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Compilers for vector or multiprocessor computers must have certain 
optimization features to successfully generate parallel code. 

DAVID A. PADUA and MICHAEL J. WOLFE 

Supercomputers’ use parallelism to provide users 
with increased computational power. Most super- 
computers are programmed in some higher level 
language, commonly Fortran; all supercomputer 
vendors provide Fortran compilers that detect paral- 
lelism and generate parallel code to take advantage 
of the architecture of their machines’ [25, 46, 531. 

This article discusses some of the common (and 
not so common) features that compilers for vector or 
multiprocessor computers must have in order to suc- 
cessfully generate parallel code. The many examples 
given throughout are related to the generic types of 
machines to which they apply. Where appropriate, 
we also relate these parallel compiler optimizations 
to those used in standard compilers. 

‘Some of the supercomputers available today are the FX Series from Alliant 
Computer Corporation. the Cyber 205 from Control Data Corporation, the 
Convax C-I from Conwx Computer Corporation. the Cray 2 and the Cray 
X-MP 1151 from Cray Research. the Facom VP from Fujitsu [39], the S-810 
Vector Processor from Hitachi 1401. the SX System from NEC Corporation. and 
the SCS-40 from Scientific Computer Systems. Alliant’s FX and Convex’s C-l 
are usually classified as minisupercomputers. 

’ Besides the vendor-supplied compilers. there are a number of experimental 
and third-party source-~o-so~~rce restructurers. Among them are the Univer- 
sity of Illinois’s Parafrase 1321, KAl’s KAP [17. 181. Rice University’s PFC 1.51, 
and Pacific Sierra’s VAST [I 11. 
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Fortran is currently the programming language of 
choice for supercomputers, largely because vendors 
presently provide optimizing, vectorizing, and 
concurrentizing3 compilers only for Fortran. In addi- 
tion, Fortran has historically been the most fre- 
quently used numerical programming language, and 
much investment has been made in its programs. 
The examples in the text are written in Fortran, 
using some of the new features described in the lat- 
est Fortran-8x proposal [i’], such as the end do 
statement and array assignments. The literature dis- 
tinguishes two types of concurrent loops: doall and 
doacross [16, 431. The latter imposes a partial exe- 
cution order across iterations in the sense that some 
of the iterations are forced to wait for the execution 
of some of the instructions from previous iterations. 
Doall loops do not impose any partial ordering 
across iterations, even though there may be critical 
regions in the loop bodies.* Despite our use of 
Fortran, none of the features or transformations ex- 
plained here are peculiar to this language, and they 
can be successfully applied to many others. 

‘The term parallclize is often used to describe the translation of serial code for 
parallel computers. We prefer the mow specific cor~currtwt over parallel. since 
parallel may moan vector. concurrent. or lockstep multiprocessor computa- 
tion. Also, Alliant Computer Corporation. the first commercial vendor to sup- 
ply a compiler that automatically translates code for multiple processors. uses 
the term cor~currer~f. 

a The DOALL statement was originally defined in the Burrough’s FMP Fortran 
113, 361. 
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We will discuss how data-dependence testing of 
some form is required in any compiler that wishes to 
detect parallelism in serial code, and explain the 
different types of parallel code that can be gener- 
ated. Vector code is appropriate for computers with 
vector instructions sets, while concurrent constructs 
are used in multiprocessor environments. Also cov- 
ered are ways to improve the computation of the 
data-dependence graph. A (very incomplete) catalog 
of transformations and restructuring tricks that com- 
pilers use to optimize code for parallel computers is 
given, followed by a discussion of how these com- 
pilers communicate with programmers. 

DATA DEPENDENCE 
Data-dependence testing [5, 8, 10, 521 is required for 
any form of automatic parallelism detection. Data- 
dependence relations are used to determine when 
two operations, statements, or two iterations of a 
loop can be executed in parallel. For instance, in the 
code 

S ,: A=B+C 
s* : D=A+2. 
S 3: E = A * 3. 

statements S, and sz cannot be executed at the 
same time since Sz uses the value of A that is com- 
puted by s,. This is called true dependence or f7ow 
dependence since the data value flows from S, to s2, 
and is denoted S, 6 sz. s3 also depends on S, 
(denoted s , 6 sJ; thus S, must be executed before 
both sz and s3. The data-dependence relations are 
often depicted in a data-dependence graph, with arcs 
representing the relations, as follows: 

Notice that Sz and s3 are not connected by data- 
dependence arcs and so may be executed in parallel 
if two processors are available. 

Two other kinds of data dependence are impor- 
tant. In the program segment 

S ,: A=B+C 
s* : B=D/2 

S, uses the value of B before Sz assigns a new value 
to B. Since S, is to use the “old” value of B, it must 
be executed before s2; this is called antidependence, 
as the relation is from the use to the assignment, and 

is denoted S, 5 S2. The third kind of dependence 
is shown in the program segment below: 

s,: A=B+C 
s2 : D=A+2 
s3: A=E+F 

Here s3 assigns a new value to A after S, has already 
given a value to A. If S , is executed after S3, then A 
will contain the wrong value after this program seg- 
ment. Thus, S, must precede S3; this is called output 
dependence and is denoted S, 6” S3. 

The flow of control must also be taken into ac- 
count when building data-dependence relations. For 
instance, in the program segment 

S,: A = B + C 
if ( X >= 0 ) then 

sz : A = 0. 
else 

s3 : D=A 
end if 

the relations S, 6” sz and S, 6 s3 hold, but 
s2 6 s3 does not hold even though S2 assigns a 
value to A and S3 uses A, and S3 appears after Sz in 
the program. Since sz and s3 are on different 
branches of the same if statement, the value of A 
used in s3 will never come from s2. 

Since the actual execution flow of a program is 
not known until run time, a data-dependence rela- 
tion does not always imply data communication or 
memory conflict. For instance, in this program seg- 
ment 

S,: A = B + C 
C ,: if ( X >= 0 ) then 
S 2: A=A+2 

end if 
s3: D = A * 2.1 

the data-dependence relations S, 6 S3 and Sz 6 S3 
will both be computed by the compiler, even though 
S3 will in fact take the value of A from only one of 
S, or S2, depending on the value of X. 

Many compilers also use the concept of depen- 
dence from an if statement to the statements under 
control of the if. This is called control dependence 
and is denoted 6’. In the program segment above, for 
example, the control-dependence relation C, 6’ Sz 
holds. Control-dependence relations are often added 
to the data-dependence graph in order to find which 
statements in the program can be reordered, or 
when looking for cycles in the graph. 

Data Dependence in Loops 
Inside loops we are interested in data-dependence 
relations between statements and also dependence 
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relations between instances of statements. We distin- 
guish between different insta:nces of execution of a 
statement by superscripting the statement label with 
the loop iterations. For instance, in the loop 

do I = I,3 

S 1: A(1) = B(1) 
do J = 1,2 

.sz : C(I,J) = A(I) + B(J) 
end do 

end do 

statement S, is executed three times: s 1, s :, s :; and 
Sz is executed six times: S:,‘, S:,‘, S:,‘, S$*‘, S:,‘, 
s 2’ 2 (we put the outer loop iteration number first). 
We can also draw the iterations as points with 
Cartesian coordinates, as below: 

cs.; ---- +sy-.--~sy-\ 

----------------- / 
c b ST ---,s$, ‘-.--- ,c$> 2,\ 

/ /--------------/ 
/ 
\ * s: ---,s;, I--- +s;,2 

This diagram ilbistrates the iteration space; the dot- 
ted arrows show the order in which the instances of 
the statements are executed. 

To find data-dependence relations in loops, the 
arrays and subscripts are examined. In the loop 

do I = 2,N 
s,: A(1) = B(1) + C(1) 
sz: D(1) = A(1) 

end do 

the relation S, 6 sz holds, since, for any iteration i, 
S;willassignA(i) andS;willuseA(i) onthe 
same iteration of the loop. Since the dependence 
stays in the same iteration of the loop, we say 
s, 6= sz. 

In the following similar loop 

do I = 2,N 
s,: A(1) = B(1) + C(1) 
s2: D(1) = A(I-1) 

end do 

the relation S, 6 sz still holds, but for any iteration 
i , S ; will use an element of A that was assigned 
on the previous iteration of the loop by s ;-’ (except 
S$, which uses an “old” value of A( 1 )). Since the 
dependence flows from iteration i-l to iteration 

i, we say that S, 6, Sz (the relation is S< because 
i - 1 < i). 

A third similar example is shown below: 

do I = 2,N 
S 1 : A(1) = B(1) + C(1) 
S 2: D(1) = A(I+l) 

end do 

In this loop, for any iteration i, s : will use an ele- 
ment of A that will be reassigned by s ;+’ . Since s2 

should use an “old” value of A, the antidependence 
relation Sz b S, holds. This relation flows from 
iteration i to iteration i+l , so we say Sz S, S, 
(since i < i + 7). 

The = or < used as the subscript of 6 is called the 
data-dependence direction, since it gives the direction 
of the dependence relation in the iteration space. In 
nested loops, there is a direction for each loop; these 
comprise a data-dependence direction vector. For in- 
stance, in the loop 

do I = l,N 
do J = 2,N 

S 1: A(I,J) = A(I,J-1) + B(I,J) 
sz: C(I,J) = A(I,J) + D(I+l,J) 
s3: D(I,J) = 0.1 

end do 
end do 

the following dependence relations hold: 

s1 6=,< s1 
s, d= = s, > I 
sz F<,= s3 

Since most array subscripts are simple, simple 
tests are usually sufficient. Some compilers (e.g., 
Cray Fortran (CFT) and Control Data’s Fortran 200 
compilers) use restricted tests that allow only certain 
array subscript expressions, such as A ( I ) or 
A ( I * c+k ) (where c and k are constants). Depen- 
dence is assumed for any array reference that does 
not conform to the restrictions. These tests work 
well for new codes that are written with a particular 
computer in mind, since programmers will know 
what loops they want executed in parallel and will 
help the compiler by keeping their loops simple. 

Sophisticated methods have been developed to 
handle more general cases (see [5, 8, 10, 521). For 
instance, in order for data flow-dependence to be 
caused by the two array references to A here 

do I = L,U 
s, : A(c*I+j) = . . . 
52 : . . . = A(d*I+k) 

end do 
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(where c, d, j, and k are integer constants), the 
greatest common divisor of c and d (GCD (c,d)) 

must divide (k-j). For example, no dependence 
would exist in the following loop 

do I = L,U 
s, : A(2*1) = . . . 
sz : . . . = A(2*1+1) 

end do 

since the GCD ( 2,2 )=2, which does not divide 
l-0=1. 

More importantly, there must exist two values of 
the loop index variable I, say x and y, such that 

LCxlylU 
c*x+j = d*y+k 

In the sample loop below 

do I = 1,lO 
s,: A(19*1+3) = . . . 
sz: . . . = A(2*1+21) 

end do 

the only two values that satisfy this dependence 
equation are x = 2 and y = 10 : 

19*2+3 = 41 = 2*10+21 

Solving this Diophantine equation is the subject of 
several of the references cited above, which also 
generalize this to nested loops where several loop 
indexes appear in a single subscript. 

CODE GENERATION 
When a good data-dependence graph has been built 
for a loop nest, the compiler can generate parallel 
code. Since many supercomputers have vector 
instruction sets, vectorization is important. Most 
vector computers can compute certain reduction 
operations, such as the sum of all the elements of a 
vector, using vector instructions. At least one super- 
computer also has hardware to assist in the solution 
of first order linear recurrences.5 

Newer supercomputers achieve higher speeds by 
using multiple processors. For these machines, gen- 
eration of concurrent code will utilize all processors. 
Concurrent loops and concurrent blocks of code are 
two types of parallel code that can be generated. 

Loop Vectorization 
Loops are vectorized by examining the data- 
dependence graphs for innermost loops. A simple 
graph algorithm to find cycles in the data- 
dependence graph identifies any trouble spots in 

‘A first order linear recurrence is defined by the equations x, = ci + a, XX,-, 
i = 2. 3.. II and x1 = 0. 

vectorization. If there are no cycles in the graph, 
then the whole loop can be vectorized. For example, 
the following loop 

do I = l,N 

S 1: A(1) = B(1) 
S 2: C(1) = A(1) + B(1) 
s3 : E(1) = C(I+l) 

end do 

has the following data-dependence graph: 

Sl 

,i, 

SZ 

+ Flow dependence 

~ 

S3 

$ -* Antidependence 

Because the data-dependence graph has no cycles, it 
can be completely vectorized, although some state- 
ment reordering will be necessary. Since S3 g Sz , 
s3 must precede sz in the vectorized loop: 

S,: A(1:N) = B(l:N) 
S 3: E(l:N) = C(2:N+l) 
S 2: C(l:N) = A(1:N) + B(1:N) 

The following loop contains a data-dependence 
cycle: 

do I = 2,N 
S 1: A(1) = B(1) 
sz : C(1) = A(1) + B(I-1) 
s,: E(1) = C(I+l) 
54 : B(1) = C(1) + 2. 

end do 

The following is the data-dependence graph for this 
loop: 

Sl 

Statements sz and s4 comprise a cycle in the data- 
dependence graph; when the dependence graph 
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contains a cycle, the strongly connected components 
(or maximal cycles) must be found. All the statements 
in a data-dependence cycle must be executed in a 
serial loop unless the cycle can be broken. However, 
other statements may still be vectorized. Thus, the 
previous loop may be partially vectorized as follows: 

s,: A(2:N) = B(2:N) 
S 3: E(2:N) = C(3:N+l) 

do I = 2,N 
sz: C(1) = A(1) + B(I-1) 
S 4: B(1) = C(1) + 2. 

end do 

A sufficient (but not necessary) condition for 
vectorization of a loop is that no upward data- 
dependence reXations (Si 6 Sj, and Sj lexically pre- 
cedes SJ appear in the loop. This will guarantee 
legal vectorization, but will miss loops where simple 
statement reordering would allow vectorization (as 
in the first example above). 

Certain reduction operations appear frequently 
in programs and are recognized by vectorizing 
compilers. Prorninent among these is the SUM 
of a vector: 

do I = 1,N 
S 1: A(1) = B(1) + C(1) 
S 2: ASUM = ASUM + A(1) 

end do 

Vector code for this loop would appear as follows: 

S ,: A(l:N) := B(l:N) + C(l:N) 

Sz: ASUM = ASUM + SUM(A(l:N)) 

Here, the SUM function returns the sum of its argu- 
ment. A special case of a SUM is a dot product; this is 
important because many supercomputers have a dis- 
tinct adder and multiplier that can perform a dot 
product (a SUM of a multiplication) in the same time 
as a SUM alone, thus performing the multiplication 
with almost no time penalty. 

Care must be taken by the compiler and the pro- 
grammer to ensure that the correct answer will al- 
ways result. Most methods to produce a sum using 
vector instructions involve accumulating partial 
sums, then adding the partial sums together. Since 
this will add the arguments in a different order than 
the original loop, round-off errors may accumulate 
differently, and some programs may produce sub- 
stantially different answers. Some compilers have a 
switch that will disable generation of reductions in 
order to guarantee the same answers from the vecto- 
rized code as from the serial code. 

Other common reductions are the PRODUCT of a 
vector or maxirnum or minimum of a vector. Simple 
pattern recognition can be used to find these opera- 
tions (as well as SUM) in loops. More complicated 

patterns, such as a loop that finds the maximum of a 
vector and saves the index of the maximum, are also 
frequently found: 

IMAX = 1 

AMAX = A(1) 
do I = 2,N 

if ( A(1) > AMAX ) then 
AMAX = A(1) 
IMAX = I 

end if 
end do 

Recognizing and generating vector code for such 
multistatement patterns enhance the overall power 
of a vectorizer. 

At least one supercomputer has been designed 
with an instruction to solve first order linear recur- 
rences.’ These recurrences can be recognized by 
pattern matching: 

do J = 2,N 
A(J) = A(J--1) * B(J) + C(J) 

end do 

Fast algorithms for solving recurrences on parallel 
computers have been devised that may be useful for 
some systems, although these suffer from the same 
round-off error accumulation problem mentioned 
earlier. Many computer systems offer a library of 
procedures to compute certain common forms of re- 
currences;7 some compilers recognize these recur- 
rences and translate them into calls to the appropri- 
ate library procedure. 

Loop Concurrentization 
One way to use multiple processors in a computer is 
to partition the set of iterations of a loop and assign a 
different subset to each processor [16, 19, 34, 38, 42, 

431. Two important factors that determine the qual- 
ity of the concurrent code are the balance of proces- 
sor load, and the amount of processor idle time due 
to synchronization. Concurrentization, therefore, 
should aim at an even distribution of the iterations 
among processors and should try to organize the 
code so as to avoid synchronization or, at least, to 
minimize waiting. 

Checking for independent iterations is done by ex- 
amining the data-dependence directions. If all the 
data-dependence relations in a loop have an = direc- 
tion for that loop, then the iterations are indepen- 
dent. The only time that communication between 

‘The Burroughs Scientific Processor (BSP] [30] was designed with a recur- 
rence instruction. but the project was canceled before the first machine was 
delivered. Among current supercomputers. the Hitachi S-610 has a recurrence 
instruction. 

‘In particular. the STACKLIB library for the Control Data 6600 [46]. 7600. 
Cyber 70. Cyber 170. and Cyber 205 computers. 
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processors is necessary is when a data-dependence s, i!L sz 
relation exists in the loop with a <direction for that s, s< s3 
loop. For instance, the loop s* CL s3 

do I = 1,N 
do J = 2,N 

s, : A(I,J) = B(I,J) + C(I,J) 
s* : C(I,J) = D(I,J) / 2 
s3: E(I,J) = A(I,J-I)**2 

+ E(I,J-1) 
end do 

end do 

has the following data dependences: 

s1 6=,< s3 
s, z,= sz 
s3 6=,< 53 

Since all the data-dependence directions for the I 
loop are =, each iteration of the I loop can be exe- 
cuted in parallel. If N processors are available, each 
processor can execute one iteration of the loop. If 
fewer processors are available, the iterations can be 
folded onto the processors in one of several ways. 
The compiler can preschedule the iterations of the 
loop onto the P processors either in contiguous 
blocks 

processor 1 executes iterations 1 , 2, . . . , rN/Pi 

processor 2 executes iterations rN/Pl+l , . . . 2rN/Pi 

or by assigning every Pth iteration to the same 
processor: 

Since there is a < data-dependence direction for this 
loop, the iterations cannot be executed indepen- 
dently. If the different iterations are to be executed 
in parallel, the processor executing iteration i must 
not fetch the value for A ( i-l ) in statement S ; be- 
fore the processor executing iteration i- 1 has 
stored the value of A ( i- 1 ) in statement S ;-‘. The 
code inside the loop with the synchronization added 
would appear as follows: 

S,: A(1) = B(1) + C(I) 
signal ( I ) 

S2: C(1) = D(1) * 2. 
if ( I > 2 ) wait ( I-l ) 

s3 : E(1) = C(1) + A(I--1) 

The compiler can sometimes reorder statements to 
reduce the effect of the required synchronizations. 
Weak data-dependence tests may add some synchro- 
nizations that are not really necessary, so good de- 
pendence testing is critical for good performance. 

Recognition of simple reductions applies to con- 
current loops as well as vector loops. One method to 
generate parallel code for the loop 

do I = l,N 
S 1 : A(1) = B(1) + C(1) 
sz: D(1) = A(1) * 2. 
sj : ASUM = ASUM + A(1) 

end do 

processor 1 executes iterations 1 , P+l , 2P+l , . . . is to add synchronization (as above) around state- 

processor 2 executes iterations 2, P+2, 2P+2, . . . ment s3, so that each processor p (of the P available 
processors) would execute the following loop: 

Alternatively, the processors can be self-scheduled 
[27, 471, meaning that each processor at the end of 
every iteration enters a critical section of code to 
determine what iteration of the loop it should exe- 
cute next. Self-scheduling works well when the 
workload for each iteration is relatively large, but 
may vary between different iterations, perhaps due 
to conditional code in the loop. 

Sometimes the iterations of a loop are not inde- 
pendent: 

do I = 2,N 
S 1 : A(1) = B(1) + C(1) 
sz: C(1) = D(1) * 2. 
s3: E(1) = C(1) + A(I-1) 

end do 

The data-dependence relations for this loop are the 
following: 

do I = p,N,P 

S 1: A(1) = B(1) + C(1) 
sz: D(1) = A(1) * 2. 

if( I > 1 ) wait (I-l) 
s3 : ASUM = ASUM + A(1) 

signal (I) 
end do 

This method is simple to implement and will always 
result in the same answer as the original scalar code 
(which, again, can be an important factor due to 
round-off error accumulations). A faster method is to 
accumulate partial sums on each processor 

ASUMX(p) = 0 
do I = p,N,P 

s,: A(1) = B(1) + C(1) 
S 2: D(1) = A(1) * 2. 
s,: ASUMX(p) = ASUMX(p) + A(1) 

end do 
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and then add the partial sums into the summation 
variable ASUM (at the end of the loop. This produces 
completely parallel code without synchronization, 
but may accumulate different round-off errors. 

High-Level Spreading 
Another approach to utilizing multiple processors is 
to spread independent operations over several pro- 
cessors. A fine-grain parallelism model would spread 
the computatio:n tree of an expression evaluation 
over several processors. For instance, the computa- 
tion tree for the expression 

A + (B"2 - Ck1.5) - (D - 2*E) 

is as follows: 

Level 1 

/‘\ 

Level 2 
/ 

+\ 
I\ 

Level 3 A 

A D /*\ 
Level 4 3: 2 E 

/ \ 
\ ‘\\ 

Level 5 B 2 c 1.5 

In the computation tree at levels 2, 3, and 4, there 
are two arithmetic operations that could be per- 
formed simultaneously. With two processors, this 
expression could be computed in four times steps 
(assuming + and * take the same time and assuming 
no time for variable fetching or processor communi- 
cation), instead of the seven time steps necessary for 
a single processor. 

The problem with this model is that the assump- 
tions are invalid for current machines; variable 
fetching does ta.ke time, and if several processors 
share a common memory, they can interfere with 
each other. Communication between processors also 
takes time; thus, it is better to try to spread blocks of 
code that represent a relatively large workload. As 
with concurrent loops, it is best if the blocks of code 
assigned to different processors are completely inde- 
pendent, so that no communication costs are in- 
curred. If the workload is spread unevenly over the 
processors, then some processors may finish early 
and be left idle while other processors are still busy. 

Adjacent blocks of code, such as adjacent inde- 
pendent recurrence loops or procedure calls, are 
candidates for high-level spreading [SO]. The data- 
dependence relations between these high-level ob- 

jects are examined, and if the blocks of code are 
independent, then they can be spread over several 
processors. If there are data-dependence relations 
between the blocks of code, then either synchroniza- 
tion must be added (as in loop concurrentization) to 
perform spreading, or the code must be executed 
serially. 

The potential for speedup with spreading is much 
lower than for loop concurrentization. Loop concur- 
rentization may find N independent blocks of code, 
where N is the loop bound. Spreading, in practice, 
will usually find only 2-3 independent blocks of 
code suitable for parallel execution. 

Trade-offs between Vectorization 
and Concurrentization 
Some recent computer designs (e.g., the Cray X-MP, 
Alliant FX/8, and ETA”) have multiple processors 
with vector instructions. The techniques of vectori- 
zation and concurrentization must be used together 
to take full advantage of these computers. When 
only one loop exhibits any parallelism, the compiler 
must decide whether to generate vector code, con- 
current code, or whether to split the index set into 
segments, all of which can be executed concurrently 
and in vector mode. When the loop contains many 
if statements that would produce sparse vector 
operations, concurrent execution may be more 
efficient. 

When several nested loops exhibit parallelism, the 
compiler must choose which loop to execute in vec- 
tor mode and which in concurrent mode. Several 
factors should be considered. For example, since the 
vector speed of some machines depends on the stride 
of memory accesses, the compiler may choose to exe- 
cute the loop that generates stride-l’ memory opera- 
tions in vector mode and some other loop in con- 
current mode. However, since a <data-dependence 
direction implies that a synchronization would be 
required for concurrent execution, the compiler may 
attempt to execute a loop with a < direction in vec- 
tor mode, and to choose a loop with all = directions 
for concurrent execution. This trade-off is illustrated 
in the sample loop below: 

do J = l,N 

do I = 1,N 
s, : A(I,J+l) = B(I,J) + C(I,J) 
sz : D(I,J) = A(I,J) * 2. 

end do 
end do 

This loop can be compiled with the I loop in vector 
mode, which will generate stride-l memory opera- 
tions (assuming Fortran column-major storage 
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order), and with the J loop in concurrent mode, 
as follows: 

doacross J = 1 ,N 
s,: A(l:N,J+l) = B(l:N,J) 

+ C(l:N,J) 

refers to the same array addresses as the following 
loop: 

do I=l,N 
X(N-I+l) = Y(1) + 2(2*1-l) 

end do 
signal ( J ) 
if ( J > 1 ) wait ( J-l ) 

sz: D(l:N,J) = A(l:N,J) * 2. 
end doacross 

This may produce the best vector execution speed, 
but the data-dependence relation S, 6, Sz requires 
synchronization in the concurrent loop. An alternate 
method to compile the loop would perform the J 
loop in vector mode: 

doall I = l,N 

s,: A(I,2:N+l) = B(I,l:N) 
+ C(I,l:N) 

.sz : D(I,l:N) = A(I,l:N) * 2. 
end doall 

The expression assigned to I 2 is recognized as a 
function of the loop index variable, so 12 is easily 
recognized as an induction variable. The assignment 
to INC is a self-decrement, which qualifies INC as 
an induction variable. If the last values of 12 and 
INC are not used later in the program, the two loops 
above may be used interchangeably. After vectoriza- 
tion, both loops become 

X(N:l:-1) = Y(l:N) + 2(1:2*N-1:2) 

Wraparound Variable Recognition 
Sometimes a variable may look like an induction 
variable, but does not quite qualify. The assignment 
to J in the loop 

Although this loop would have better concurrent ex- J=N 
ecution speed, it would perhaps be at the expense of 
slower vector execution. Balancing the different 

do I=l,N 

methods of compiling the loop to get the best per- 
B(1) = (A(J) + A(1)) / 2. 
J=I 

formance is a tough job for the compiler. end do 

IMPROVING POTENTIAL PARALLELISM 
The previous sections should clarify the importance 
of a good data-dependence testing procedure. If 
unnecessary relations are added to the data- 
dependence graph, then the potential for parallelism 
discovery can be reduced dramatically. Some 
methods for computing a more accurate data- 
dependence graph are given here. 

Induction Variable Recognition 
Variables in loops whose successive values form an 
arithmetic progression are called induction variables; 
the most obvious example of an induction variable is 
the index variable of a loop. Induction variables are 
often used in array subscript expressions. Tradi- 
tional optimization techniques are aimed at finding 
induction variables to remove them from the loop 
and also to optimize the array address calculation 
[Z]. For data-dependence tests, the array subscripts 
should be known in terms of the loop index vari- 
ables; therefore, discovery of induction variables is 
important. Most compilers will recognize that the 
loop 

INC = N 
do I=l,N 

12 = 2x1-1 
X(INC) = Y(1) + Z(I2) 
INC = INC - 1 

end do 

appears to qualify J as an induction variable, but J 
is used before it is assigned. In fact, the programmer 
used a trick to make the array A look like a cylinder. 
The loop takes the average of two adjacent elements 
of the array A; in the first iteration, the neighbor of 
A ( 1 ) is defined to be A ( N )-the J variable accom- 
plishes this trick. J is called a wraparound variable, 
since the values assigned to it are not used until the 
next iteration of the loop. 

By peeling off one iteration of the loop, J can be 
treated as a normal induction variable: 

if (N >= 1) then 
B(1) = (A(J) + A(1)) / 2. 
do 1=2,N 

B(1) = (A(I-1) + A(1)) / 2. 
end do 

end if 

The if is necessary to test the zero-trip condition of 
the loop. The loop may be vectorized to become 

if (N >= 1) then 
B(1) = (A(J) + A(1)) / 2. 
B(2:N) = (A(l:N-1) + A(2:N)) / 2. 

end if 

Symbolic Data-Dependence Testing 
As mentioned in the data-dependence section, the 
simplest data-dependence subscript tests will be suf- 
ficient for a large number of cases, but are too lim- 
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ited for a general-purpose powerful compiler. Even 
some of the more sophisticated tests have severe re- 
strictions, such as requiring -that the loop bounds be 
compile-time constants. To handle a large majority 
of cases, a compiler must be able to compute precise 
data-dependence relations for very general array ref- 
erences. For instance, in the following loop 

do I = LOW,IGH 
S,: A(1) = B(1) + C(1) 
S 2: D(1) = A(I--1) 

end do 

the data-dependence relation S, & sZ can be com- 
puted using the simplest tests. However, in the 
similar loop 

do I = :LOW,IGH,INC 
s, : A(1) = B(1) + C(1) 
s,: D(1) = A(I-INC) 

end do 

the same relation S, SC sz holds, but is more diffi- 
cult to detect, since the values of LOW, IGH, and 
INC are all unknown to the compiler, and even the 
sign of INC is unknown (a negative increment would 
make the loop go backwards). The following is an- 
other case in which symbolic data dependence (so 
called because the subscript expression cannot be 
decomposed into compile-time constants) is needed: 

do I = l,N 
S,: A(LOW+I-1) = B(1) 
S 2: B(I+N) = A(LOW+I) 

end do 

Here, the two references to the array A can be com- 
pared by canceling out the loop-invariant value LOW. 
This is then the same as comparing A( I-l ) to 
A ( I ), which can be handled by simpler tests. The 
two B array references cause no data dependence, 
since the section of the array referenced by B ( I ) is 
B ( 1 : N), which does not intersect with the section 
of the array referenced by B ( I+N ) , namely 
B(N+l:N+N). 

Global Forward Substitution 
Global jonuard substitution is a transformation that 
substitutes the right-hand side of an assignment 
statement for occurrences of the left-hand-side vari- 
able, which is especially useful in conjunction with 
symbolic data dependence. In programs, temporary 
variables are frequently used to hold commonly 
used subexpressions or offsets; these variables 
appear later in i.he program in array subscripts. 
Without some kind of global knowledge, the data- 
dependence tests must assume that the set of sub- 

script values might intersect. For example, the 
program 

NPl = N+l 
NP2 = N+2 

do I = l,N 
S 1 : B(1) = A(NP1) + C(1) 
sz : A(1) = A(1) - 1. 

do J = 2,N 
s3: D(J,NPl) 

= D(J-l,NP2)*C(J) + 1. 

end do 
end do 

defines two variables, NP 1 and NP2 in terms of N. 
A loop, later in the program, uses NP 1 and NP2 in 
array subscripts. If the compiler does not keep any 
information about NP 1, then it must assume that the 
assignment of A ( I ) might reassign A ( NP 1 ) , and 
thus there is dependence between S, and s2. How- 
ever, NP 1 was defined to be N+l , and the assign- 
ment to A ( I ) will not ever reach A ( N+ 1 ) , so this is 
a false dependence. Similarly, if the compiler does 
not keep information about NP 1 and NP2, it must 
assume that S, forms a recurrence. In fact, since 
NP 1 can not equal NP 2, the two references to the D 
array in s3 are independent, and the J loop can be 
vectorized or concurrentized. Many compilers per- 
form constant propagation [26, 45, 511, which is a 
special case of global forward substitution. 

Semantic Analysis 
Semantic analysis of the program can also help re- 
move data-dependence relations. For instance, in the 
loop 

do I = LOW,IGH 
S 1: A(1) = B(1) + A(I+M) 

end do 

S , can be vectorized if M I 0, but not if M < 0. By 
looking at the surrounding code, the compiler might 
find an if statement: 

if ( M > 0 ) then 
do I = LOW,IGH 

S 1 : A(1) = B(1) + A(I+M) 
end do 

end if 

Taking the if statement into account, this loop will 
not be executed unless M > 0; therefore, it can be 
vectorized. Note that since the iterations are not in- 
dependent, concurrent code for this loop may still 
not be appropriate. 
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Sometimes, even if the if statement is not pre- 
sent, the program can be modified to achieve a re- 
sult similar to the previous transformation. The orig- 
inal loop could be transformed into the following: 

if ( M>=O ) then 
do I = LOW,IGH 

A(1) = B(1) + A(I+M) 
end do 

else 
do I = LOW,IGH 

A(1) = B(1) + A(I+M) 
end do 

end if 

The then part of the if statement can now be 
vectorized. This transformation is called two-version 
loops for obvious reasons. 

An alternative to semantic analysis is for the com- 
piler to request information from the user. If the 
user inputs M 1 0 as an assertion that is true imme- 
diately before beginning of execution of the original 
loop, then the compiler can proceed to vectorize the 
loop. (Assertions are discussed in greater detail in 
the section on interaction with the programmer, 
p. 1198.) 

Semantic analysis can also be used to generate 
vector code for the following loop: 

do I = LOW,IGH 
S 1: A(1) = A(M) 

end do 

Since the relative values of LOW, IGH, and M are not 
known, the data dependence S, 6 S , relation must 
be assumed. This loop can, however, be executed 
with a vector instruction. The value A(M) is loop 
invariant, even if M falls between LOW and IGH. The 
value A(M) will at worst be copied to itself; it will 
not change. The vector code for this statement will 
give the same results as the serial loop, but the en- 
tire statement must be examined to prove this. 

Interprocedural Dependence Analysis 
When a procedure or function call appears in a loop, 
most compilers will assume that the loop must be 
executed serially. Analysis of the effects of the pro- 
cedure or function call, including which parameters 
are changed and what global variables are used or 
changed, can allow dependence testing to decide 
whether or not the procedure call prevents parallel 
code from being generated. Studying other informa- 
tion about the parameters, such as values of con- 
stants, across procedure call boundaries can help the 
compiler optimize the code [9, 12, 14, 491. 

An alternative method for handling procedure 

calls is to expand the procedure in-line (also called 
procedure integration [35]. This makes possible the 
application of some transformations that simultane- 
ously manipulate code in the calling and in the 
called routines.’ Also, dependence analysis for the 
subroutine body is more exact, since only the effects 
of the one call must be taken into account, and the 
overhead of the subroutine call is eliminated. In-line 
expansion is useful even for serial computers.” 
However, in-line expansion should be done with 
care to avoid an undue increase in the time required 
for compilation. 

Removal of Output and Antidependences 
Output dependences and antidependences are, in 
some sense, false dependences. They arise not be- 
cause data are being passed from one statement to 
another, but because the same memory location is 
used in more than one place. Often, these false de- 
pendences can be removed by changing variable 
names or copying data. 

Variable Renaming. Renaming introduces new vari- 
able names to replace some of the occurrences of the 
old variables throughout the program. 

In the following program segment 

s, : A=B+C 
sz: D=A+l 
S ,:A=D+E 
s,: F=A-1 

variable A is assigned twice. This produces the out- 
put dependence S, 6“ S3 and the antidependence 
S2 3 S3. Both of these dependences disappear if a 
new variable replaces A in S, and S,: 

S ,: A2 = B + C 
S 2: D = A2 + 1 

S ,:A=D+E 
S,: F = A - 1 

Renaming arrays is a difficult problem in general. 
Current compilers rename arrays only in very lim- 
ited cases, if at all. 

Node Splitting. Some loops contain data-dependence 
cycles that can be easily eliminated by copying data. 
The following loop 

do I = 1,N 
s, : A(1) = B(1) + C(1) 
S 2: D(1) = (A(1) + A(I+l)) / 2. 

end do 
‘For example. a loop surrounding the subroutine invocation and a loop in the 
body of the routine could be interchanged (see the section on Loop Inter- 
changing]. 
“‘Examples of compilers that do in-line substitution are the Experimental 
Compiling System (41. Parafrase 1241. and the Perkin-Elmer Fortran Compiler. 
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has the following data-dependence graph: 

5 k 

S2 

The data dependence cycle can be broken by adding 
a temporary array: 

do I = l,N 

S 1: ATEMP(1) = B(1) + C(1) 
S 2: A(I+l) = ATEMP(1) + 2*D(I) 
s;: A(1) = ATEMP(1) 

end do 

This appears to be a data-dependence cycle. How- The data-dependence graph for the modified loop is 
ever, one of the arcs in the cycle corresponds to an 
antidependence: if this arc were removed, the cycle 
would be broken. The antidependence relation can S1 

be removed from the cycle by inserting a new as- 
‘, 

signment to a compiler temporary array as follows: + ,‘:, 
sz 

do I = l,N / 

.s* : ATEMI?(I) = A(I+l) ) i 

S 1: A(1) = B(1) + C(1) i 4 .)ii 

sz: D(1) = (A(1) + ATEMP(1)) / 2. S: 

end do 

The modified loop has the following dath- 
dependence graph: 

S: 
,/ ‘i 

/ J 

‘4 ;i 
S2 

which has no cycles, and can now be vectorized: 

S ,: ATEMP (1:N) = B(1:N) + C(l:N) 
Sz: A(2:N+l) = ATEMP(l:N) + 2*D(l:N) 
s;: A(1:N) = ATEMP(1:N) 

In both of these cases the added cost is a copy 
either to or from a compiler temporary array. For 
machines with vector registers, however, the tempo- 
rary array will be assigned to a vector register. The 
“extra” copy is just a vector register load or store 
that needs to be done anyway; proper placement of 
the load or store will allow vectorization of these 

The data-dependence cycle h.as been eliminated by 
loops without additional statements. 

“splitting” the sz node in the data-dependence graph 
into two parts; the new loop can now be vectorized: 

OPTIMIZATIONS FOR VECTOR 
OR CONCURRENT COMPUTERS 

sz : ATEMP(l:N) = A(2:N+l) Many of the optimizations in this section were de- 
s, : A(l:N) == B(l:N) + C(l:N) signed with vector or concurrent computers in mind. 
Sz: D(l:N) q = (A(l:N) + ATEMP(l:N)) / 2. These optimizations are used to exploit more paral- 

A similar technique can be used to remove output 
lelism or to use parallelism more efficiently on the 

dependences in data-dependence cycles. The loop 
target computer. 

Due to space limitations, the list of methods we 
do I = l,N discuss is incomplete. Among the absentees are the 

s, : A(1) = B(1) + C(1) methods that deal with while loops and with recur- 
sz : A(I+l) = A(1) + 2*D(I) sion. Only recently in the context of developing opti- 

end do mizing compiler methods for Lisp has recursion 

has the following data-dependence graph: 
been carefully considered [22, 231. While loops, on 
the other hand, are hard to manipulate, and the 
known transformation techniques are successful 

S1 only in limited cases. 
4’ ‘\, -----.+ Flow dependence 

Scalar Expansion 

--++ Output dependence Vectorizing compilers will promote (or expand) 
scalars that are assigned in loops into temporary 
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arrays. This is clearly necessary in order to generate do J=l,N 
vector code. For instance, the loop do 1=2,N 

do I=l,N 
S,: X = A(1) + B(1) 
S 2: C(1) = x ** 2 

end do 

A(I,J) = A(I--1,J) + B(1) P.1) 
end do 

end do 

is equivalent to the following loop: 

can be vectorized by first expanding x into a tempo- do 1=2,N 
rary array, XTEMP do J=l,N 

allocate (XTEMP(l:N)) 
do I=l,N 

s,: XTEMP(1) = A(1) + B(1) 
s2: C(1) = XTEMP(1) ** 2 

end do 

A(I,J) = A(I-1,J) + B(1) 
end do 

end do 

X = XTEMP(N) 
free (XTEMP) 

Loop interchanging can translate either of the pre- 
vious two loops to the other. Interchanging loops is 
not always possible. The folIowing loop is an exam- 
ple of a loop that cannot be interchanged: 

w 

and then generating vector code: 

allocate (XTEMP (1:N)) 

s,: XTEMP (1:N) = A(l:N) + B(l:N) 
S 2: C(l:N) = XTEMP(l:N) ** 2 

do K=2,N 
do L=l,N-5 

A(K,L) = A(K-l,L+5) + B(K) 
end do 

end do 
X = XTEMP(N) 
free (XTEMP) 

The explicit allocate and free are not neces- 
sary on many computers, such as those with vector 
registers, since the temporary array will exist only in 
the registers. 

When the target machine is a multiprocessor, 
there is another alternative. Multiprocessor lan- 
guages (such as Cedar Fortran” and Blaze [37]) al- 
low the declaration of iteration-local variables. Thus, 
the loop 

doall I=l,N 
real X 
X = A(1) + B(1) 
C(1) = x ** 2 

end doall 

is another valid transformation of the previous loop, 
as long as X is not used outside the loop in the 
original program. The real X declaration in the 
doall loop means that there will be a separate copy 
of X for each iteration of the loop. Declaring a scalar 
variable as iteration local has the same effect as 
transforming the scalar into an array. 

Loop Interchanging 
In a multiply-nested loop, the order of the loops may 
often be interchanged without affecting the outcome 
[6, 521. For instance, the loop 

” Cedar Fortran is the Fortran dialect being designed for the Cedar multi- 
processor project at the University of Illinois (21. 311. 

Figure 1 (p. 1197) illustrates how data-dependence 
graphs are used to determine when loop interchang- 
ing is valid. 

Loop interchanging may be used to aid in loop 
vectorization. For instance, LI (above) computes a 
linear recurrence in its inner loop; interchanging it 
to create L2 allows vectorization of the J index: 

do 1=2,N 
A(I,l:N) = A(I-1,l:N) + B(1) 

end do 

Loop interchanging may also be used to put a con- 
current loop on the outside, leading to a better pro- 
gram after loop concurrentization. Thus, loop L2 
could be interchanged into Ll, which would then be 
concurrentized to become the following: 

doall J=l,N 
do 1=2,N 

A(I,J) = A(I--1,J) + B(1) 
end do 

end doall 

Fission by Name 
Techniques have been developed to handle virtual 
memory systems, cache memories, and register allo- 
cation. The fission-by-name transformation tries to 
break a single DO loop into several adjacent loops. 
Two statements in the original loop will be in the 
same resulting loop if there is at least one variable or 
array referenced by both statements. Fission by 
name (originally called “distribution of name parti- 
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tions” [l]) is used to enhance memory hierarchy 
performance. 

Loop Fusion 
Loop fusion is a conventional compiler optimization 
[3, 351 that transforms two adjacent loops into a sin- 
gle loop. The use of data-dependence tests allows 
fusion of more loops than is possible with standard 
techniques. For example, the loops 

do I = 2,N 
s, : A(1) = B(1) + C(1) 

end do 
do I = 2,N 

sz: D(1) = A(I-1) 
end do 

would not be fused by conventional compilers that 
do not study the array subscripts. However, the loop 
fusion is legal since the data-dependence relation 
S, 6 sz would not be violated: 

do I = 2,N 
S 1 : A(1) = B(1) + C(1) 
sz : D(1) := A(I-1) 

end do 

A slightly modified example shows when loop fusion 
is not legal: 

do I = 2,N 
s,: A(1) := B(1) + C(1) 

end do 
do I = 2,N 

s* : D(1) := A(I+l) 
end do 

In the original two loops, the data-dependence rela- 
tion S, 6 s2 holds; the fused loop below, however, 
has the relation sz 7 S,: 

do I = 2,N 

S 1: A(1) q = B(1) + C(1) 
S 2: D(1) == A(I+l) 

end do 

Loop fusion is used in conventional compilers to 
reduce the overhead of loops. Likewise, fusion helps 
to reduce start-up costs for doall loops. It may also 
increase overlapping if two doall loops require 
synchronization between iterations. 

Since loop fusion and loop fission are dual trans- 
formations, any compiler that uses both of them 
should do so carefully. Loop fusion should not be 
used to fuse the loops just created by fission. Loop 
fusion can be used to combine separate loops, if they 
all refer to the same set of variables, with the same 

goal as fission by name. For instance, by fusing sev- 
eral loops that refer only to the arrays (A, B , D 1, the 
compiler would have a larger loop with the benefits 
of loop fusion, but still have the improved memory 
hierarchy performance that comes from only refer- 
ring to a small set of arrays in the loop. 

Strip Mining 
Strip mining [35] is used for memory management; it 
transforms a singly nested loop into a doubly nested 
one. The outer loop steps through the index set in 
blocks of some size, and the inner loop steps through 
each block. As an example, consider the following 
loop: 

do I=l,N 
A(1) = B(1) + 1 
D(1) = B(1) - 1 

end do 

After strip mining, this becomes the following: 

do J=l,N,32 
do I=J,MIN(J+31,N) 

A(1) = B(1) + 1 
D(1) = B(1) - 1 

end do 
end do 

Thus, the loop is excavated in chunks, just as a strip 
mine is excavated in shovelfuls. 

The block size of the outer block loop (32 in this 
example) is determined by some characteristic of the 
target machine, such as the vector register length or 
the cache memory size (see Figure 2, p. 1198, for an 
example of strip mining and fission by name). For 
vector machines, the inner strip loop will be vecto- 
rized; for parallel computers, the outer block loop 
can sometimes be concurrentized. Figure 3 (p. 1199) 
shows how strip mining and loop interchanging can 
be combined to optimize performance. 

Loop Collapsing 
Loop collapsing [44, 521 transforms two nested loops 
into a single loop, which is used to increase the 
effective vector length for vector machines. There- 
fore, 

real A(5,5),B(5,5) 
do I = 1,s 

do J = 1,5 

A(I,J) = B(I,J) + 2. 
end do 

end do 

becomes as follows: 
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W 

do 1=1,3 

do J=1,3 

S: A(I,J) = A(I-l,J+l) 
end do 

end do 

(4 

(4 

do 1=1,3 

do J=1,3 

T: A(I,J) = A(I-l,J-1) 
end do 

end do 

(4 

(f) (9) 

The compiler uses data dependences to determine when 
loop interchanging is valid. For example, the loops in (a) may 
not be interchanged. To see why, consider its iteration space 
in (b). The arrows in (b) show the data-dependence relations 
flowing across the iteration space. The instances of state- 
ment S are executed by (a) in the order shown by the dotted 
arrows in (c). If the loops in (a) were interchanged, the new 

(‘4 

(h) 

order of execution would be as shown in (d). In this loop 
ordering, s 2 3 ’ would be executed before S ’ 3 ‘, even though 
the S2’ 1 needs a value computed by s’s 2; thus this state- 
ment ordering is invalid. As a second example, consider the 
loops in (e). In this case interchanging is clearly valid since no 
dependences are violated in the new execution order. 

FIGURE 1. How to Determine When Loop Interchanging Is Valid 

real A(25),B(25) scheduled loops. In general, this may require the 
do IJ = 1,25 introduction of some extra assignment statements. 

A(IJ) = B(IJ) + 2. For instance, the loop 
end do 

do I=l,N 

do J=l,M 
A general version of loop collapsing is useful for A(I,J) = B(I,J) + 2. 

parallel computers where only a single doall nest end do 
is supported or to improve the performance of self- end do 
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do t=l,N 
,4(I) = B(1) + C(1) 
E(1) = F(1) t G(1) 
D(1) = A(1) t B(1) 

end do 

(4 

do I=l,N 
A(1) = B(1) -t C(1) 
I)(I) = A(1) -t B(1) 

end do 
do I=l,N 

E:(I) = F(1) -t G(1) 
end do 

W 

do J=l,N,32 
d:o I=J,min(N,J+31) 

A(1) = B(I) + C(1) 
D(1) = A(I) + B(1) 

end do 
end do 
do J=l,N,32 

do I=J,min(N,J+31) 
E(1) = F(I) + G(1) 

end do 
end do 

(c) 

Fission by name and strip mining are used to improve mem- 
ory performance. Assume a target computer with 32-clement 
vector registers. Before register allocation is performed, the 
input loop (a) will go through the following sequence of trans- 
formations. First, fission by name is applied (b), then strip 
mining’(c), and finally loop vectorization (d). The target pro- 
gram (d) is now a sequence of 32-element vector operations. 

do J=l,N,32 
K = min(N,J+31) 
A(J:K) = B(J:K) + C(J 
D(J:K) = A(J:K) + B(J 

end do 
do J=l,N,32 

K = min(N,J+31) 
E(J:K) = F(J:K) + G(J 

end do 

(4 

do J=l,N,32 
K = min(N,J+31) 
vrl t B(J:K) 
vr2 +-C(J:K) 
vr3 c vrl + vr2 
A(J:K) +vr3 
vr2 t vr3 + vrl 
D(J:K) t vr2 

end do 
do J=l,N,32 

K = min(N,J+31) 
vrl c F(J:K) 
vr2 -G(J:K) 
vr3 t vrl + vr2 
E(J:K) t vr3 

end do 

(4 

K) 
K) 

K) 

Registers can now be allocated as shown in (e) (vrl , vr2, and 
vr3 are vector registers). 

Fission by name is useful in decreasing the number of 
registers needed in a loop. Had the statement E ( I ) = 
F ( I ) + G ( I ) remained in its original position, either more 
registers or more memory read/writes would have been 
needed. 

FIGURE 2. An Example of Fission by Name and Strip Mining 

may be transforrned into 

do L=l,N*M 
I = r L/M i 
J = mod(L--1,M) + 1 
A(I,J) = B(I,J) + 2. 

end do 

regardless of the bounds of the array A. 

INTERACTION WITH THE PROGRAMMER 
Several user interaction strategies have been used by 
optimizing compilers for parallel computers. The 
most frequent approach is for the compiler to trans- 
late directly into object code and to provide a sum- 
mary specifying what was vectorized and what was 
not. When something is not vectorized, the compiler 
gives a reason, which could be the presence of a 
data dependence, the need to assume a dependence 

because a subscript range is not known at compile 
time, the presence of a call to an unknown routine, 
and so on. If users are not satisfied with the out- 
come, they may resubmit the program after rewrit- 
ing parts of it or after inserting directives or asser- 
tions. 

For example, consider the following loop: 

do I=l,N 

A(K(I)) = A(K(I)) + C(I) 
end do 

Most compilers will not vectorize this loop; instead 
they will notify the user that the compiler was 
forced to assume a dependence since it did not know 
the value of vector K at compile time. If program- 
mers know that K is a permutation of a subset of the 
integers, they may order the compiler, through a 
directive, to vectorize the loop. This directive usu- 
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do I=l,N 

do J=l,N 
do K=l,N 

C(I,J) = C(I,J) 
+ A(I,K) * B(K,J) 

end do 
end do 

end do 

(4 

do J=l,N 

do K=l,N 
do I=l,N 

C(I,J) = C(I,J) 
+ A(I,K) * B(K,J) 

end do 
end do 

end do 

04 

do J=l,N 
do K=l,N 

do L=l,N,64 
do I=L,min(L+63,N) 

C(I,J) = C(I,J) 
+ A(I,K) * B(K,J) 

end do 
end do 

end do 
end do 

(cl 

do J=l,N 
do K=l,N 

do L=l,N,64 
I = min(L+63,N) 
C(L:I,J) = C(L:I,J) 

+ A(L:I,K) * B(K,J) 
end do 

end do 
end do 

(4 

The translation of (a) illustrates two interesting uses of loop 
interchanging. Loop (a) could be vector&d in the form in 
which it is presented, but it would require a SUM, which may 
cause round-off error problems. The loops can be inter- 
changed so that I becomes the innermost index (b). After 
strip mining (c), the innermost loop is vectorized (d). Notice 
that thanks to loop interchanging the elements of the vectors 
in (d) are in contiguous memory locations. Vector register 
assignment may now be performed, leading to (e). The block 

do J=l,N 
do K=l,N 

do L=l,N,64 
I = min(L+63,N) 
n-1 c C(L:I,J) 
vr2 c A(L:I,K) 
sr0 c B(K,J) 
vr3 c vr2 * sr0 
vrl c vrl + vr3 
C(L:I,J) c vrl 

end do 
end do 

end do 

(4 

do L=l,N,64 
I = min(L+63,N) 
do J=l,N 

do K=l,N 
vrl +- C(L:I,J) 
vr2 + A(L:I,K) 
sr0 + B(K,J) 
vr3 + vr2 * vr0 
vrl t vrl -t vr3 

C(L:I,J) t-vrl 
end do 

end do 
end do 

(9 

do L=l,N,64 
I = min(L+63,N) 
do J=l,N 

vrl +-C(L:I,J) 
do K=l,N 

vr2 -A(L:I,K) 
sr0 + B(K,J) 
vr3 c vr2 * sr0 
vrl +-vrl + vr3 

end do 
C(L:I,J) c vrl 

end do 
end do 

(9) 

loop L may be interchanged to become the outermost loop 
(9. We can now illustrate a second consequence of loop 
interchanging. The vector register load vr 1 +- C ( L : I , J ) 
and store c ( L : I , J ) +- vr 1 in (e) are loop invariant and 
may be moved outside the innermost loop (g). Loop inter- 
changing to increase the number of loop invariant register 
loads and stores is also a useful sequential optimization 
technique. 

FIGURE 3. Two Examples of Loop Interchanging 
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ally takes the form of a comment line preceding the 
loop. 

Another way for the user to supply information to 
the compiler is through assertions. This is sometimes 
provided as an alternative to compiler directives. For 
example, in the previous loop the programmer could 
have asserted that K is a permutation of a subset of 
the integers. Assertions have two advantages over 
directives: They are self-explanatory, and they can 
be tested at run time while debugging the program. 
Directives, on the other hand, may be a simpler way 
or even the only way to specify what the user wants. 
For example, directives may be the only way for the 
user to request that some part of the code be exe- 
cuted sequentially. 

A second user interaction strategy is to produce 
a restructured source program with vector and/or 
concurrent language extensions.” This strategy 
makes it possible for the programmer to learn how 
a program was translated without having to look at 
the assembly code. These restructurers, like the 
compilers discussed above, accept directives and 
assertions from the user. 

Experimental interactive restructurers, such as 
the Blaze Restructurer at Indiana University and the 
Iw” programming environment at Rice University, 
are being developed. Some of these restructurers 
rely on the user to specify the transformations, and 
users may specify interactively what scalars to ex- 
pand, what loops to interchange, which ones to vec- 
torize, and so on. These tools make the process of 
hand-rewriting programs highly reliable and may 
become a useful tool for program development. 

Commercial interactive vectorizers are already 
available.13 These interactive tools allow users to 
find the most time-consuming parts of their pro- 
grams and rewrite them. They will also aid users 
writing vectorizable code in order to get the best 
performance. 

in 

SUMMARY 
When the Cray-1 was first delivered to Los Alamos 
Scientific Laboratories in 1976, there was a great 
deal of skepticism about whether compiler technol- 
ogy would ever catch up with hardware. Much re- 
search had been done for the Texas Instruments 
ASC and for the Illiac IV on automatic detection of 
parallelism, but it did not yet meet the needs of the 
user community. Since that time, several vector 
supercomputers and minisupercomputers have been 
announced, each with its own vectorizing compiler. 

“This is the approach taken by Parafrase. at the University of Illinois. KAP, 
from Kuck and Associates. PFC. at Rice University, and VAST from Pacific 
Sierra. 
‘a Notably, Forge from Pacific Sierra for the Cray supercomputers. and an 
interactive vectorizer facility for the Fujitsu supercomputers [ZO]. 

Some of these compilers are more powerful than 
others, but all are much better than anything hoped 
for in 1976. 

Now, a new generation of computers with multi- 
ple processors is coming. Compilers to detect paral- 
lelism suitable for spreading over many processors 
already exist, and more will follow. Many of the 
optimizations that. were used for vectorization are 
also useful for multiprocessing. That so many of the 
ideas can be shared by different architectures will 
make it easier to write compilers for new machines 
as time passes. 

Acknowledgments. The authors would like to 
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Further Reading 

Optimizing compiler algorifhms. See [5], [28], [29], 
[33], [al], and [x]. 

Dependence Analysis. See [8]-[lo]. 

REFERENCES 
1. Abu-Sufah, W.. Kuck. D.J.. and Lawrie. D.H. On the performance 

enhancement of paging systems through program analysis and trans- 
formations. IEEE Trans. Comput. C-30, 5 (May 1981), 341-356. 

2. Aho, A.V., Sethi. R.. and Ullman. J.D. Compilers: Principles, Tech- 
ni$“es, and Tools. Addison-Wesley, Reading, Mass.. 1986. 

3. Allen, F.E.. and Cocke, J. A catalogue of optimizing transformations. 
In Design and Opfimizatim of Compilers, R. Rustin, Ed. Prentice-Hall, 
Englewood Cliffs, N.J., 1972. pp. l-30. 

4. Allen, F.E.. Carter, J.L.. Fabri, J.. Ferrante, J., Harrison, W.H., 
Loewner. P.G., and Trevillyan. L.H. The experimental compiling 
system. IBM 1. Res. Dev. 24, 6 [Nov. 1980), 695-715. 

5. Allen, J.R., and Kennedy, K. PFC: A program to convert Fortran to 
parallel form. Rep. MASC-TR82-6. Rice Univ.. Houston, Tex., Mar. 
1982. 

6. Allen. J.R., and Kennedy, K. Automatic loop interchange. In Proceed- 
ings of !he ACM SIGPLAN 84 Symposium on Compiler Comtruction 
(Montreal, June 17-22). ACM. New York, 1984, pp. 233-246. 

7. American National Standards Institute American National Standard 
for Iuformation Systems. Programming Language Fortran.SB (X3.9-198x]. 
Revision of X3.9-1978. Draft S8, Version 99. American National Stan- 
dards Institute. New York, Apr. 1986. 

8. Banerjee. U. Speedup of ordinary programs. Ph.D. thesis, Rep. 
79-989, Dept. of Computer Science, Univ. of Illinois at Urbana- 
Champaign, Oct. 1979. 

9. Banerjee. U. Direct parallelization of call statements-A review. 
Rep. 576. Center for Supercomputing Research and Development, 
Univ. of Illinois at Urbana-Champaign, Nov. 1985. 

10. Banerjee. U., Chen, S.C.. Kuck. D.J., and Towle, R.A. Time and 
parallel processor bounds for Fortran-like loops. IEEE Trans. Compuf. 
C-28, 9 (Sept. 1979). 660-670. 

11. Brode, B. Precompilation of Fortran programs to facilitate array 
processing. Computer 14, 9 (Sept. 1981), 46-51. 

12. Burke, M.. and Cytron. R. Interprocedural dependence analysis and 
parallelization. Proceedings of the SIGPLAN 86 Symposium on Compiler 
Construction, SIGPLAN Not. 21, 7 (July 1986), 162-175. 

13. Burroughs Corp. Numerical Aerodynamic Simulation Facility Feasibility 
Study. Burroughs Corp., Paoli, Pa., Mar. 1979. 

14. Callahan. D., Cooper, K.D., Kennedy, K., and Torczon, L. Inter- 
procedural constant propagation. In Proceedings of the SZGPLAN 86 
Symposiunt ou Compiler Construction, SIGPLAN Not. 21, 7 (July 19861, 
152-161. 

15. Chen. SC. Large-scale and high-speed multiprocessor system for 
scientific applications: Cray X-MP Series. In High-Speed Computation, 
NATO AS1 Series, vol. F7, J.S. Kowalik, Ed. Springer-Verlag, New 
York, 1984. pp. 59-67. 

1200 Communicatiom of thr, ACM December 1986 Volume 29 Number 12 



Special Issue 

16. Cytron, R.G. Doacross: Beyond vectorization for multiprocessors. In 
Procecdiqs of fhe 1986 International Conference cm Parallel Processing 
(St. Charles. 111.. Aug. 19-22). IEEE Press, New York, 1986. pp. 836- 
644. 

17. Davies, I.. Huson. C., Macke. T., Leasure, B., and Wolfe. M. The 
KAP/S-1: An advanced source-to-source vectorizer for the S-l Mark 
IIa supercomputer. In Proceedirrgs of the 1986 I~rfernatiorral Corrferencc 
011 Parallel Processi?lg (St. Charles, Ill.. Aug. 19-22). IEEE Press, New 
York, 1986. pp. 833-835. 

18. Davies, I.. Huson. C.. Macke, T.. Leasure, B., and Wolfe. M. The 
KAP/205: An advanced source-to-source vectorizer for the Cyber 
205 supercomputer. In Proceedings of the 1986 Infernafional Confer- 
ence DII Parallel Processiq (St. Charles, 111.. Aug. 19-22). IEEE Press, 
New York. 1986. pp. 827-832. 

19. Davies, J.R. Parallel loop constructs for multiprocessors. MS. thesis, 
Rep. 81-1070. Dept. of Computer Science, Univ. of Illinois at 
Urbana-Champaign, May 1981. 

20. Dongarra. 1.1.. and Hinds, A. Comparison of the Cray X-MP-4. Fu- 
jitsu VP-ZOO. and Hitachi S-810/20: An Argonne perspective. Rep. 
ANL-85-19. Argonne National Laboratory, Argonne, Ill., Oct. 1985. 

21. Guzzi, M.D. Cedar Fortran Reference Manual. Rep. 601. Center for 
Supercomputing Research and Development, Univ. of Illinois at 
Urbana-Champaign, Nov. 1986. 

22. Harrison, W.L. Compiling LISP for evaluation on a tightly coupled 
multiprocessor. Rep. 565. Center for Supercomputing Research and 
Development. University of Illinois at Urbana-Champaign, Mar. 
1966. 

23. Harrison. W.L., and Padua, D.A. Representing S-expressions for the 
efficient evaluation of Lisp on parallel processors. In Proceedings of 
the 1986 Irrfernafiotd Conference on Pnrallel Processing (St. Charles, 
Ill.. Aug. 19-22). IEEE Press, New York, 1986. pp. 703-710. 

24. Huson. CA. An in-line subroutine expander for parafrase. MS. the- 
sis, Rep. 82-1118. Dept. of Computer Science, Univ. of Illinois at 
Urbana-Champaign, Dec. 1982. 

25. Kamiya, S., Isobe, F.. Takashima. H.. and Takiuchi, M. Practical 
vectorization techniques for the Facom VP. In information Processing 
83, R.E.A. Mason Ed. Elsevier North-Holland, New York, 1983. 
pp. 369-394. pp. 369-394. 

26. Kildall. G.A. A unified approach to global program optimization. In 26. Kildall. G.A. A unified approach to global program optimization. In 
Conferewe Record of the 1st ACM Symposium on Principles of Program- Conferewe Record of the 1st ACM Symposium on Principles of Program- 
ming LarlxuaXes (POPL) (Boston. Mass., Oct. l-3). ACM, New York, ming LarlxuaXes (POPL) (Boston. Mass., Oct. l-3). ACM, New York, 
1973, pp.-194-206. 

27. Kruskal. C.P.. and Weiss, A. Allocating independent subtasks on 
parallel processors. In Proceedings of the 1984 International Conference 
on Parallel Processing. R.M. Keller, Ed. IEEE Press. New York, Aug. 
1964. pp. 236-240. 

28. Kuck. 0.1. Parallel processing of ordinary programs. In Advances in 
Computers. vol. 15. M. Rubinoff and MC. Yovits, Eds. Academic 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

Press, New York, 1976. pp. 119-179. 
Kuck, D.J. A survey of parallel machine organization and program- 
ming. ACM Compuf. Surv. 9, 1 (Mar. 1977), 29-59. 
Kuck, D.J.. and Stokes, R.A. The Burroughs scientific processor 
(BSP). Special Issue on Supersystems, IEEE Trans. Comput. C-31, 5 (May 
7962).363-376. 
Kuck. D.J., Davidson, E.S., Lawrie, D.H., and Sameh, A.H. Parallel 
supercomputing today and the Cedar approach. Science 231, 4740 
(Feb. 28, 1986). 967-974. 
Kuck. D.]., Kuhn. R.H., Leasure, B.. and Wolfe, M. The structure of 
an advanced retargetable vectorizer. In Tuforial on Supercomputers: 
Designs and Applications, K. Hwang, Ed. IEEE Press, New York, 1984, 
pp. 163-178. 
Kuck. D.J., Kuhn, R.H., Padua. D.A., Leasure, B., and Wolfe, M. 
Dependence graphs and compiler optimizations. In Proceedings of the 
8th ACM Symposium on Principles of Programming Languages (POPL) 
(Williamsburg, Va.. Jan. 26-28). 1981, pp. 207-218. 
Kuck, 0.1.. Sameh. A.H., Cytron, R., Veidenbaum, A.V., Polychrono- 
poulos. CD.. Lee. G., McDaniel, T., Leasure. B.R., Beckman, C.. 
Davies, J.R.B., and Kruskal. C.P. The effects of program restructur- 
ing, algorithm change, and architecture choice on program perform- 
ance. In Proceedings of the 1984 lnternationnl Conference on Parallel 
Processing, R.M. Keller, Ed. IEEE Press, New York, Aug. 1984, 
pp. 129-138. 
Loveman. D.B. Program improvement by source-to-source transfor- 
mation. 1. ACM 24, 1 (Jan. 1977), 121-145. 
Lundstrom. SF.. Barnes, G.H. A controllable MIMD architecture. In 
Proceedings of rhe 1980 Infernational Conference on Parallel Processing 
(BeIIaire, Mich.. Aug. 26-29). IEEE Press, New York, 1980. pp. 19-27. 
Mehrotra, P.. and Van Rosendale, J. The Blaze Language: A parallel 
language for scientific programming. Rep. 85-29, Institute for Com- 
puter Applications in Science and Engineering, NASA Langley Re- 
search Center, Hampton, Va., May 1985. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

Midkiff, S.P., and Padua. D.A. Compiler generated synchronization 
for Do loops. In Proceedings of fhe 1986 Inlernaliomzl Conference on 
Parallel Processirlg (St. Charles, Ill., Aug. 19-22). IEEE Press, New 
York. 1986. 
Miura, K.. and Uchida. K. Facom vector processor VP-loo/VP-200. 
In HighSpeed Computafiotl. NATO AS1 Series, vol. F7, IS. Kowalik. 
Ed. Springer-Verlag, New York, 1984. pp. 127-138. 
Nagashima. S.. Inagami, Y.. Odaka. T.. and Kawabe. S. Design con- 
sideration for a high-speed vector processor: The Hitachi S-810. In 
Proceedings of fhe IEEE International Conference on Computer Design: 
VLSI irr Compulers. ICCD 84. (Port Chester. N.Y., Oct. 8-11). IEEE 
Press. New York, 1984. pp. 238-243. 
Ottenstein, K.J. A brief survey of implicit parallelism detection. 
In MlMD Computation: The HEP Supercomputer arrd its Applications, 
J.S. Kowalik. Ed. MIT Press, Cambridge, Mass., 1985. 
Padua. D.A. Multiprocessors: Discussion of some theoretical and 
practical problems. Ph.D. thesis, Rep. 79-990. Dept. of Computer 
Science, Univ. of Illinois at Urbana-Champaign. Oct. 1979. 
Padua, D.A., Kuck. D.J., and Lawrie, D.H. High-speed multi- 
processors and compilation techniques. IEEE Trans. Compur. C-29, 9 
(Sepl. 1980). 763-776. 
Polychronopoulos, C.D. Program restructuring, scheduling, and com- 
munication for parallel processor systems. Ph.D. thesis, Rep. 595, 
Center for Supercomputing Research and Development, Univ. of 
Illinois at Urbana-Champaign, 1986. 
Reif, I.H., and Lewis, H.R. Symbolic evaluation and the global value 
graph. In Corlference Record of the 4th Annual ACM Symposium on 
Principles of Programming Languages (POPL) (Los Angeles, Calif., 
Ian. 17-19). ACM, New York, 1977, pp. 104-118. 

46. Scarborough, R.G.. and Kolsky, H.G. A vectorizing Fortran compiler. 
IBM 1. Res. Dev. 30. 2 (Mar. 1986). 163-171. 

47. Tang, P.. and Yew, P. Processor self-scheduling for multiple-nested 
parallel loops. In Proceedings of the 1986 Infernational Conference on 
Parallel Processiug (St. Charles, Ill., Aug. 19-22). IEEE Press, New 
York, 1986. pp. 528-535. 

48. Thornton, I.E. Design of a Computer: The Control Data 6600. Scott, 
Foresman and Co., Glenview, Ill., 1970. 

49. Triolet, R., Irigoin. F., and Feautrier, P. Direct parallelization of call 
statements. In Proceedings of fhe SIGPLAN 86 Symposium on Compiler 
Consfrucfion, SlGPLAN Not. 21, 7 (July 1986), 176-185. 

50. Veidenbaum. A. Program optimization and architecture design is- 
sues for high-speed multiprocessors. Ph.D. thesis. Dept. of Computer 
Science, Univ. of Illinois at Urbana-Champaign, 1985. 

51. Wegman. M., and Zadek. K. Constant propagation with conditional 
branches. In Conference Record of fhe 12th Annual ACM Symposium 
on Principles of Progranwing Languages (POPL) (New Orleans, La.. 
Jan. 14-16). ACM, New York, 1985, pp. 291-299. 

52. Wolfe, M.1. Optimizing supercompilers for supercomputers. Ph.D. 
thesis, Rep. 82.1105. Dept. of Computer Science, Univ. of Illinois at 
Urbana-Champaign, Oct. 1982. 

53. Yasumura. M., Tanaka, Y.. Kanada, Y., and Aoyama, A. Compiling 
algorithms and techniques for the S-810 vector processor. In Proceed- 
ings of rhe 1984 lrltenmtiomd Conference on Parallel Processing, R.M. 
Keller, Ed. IEEE Press, New York, Aug. 1984, pp. 285-290. 

CR Categories and Subject Descriptors: Cl.2 [Processor Architec- 
tures]: Multiple Data Stream Architectures (Multiprocessors)-array and 
vector processors: nlultiple-instruction-stream, multiple-da&stream proces- 
sors (MIMD): parallel processors; pipelirle processors; single-instruc- 
tion-sfream, nlulfiple-data-streant processors (S/MD): D.2.7 [Soft- 
ware Engineering]: Distribution and Maintenance-restructuring; D.3.3 
[Programming Languages]: Language Constructs-concurrent program- 
ming slrucfures; D.3.4 [Programming Languages]: Processors-code gener- 
ation; compilers; optimization; preprocessors 

General Terms: Languages, Performance 

Authors’ Present Addresses: David A. Padua. Center for Supercomputing 
Research and Development, University of Illinois at Urbana-Champaign, 
Urbana, IL 61801: Michael J. Wolfe, Dept. of Computer Science, Univer- 
sity of Illinois at Urbana-Champaign, Urbana, IL 61801; and Kuck and 
Associates, 1808 Woodfield. Savoy, IL 61874. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear. and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish. requires a fee and/or specific permission. 

December 1986 Volume 29 Number 12 Communications of the ACM 1201 


