeplay.com/vectorc/features.html.

[16] Aart J. C. Bik, Milind Girkar, Paul M. Grey, Xinmin Tian.
Automatic Intra-Register Vectorization for the Intel®
Architecture. International Journal of Parallel Programming,
Vol. 30, No 2, 65-98, April 2002.

[17] R. J. Fisher and H. G. Dietz. Compiling for SIMD within a
Register. 1998 Workshop on Languages and Compilers for
Parallel Computing, University of North Carolina at Chapel
Hill, North Carolina, August 1998.

[18] Samuel Larsen and Saman Amarasinghe. Exploiting
Superword Level Parallelism with Multimedia Instruction
Sets. Proceeding of the SIGPLAN Conference on
Programming Language Design and Implementation,
Vancouver, B.C., June 2000.

[19] D. Callahan, J. Dongarra and D. Levine. Vectorizing
Compilers: A Test Suite and Results. Proceedings of the
1988 ACM/IEEE conference on Supercomputing, Orlando,
Florida, 1988.

[20] L. Kohn, G. Maturana, M. Tremblay, A. Prabhu, G. Zyner.
The Visual Instruction Set (VIS) in UltraSPARC. Proc.of
Compcon '95, San Francisco, California, March 1995.

[21] Ruby Lee, Larry McMahan. Mapping of Application
Software to the Multimedia Instructions of General Purpose
Microprocessors. IS&T/SPIE Symp. on Electric Imaging:
Science and Technology, San Jose, California, February
1997.

[22] David A. Carlson, Ruben W.Castelino, Robert O.Mueller.
Multimedia Extensions for a 550-MHz RISC
Microprocessor. IEEE Journal of Solid-State Circuits,
Vol.32, No 11, 1618-1624, November 1997.

[23] MIPS Technologies, Inc. MIPS Extension for Digital Media
with 3D. White Paper, March 1997.

[24] Intel Corporation. IA32 Intel Architecture Software
Developer's Manual with Preliminary Intel Pentium 4
Processor Information Volume 1: Basic Architecture.

[25] Stuart Oberman, Greg Favor, Fred Weber. AMD 3DNow!
Technology: Architecture and Implementations. IEEE Micro,
Vol. 19, No 2, 37-48, March 1999.

 9

[26] Intel Corporation. Intel Architecture Optimization Reference
Manual.

[27] Sam Fuller. Motorola's AltiVec Technology. White Paper,
May 6, 1998.

[28] William Blume and Rudolf Eigenmann. The Range Test: A
Dependence Test for Symbolic, Non-linear Expressions.
Proceedings of Supercomputing '94, Washington D.C., 528-
537, November 1994.

[29] P. Wu, A. Cohen, J. Hoeflinger, and D. Padua. Monotonic
Evolution: An Alternative to Induction Variable Substitution
for Dependence Analysis. Proceedings of the 15th
International Conference on Supercomputing, Sorrento,
Italy, June 2001.

[30] A.J.C. Bik, M. Girkar, P.M. Grey, and X. Tian. Automatic
Detection of Saturation and Clipping Idioms. In Proceedings
of the 15th International Workshop on Languages and
Compilers for Parallel Computers, July, 2002.

[31] Sam Larsen, Emmett Witchel, and Saman Amarasinghe.
Increasing and Detecting Memory Address Congruence. In
Proceedings of 11th International Conference on Parallel
Architectures and Compilation Techniques (PACT),
Charlottesville, VA, September, 2002.

