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Abstract 

Existing array region representation techniques are sen- 
sitive to the complexity of array subscripts. In general, 
these techniques are very accurate and efficient for sim- 
ple subscript expressions, but lose accuracy or require 
potentially expensive algorithms for complex subscripts. 
We found that in scientific applications, many access 
patterns are simple even when the subscript expressions 
are complex. In this work, we present a new, general 
array access representation and define operations for 
it. This allows us to aggregate and simplify the rep- 
resentation enough that precise region operations may 
be applied to enable compiler optimizations. Our ex- 
periments show that these techniques hold promise for 
speeding up applications. 

1 Introduction 

The array is one of the most important data structures 
in imperative programs. Particularly in numerical ap- 
plications, almost all computation is performed on ar- 
rays. Therefore, the identification of the array elements 
accessed within a program section (e.g., a loop or a sub- 
routine) by a particular reference (we call this array 
access analysis) is crucial to programming and compiler 
optimizations. 

Figure 1 shows a reference to an m-dimensional ar- 
ray X with subscript function (81 (i), - - -, am(i)) defined 
on the set of indices i = (ir , ia,. . . , id) within the pro- 
gram section P ‘. In array access analysis, the set of 
all elements of X accessed during the execution of sec- 
tion P (we call this the acceaa region of X in ‘P) must 
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the Government. 

‘Indicee are all basic induction variables of loops surrounding 
the reference 

Figure 1: Access to array X with indices ik, 1 5 k < d, in 
the program ScCtiOn ‘P such that 15 5 ik 5 Uk. 

be determined. For this purpose, when doing array ac- 
cess analysis for the references to an array, a compiler 
would first calculate a Reference Descriptor (RD) for 
each, which extends the array reference with range con- 
straints. For instance, given that il: ranges from lk to 
uk in p (for k = 1,2, * - -, d), the RD for the access in 
Figure 1 is 

“X(81(i), .92(i), e-s, am(i)) subject to 
lk < ik 5 Uk, for k = 1,2, * * ‘, d.” 

Next, the compiler would summarize all the RDs in the 
section and store their union in some standard repre- 
sentation [9, 15, 191. Simple accesses can be summa- 
rized with simple representations without losing preci- 
sion in access analysis. For example, in Figure 2, the re- 
gion accessed by reference b(ir , iz) can be represented by 
b(O:n5:l,O:n5:1) using the traditional triplet notation. In 
general, more powerful representations are required to 
accurately represent other accesses with more complex 
subscripts, such as the references to array a in Figure 2. 

program PROG 
real a[0 : n,], b[O : nb, 0 : q,] 
. . . 

for iI = 0 to nb with step 1 do 
b(il,iI) = .a. 
for is = 0 to TZ.I) with step 1 do 

b(il, iz) = a(8 * iI + ia) + a(& + 8 * ia + I) 
end 
for ia = 0 to il with step 1 do 

a(ir * (il + 1)/2+is) = .-. 
end 

end 
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1996 ACM 0-89791~S67-W36/0006 

Figure 2: Code example where the section ‘P is the ir-loop 
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Conventional wisdom holds that complex array sub- 
scripts result in complex access patterns. However, we 
believe that complex subscripts often form simple ac- 
cess patterns. This belief is based on informal obser- 
vations of many programs. For instance, although the 
subscript function for a in the is-loop seems complex, 
we can see in Figure 3 that the actual access pattern is 
simple. In many cases, the simplicity of the real access 
is hidden inside the subscript expressions, making it dif- 
ficult to discover. Sometimes originally simple subscript 
expressions are converted to complex ones during com- 
piler transformations, such as induction variable sub- 
stitution, value propagation [3], and subroutine inlin- 
ing [18,13], although the original access patterns remain 
intact. Previous techniques sometimes fail to recognize 
these simple patterns and, as a result, lose accuracy in 
their access analysis. 

When an m-dimensional array is allocated in mem- 
ory, it is linearized and laid out in either row-major or 
column-major order, depending on the language being 
used. Thus, we view accessing an array as traversing a 
linear memory space. Figure 3 shows how the two ar- 
rays a and b are mapped to memory and accessed within 
the &-loop of Figure 2. 

0 

for + 8 * + 1 

0000000000000000000000 
for a(il * (il+ 1)/2 + i5) 

Figure 3: Access patterns in the il-loop in Figure 2 for 
nb = 1 = 3: gray boxes represent the array elements accessed, 
and arrows with black heads and white heads keep track of 
the access driven by indices ir and iz (or is), respectively. 

1.1 Access Descriptor Exploiting Regularity of Mem- 
ory Accesses 

For the most part, the simplicity of accesses is exposed 
via a regularity of access structure within limited sec- 
tions of a program. By regularity we mean that the 
same access patterns are repeated in the traversal of 
memory. The patterns are characterized by two factors: 
the stride and the span. 

The stride records the distance traveled in the mem- 
ory space when an index is incremented. For example, 
for array b of Figure 3, it can be seen that the incre- 
menting of index il causes movement through memory 
in strides of size nb $ 2, which actually corresponds to 
accessing the main diagonal of b. In the two references 
to a within the iz-loop, index ir causes a stride of 8 in 
the first and 1 in the second, while index iz causes a 
stride of 1 in the first and 8 in the second. 

The span records the total distance traveled in the 
memory space due to a single index with the other in- 
dices fixed (that is, the difference between the last offset 
and the first offset of the array elements accessed). Con- 
sider the reference a(8 * il + is). Notice that when the 

index ir independently iterates through its entire range 
of values with the value of iz fixed, the range of the ac- 
cess within memory has length 8%. Similarly, when iz 
iterates alone, the access range has length tit,. 

The memory traversal due to the independent iter- 
ation of each index is characterized by its strides and 
spans, as can be seen from Figure 3. We pair the stride 
and span produced by a single index for an array ref- 
erence to describe the access pattern created by that 
index. Given a set of indices (ix, iz, . . . , id), the collec- 
tion of the stride/span pairs for all indices represents 
the entire access pattern for array A, denoted by 

where 6;, and oik are the stride and span due to index 
in,, and -r is the base offset, the offset of the first ac- 
cess from the beginning of the array. We call this form 
a Linear Memory Access Descriptor (LMAD) and each 
stride/span pair a dimension of the descriptor. Also, 
we call index ir, which is associated with the kth di- 
mension (d;k,~ih), the kth dimension index of the 
descriptor. 

Using the LMAD form, we can summarize the four 
accesses in Figure 3 with a l-dimensional descriptor 
jtJnb-k2 

nb(nb+a)+O for b( ir,ir), and 2dimensional descriptors 
Sl A shbInb+O, &,‘~,s,,b+1 and kib:>i+l, . +0 

for a(8*ir+is), a(il+8*&+1) and a(il*(dz1+1;;2+is), re- 

Definition 1 On the assumption that two LMADs A 
and A’ represent the access regions R and R’, respec- 
tively, 

1. A u A’ represents the aggregated LMAD of the 
two access regions, that is, R U R.‘. 

2. If R’ is a subregion of R (that is, ‘R.‘Ca), then 
we write A’cA. 

3. Let A = &‘f.2,>,,‘;::.‘~~d + 7. Suppose A’ is built 
by eliminating the kth dimension (J~,uL) from A, 
that is, A 61,-*,b-1 ,~k+l-*Jd cl ,..., ak-l,mk+l ,..., rrd + r. We call A’ the 
k-subLMAD of A. 

Notice that when A’ (with access region 77.‘) is the 
k-subLMAD of A (with access region ‘R), then ‘I?.‘CR. 

1.2 Analysis of Subscripting Patterns 

The development of the access region notation was orig- 
inally motivated by the project [24, 251 to retarget the 
Polaris compiler [4] at distributed memory multiproces- 
sors. In that project, the triplet notation used by Po- 
laris for array access analysis prevented us from generat- 
ing efficient code for our target multiprocessors because 
subscript expressions that could not be represented ac- 
curately in triplet notation limited our compiler opti- 
mizations. The eventual success in that project was 
due in part to our use of the LMAD notation. Section 6 
presents a few results on the improvements due to use 
of the LMAD. 

To develop a new access region notation, we needed 
to better understand the actual access patterns in real 
applications. For this, we chose fourteen Fortran pro- 
grams, including codes from the SPEC85fp and Perfect 
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Figure 4: Percentage of non-triplet-representable access summaries versus total number of access summaries 

aidm LlC2.3 b&la avrosm flc.52 mag ocean 
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Figure 5: Percentage of access summaries which are not provably-monotonic versus total number of access summaries 

benchmarks, and one from a set of production codes 
obtained from the National Center for Supercomputing 
Applications (NCSA) to study. After applying inter- 
procedural value propagation, induction variable sub- 
stitution, and forward substitution within these codes, 
we summarized each array reference to each of its en- 
closing do loops, counted how many of these summaries 
would not be representable in triplet notation, and plot- 
ted their percentage with respect to the total number of 
summaries in Figure 4. For this analysis, we divided the 
array accesses that could not be represented by triplet 
notation into the following five categories: 

subscripted-subscripts : accesses due to references 
with subscripted-subscript expressions; 

non-affine : accesses due to references with non-affine 
subscript expressions; 

triangular afflne : accesses due to references within a 
triangular loop; 

coupled-subscripts : accesses due to references with 
coupled-subscript expressions [20]; 

multiple index afflne : accesses due to references con- 
taming multiple indices in a subscript position. 

In this classification, each category excludes those above 
it. For instance, a reference with a subscripted-subscript 
inside a triangular loop would be counted as subscripted- 
subscript, and not triangular affine. 

In order for the difference between the last offset 
and the first offset (the span) to represent the true dis- 
tance moved for a dimension, the subscript function 
must cause movement to be consistently in the same di- 
rection. Such a function is called monotonic [3], which 
will be formally defined in Section 4. This implies that 
the LMAD can be accurate only when the subscripting 
functions are monotonic. Thus, to see how often the 
LMAD can be accurate in reality, we determined the 
percentage of array accesses that were provably mono- 
tonic at compile time. 

By their nature, all categories of references except 
subscripted-subscripts and non-&Tine are monotonic. But 

we checked all non-affine references in our set of test 
codes and, unexpectedly, all of those accesses were prov- 
ably monotonic. Only the subscripted-subscripts were 
not provably monotonic at compile time. This data is 
presented in Figure 5. 

From these results, we learned that most subscript 
functions encountered in the programs we tested are 
monotonic. This indicates the general tendency that for 
the iteration of a single index in a program section, an 
array is accessed in one direction either from a low to a 
high address in memory or vice versa. We also conclude 
that use of the LMAD makes possible an improvement 
in the accuracy of the representation over that obtained 
with triplet notation. 

The purpose of this paper is to show how the LMAD 
is used to analyze and simplify array access patterns 
in a program for more efficient and accurate compiler 
optimizations. 

1.3 Organization of this Paper 

Section 2 discusses previous work done on array access 
analysis and representation. Section 3 discusses sev- 
eral properties of LMADs and classifies access patterns 
that allow simplification of LMADs. Section 4 shows 
how to build a LMAD from a RD. Section 5 describes 
basic principles and methods to handle the access pat- 
terns classified in Section 3. Section 6 shows examples 
encountered in our experiments where LMADs were ad- 
vantageous to our optimizing compiler, along with some 
performance results. We briefly discuss the impact of 
this work on our current compiler project in Section 7, 
and present our conclusions in Section 8. 

2 Array Access Analysis Techniques 

Work on representing array access regions has followed 
three major approaches: triplet-notation-based, reference- 
list-based, and linear constraint-based. 
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2.1 Triplet-notation-based techniques 

Triplet notation is an array region representation for a 
set of integer values that start at a lower bound and 
proceed to an upper bound via a stride for each array 
dimension declared by the programmer. For instance, 
the notation for a J-dimensional array A is given by 

A(lbl:ubl:rl, lba:uba:aa, lb3:Ub3:83) 

where lbr: is the kth lower bound, uba is the kth up- 
per bound, and 86 is the kth stride. Triplet notation 
is simple, yet practical. Typically, the region opera- 
tions (e.g., union, subtraction, and intersection) defined 
on the notation can be implemented with fast linear al- 
gorithms. The study of Shen et al [28] indicated that 
most real-world access patterns in scientific programs 
are representable by triplet notation. This is, in fact, 
the reason why many researchers, including several in 
our own research group at Illinois, have used the nota- 
tion to implement their compiler techniques (including 
array privatization, dependence analysis, and message 
generation [3, 7, 16, 311). 

However, as discussed in Section 1.2, the limited ex- 
pressive power of the triplet notation often hinders anal- 
ysis in some important cases. To alleviate this problem, 
researchers at Rice University [6] have devised several 
variants of regular section descriptors @SDS), with op- 
erations deS.ned on a lattice. RSDs are able to express 
single array elements, complete rows and columns, and 
diagonals. Restricted RSDs [15] were devised to han- 
dle coupled subscripts, and then Bounded RSDs were 
devised to further improve the accuracy with symbolic 
bound information. Researchers at the University of 
Minnesota have used Guarded Array Regions [14], which 
are equivalent to Bounded RSDs with an additional 
predicate (guard). More information can be added to 
the guard to sharpen the accuracy in a given situation. 

2.2 Reference-list based techniques 

Li and Yew proposed a reference-list based representa- 
tion, called an atom image [19], which captures the co- 
efficients of the loop indices and the loop bounds of each 
surrounding loop. Burke and Cytron represented array 
references in one-dimensional form by linearization [5]. 
These reference-list based techniques lose no precision 
for any array access because they rely on making a list 
of each individual array reference in a program section. 
They are meant to capture program information, but 
not summarize it. 

2.3 Linear-constraint based techniques 

In linear constraint-based techniques, the set of linear 
constraints is constructed from the subscripting func- 
tion, loop bounds, and other information found in the 
program, similar to our 
lowing is an example: 

calculation of the RD. The fol- 

11 5 Xl 5 Ul 

la 5 Xa 5 ua 

13 5 Xc1 +Xa 5 U3 

14 < 21 -Xa 5 U4 

With these techniques, array accesses can be expressed 
as convex regions in a geometrical space. The linear 

constraint-based techniques that were first proposed by 
Triolet, et al [30] have been widely used as an alter- 
native way to summarize array accesses. In particular, 
these techniques have been used for dependence anal- 
ysis. When a potential dependence between two array 
references is being tested, the linear inequalities associ- 
ated with the two references are aggregated to form a 
linear system and the feasibility of the system is tested 
using Fourier-Motzkin elimination [ll] techniques. The 
Omega Test [26] is an example of a dependence test 
built in this way. The PIPS project at Kcole des Mines 
de Paris [9] has added an indicator of the accuracy of the 
representation, referred to as MUST/MAY, to the rep- 
resentation itself. The notion of MUST/MAY approxi- 
mations helps a compiler to determine when a result is 
accurate or inaccurate. 

Linear constraint-based techniques are generally con- 
sidered more precise than triplet notation in handling 
access patterns with non-rectangular expressions (see 
Figure 4). However, they also have several critical draw- 
backs. First, the Fourier-Motzkin linear system solver 
requires worst-case exponential time algorithms [2]. Bal- 
asundaram and Kennedy [l] proposed a simplified form 
of linear constraint representation, called simple aec- 
tions, that eliminates the need for such expensive al- 
gorithms, but at the cost of accuracy. Although simple 
sections can represent many of the commonly occur- 
ring forms, such as a whole array, a single row/column, 
a diagonal, or a triangular section, they are limited 
in that they cannot express the whole range of con- 
straints found in programs. Second, Fourier-Motzkin 
is limited to affine expressions. To overcome this limi- 
tation, Pugh and Wonnacott [27] have developed tech- 
niques for replacing non-affine terms occurring in array 
subscripts with uninterpretedfunction symbols, but this 
does not handle all situations involving non-affine terms. 
Third, Fourier-Motzkin requires that the linear inequal- 
ities form a convex hull, forcing a loss of accuracy when 
regions must be altered to maintain the convex form. 

Work on the SUIF system at Stanford uses a repre- 
sentation [21] very similar to that of PIPS. SUIF uses 
a set of region operations for systems of linear inequal- 
ities and special algorithms for maintaining the convex 
shape of the regions during the analysis. 

To recap, the linear constraint-based representation 
improves accuracy over triplet notation, but still loses 
accuracy and requires potentially expensive algorithms 
for many complex subscripting expressions (the frequen- 
cies of which are shown in Figure 4). The performance 
of a compiler based on linear constraints would be im- 
proved if those expressions could be simplified. 

3 The Similarity of Array Access Patterns 

In addition to the property of regularity discussed in 
Section 1, different accesses in the same program sec- 
tion often have a similarity of pattern because multiple 
references to an array within the section are generally 
accessed using the same indices and similar subscript 
expressions. Figure 3 shows that the accesses repre- 
sented by descriptors &‘, + 0 and A:‘:, + 1 describe 
exactly the same memory access pattern but with differ- 
ent base offsets. This example helps demonstrate that 
the order of the stride/span pairs on the LMAD does 
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not affect the access pattern represented by it. We call 
such similar access patterns isomorphic. 

Definition 2 Let A and A’ be two LMADs. If A’ has 
the same stride/span pairs as A, regardless of their or- 
der, then A and A’ are isomorphic, denoted by A/ /A’, 
meaning the access regions described have the same shape 
and structure. 

Definition 3 Two LMADa A and A’ are said to be 
equivalent, denoted by A E A’, if they represent the 
3ame access region. 

If two LMADs are isomorphic and have the same 
base offset, they are equivalent. For instance, since the 
two descriptors di$, + 0 and di*i, + 1 are isomorphic, 
they would be equ&lent if we could show that 1= 0. 

To illustrate another type of $r$larity, consider the . . loop m Frgure 6. A descnptor ds;, + , 1 whose accesses 
are denoted by dashed lines in the figure, represents 
the access region produced by a(i+j+l). Notice that 
another descriptor A:;$,, + 1, whose accesses are denoted 
by the lower solid lines, represents the same region as 
the original descriptor. Even a l-dimensional descriptor 
can represent the same access, such as dir + 1, whose 
accesses are denoted by the upper solid lines. 

real a(0 : 71) 
. . . 

for j = 0 to 2 with step 1 do 
for i = 0 to 9 with step 3 do 

a(i+j+l)=--- 
end 

end 

Figure 6: Equivalent regions for the accesses to array a, 
which cover the region from a(l) to 412). 

All three descriptors in Figure 6 are equivalent. From 
these examples, we learn that an access region can be 
represented by numerous LMADs consisting of different 
stride/span pairs. In principle, we can show that the 
same access region can be represented with an infmite 
number of equivalent LMADs by Theorem 1, which will 
be used in Section 5. 

Theorem 1 A LMAD ‘A~~:::$~ +r can be expanded to 
form other equivalent descriptors by adding a dimension 
(a*, 0) in any position, such as d~l~~.$:.~~:~~ + T, where 
6’ can be any integer. 

PROOF: A dimension describes the movement from a 
lower bound to an upper bound with a stride. The span 
is defined as the difference between the upper bound 
and the lower bound. If the span is zero, the upper 
bound and lower bound are the same, thus describing no 
movement at all. A dimension involving no movement 
can have any stride, and still neither adds nor subtracts 
elements to/from a given access region. n 

As we have mentioned, the complexity of subscript 
expressions sometimes prevents the representation tech- 
niques described in Section 2 from accurately represent- 
ing an access. However, if the access patterns are repre- 
sented in a sufficiently general form, they often can be 
aggregated and simplified into forms which are repre- 
sentable in the notation of choice, by using techniques 
such as those discussed in this paper. For example, a 
direct translation to triplet notation of the access in the 
loop of Figure 6 would not be possible because the ac- 
cess involves multiple index subscripts (see Figure 4). 
However, using our algorithms, we can show that the 
original pattern is equivalent to an access with dir + 1; 
therefore, we can use the triplet notation a(l:12:1) to 
accurately represent the access. 

Our work is based on the observation that typical 
scientific programs have several common forms of access 
patterns produced by subscript expressions, regardless 
of their complexity. We call these forms coalesceable, 
interleaved, and contiguous. These are useful for our 
purposes because, whenever one of these forms appears, 
the original access pattern can be transformed into a 
simpler one. 

Coalesceable Accesses 

Given an array access represented with a LMAD A, we 
call the access coalesceable if it also can be represented 
with another LMAD A’ equivalent to A, but with fewer 
dimensions than A. One typical example of a coalesce- 
able access is one that moves with a small stride due to 
one index and due to a different index, strides over the 
accesses of the first stride to the very next element in the 
sequence. For instance, the reference a(& *(&+1)/l+&) 
in Figure 2 accesses ir + 1 consecutive elements with 
stride 1 for every iteration of the ir-loop, then jumps 
over those elements with stride ir + 1 to the next ele- 
ment. In a case like this. we can show that the number 
of dimensions can be reduced by one. We can show that 

+ o) E (dr+s+ll+,b + 0), 
a 

using the algorithm presented in Figure 10. 

Interleaved Accesses 

We call array accesses interleavedwhen their dimensions 
have the same strides and they are offset from each other 
by a fixed distance which divides one of their strides. An 
example is shown in Figure 7, where we can see that the 
access patterns for arrays x and y have this property. 
We can see that the union of the three access regions for 
x is equal to the whole region from x(1) to x(u+4) with 
stride 2, which can be represented by a single descriptor 
Xi-i+4 + 1. This implies 

(Xi-l + 1) u (XL + 1+ 2) u (XL + 1+ 4) 

E (XL+4 + 1). 

Contiguous Accesses 

We call LMADs contiguous when the access patterns 
they represent are similar, can be fit together to cover 
a portion of the array without a break, and can be ex- 
pressed in a single LMAD. Figure 8 illustrates four ac- 
cess patterns for array a. From this example, we can 
clearly see the similarity between those accesses; and 
we see that when viewed from outside the outermost 
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real ~(0 : n), 1/(0 : m) 
. . . 

for i = 1 to u with step 6 do 
temp = temp + S(i) *y(i) 

+r(i + 2) * ?/(i + 2) 
+o(i + 4) * ar(i + 4) 

end 

Figure 7: Code example of the dot product of two vectors x 
and y with stride 2, and the illustration of the access patterns 
for r in memory, represented by three descriptors Xt-,+l, 
X:-,+1+2, and X:-,+1+4, respectively 

loop, they fit together to form an unbroken stream of 
access. This results in 

(&6 + 1) u (&& + 2) lJ (A::;, + 3) u (AL + 4) 

= (A:9 + 1) 

which indicates that the union of the four access regions 
can be represented with a single LMAD. 

real a(0 : n) 
. . . 

for i = 0 to 3 with step 1 do 
a(5*i+1)= ... 
for k = 1 to 2 with step 1 do 

a(k+5*i+l)=-.- 
end 
for j = 1 to 4 with step 1 do 

a(5*i+j+2)=a(S*i+4)+... 
end 

end 

Figure 8: Similar access patterns with four descriptors 
AT,+& d$r1+2, di:$+3, aad &+4 

4 Generating Linear Memory Access Descriptors 

Let Z denote the set of all integers and Z” the set of 
all m-tuples of integers. We assume here, for simplic- 
ity of explanation, that all subscripts of an array start 
at 0, and all loops are normalized with a stride of 1. 
For example, the array X in Figure 1 is declared as 
X(O:nl,O:nz,. - * ,O:n,). We define the orroy space of X, 
Z’$, as the set of m-tuples: 

z; = {(rl,rz,“’ ,r,)EZmlOIrkInk,lIkIm}. 

Because vector r = (rr,rs, *.a ,rm) represents the ad- 
dress in the array space of X, to access the actual data 

stored in memory it must be mapped to a single integer 
that is the offset from the beginning of the array. We 
define this mapping, denoted by FX : ZT + Z, as 

m 
Fx(r) = Fx(rl,ra,*-.,r,) = Crk *XI, 

II=1 

where, provided X is allocated in column-major order, 
x1 = 1 and & = Xk-1 . (n&r + 1) for k # 1. If the 
array is allocated in row-major order, X, = 1 and & = 
Xk+l . (nktl i- 1) for k # m. Applying the definition 
of Fx to the subscript function in Figure 1, we have a 
linearized form: 

Fx(s(i)) = sr (i)Xr + az(i)Xs + . . + + a,(i)X, (1) 

where we assume that s(i) = (al(i), az(i), * * *, am(i)). 
Now, we show how we could use Equation 1 to calcu- 

late the dimensions (stride/span pairs) and base offset 
of the accesses made by an array reference X(s(i)). Let 
%th denote the difference in Fx(s(i)) made by replacing 
ik with ik $ h, where h is a positive integer. For gen- 
eral subscript functions, it can be represented by the 
difference operator A, defined by 

Fx(s(il,...,&+h,... rid)) - FX(S(Z’~,“‘,ik,“‘,id)) 

h 

which is used to define a monotonic subscript function 
mentioned in Section 1. 

Definition 4 Let s(i) be a subscript function defined 
Oni = (il,i2,“‘,id). For all the values of index ik in 
the runge between lk and Uk, we soy the function s(i) is 
nondecreasing for the index ik. if @,, 2 0; otherwise, 
we say s(i) is nonincreasing. The subscript function 
s(i) is monotonic for index ik if s(i) is either nonde- 
CreaSing Or nOninCreaSing for kk. 

Suppose s(i) is monotonic for all indices in i. Then, 
the stride 6i, caused by the iteration of index ik E i can 
be obtained directly from & as follows: 

where h is set to 1, as it is in finite calculus [12]. As 
stated in Section 1, the span oil. is the distance moved 
in the memory region accessed during the iteration of 
ik from #?k to uk. If the function is monotonic, then, by 
finite calculus, this can be calculated by subtracting the 
function values of the two end-points of the intervals. 
Thus, the span is 

where h is again 1. The sign of 8: denotes the direc- 
tion of the movement through memory due to i in an 
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array access. In our formulas, however, we ignore the 
sign by taking the absolute value, l$l, for the stride 6;, 
and changing the base offset because, as we stated in 
Section 1, the access pattern (or access region) is char- 
acterized by the stride size of the movement, not the 
direction. To show this with an example, consider Fig- 
ure 9. Here, we have two accesses to array a, where 6:, in 
the first is -1 (causing movement to the left with stride 
1, starting from a(4)) and in the second is 1 (causing 
movement to the right with stride 1, starting from o(2)). 
However, despite the different access structures, we see 
that the access region (represented with gray boxes) for 
both accesses is actually identical. 

for ia = 0 to 6 do 
for il = 0 to 2 do 

a(+ + 4 * iz + 4) = . . . 
a(il+4*&+2)=... 

end 
end 

Figure 9: Access to array a through two references and their 
access patterns in memory: solid lines denote the access for 
a(-il+4&+4) and dashed lines the access for a(i1+4&+2): 
arrows with white heads and black heads keep track of the 
access driven by indices il and ia, respectively. 

As can be seen in Figure 9, the direction of access 
only adds to the complexity in access analysis. Thus, we 
remove the extra complexity by normalizing LMADs to 
a form in which alI the directions of access are positive. 
This normalization requires us to change the base offset 
of the access to the lower bound of the access reglon. For 
example, in Figure 9, the original base of the access for 
a(-& + 4 * iz + 4) was a(4); but, during normalization, 
the base must be changed to a(2). For the normalized 
form, using Equations 1 and 2, we calculate the base 
offset of the access made by the reference X(s(i)) as 
follows: 

where uk : < 0 ck = 6: 
lk 

for 1 k d. 
: 8: 2 0 

2 5 

Note that r is the minimum value of Fx(s(i)). The 
LMADs for the accesses in Figure 9 produced by our 
formulas would both be A$, + 2. Thus, we can prove 
that the two references access the same array region. 

5 ’ Linear Memory Access Descriptor Manipulation 

In this section, we discuss the techniques that identify 
the regularity and similarity of the three categories of 
access patterns discussed earlier and that use the char- 
acteristics to simplify or to aggregate their descriptors. 

5.1 Coalesceable Accesses 

Given a single LMAD, the algorithm in Figure 10 deter- 
mines if the access represented by the LMAD is coalesce- 

able. For example, the access for a(& * (ir + 1)/2 + is) 
in Figure 3 is represented by the descriptor 

which has two dimensions: (1,ir) due to index is and 
(il + 1, v) due to il. These pairs are coalesce- 
able because 6is(= 1) divides &,(= ir + l), and 6i, = 

ui, + 6;s. Thus, we eliminate (ir + 1, w) from 
the descriptor and update the original span uis(= ir) 
with v + il. Since the new span contains is, we 
replace the index with its upper bound nb, resulting in 
the l-dimensional descriptor 

This eliminates one dimension of the LMAD, thereby 
simplifying the representation of the original access pat- 
tern. In a similar way, we can show that the access for 
the reference b(ir,is) due to the two indices ir and is 
in Figure 2 can be represented by the l-dimensional de- 
scriptor ‘A&,+‘)~-’ + 0. 

Algorithm Coalesce 

Input 1: dimension index set z = {il , iz . . *, id} 
with constraints II, < ik <..rk for k = 1,2, * * * ,d 

Input 2: LMAD A = A$l$~z’,..:~$ + r 

Note: Here f [j t x] means to substitute x for j in function f 

Algorithm: 
while an unselected index pair (i ‘, ik) from z remains do 

Select two dimensions (6ij ,cij ) and (Ji, #vi, ) from A; 
if ij or ik appears in the other dimensions of A then 

continue; 

fl 

if 6ij divides 6;, and 6ik 5 Qij + 6ij then 
if ik appears in Qij then 

if 3i, lk 5 i < Uk, such that 
bi, < 4ij [ik t C] - Uij [;k t i + 
continue; 

tl 

l] then 

aij = oij [ik t Uk]; 
fl 
Uij t Uij + 4ik; 
Eliminate (a;,, ci,, ) from A; 
z t  z - {ik}; 

fi 
od 

end 

Figure 10: An algorithm that detects coalesceable accesses 
from a LMAD by comparing its stride/span pairs. 

Algorithm coalesce does O(da) dimension compar- 
isons for a d-dimensional LMAD in the worst case. 

5.2 Interleaved Accesses 

In Figure 6, we can find that the access from a(l) to 
a(12) with stride 1 (represented by .A:, + 1) comprises 
two separate interleaved accesses with stride 2 (repre- 
sented by d:s + 1 and d& + 2) or three accesses with 
stride 3 (represented by d:+l, di+2, and di+3). The- 
orem 2 shows how simplification can be applied to ag- 
gregate multiple regions with an interleaved structure; 
it gives us the flexibility to convert a single LMAD to 
its n-interleaved descriptors, or vice versa. 
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To determine whether n 8iven d-dimensional descrip- Using LMADs, a compiler could automatically identify 
tors are n-interleaved with respect to a given stride 6, the interleaved patterns from the loops, as discussed 
we would first sort the dimensions of each by stride, an above, and choose an arbitrary n to transform the orig- 
O(ndlogd) process, then use a linear-time bucket sort inal loop with n-interleaved accesses. For instance, we 
to order the descriptors by base offsets, checking that can transform the 3-interleaved accesses in Figure 7 to 
in sorted order the offsets differ by the same J/n. The the Cinterleaved accesses for deeper unrolling because 
complexity of this process is dominated by O(nd log d). we can easily show, for example, 

Theorem 2 Let A = A,,,, =,..., cd 61~6a~~~~Jd $7. For a dimension 
(6k,uk) in A, where 6k and ak-are invariant, and a 
chosen n, 1 2 n 5 1 + 2, there always ezists a set of 
n descriptor8 

._ 

{Aj 11 5 j 5 n} = { d~~~:~:::.'~~d +T + (j- l)ak} 

where 6; = nA and a; = 1-1 a:, such that 

A= IJ Aj. We say the n d”ercrip&s are the n- 
l<j<n 

interleaved descriptors of A. 

PROOF : To prove this, we will show that both A’ C A 
and A c A’. In order to focus on the k-th dimension, 
without losing any generality, we will fix the values of 
all indices except the k-th. The set of elements within 
A which result have a specific starting point, TF, de- 
termined by the values we choose for the other indices. 
First, to prove A’ C A, we will show that an arbitrary 
element of Aj, for any j, is always an element of A. By 
definition, the m’th element of Aj has the offset: 

(m’ - l)& $ TF + (j - l)Cfk for 1 2 m’ 2 2 + 1 

Which We Cm CXpreSS 88 ((m’ - 1)” + j - 1)6k + TF. 

This form indicates that the m’th element of Aj cor- 
responds to the (m’ - 1)n + jth element of A. This is 
a valid element of A because, from the assumption, we 
can show 

l<(m’-l)n+j<z+l 

since 1 5 m’ 5 $ + 1 = 1-J + 1. 

Next, to showk A C A’, we st:t from the mth ele- 
ment of A, which has the offset: 

(m - 1)6k + Tp for 1 5 m 5 2 + 1. 

Given two integers m and y such that x = 1-1 and 
y=(m-l)modn,wehavem-l=nz+y.Then,the 
offset of the mth element of A is transformed as follows: 

(n= + Y)dk + 7F = Zdk + 7F + Y6k 

= X6: + TF + Ysk 

from which we see that the element corresponds to the 
x + lth element of descriptor A,+I. We can verify that 
Av+l is one of the n descriptors Aj and that it contains 
the z + lth element since, from the definition of z, y and 
m, we can show the bounds on x and y are 

l~z+l<~+l,andl~y+l<n. 

Together, these results show that any element of A is 
also an element of A’, and vice versa, which implies 
A= U Aj. n 

l-Cj<n 

Interleaved accesses are common in unrolled loops, 
such as those represented with the 3-interleaved descrip- 
tors of Xisl+, + 1 shown in Figure 7. Different proces- 
sors cause different unrolling depths to be advantageous. 

(XL+4 + 1) s (XL + 1) u (XL + 1+ 2) u 

(Xi-, + 1 + 4) U (X:-I + 1 + 8), 

(assuming, for simplicity, that u - 1 is a multiple of 8) 
and, from the 4interleaved LMADs for both arrays I 
and y, it is straightforward to generate the new code 

for i = 1 to u with step 8 do 
temp = temp + z(i) *y(i) + o(i + 2) * y(i + 2)f 

x(i t 4) * y(i + 4) + x(i t 6) * Y(; + ‘3) 
end 

The property of interleaving also can be used to ag- 
gregate multiple contiguous accesses to a single one, 
such as those represented in Figure 8 by the two LMADs 
At&+2 and dfs+4. The descriptor A:&$ $2 consists of 
its 2-interleaved descriptors dy$,,+2 and dt;20+3. Us- 

‘2 5 ing Theorem 1, dig+4 can be converted to .A,:,,+4 to 
match the dimensions of the other descriptors. Now, 
we apply Theorem 2 to show that this expanded de- 
scriptor and the other two descriptors together form 3- 
interleaved descriptors of dff,+2. 

In our distributed memor; multiprocessor code gen- 
eration project, mentioned in Section 1.2, the notion of 
interleaving has been useful to perform three region op- 
erations (aggregation, intersection and subtraction) on 
the LMAD notations, as will be briefly discussed in Sec- 
tion 6, and to determine subregions [24]. For instance, 
in Figure 8, df5 + 4, which represents a subregion of 
the region represented by d:;i55+ 3, is in fact one of the 
Cinterleaved descriptors of d3i15 + 3. 

5.3 Contiguous Accesses 

Con$guous accesses can be formally defined as follows: 

Definition 5 Given r F r’, let A = d~‘J.$“‘;ll.‘$d+~ 

and A’ = d 
6; ,..., 6; ,..., 6, 
u;,...,u;,...,LT; +7’. The LMADs are con- 

tiguous, denoted by A w A’, if there exist dimensions 
(up, 6,) and (ub, a&), satisfying the conditions 

1. Ap II A:, 
2. a, = a:, 
.?. 6, divide8 T - -r’, 
4. T - 7’ < u: + S:, and 
5. the pth dimension index of A and the qth dimen- 

sion index of A’ do not appear in the expressions 
for the stride/span pairs of A, or Ai 

where Ap and Ai are the p-subLMAD of A and the q- 
subLMAD of A’, respectively. Then, (cPp, 6,) and (a:, 6;) 
are the bridge dimensions for the relation A w A’. 

In Figure 8, Ai& + 2 and &;$, + 3 are contiguous 
by Definition 5. Also, in Figure 3, we can show that the 
two descriptors d& + 0 and dkf,2r + I are contiguous 
as long as 1 5 nb + 1 holds. 
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Theorem 3 Let A and A’ be the contiguous descrip- 
tors defined in Definition 5, and let t = 7 - 7’. Then, 

PROOF: Once the conditions of Definition 5 are met 
and we have identified dimensions p from A and q from 
A’, we know that all strides from A and A’ are the 
same, and that A is shifted to the right from A’. Con- 
dition 3 means that A is shifted an integral number of 
qth dimension strides from the start of A’. Condition 4 
means that the shift leaves no gap between the end of 
dimension q and the start of A. If T-T’ < u:+6:, then 
the start of dimension p would overlap the end of dimen- 
sion q, while 7 - T’ = U: + cI~ would mean that A starts 
immediately at the end of dimension q. If a, + t > o:, 
this serves to extend the span of dimension q. Other- 
wise, dimensionp would be completely inside the span of 
dimension q and would add nothing to dimension q. By 
Condition 5, no other dimension uses the pth and qth di- 
mension indices associated with the bridge dimensions, 
so forming a combined dimension has no implications 
for the other dimensions. n 

Notice that it follows immediately from Theorem 3 
that if two LMADs are found to be contiguous as above, 
and or + t 5 crh, then A C A’. 

Theorem 3 can be used to aggregate contiguous ac- 
cesses to represent their access patterns with a single 
LMAD. For instance, A&+2 and d$$,+3 in Figure 8 
are aggregated to a single descriptor by showing 

d $, + 2 u d$, + 3 E A:;;, + 2. 

Similarly, the two descriptors /I:<,, +0 and .A>f,s4+1 

in Figure 3 can be aggregated to produce d>f+l,PQ+O 
under the constraint 1 < n&l. 

To determine whether two descriptors are contigu- 
ous, we would first sort the dimensions of each by stride, 
an O(d log d) process, then in one pass check that at 
least d - 1 dimensions match and keep track of which 
indices are used in which other dimensions. If only one 
dimension of each differs by the span, we check Con- 
ditions 3, 4, and 5. If all dimensions match, then one 
more pass needs to be made, checking Conditions 3, 4, 
and 5 for each pair. This process is dominated by the 
O(d log d) process. 

In Section 5.2, we showed how to use the interleaved 
structure to aggregate &s + 4 and A!$, + 2. In fact, 
we can do the same with Theorem 3. For this, we first 
must obtain a 2dimensional descriptor di:1)6 + 4, ex- 
panded from dfs + 4 using Theorem 1 because the orig- 
inal l-dimensional LMAD cannot be directly applied to 
Definition 5. Since 6’ can be any number by definition, 
we set 6* = 1 to match the stride of its counterpart pair 
(1,l). Thereafter, it is again straightforward to show 

A 61 &l + 2 w A;;:, + 4 (= A:;:, + 2). 

Theorem 4 Let A, A’ and A” be LMADs. Assume 
A w A’ and A’ w A”, where the bridge dimension in 
A’ for both relations is the same. Then (A U A’) w A” 
and A w (A’ U A”). 

PROOF: Let (6,~) in A and (#,I#) in A’ be the bridge 
dimensions for A w A’, and (#,o’) in A’ and (6”,&‘) 

in A” be those for A’ w A”. Note that, by assumption, 
the bridge dimensions in A’ for both relations are the 
same (b’,u’). 

We will first prove A w A”, where we refer to AUA’ 
as A. If A C A’, then, trivially, A’ = A’ w A”. If 
A @ A’, it is obviously true that Conditions 1, 2, and 
5 in Definition 5 must hold between .k and A” because 
of the fact that, by Theorem 3, x has the same dimen- 
sions as A’ except the bridge dimension for AwA’, and 
6=6’=6”. For Conditions 3 and 4, let 7, 7’, and 7” be 
the base offsets of A, A’, and A”, respectively, and let 
tl = 1-r - 7’) and t2 = 1~’ - ~“1. We must consider 
six cases, corresponding to the ordering possibilities of 
71 7’1 and 7”. In the proof, a 4 denotes conditions 
that follow trivially from assumptions or simple alge- 
braic manipulation. For instance, in Case 1 below, the 
,/next to Condition 3 denotes that it is trivial to prove 
b divides tl + tz since tl and t2 are multiples of 6. 

1. T<T’<T” A w A’ implies : t1 <r+6 
A’ w A” implies : tz < u’ + d 
A u A’ = A$+tI + T, 

Thus : 6 divides tl + tz (Cond 3) d 
tl+tl<u’+tl+6 (Cond4) ,/ 

2. T < T” 5 T’ A W A’ implies : t1 Su+b 
A’ w A” implies : it2 < 0” + 6 
A U A’ = A;,+tl + 7, 

Thus : 6 divides tl - t2 (Cond 3) J 

tl - t2 5 u’ + tl + 6 (Cond 4) 4 

3. T’ < T” < r A W Af implies : t1 5 67’ + 6 
A’ w A” implies : t2 5 u’ + 6 
A U A’ = A:+,, + T’, 

Thus : 6 divides t2 (Cond 3) J 
tz<u+tl+J (Cond4) 4 

4. 7’ 5 7 < 7” A w A’ implies : t1 5 CT’ + 6 
A’ w A” implies : t2 < u’ + 6 
A p A’ implies : u + t1 > u’ 
A U A’ = A:+,, + T’, 

Thus : 6 divides t2 (Cond 3) ,/ 
tz<uftl+6 (Cond4) 4 

5 T”<T<T’ AwA’implies: . hIu+6 

A’ w A” implies : ta 5 0” + 6 
A u A’ = A$+,, + r, 

Thus: 6 divides t2 - tl (Cond 3) d 
t2 - tl 2 u” + 6 (Cond 4) 4 

6.T”<T’<T AwA’implies: t1 5 u’ + 6 
A’ w A” implies : t2 5 at, + d 
A u A’ = A;,,, + r’, 

Thus : 6 divides t2 (Cond 3) 4 
t2 5 u” + 6 (Cond 4) J 

From the above proof, we showed A U A’ and A” are 
contiguous. Proving A w A’ U A” uses identical logic, 
so we will omit it. n 

Notice that, given three descriptors A, A’, and A”, 
A w A’ and A’ w A” do not necessarily imply A w A”. 
This is because the relation w is not transitive. To il- 
lustrate this, consider Figure 8. Ai, + 1 and A:;$, + 3 
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are not contiguous, although dfs + 1 w d$ + 2 and 

d;& + 2 w A;‘:, + 3. Therefore, the question is “given 
a se’t of pairs of contiguous LMADs, how does one de- 
termine the order of aggregation to obtain the optimal 
result?” To this question, Theorem 4 responds that 
the result of a computation does not depend on the or- 
der in which aggregations are applied as long as they 
meet the constraint on the bridge dimensions given in 
Theorem 4. One form of this theorem is illustrated in 
Figure 11, where three LMADs A(‘), A(‘), and A@) 
and their initial contiguous relations, A(‘1 w AI21 and 
A(') w At3), are given in a contiguous relation graph. 
Whether A(‘1 and At21 are aggregated first or A(‘) and 
At31 are aggregated first, we can always obtain the same 
result A(‘23l if the bridge dimensions of Af21 for both 
relations are the same. This is the case with the ac- 
cess descriptors in Figure 8 which can be aggregated 

lb in any order to produce d,;,,+l, which can be further 
simplified to dis+l using coalescing. 

Figure 11: Example of contiguous relation graphs: in the 
graph, a node A(‘) denotes a LMAD, and an edge the rc- 
letion w. A(‘il represents the aggregated region of those 
represented by A(‘) and A(j); that is, A(‘j) s A(‘) U A(j). 

5.4 Other operations 

In addition to the operations described in this paper, we 
have devised LMAD algorithms for several other region 
operations [24]: union, intersection, and subtraction. In 
the cases where these operations cannot be carried out 
precisely, the resulting descriptor can be marked to be 
an over- or under-estimation of the actual locations. 

5.5 Experimental results showing the degree of sim- 
plification 

In an attempt to determine how much simplification can 
be achieved by the techniques of coalescing and contigu- 
ous aggregation, we measured the simplification pro- 
duced by coalescing and contiguous aggregation for our 
set of test codes. We computed all LMADs interproce- 
durally without applying any simplification techniques. 
We counted the total number of LMADs produced at 
all loop headers and CALL statements, and totaled the 
number of dimensions used for all LMADs. 

Then, we again computed all LMADs interprocedu- 
rally, but applied both coalescing and contiguous ag- 
gregation iteratively during the process until no more 
simplification was possible, and recorded the number of 
LMADS and dimensions used in them. 

We chose to show the reduction in the total number 
of dimensions as a measure to indicate the amount of 
simplification performed because it captures both the 
reduction in the number of LMADs (through aggrega- 
tion) and the reduction of the number of dimensions 

(through coalescing). The results, presented in Fig- 
ure 12, show that a significant amount of simplification 
can be achieved in most cases. 

6 Applications of LMADs for Compiler Techniques 

Typically, array privatization and dependence analy- 
sis [3, 9, 14, 291 are based on array region operations. 
Thus, their accuracy is heavily dependent on array ac- 
cess analysis. According to our experiments with Po- 
laris, current techniques are limited in some cases by the 
complexity of subscripts. To illustrate this, consider the 
loop in Figure 13. To parallelize the I-loop in the ex- 
ample, it is necessary to determine that array Y can be 
privatized. That is, it must be shown that within each 
iteration of the outermost loop, every element of array 
Y is always written before read. The difficulty here is 
that the subscript expressions for array Y are non-affie, 
and the accesses are made by multiple indices, J and K. 
Due to these complications, existing array privatization 
techniques [21, 311 cannot identify the exact access re- 
gion for Y; as a consequence, they could not privatize Y 
and thus would fail to parallelize the loop. We found 
that the LMAD is often effective to overcome these lim- 
itations. 

In the loop of Figure 13, for example, the two write 
accesses for array Y are represented with descriptors 

from which it is clear that they are contiguous (in fact, 
also interleaved). Therefore, they can be aggregatedinto 
an exact region represented with 

as illustrated in Figure 13, which in turn can be coa- 
lesced into the equivalent form y$+2-3 + 1. 

Despite the complex subscript expressions in the ex- 
ample, using the LMAD representation helps reveal that 
the write region for Y is as simple as one equivalently 
represented by Y (1: 2’+’ - 2: 1) in triplet notation. In 
our experiments, this simplification allowed existing ar- 
ray privatization techniques to calculate the exact write 
region of array Y and, similarly, the read region due to 
two references, Y (K+2**J) and Y(K+2**J+2**(N+l)-I), 
in the loop. As a result, we can prove that the read re- 
gion is covered by the write region (in fact, they are the 
same), and thereby eliminate dependence by declaring 
Y as private to the loop. 

The LMAD representation is useful not only for ar- 
ray privatization, but also for other techniques depend- 
ing on array access analysis, including dependence anal- 
ysis and the generation of communication primitives 
such as Send/Receive or Put/Get. For instance, in our 
code transformation [25] for multiprocessors with phys- 
ically distributed memory, we used the LMAD to gen- 
erate Put/Get primitives of the general form 

put/get~c~l,:u,:8.~,Y~I,:u~:s,~,p~. 

The put transfers the elements of z (from r(Z,) to z(u2) 
with stride 8”) in local memory to remote address y(l,) 
with stride sy in destination processor p. The get works 
the same way except that the source and destination 
of data movement are reversed. Most communication 
primitives supported in existing languages or machines [8, 
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Figure 12: Percentage reduction in total number of LMAD dimensions by coalescing and contiguous aggregation 

dol=l,M 
doJ=O,N ig2TbJ,;i = ..:” 

enddo 
doJ=O,N 

do K - 0 2*‘J-1 
. . . Z-Y 

e;i;oY K+2”J+2”(N+i)-1) I 
i<+2”J) 

erz!” 

Figure 13: Code example similar to code found in FFT applications, such as tfft2 

10, 22, 231 require triplet notation for fast vector copy- 
ing between distributed memories. Without simplifica- 
tion of access patterns, we could not generate efficient 
Put/Get primitives for codes with complex subscript 
expressions, such as those shown in Figures 2 and 13. 
But, by showing that the actual access patterns are just 
simple consecutive memory accesses, we significantly re- 
duced communication overhead in our target code. 

In [24], we presented the experimental evidence that 
the LMAD can be useful to simplify various access pat- 
terns with complex subscripts and, thereby, facilitate 
the application of compiler techniques. In the exper- 
iment, as should be expected, the effectiveness of the 
LMAD is roughly proportional to the percentage of the 
complex accesses shown in Figure 4. 

processors 2 4 8 16 32 64 
mdg 1.2 1.3 1.4 1.6 2.6 3.0 
trfd 1.1 1.0 1.2 1.5 1.6 1.5 

tfftz 1.6 2.1 3.2 4.7 7.1 7.4 

Table 1: Speed increase factor due to the LMAD on the 
Cray T3D for processors between 2 and 64. 

Table 1 shows the results of experiments with three 
of the programs used to compute the frequencies in Fig- 
ure 4. The entries in the table represent the ratio of 
speedup improvement produced by using the LMAD 
compared to the speedup produced by Polaris using 
techniques supported by triplet notation. For instance, 
we were able to improve the original speedup of trf d by 
about 50% on 16 processors (leading to a speed improve- 
ment factor of 1.5) when we simplified the array accesses 
with our techniques before applying Polaris analysis. 
Not surprisingly, using the LMAD produced no addi- 
tional speedup on the programs with simple subscript- 
ing patterns, such as snim and tomcatv. 

7 The Contribution of This Work 

We have extended the work described here so that it 
works inter-procedurally and devised parallelization and 
array privatization techniques based on the LMAD. The 
implementation of our techniques is only partially com- 
plete, but preliminary tests and hand analysis indicate 
that the techniques will be able to automatically do in- 
terprocedural parallelization and privatization of loop 
nests within the code tfft2 from the SPEC95fp bench- 
marks, despite its usage of non-affine subscript expres- 
sions like X(I+K+I*P**(L-I)), in which I, K, and L are 
indices of the surrounding loops. A more detailed de- 
scription of these techniques and their implementations 
will be presented in a forthcoming PhD thesis [17]. 

We believe that our techniques will subsume the ex- 
isting Polaris intra-procedural parallelization and priva- 
tization techniques because of the increased precision of 
the representation. Furthermore, we believe that we will 
be able to parallelize inter-procedural loop nests because 
the techniques work across procedure boundaries. 

8 Conclusion 

A significant portion of the array subscript expressions 
encountered in the benchmark programs we used are too 
complex to be precisely representable in triplet notation, 
yet quite often still lead to simple access patterns. We 
have shown that a more general array access represen- 
tation, based on the stride and span produced by each 
loop index, can accurately represent the accesses. 

Furthermore, with the application of polynomial- 
time algorithms, we can aggregate and simplify the rep- 
resentation of accesses that exhibit common patterns, 
such as coalesceable, interleaved, and contiguous ac- 
cesses. The result is often an access pattern that is 
simple enough to allow the application of efficient region 
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operations used in optimizing compilers for dependence 
analysis, array privatization, and communication gen- 
eration. We presented the performance improvements 
obtained on our target machines by applying these tech- 
niques. Results indicate that these techniques hold real 
promise for optimizing programs. 

We believe that the notion of strides and spans, 
and the simplification techniques based on them, should 
be useful to other compiler studies that need accurate 
intra- and inter-procedural array access analysis, re- 
gardless of the representation used for their array ac- 
cesses. 
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