
Yunheung Paek$

Simplification of Array Access Patterns
for Compiler Optimizations *

Jay Hoeflingert

$ New Jersey Institute of Technology
paekQcis.njit.edu

t University of Illinois at Urbana-Champaign
{hoef ling ,padua}Buiuc . edu

David Paduat

Abstract

Existing array region representation techniques are sen-
sitive to the complexity of array subscripts. In general,
these techniques are very accurate and efficient for sim-
ple subscript expressions, but lose accuracy or require
potentially expensive algorithms for complex subscripts.
We found that in scientific applications, many access
patterns are simple even when the subscript expressions
are complex. In this work, we present a new, general
array access representation and define operations for
it. This allows us to aggregate and simplify the rep-
resentation enough that precise region operations may
be applied to enable compiler optimizations. Our ex-
periments show that these techniques hold promise for
speeding up applications.

1 Introduction

The array is one of the most important data structures
in imperative programs. Particularly in numerical ap-
plications, almost all computation is performed on ar-
rays. Therefore, the identification of the array elements
accessed within a program section (e.g., a loop or a sub-
routine) by a particular reference (we call this array
access analysis) is crucial to programming and compiler
optimizations.

Figure 1 shows a reference to an m-dimensional ar-
ray X with subscript function (81 (i), - - -, am(i)) defined
on the set of indices i = (ir , ia,. . . , id) within the pro-
gram section P ‘. In array access analysis, the set of
all elements of X accessed during the execution of sec-
tion P (we call this the acceaa region of X in ‘P) must

*This work is supported in part by Army contract DABT63-
95-C-0097; Army contract N66001-97-C-8532; NSF contract
MIP-9619351; and a Partnership Award from IBM. This work
is not necessarily representative of the positions of the Army or
the Government.

‘Indicee are all basic induction variables of loops surrounding
the reference

Figure 1: Access to array X with indices ik, 1 5 k < d, in
the program ScCtiOn ‘P such that 15 5 ik 5 Uk.

be determined. For this purpose, when doing array ac-
cess analysis for the references to an array, a compiler
would first calculate a Reference Descriptor (RD) for
each, which extends the array reference with range con-
straints. For instance, given that il: ranges from lk to
uk in p (for k = 1,2, * - -, d), the RD for the access in
Figure 1 is

“X(81(i), .92(i), e-s, am(i)) subject to
lk < ik 5 Uk, for k = 1,2, * * ‘, d.”

Next, the compiler would summarize all the RDs in the
section and store their union in some standard repre-
sentation [9, 15, 191. Simple accesses can be summa-
rized with simple representations without losing preci-
sion in access analysis. For example, in Figure 2, the re-
gion accessed by reference b(ir , iz) can be represented by
b(O:n5:l,O:n5:1) using the traditional triplet notation. In
general, more powerful representations are required to
accurately represent other accesses with more complex
subscripts, such as the references to array a in Figure 2.

program PROG
real a[0 : n,], b[O : nb, 0 : q,]
. . .

for iI = 0 to nb with step 1 do
b(il,iI) = .a.
for is = 0 to TZ.I) with step 1 do

b(il, iz) = a(8 * iI + ia) + a(& + 8 * ia + I)
end
for ia = 0 to il with step 1 do

a(ir * (il + 1)/2+is) = .-.
end

end

SIGPIAN ‘96 Montmal. Canada
1996 ACM 0-89791~S67-W36/0006

Figure 2: Code example where the section ‘P is the ir-loop

60

Conventional wisdom holds that complex array sub-
scripts result in complex access patterns. However, we
believe that complex subscripts often form simple ac-
cess patterns. This belief is based on informal obser-
vations of many programs. For instance, although the
subscript function for a in the is-loop seems complex,
we can see in Figure 3 that the actual access pattern is
simple. In many cases, the simplicity of the real access
is hidden inside the subscript expressions, making it dif-
ficult to discover. Sometimes originally simple subscript
expressions are converted to complex ones during com-
piler transformations, such as induction variable sub-
stitution, value propagation [3], and subroutine inlin-
ing [18,13], although the original access patterns remain
intact. Previous techniques sometimes fail to recognize
these simple patterns and, as a result, lose accuracy in
their access analysis.

When an m-dimensional array is allocated in mem-
ory, it is linearized and laid out in either row-major or
column-major order, depending on the language being
used. Thus, we view accessing an array as traversing a
linear memory space. Figure 3 shows how the two ar-
rays a and b are mapped to memory and accessed within
the &-loop of Figure 2.

0

for + 8 * + 1

0000000000000000000000
for a(il * (il+ 1)/2 + i5)

Figure 3: Access patterns in the il-loop in Figure 2 for
nb = 1 = 3: gray boxes represent the array elements accessed,
and arrows with black heads and white heads keep track of
the access driven by indices ir and iz (or is), respectively.

1.1 Access Descriptor Exploiting Regularity of Mem-
ory Accesses

For the most part, the simplicity of accesses is exposed
via a regularity of access structure within limited sec-
tions of a program. By regularity we mean that the
same access patterns are repeated in the traversal of
memory. The patterns are characterized by two factors:
the stride and the span.

The stride records the distance traveled in the mem-
ory space when an index is incremented. For example,
for array b of Figure 3, it can be seen that the incre-
menting of index il causes movement through memory
in strides of size nb $ 2, which actually corresponds to
accessing the main diagonal of b. In the two references
to a within the iz-loop, index ir causes a stride of 8 in
the first and 1 in the second, while index iz causes a
stride of 1 in the first and 8 in the second.

The span records the total distance traveled in the
memory space due to a single index with the other in-
dices fixed (that is, the difference between the last offset
and the first offset of the array elements accessed). Con-
sider the reference a(8 * il + is). Notice that when the

index ir independently iterates through its entire range
of values with the value of iz fixed, the range of the ac-
cess within memory has length 8%. Similarly, when iz
iterates alone, the access range has length tit,.

The memory traversal due to the independent iter-
ation of each index is characterized by its strides and
spans, as can be seen from Figure 3. We pair the stride
and span produced by a single index for an array ref-
erence to describe the access pattern created by that
index. Given a set of indices (ix, iz, . . . , id), the collec-
tion of the stride/span pairs for all indices represents
the entire access pattern for array A, denoted by

where 6;, and oik are the stride and span due to index
in,, and -r is the base offset, the offset of the first ac-
cess from the beginning of the array. We call this form
a Linear Memory Access Descriptor (LMAD) and each
stride/span pair a dimension of the descriptor. Also,
we call index ir, which is associated with the kth di-
mension (d;k,~ih), the kth dimension index of the
descriptor.

Using the LMAD form, we can summarize the four
accesses in Figure 3 with a l-dimensional descriptor
jtJnb-k2

nb(nb+a)+O for b(ir,ir), and 2dimensional descriptors
Sl A shbInb+O, &,‘~,s,,b+1 and kib:>i+l, . +0

for a(8*ir+is), a(il+8*&+1) and a(il*(dz1+1;;2+is), re-

Definition 1 On the assumption that two LMADs A
and A’ represent the access regions R and R’, respec-
tively,

1. A u A’ represents the aggregated LMAD of the
two access regions, that is, R U R.‘.

2. If R’ is a subregion of R (that is, ‘R.‘Ca), then
we write A’cA.

3. Let A = &‘f.2,>,,‘;::.‘~~d + 7. Suppose A’ is built
by eliminating the kth dimension (J~,uL) from A,
that is, A 61,-*,b-1 ,~k+l-*Jd cl ,..., ak-l,mk+l ,..., rrd + r. We call A’ the
k-subLMAD of A.

Notice that when A’ (with access region 77.‘) is the
k-subLMAD of A (with access region ‘R), then ‘I?.‘CR.

1.2 Analysis of Subscripting Patterns

The development of the access region notation was orig-
inally motivated by the project [24, 251 to retarget the
Polaris compiler [4] at distributed memory multiproces-
sors. In that project, the triplet notation used by Po-
laris for array access analysis prevented us from generat-
ing efficient code for our target multiprocessors because
subscript expressions that could not be represented ac-
curately in triplet notation limited our compiler opti-
mizations. The eventual success in that project was
due in part to our use of the LMAD notation. Section 6
presents a few results on the improvements due to use
of the LMAD.

To develop a new access region notation, we needed
to better understand the actual access patterns in real
applications. For this, we chose fourteen Fortran pro-
grams, including codes from the SPEC85fp and Perfect

61

Figure 4: Percentage of non-triplet-representable access summaries versus total number of access summaries

aidm LlC2.3 b&la avrosm flc.52 mag ocean
(Perrece.) ! (spec95+p]~(Ncsn)l

Figure 5: Percentage of access summaries which are not provably-monotonic versus total number of access summaries

benchmarks, and one from a set of production codes
obtained from the National Center for Supercomputing
Applications (NCSA) to study. After applying inter-
procedural value propagation, induction variable sub-
stitution, and forward substitution within these codes,
we summarized each array reference to each of its en-
closing do loops, counted how many of these summaries
would not be representable in triplet notation, and plot-
ted their percentage with respect to the total number of
summaries in Figure 4. For this analysis, we divided the
array accesses that could not be represented by triplet
notation into the following five categories:

subscripted-subscripts : accesses due to references
with subscripted-subscript expressions;

non-affine : accesses due to references with non-affine
subscript expressions;

triangular afflne : accesses due to references within a
triangular loop;

coupled-subscripts : accesses due to references with
coupled-subscript expressions [20];

multiple index afflne : accesses due to references con-
taming multiple indices in a subscript position.

In this classification, each category excludes those above
it. For instance, a reference with a subscripted-subscript
inside a triangular loop would be counted as subscripted-
subscript, and not triangular affine.

In order for the difference between the last offset
and the first offset (the span) to represent the true dis-
tance moved for a dimension, the subscript function
must cause movement to be consistently in the same di-
rection. Such a function is called monotonic [3], which
will be formally defined in Section 4. This implies that
the LMAD can be accurate only when the subscripting
functions are monotonic. Thus, to see how often the
LMAD can be accurate in reality, we determined the
percentage of array accesses that were provably mono-
tonic at compile time.

By their nature, all categories of references except
subscripted-subscripts and non-&Tine are monotonic. But

we checked all non-affine references in our set of test
codes and, unexpectedly, all of those accesses were prov-
ably monotonic. Only the subscripted-subscripts were
not provably monotonic at compile time. This data is
presented in Figure 5.

From these results, we learned that most subscript
functions encountered in the programs we tested are
monotonic. This indicates the general tendency that for
the iteration of a single index in a program section, an
array is accessed in one direction either from a low to a
high address in memory or vice versa. We also conclude
that use of the LMAD makes possible an improvement
in the accuracy of the representation over that obtained
with triplet notation.

The purpose of this paper is to show how the LMAD
is used to analyze and simplify array access patterns
in a program for more efficient and accurate compiler
optimizations.

1.3 Organization of this Paper

Section 2 discusses previous work done on array access
analysis and representation. Section 3 discusses sev-
eral properties of LMADs and classifies access patterns
that allow simplification of LMADs. Section 4 shows
how to build a LMAD from a RD. Section 5 describes
basic principles and methods to handle the access pat-
terns classified in Section 3. Section 6 shows examples
encountered in our experiments where LMADs were ad-
vantageous to our optimizing compiler, along with some
performance results. We briefly discuss the impact of
this work on our current compiler project in Section 7,
and present our conclusions in Section 8.

2 Array Access Analysis Techniques

Work on representing array access regions has followed
three major approaches: triplet-notation-based, reference-
list-based, and linear constraint-based.

62

2.1 Triplet-notation-based techniques

Triplet notation is an array region representation for a
set of integer values that start at a lower bound and
proceed to an upper bound via a stride for each array
dimension declared by the programmer. For instance,
the notation for a J-dimensional array A is given by

A(lbl:ubl:rl, lba:uba:aa, lb3:Ub3:83)

where lbr: is the kth lower bound, uba is the kth up-
per bound, and 86 is the kth stride. Triplet notation
is simple, yet practical. Typically, the region opera-
tions (e.g., union, subtraction, and intersection) defined
on the notation can be implemented with fast linear al-
gorithms. The study of Shen et al [28] indicated that
most real-world access patterns in scientific programs
are representable by triplet notation. This is, in fact,
the reason why many researchers, including several in
our own research group at Illinois, have used the nota-
tion to implement their compiler techniques (including
array privatization, dependence analysis, and message
generation [3, 7, 16, 311).

However, as discussed in Section 1.2, the limited ex-
pressive power of the triplet notation often hinders anal-
ysis in some important cases. To alleviate this problem,
researchers at Rice University [6] have devised several
variants of regular section descriptors @SDS), with op-
erations deS.ned on a lattice. RSDs are able to express
single array elements, complete rows and columns, and
diagonals. Restricted RSDs [15] were devised to han-
dle coupled subscripts, and then Bounded RSDs were
devised to further improve the accuracy with symbolic
bound information. Researchers at the University of
Minnesota have used Guarded Array Regions [14], which
are equivalent to Bounded RSDs with an additional
predicate (guard). More information can be added to
the guard to sharpen the accuracy in a given situation.

2.2 Reference-list based techniques

Li and Yew proposed a reference-list based representa-
tion, called an atom image [19], which captures the co-
efficients of the loop indices and the loop bounds of each
surrounding loop. Burke and Cytron represented array
references in one-dimensional form by linearization [5].
These reference-list based techniques lose no precision
for any array access because they rely on making a list
of each individual array reference in a program section.
They are meant to capture program information, but
not summarize it.

2.3 Linear-constraint based techniques

In linear constraint-based techniques, the set of linear
constraints is constructed from the subscripting func-
tion, loop bounds, and other information found in the
program, similar to our
lowing is an example:

calculation of the RD. The fol-

11 5 Xl 5 Ul

la 5 Xa 5 ua

13 5 Xc1 +Xa 5 U3

14 < 21 -Xa 5 U4

With these techniques, array accesses can be expressed
as convex regions in a geometrical space. The linear

constraint-based techniques that were first proposed by
Triolet, et al [30] have been widely used as an alter-
native way to summarize array accesses. In particular,
these techniques have been used for dependence anal-
ysis. When a potential dependence between two array
references is being tested, the linear inequalities associ-
ated with the two references are aggregated to form a
linear system and the feasibility of the system is tested
using Fourier-Motzkin elimination [ll] techniques. The
Omega Test [26] is an example of a dependence test
built in this way. The PIPS project at Kcole des Mines
de Paris [9] has added an indicator of the accuracy of the
representation, referred to as MUST/MAY, to the rep-
resentation itself. The notion of MUST/MAY approxi-
mations helps a compiler to determine when a result is
accurate or inaccurate.

Linear constraint-based techniques are generally con-
sidered more precise than triplet notation in handling
access patterns with non-rectangular expressions (see
Figure 4). However, they also have several critical draw-
backs. First, the Fourier-Motzkin linear system solver
requires worst-case exponential time algorithms [2]. Bal-
asundaram and Kennedy [l] proposed a simplified form
of linear constraint representation, called simple aec-
tions, that eliminates the need for such expensive al-
gorithms, but at the cost of accuracy. Although simple
sections can represent many of the commonly occur-
ring forms, such as a whole array, a single row/column,
a diagonal, or a triangular section, they are limited
in that they cannot express the whole range of con-
straints found in programs. Second, Fourier-Motzkin
is limited to affine expressions. To overcome this limi-
tation, Pugh and Wonnacott [27] have developed tech-
niques for replacing non-affine terms occurring in array
subscripts with uninterpretedfunction symbols, but this
does not handle all situations involving non-affine terms.
Third, Fourier-Motzkin requires that the linear inequal-
ities form a convex hull, forcing a loss of accuracy when
regions must be altered to maintain the convex form.

Work on the SUIF system at Stanford uses a repre-
sentation [21] very similar to that of PIPS. SUIF uses
a set of region operations for systems of linear inequal-
ities and special algorithms for maintaining the convex
shape of the regions during the analysis.

To recap, the linear constraint-based representation
improves accuracy over triplet notation, but still loses
accuracy and requires potentially expensive algorithms
for many complex subscripting expressions (the frequen-
cies of which are shown in Figure 4). The performance
of a compiler based on linear constraints would be im-
proved if those expressions could be simplified.

3 The Similarity of Array Access Patterns

In addition to the property of regularity discussed in
Section 1, different accesses in the same program sec-
tion often have a similarity of pattern because multiple
references to an array within the section are generally
accessed using the same indices and similar subscript
expressions. Figure 3 shows that the accesses repre-
sented by descriptors &‘, + 0 and A:‘:, + 1 describe
exactly the same memory access pattern but with differ-
ent base offsets. This example helps demonstrate that
the order of the stride/span pairs on the LMAD does

63

not affect the access pattern represented by it. We call
such similar access patterns isomorphic.

Definition 2 Let A and A’ be two LMADs. If A’ has
the same stride/span pairs as A, regardless of their or-
der, then A and A’ are isomorphic, denoted by A/ /A’,
meaning the access regions described have the same shape
and structure.

Definition 3 Two LMADa A and A’ are said to be
equivalent, denoted by A E A’, if they represent the
3ame access region.

If two LMADs are isomorphic and have the same
base offset, they are equivalent. For instance, since the
two descriptors di$, + 0 and di*i, + 1 are isomorphic,
they would be equ&lent if we could show that 1= 0.

To illustrate another type of rlarity, consider the . . loop m Frgure 6. A descnptor ds;, + , 1 whose accesses
are denoted by dashed lines in the figure, represents
the access region produced by a(i+j+l). Notice that
another descriptor A:;$,, + 1, whose accesses are denoted
by the lower solid lines, represents the same region as
the original descriptor. Even a l-dimensional descriptor
can represent the same access, such as dir + 1, whose
accesses are denoted by the upper solid lines.

real a(0 : 71)
. . .

for j = 0 to 2 with step 1 do
for i = 0 to 9 with step 3 do

a(i+j+l)=---
end

end

Figure 6: Equivalent regions for the accesses to array a,
which cover the region from a(l) to 412).

All three descriptors in Figure 6 are equivalent. From
these examples, we learn that an access region can be
represented by numerous LMADs consisting of different
stride/span pairs. In principle, we can show that the
same access region can be represented with an infmite
number of equivalent LMADs by Theorem 1, which will
be used in Section 5.

Theorem 1 A LMAD ‘A~~:::$~ +r can be expanded to
form other equivalent descriptors by adding a dimension
(a*, 0) in any position, such as d~l~~.$:.~~:~~ + T, where
6’ can be any integer.

PROOF: A dimension describes the movement from a
lower bound to an upper bound with a stride. The span
is defined as the difference between the upper bound
and the lower bound. If the span is zero, the upper
bound and lower bound are the same, thus describing no
movement at all. A dimension involving no movement
can have any stride, and still neither adds nor subtracts
elements to/from a given access region. n

As we have mentioned, the complexity of subscript
expressions sometimes prevents the representation tech-
niques described in Section 2 from accurately represent-
ing an access. However, if the access patterns are repre-
sented in a sufficiently general form, they often can be
aggregated and simplified into forms which are repre-
sentable in the notation of choice, by using techniques
such as those discussed in this paper. For example, a
direct translation to triplet notation of the access in the
loop of Figure 6 would not be possible because the ac-
cess involves multiple index subscripts (see Figure 4).
However, using our algorithms, we can show that the
original pattern is equivalent to an access with dir + 1;
therefore, we can use the triplet notation a(l:12:1) to
accurately represent the access.

Our work is based on the observation that typical
scientific programs have several common forms of access
patterns produced by subscript expressions, regardless
of their complexity. We call these forms coalesceable,
interleaved, and contiguous. These are useful for our
purposes because, whenever one of these forms appears,
the original access pattern can be transformed into a
simpler one.

Coalesceable Accesses

Given an array access represented with a LMAD A, we
call the access coalesceable if it also can be represented
with another LMAD A’ equivalent to A, but with fewer
dimensions than A. One typical example of a coalesce-
able access is one that moves with a small stride due to
one index and due to a different index, strides over the
accesses of the first stride to the very next element in the
sequence. For instance, the reference a(& *(&+1)/l+&)
in Figure 2 accesses ir + 1 consecutive elements with
stride 1 for every iteration of the ir-loop, then jumps
over those elements with stride ir + 1 to the next ele-
ment. In a case like this. we can show that the number
of dimensions can be reduced by one. We can show that

+ o) E (dr+s+ll+,b + 0),
a

using the algorithm presented in Figure 10.

Interleaved Accesses

We call array accesses interleavedwhen their dimensions
have the same strides and they are offset from each other
by a fixed distance which divides one of their strides. An
example is shown in Figure 7, where we can see that the
access patterns for arrays x and y have this property.
We can see that the union of the three access regions for
x is equal to the whole region from x(1) to x(u+4) with
stride 2, which can be represented by a single descriptor
Xi-i+4 + 1. This implies

(Xi-l + 1) u (XL + 1+ 2) u (XL + 1+ 4)

E (XL+4 + 1).

Contiguous Accesses

We call LMADs contiguous when the access patterns
they represent are similar, can be fit together to cover
a portion of the array without a break, and can be ex-
pressed in a single LMAD. Figure 8 illustrates four ac-
cess patterns for array a. From this example, we can
clearly see the similarity between those accesses; and
we see that when viewed from outside the outermost

64

real ~(0 : n), 1/(0 : m)
. . .

for i = 1 to u with step 6 do
temp = temp + S(i) *y(i)

+r(i + 2) * ?/(i + 2)
+o(i + 4) * ar(i + 4)

end

Figure 7: Code example of the dot product of two vectors x
and y with stride 2, and the illustration of the access patterns
for r in memory, represented by three descriptors Xt-,+l,
X:-,+1+2, and X:-,+1+4, respectively

loop, they fit together to form an unbroken stream of
access. This results in

(&6 + 1) u (&& + 2) lJ (A::;, + 3) u (AL + 4)

= (A:9 + 1)

which indicates that the union of the four access regions
can be represented with a single LMAD.

real a(0 : n)
. . .

for i = 0 to 3 with step 1 do
a(5*i+1)= ...
for k = 1 to 2 with step 1 do

a(k+5*i+l)=-.-
end
for j = 1 to 4 with step 1 do

a(5*i+j+2)=a(S*i+4)+...
end

end

Figure 8: Similar access patterns with four descriptors
AT,+& d$r1+2, di:$+3, aad &+4

4 Generating Linear Memory Access Descriptors

Let Z denote the set of all integers and Z” the set of
all m-tuples of integers. We assume here, for simplic-
ity of explanation, that all subscripts of an array start
at 0, and all loops are normalized with a stride of 1.
For example, the array X in Figure 1 is declared as
X(O:nl,O:nz,. - * ,O:n,). We define the orroy space of X,
Z’$, as the set of m-tuples:

z; = {(rl,rz,“’ ,r,)EZmlOIrkInk,lIkIm}.

Because vector r = (rr,rs, *.a ,rm) represents the ad-
dress in the array space of X, to access the actual data

stored in memory it must be mapped to a single integer
that is the offset from the beginning of the array. We
define this mapping, denoted by FX : ZT + Z, as

m
Fx(r) = Fx(rl,ra,*-.,r,) = Crk *XI,

II=1

where, provided X is allocated in column-major order,
x1 = 1 and & = Xk-1 . (n&r + 1) for k # 1. If the
array is allocated in row-major order, X, = 1 and & =
Xk+l . (nktl i- 1) for k # m. Applying the definition
of Fx to the subscript function in Figure 1, we have a
linearized form:

Fx(s(i)) = sr (i)Xr + az(i)Xs + . . + + a,(i)X, (1)

where we assume that s(i) = (al(i), az(i), * * *, am(i)).
Now, we show how we could use Equation 1 to calcu-

late the dimensions (stride/span pairs) and base offset
of the accesses made by an array reference X(s(i)). Let
%th denote the difference in Fx(s(i)) made by replacing
ik with ik $ h, where h is a positive integer. For gen-
eral subscript functions, it can be represented by the
difference operator A, defined by

Fx(s(il,...,&+h,... rid)) - FX(S(Z’~,“‘,ik,“‘,id))

h

which is used to define a monotonic subscript function
mentioned in Section 1.

Definition 4 Let s(i) be a subscript function defined
Oni = (il,i2,“‘,id). For all the values of index ik in
the runge between lk and Uk, we soy the function s(i) is
nondecreasing for the index ik. if @,, 2 0; otherwise,
we say s(i) is nonincreasing. The subscript function
s(i) is monotonic for index ik if s(i) is either nonde-
CreaSing Or nOninCreaSing for kk.

Suppose s(i) is monotonic for all indices in i. Then,
the stride 6i, caused by the iteration of index ik E i can
be obtained directly from & as follows:

where h is set to 1, as it is in finite calculus [12]. As
stated in Section 1, the span oil. is the distance moved
in the memory region accessed during the iteration of
ik from #?k to uk. If the function is monotonic, then, by
finite calculus, this can be calculated by subtracting the
function values of the two end-points of the intervals.
Thus, the span is

where h is again 1. The sign of 8: denotes the direc-
tion of the movement through memory due to i in an

65

array access. In our formulas, however, we ignore the
sign by taking the absolute value, l$l, for the stride 6;,
and changing the base offset because, as we stated in
Section 1, the access pattern (or access region) is char-
acterized by the stride size of the movement, not the
direction. To show this with an example, consider Fig-
ure 9. Here, we have two accesses to array a, where 6:, in
the first is -1 (causing movement to the left with stride
1, starting from a(4)) and in the second is 1 (causing
movement to the right with stride 1, starting from o(2)).
However, despite the different access structures, we see
that the access region (represented with gray boxes) for
both accesses is actually identical.

for ia = 0 to 6 do
for il = 0 to 2 do

a(+ + 4 * iz + 4) = . . .
a(il+4*&+2)=...

end
end

Figure 9: Access to array a through two references and their
access patterns in memory: solid lines denote the access for
a(-il+4&+4) and dashed lines the access for a(i1+4&+2):
arrows with white heads and black heads keep track of the
access driven by indices il and ia, respectively.

As can be seen in Figure 9, the direction of access
only adds to the complexity in access analysis. Thus, we
remove the extra complexity by normalizing LMADs to
a form in which alI the directions of access are positive.
This normalization requires us to change the base offset
of the access to the lower bound of the access reglon. For
example, in Figure 9, the original base of the access for
a(-& + 4 * iz + 4) was a(4); but, during normalization,
the base must be changed to a(2). For the normalized
form, using Equations 1 and 2, we calculate the base
offset of the access made by the reference X(s(i)) as
follows:

where uk : < 0 ck = 6:
lk

for 1 k d.
: 8: 2 0

2 5

Note that r is the minimum value of Fx(s(i)). The
LMADs for the accesses in Figure 9 produced by our
formulas would both be A$, + 2. Thus, we can prove
that the two references access the same array region.

5 ’ Linear Memory Access Descriptor Manipulation

In this section, we discuss the techniques that identify
the regularity and similarity of the three categories of
access patterns discussed earlier and that use the char-
acteristics to simplify or to aggregate their descriptors.

5.1 Coalesceable Accesses

Given a single LMAD, the algorithm in Figure 10 deter-
mines if the access represented by the LMAD is coalesce-

able. For example, the access for a(& * (ir + 1)/2 + is)
in Figure 3 is represented by the descriptor

which has two dimensions: (1,ir) due to index is and
(il + 1, v) due to il. These pairs are coalesce-
able because 6is(= 1) divides &,(= ir + l), and 6i, =

ui, + 6;s. Thus, we eliminate (ir + 1, w) from
the descriptor and update the original span uis(= ir)
with v + il. Since the new span contains is, we
replace the index with its upper bound nb, resulting in
the l-dimensional descriptor

This eliminates one dimension of the LMAD, thereby
simplifying the representation of the original access pat-
tern. In a similar way, we can show that the access for
the reference b(ir,is) due to the two indices ir and is
in Figure 2 can be represented by the l-dimensional de-
scriptor ‘A&,+‘)~-’ + 0.

Algorithm Coalesce

Input 1: dimension index set z = {il , iz . . *, id}
with constraints II, < ik <..rk for k = 1,2, * * * ,d

Input 2: LMAD A = Al~z’,..:~$ + r

Note: Here f [j t x] means to substitute x for j in function f

Algorithm:
while an unselected index pair (i ‘, ik) from z remains do

Select two dimensions (6ij ,cij) and (Ji, #vi,) from A;
if ij or ik appears in the other dimensions of A then

continue;

fl

if 6ij divides 6;, and 6ik 5 Qij + 6ij then
if ik appears in Qij then

if 3i, lk 5 i < Uk, such that
bi, < 4ij [ik t C] - Uij [;k t i +
continue;

tl

l] then

aij = oij [ik t Uk];
fl
Uij t Uij + 4ik;
Eliminate (a;,, ci,,) from A;
z t z - {ik};

fi
od

end

Figure 10: An algorithm that detects coalesceable accesses
from a LMAD by comparing its stride/span pairs.

Algorithm coalesce does O(da) dimension compar-
isons for a d-dimensional LMAD in the worst case.

5.2 Interleaved Accesses

In Figure 6, we can find that the access from a(l) to
a(12) with stride 1 (represented by .A:, + 1) comprises
two separate interleaved accesses with stride 2 (repre-
sented by d:s + 1 and d& + 2) or three accesses with
stride 3 (represented by d:+l, di+2, and di+3). The-
orem 2 shows how simplification can be applied to ag-
gregate multiple regions with an interleaved structure;
it gives us the flexibility to convert a single LMAD to
its n-interleaved descriptors, or vice versa.

66

To determine whether n 8iven d-dimensional descrip- Using LMADs, a compiler could automatically identify
tors are n-interleaved with respect to a given stride 6, the interleaved patterns from the loops, as discussed
we would first sort the dimensions of each by stride, an above, and choose an arbitrary n to transform the orig-
O(ndlogd) process, then use a linear-time bucket sort inal loop with n-interleaved accesses. For instance, we
to order the descriptors by base offsets, checking that can transform the 3-interleaved accesses in Figure 7 to
in sorted order the offsets differ by the same J/n. The the Cinterleaved accesses for deeper unrolling because
complexity of this process is dominated by O(nd log d). we can easily show, for example,

Theorem 2 Let A = A,,,, =,..., cd 61~6a~~~~Jd $7. For a dimension
(6k,uk) in A, where 6k and ak-are invariant, and a
chosen n, 1 2 n 5 1 + 2, there always ezists a set of
n descriptor8

._

{Aj 11 5 j 5 n} = { d~~~:~:::.'~~d +T + (j- l)ak}

where 6; = nA and a; = 1-1 a:, such that

A= IJ Aj. We say the n d”ercrip&s are the n-
l<j<n

interleaved descriptors of A.

PROOF : To prove this, we will show that both A’ C A
and A c A’. In order to focus on the k-th dimension,
without losing any generality, we will fix the values of
all indices except the k-th. The set of elements within
A which result have a specific starting point, TF, de-
termined by the values we choose for the other indices.
First, to prove A’ C A, we will show that an arbitrary
element of Aj, for any j, is always an element of A. By
definition, the m’th element of Aj has the offset:

(m’ - l)& $ TF + (j - l)Cfk for 1 2 m’ 2 2 + 1

Which We Cm CXpreSS 88 ((m’ - 1)” + j - 1)6k + TF.

This form indicates that the m’th element of Aj cor-
responds to the (m’ - 1)n + jth element of A. This is
a valid element of A because, from the assumption, we
can show

l<(m’-l)n+j<z+l

since 1 5 m’ 5 $ + 1 = 1-J + 1.

Next, to showk A C A’, we st:t from the mth ele-
ment of A, which has the offset:

(m - 1)6k + Tp for 1 5 m 5 2 + 1.

Given two integers m and y such that x = 1-1 and
y=(m-l)modn,wehavem-l=nz+y.Then,the
offset of the mth element of A is transformed as follows:

(n= + Y)dk + 7F = Zdk + 7F + Y6k

= X6: + TF + Ysk

from which we see that the element corresponds to the
x + lth element of descriptor A,+I. We can verify that
Av+l is one of the n descriptors Aj and that it contains
the z + lth element since, from the definition of z, y and
m, we can show the bounds on x and y are

l~z+l<~+l,andl~y+l<n.

Together, these results show that any element of A is
also an element of A’, and vice versa, which implies
A= U Aj. n

l-Cj<n

Interleaved accesses are common in unrolled loops,
such as those represented with the 3-interleaved descrip-
tors of Xisl+, + 1 shown in Figure 7. Different proces-
sors cause different unrolling depths to be advantageous.

(XL+4 + 1) s (XL + 1) u (XL + 1+ 2) u

(Xi-, + 1 + 4) U (X:-I + 1 + 8),

(assuming, for simplicity, that u - 1 is a multiple of 8)
and, from the 4interleaved LMADs for both arrays I
and y, it is straightforward to generate the new code

for i = 1 to u with step 8 do
temp = temp + z(i) *y(i) + o(i + 2) * y(i + 2)f

x(i t 4) * y(i + 4) + x(i t 6) * Y(; + ‘3)
end

The property of interleaving also can be used to ag-
gregate multiple contiguous accesses to a single one,
such as those represented in Figure 8 by the two LMADs
At&+2 and dfs+4. The descriptor A:&$ $2 consists of
its 2-interleaved descriptors dy$,,+2 and dt;20+3. Us-

‘2 5 ing Theorem 1, dig+4 can be converted to .A,:,,+4 to
match the dimensions of the other descriptors. Now,
we apply Theorem 2 to show that this expanded de-
scriptor and the other two descriptors together form 3-
interleaved descriptors of dff,+2.

In our distributed memor; multiprocessor code gen-
eration project, mentioned in Section 1.2, the notion of
interleaving has been useful to perform three region op-
erations (aggregation, intersection and subtraction) on
the LMAD notations, as will be briefly discussed in Sec-
tion 6, and to determine subregions [24]. For instance,
in Figure 8, df5 + 4, which represents a subregion of
the region represented by d:;i55+ 3, is in fact one of the
Cinterleaved descriptors of d3i15 + 3.

5.3 Contiguous Accesses

Con$guous accesses can be formally defined as follows:

Definition 5 Given r F r’, let A = d~‘J.$“‘;ll.‘$d+~

and A’ = d
6; ,..., 6; ,..., 6,
u;,...,u;,...,LT; +7’. The LMADs are con-

tiguous, denoted by A w A’, if there exist dimensions
(up, 6,) and (ub, a&), satisfying the conditions

1. Ap II A:,
2. a, = a:,
.?. 6, divide8 T - -r’,
4. T - 7’ < u: + S:, and
5. the pth dimension index of A and the qth dimen-

sion index of A’ do not appear in the expressions
for the stride/span pairs of A, or Ai

where Ap and Ai are the p-subLMAD of A and the q-
subLMAD of A’, respectively. Then, (cPp, 6,) and (a:, 6;)
are the bridge dimensions for the relation A w A’.

In Figure 8, Ai& + 2 and &;$, + 3 are contiguous
by Definition 5. Also, in Figure 3, we can show that the
two descriptors d& + 0 and dkf,2r + I are contiguous
as long as 1 5 nb + 1 holds.

67

Theorem 3 Let A and A’ be the contiguous descrip-
tors defined in Definition 5, and let t = 7 - 7’. Then,

PROOF: Once the conditions of Definition 5 are met
and we have identified dimensions p from A and q from
A’, we know that all strides from A and A’ are the
same, and that A is shifted to the right from A’. Con-
dition 3 means that A is shifted an integral number of
qth dimension strides from the start of A’. Condition 4
means that the shift leaves no gap between the end of
dimension q and the start of A. If T-T’ < u:+6:, then
the start of dimension p would overlap the end of dimen-
sion q, while 7 - T’ = U: + cI~ would mean that A starts
immediately at the end of dimension q. If a, + t > o:,
this serves to extend the span of dimension q. Other-
wise, dimensionp would be completely inside the span of
dimension q and would add nothing to dimension q. By
Condition 5, no other dimension uses the pth and qth di-
mension indices associated with the bridge dimensions,
so forming a combined dimension has no implications
for the other dimensions. n

Notice that it follows immediately from Theorem 3
that if two LMADs are found to be contiguous as above,
and or + t 5 crh, then A C A’.

Theorem 3 can be used to aggregate contiguous ac-
cesses to represent their access patterns with a single
LMAD. For instance, A&+2 and d$$,+3 in Figure 8
are aggregated to a single descriptor by showing

d $, + 2 u d$, + 3 E A:;;, + 2.

Similarly, the two descriptors /I:<,, +0 and .A>f,s4+1

in Figure 3 can be aggregated to produce d>f+l,PQ+O
under the constraint 1 < n&l.

To determine whether two descriptors are contigu-
ous, we would first sort the dimensions of each by stride,
an O(d log d) process, then in one pass check that at
least d - 1 dimensions match and keep track of which
indices are used in which other dimensions. If only one
dimension of each differs by the span, we check Con-
ditions 3, 4, and 5. If all dimensions match, then one
more pass needs to be made, checking Conditions 3, 4,
and 5 for each pair. This process is dominated by the
O(d log d) process.

In Section 5.2, we showed how to use the interleaved
structure to aggregate &s + 4 and A!$, + 2. In fact,
we can do the same with Theorem 3. For this, we first
must obtain a 2dimensional descriptor di:1)6 + 4, ex-
panded from dfs + 4 using Theorem 1 because the orig-
inal l-dimensional LMAD cannot be directly applied to
Definition 5. Since 6’ can be any number by definition,
we set 6* = 1 to match the stride of its counterpart pair
(1,l). Thereafter, it is again straightforward to show

A 61 &l + 2 w A;;:, + 4 (= A:;:, + 2).

Theorem 4 Let A, A’ and A” be LMADs. Assume
A w A’ and A’ w A”, where the bridge dimension in
A’ for both relations is the same. Then (A U A’) w A”
and A w (A’ U A”).

PROOF: Let (6,~) in A and (#,I#) in A’ be the bridge
dimensions for A w A’, and (#,o’) in A’ and (6”,&‘)

in A” be those for A’ w A”. Note that, by assumption,
the bridge dimensions in A’ for both relations are the
same (b’,u’).

We will first prove A w A”, where we refer to AUA’
as A. If A C A’, then, trivially, A’ = A’ w A”. If
A @ A’, it is obviously true that Conditions 1, 2, and
5 in Definition 5 must hold between .k and A” because
of the fact that, by Theorem 3, x has the same dimen-
sions as A’ except the bridge dimension for AwA’, and
6=6’=6”. For Conditions 3 and 4, let 7, 7’, and 7” be
the base offsets of A, A’, and A”, respectively, and let
tl = 1-r - 7’) and t2 = 1~’ - ~“1. We must consider
six cases, corresponding to the ordering possibilities of
71 7’1 and 7”. In the proof, a 4 denotes conditions
that follow trivially from assumptions or simple alge-
braic manipulation. For instance, in Case 1 below, the
,/next to Condition 3 denotes that it is trivial to prove
b divides tl + tz since tl and t2 are multiples of 6.

1. T<T’<T” A w A’ implies : t1 <r+6
A’ w A” implies : tz < u’ + d
A u A’ = A$+tI + T,

Thus : 6 divides tl + tz (Cond 3) d
tl+tl<u’+tl+6 (Cond4) ,/

2. T < T” 5 T’ A W A’ implies : t1 Su+b
A’ w A” implies : it2 < 0” + 6
A U A’ = A;,+tl + 7,

Thus : 6 divides tl - t2 (Cond 3) J

tl - t2 5 u’ + tl + 6 (Cond 4) 4

3. T’ < T” < r A W Af implies : t1 5 67’ + 6
A’ w A” implies : t2 5 u’ + 6
A U A’ = A:+,, + T’,

Thus : 6 divides t2 (Cond 3) J
tz<u+tl+J (Cond4) 4

4. 7’ 5 7 < 7” A w A’ implies : t1 5 CT’ + 6
A’ w A” implies : t2 < u’ + 6
A p A’ implies : u + t1 > u’
A U A’ = A:+,, + T’,

Thus : 6 divides t2 (Cond 3) ,/
tz<uftl+6 (Cond4) 4

5 T”<T<T’ AwA’implies: . hIu+6

A’ w A” implies : ta 5 0” + 6
A u A’ = A$+,, + r,

Thus: 6 divides t2 - tl (Cond 3) d
t2 - tl 2 u” + 6 (Cond 4) 4

6.T”<T’<T AwA’implies: t1 5 u’ + 6
A’ w A” implies : t2 5 at, + d
A u A’ = A;,,, + r’,

Thus : 6 divides t2 (Cond 3) 4
t2 5 u” + 6 (Cond 4) J

From the above proof, we showed A U A’ and A” are
contiguous. Proving A w A’ U A” uses identical logic,
so we will omit it. n

Notice that, given three descriptors A, A’, and A”,
A w A’ and A’ w A” do not necessarily imply A w A”.
This is because the relation w is not transitive. To il-
lustrate this, consider Figure 8. Ai, + 1 and A:;$, + 3

68

are not contiguous, although dfs + 1 w d$ + 2 and

d;& + 2 w A;‘:, + 3. Therefore, the question is “given
a se’t of pairs of contiguous LMADs, how does one de-
termine the order of aggregation to obtain the optimal
result?” To this question, Theorem 4 responds that
the result of a computation does not depend on the or-
der in which aggregations are applied as long as they
meet the constraint on the bridge dimensions given in
Theorem 4. One form of this theorem is illustrated in
Figure 11, where three LMADs A(‘), A(‘), and A@)
and their initial contiguous relations, A(‘1 w AI21 and
A(') w At3), are given in a contiguous relation graph.
Whether A(‘1 and At21 are aggregated first or A(‘) and
At31 are aggregated first, we can always obtain the same
result A(‘23l if the bridge dimensions of Af21 for both
relations are the same. This is the case with the ac-
cess descriptors in Figure 8 which can be aggregated

lb in any order to produce d,;,,+l, which can be further
simplified to dis+l using coalescing.

Figure 11: Example of contiguous relation graphs: in the
graph, a node A(‘) denotes a LMAD, and an edge the rc-
letion w. A(‘il represents the aggregated region of those
represented by A(‘) and A(j); that is, A(‘j) s A(‘) U A(j).

5.4 Other operations

In addition to the operations described in this paper, we
have devised LMAD algorithms for several other region
operations [24]: union, intersection, and subtraction. In
the cases where these operations cannot be carried out
precisely, the resulting descriptor can be marked to be
an over- or under-estimation of the actual locations.

5.5 Experimental results showing the degree of sim-
plification

In an attempt to determine how much simplification can
be achieved by the techniques of coalescing and contigu-
ous aggregation, we measured the simplification pro-
duced by coalescing and contiguous aggregation for our
set of test codes. We computed all LMADs interproce-
durally without applying any simplification techniques.
We counted the total number of LMADs produced at
all loop headers and CALL statements, and totaled the
number of dimensions used for all LMADs.

Then, we again computed all LMADs interprocedu-
rally, but applied both coalescing and contiguous ag-
gregation iteratively during the process until no more
simplification was possible, and recorded the number of
LMADS and dimensions used in them.

We chose to show the reduction in the total number
of dimensions as a measure to indicate the amount of
simplification performed because it captures both the
reduction in the number of LMADs (through aggrega-
tion) and the reduction of the number of dimensions

(through coalescing). The results, presented in Fig-
ure 12, show that a significant amount of simplification
can be achieved in most cases.

6 Applications of LMADs for Compiler Techniques

Typically, array privatization and dependence analy-
sis [3, 9, 14, 291 are based on array region operations.
Thus, their accuracy is heavily dependent on array ac-
cess analysis. According to our experiments with Po-
laris, current techniques are limited in some cases by the
complexity of subscripts. To illustrate this, consider the
loop in Figure 13. To parallelize the I-loop in the ex-
ample, it is necessary to determine that array Y can be
privatized. That is, it must be shown that within each
iteration of the outermost loop, every element of array
Y is always written before read. The difficulty here is
that the subscript expressions for array Y are non-affie,
and the accesses are made by multiple indices, J and K.
Due to these complications, existing array privatization
techniques [21, 311 cannot identify the exact access re-
gion for Y; as a consequence, they could not privatize Y
and thus would fail to parallelize the loop. We found
that the LMAD is often effective to overcome these lim-
itations.

In the loop of Figure 13, for example, the two write
accesses for array Y are represented with descriptors

from which it is clear that they are contiguous (in fact,
also interleaved). Therefore, they can be aggregatedinto
an exact region represented with

as illustrated in Figure 13, which in turn can be coa-
lesced into the equivalent form y$+2-3 + 1.

Despite the complex subscript expressions in the ex-
ample, using the LMAD representation helps reveal that
the write region for Y is as simple as one equivalently
represented by Y (1: 2’+’ - 2: 1) in triplet notation. In
our experiments, this simplification allowed existing ar-
ray privatization techniques to calculate the exact write
region of array Y and, similarly, the read region due to
two references, Y (K+2**J) and Y(K+2**J+2**(N+l)-I),
in the loop. As a result, we can prove that the read re-
gion is covered by the write region (in fact, they are the
same), and thereby eliminate dependence by declaring
Y as private to the loop.

The LMAD representation is useful not only for ar-
ray privatization, but also for other techniques depend-
ing on array access analysis, including dependence anal-
ysis and the generation of communication primitives
such as Send/Receive or Put/Get. For instance, in our
code transformation [25] for multiprocessors with phys-
ically distributed memory, we used the LMAD to gen-
erate Put/Get primitives of the general form

put/get~c~l,:u,:8.~,Y~I,:u~:s,~,p~.

The put transfers the elements of z (from r(Z,) to z(u2)
with stride 8”) in local memory to remote address y(l,)
with stride sy in destination processor p. The get works
the same way except that the source and destination
of data movement are reversed. Most communication
primitives supported in existing languages or machines [8,

69

Figure 12: Percentage reduction in total number of LMAD dimensions by coalescing and contiguous aggregation

dol=l,M
doJ=O,N ig2TbJ,;i = ..:”

enddo
doJ=O,N

do K - 0 2*‘J-1
. . . Z-Y

e;i;oY K+2”J+2”(N+i)-1) I
i<+2”J)

erz!”

Figure 13: Code example similar to code found in FFT applications, such as tfft2

10, 22, 231 require triplet notation for fast vector copy-
ing between distributed memories. Without simplifica-
tion of access patterns, we could not generate efficient
Put/Get primitives for codes with complex subscript
expressions, such as those shown in Figures 2 and 13.
But, by showing that the actual access patterns are just
simple consecutive memory accesses, we significantly re-
duced communication overhead in our target code.

In [24], we presented the experimental evidence that
the LMAD can be useful to simplify various access pat-
terns with complex subscripts and, thereby, facilitate
the application of compiler techniques. In the exper-
iment, as should be expected, the effectiveness of the
LMAD is roughly proportional to the percentage of the
complex accesses shown in Figure 4.

processors 2 4 8 16 32 64
mdg 1.2 1.3 1.4 1.6 2.6 3.0
trfd 1.1 1.0 1.2 1.5 1.6 1.5

tfftz 1.6 2.1 3.2 4.7 7.1 7.4

Table 1: Speed increase factor due to the LMAD on the
Cray T3D for processors between 2 and 64.

Table 1 shows the results of experiments with three
of the programs used to compute the frequencies in Fig-
ure 4. The entries in the table represent the ratio of
speedup improvement produced by using the LMAD
compared to the speedup produced by Polaris using
techniques supported by triplet notation. For instance,
we were able to improve the original speedup of trf d by
about 50% on 16 processors (leading to a speed improve-
ment factor of 1.5) when we simplified the array accesses
with our techniques before applying Polaris analysis.
Not surprisingly, using the LMAD produced no addi-
tional speedup on the programs with simple subscript-
ing patterns, such as snim and tomcatv.

7 The Contribution of This Work

We have extended the work described here so that it
works inter-procedurally and devised parallelization and
array privatization techniques based on the LMAD. The
implementation of our techniques is only partially com-
plete, but preliminary tests and hand analysis indicate
that the techniques will be able to automatically do in-
terprocedural parallelization and privatization of loop
nests within the code tfft2 from the SPEC95fp bench-
marks, despite its usage of non-affine subscript expres-
sions like X(I+K+I*P**(L-I)), in which I, K, and L are
indices of the surrounding loops. A more detailed de-
scription of these techniques and their implementations
will be presented in a forthcoming PhD thesis [17].

We believe that our techniques will subsume the ex-
isting Polaris intra-procedural parallelization and priva-
tization techniques because of the increased precision of
the representation. Furthermore, we believe that we will
be able to parallelize inter-procedural loop nests because
the techniques work across procedure boundaries.

8 Conclusion

A significant portion of the array subscript expressions
encountered in the benchmark programs we used are too
complex to be precisely representable in triplet notation,
yet quite often still lead to simple access patterns. We
have shown that a more general array access represen-
tation, based on the stride and span produced by each
loop index, can accurately represent the accesses.

Furthermore, with the application of polynomial-
time algorithms, we can aggregate and simplify the rep-
resentation of accesses that exhibit common patterns,
such as coalesceable, interleaved, and contiguous ac-
cesses. The result is often an access pattern that is
simple enough to allow the application of efficient region

70

operations used in optimizing compilers for dependence
analysis, array privatization, and communication gen-
eration. We presented the performance improvements
obtained on our target machines by applying these tech-
niques. Results indicate that these techniques hold real
promise for optimizing programs.

We believe that the notion of strides and spans,
and the simplification techniques based on them, should
be useful to other compiler studies that need accurate
intra- and inter-procedural array access analysis, re-
gardless of the representation used for their array ac-
cesses.

References

PI

PI

[31

141

[51

PI

[71

PI

PI

[lOI

PI

P21

1131

I141

V. Balasundaram and K. Kennedy. A Technique for
Summarizing Data Access and its Use in Parallelism
Enhancing aansformations. Proceedings of the SIG-
PLAN Conference on Programming Language Design
and ImplemenWion, June 1989.

U. Banerjee. Dependence Analysis. Kluwer Academic
Publishers, Norwell, MA, 1997.

W. Blume. Symbolic Analysis Techniques for Effective
Automatic Parallelizotion. PhD thesis, Univ. of Illi-
nois at Urbana-Champaign, Dept. of Computer Science,
June 1995.

W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoe-
flinger, T. Lawrence, J. Lee, D. Padua, Y. Paek, W. Pot-
tenger, L. Rauchwerger, and P. Tu. Parallel Program-
ming with Polqris. IEEE Computer, 29(12):78-82, De-
cember 1996.

M. Burke and R. Cytron. Interprocedural Dependence
Analysis and Parallelieation. Proceedings of the SIG-
PLAN Symposium on Compiler Construction, pages
162-175, July 1986.

D. Callahan and K. Kennedy. Analysis of Interproce-
dural Side Effects in a Parallel Programming Environ-
ment. Journal of Parallel and Distributed Computing,
5:617-550, 1988.

S. Chatterjee, J. Gilbert, F. Long, R. Schreiber, and
S. Teng. Generating Local Address and Communication
Sets for Data-ParallelPrograms. Journal of Parallel and
Distributed Computing, 26(1):72-84, April 1995.

Cray Research Inc. SHMEM Technical Note for For-
&an, 1994.

B. Creusillet and F. Irigoin. Exact vs. Approximate
Array Region Analyses. In Lecture Notea in Computer
Science. Springer Verlag, New York, New York, August
1996.

D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy,
S. Lumetta, T. Eicken, and K. Yelick. Parallel Pro-
gramming in Split-C. Proceedings of Supercomputing
‘99, pages 262-273, November 1993.

G. Danteig and B.Eavcs. Fourier-Motekin Elimination
and its Dual. Journal of Combinatorial Theory, pages
288-297,1973.

R. Graham, D. Knuth, and 0. Patashnik. Concrete
Mathematics: A Foundation for Computer Science.
Addison-Wesley Pub. Co., New York, 1989.

J. Grout. Inline Expansion for the Polaris Research
Compiler. Master’s thesis, Univ. of Illinois at Urbana-
Champaign, Dept. of Computer Science, May 1996.

J. Gu, Z. Li, and G. Lee. Symbolic Array Dataflow
Analysis for Array Privatization and Program Paral-
lelization. Proceedings of Supercomputing ‘95, Decem-
ber 1995.

[15] P. Havlak. Interprocedurul Symbolic Analysis. PhD the-
sis, Rice University, May 1994.

[16] S. Hiranandani, K. Kennedy, and C. Tseng. Evaluat-
ing Compiler Optimizations for Fortran D. Journal of
Parallel and Distributed Computing, pages 27-45, 1994.

[17] J. Hoeflinger. PhD thesis, Univ. of Illinois at Urbana-
Champaign, Dept. of Computer Science, forthcoming.

[18] C. Huson. An In-line Subroutine Expander for
Parafrase. Master’s thesis, Univ. of Illinois at Urbana-
Champaign, Dept. of Computer Science, May 1982.

[19] Z. Li and P. Yew. Efficient Interprocedural Analysis for
Program Parallelization and Restructuring. Proceedings
of the SIGPLAN Symposium on Parallel Programming:
Ezperience with Applications, Languages and Systems,
July 1988.

PI

1211

WI

[23l

1241

P51

PI

[271

1281

P91

[30]

1311

Z. Li, P. Yew, and C. Zhu. An Efficient Data Depen-
dence Analysis for Parallelizing Compilers. IEEE Z’kna-
action on Parallel and Distributed Systems, 1(1):26-34,
January 1990.

D. Maydan, S. Amarasinghe, and M. Lam. Array Data-
Flow Analysis and its Use in Array Privatization. Pro-
ceedings of ACM SIGPLAN Sympoaium on Principles
of Programming Langugea, January 1993.

Message Passing Interface Forum. MPI-2: Extension8
to the Message-Passing Interface, January 12, 1996.

J. Nielocha, R. Harrison, and R. Littlefield. Global Ar-
rays: A Portable Shared-Memory Programming Model
for Distributed Memory Computers. Proceedings of Su-
percomputing ‘94, pages 340-349, November 1994.

Y. Paek. Automatic Parallelization for Distributed
Memory Machines Baaed on Access Region Analysis.
PhD thesis, Univ. of Illinois at Urbana-Champaign,
Dept. of Computer Science, April 1997.

Y. Pack and D. Padua. Experimental Study of Com-
piler Techniques for NUMA Machines. IEEE Interna-
tional Parallel Proceaaing Symposium U Symposium on
Parallel and Distributed Processing, April 1998.

W. Pugh. A Practical Algorithm for Exact Array
Dependence Analysis. Communications of the ACM,
35(8), August 1992.

W. Pugh and D. Wonnacott. Nonlinear Array Depen-
dence Analysis. Technical Report 123, Univ of Maryland
at College Park, November 1994.

Z. Shen, Z. Li, and P. Yew. An Empirical Study of For-
tran Programs for Parallelizing Compilers. IEEE Z’kana-
action on Parallel and Distributed Syatema, 1(3):350-
364, July 1990.

P. Tang. Exact Side Effects for Interprocedural De-
pendence Analysis. Communications of the ACM,
35(8):102-114, August 1992.

R. ‘Xolet, F. Irigoin, and P. Feautrier. Direct Paral-
lelization of Call Statements. Proceedinga of the SIG-
PLAN Symposium on Compiler Construction, pages
176-185,1986.

P. Tu. Automatic Array Privatization and Demand-
Driven Symbolic Analysis. PhD thesis, Univ. of Illinois
at Urbana-Champaign, Dept. of Computer Science, May
1995.

71

