
Event Synchronization Analysis for Debuggi:ng
Parallel Programs *

Perry A. Emrath Sanjoy Ghosh
David A. Padua

Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign

305 Talbot Laboratory
104 South Wright Street

Urbana, Illinois 61801

Abstract

One of the major difficulties of explicit parallel pro-
gramming for a shared memory machine model is de-
tecting the potential for nondeterminacy and identi-
fying its causes. There will often be shared variables
in a parallel program, and the tasks comprising the
program may need to be synchronized when accessing
these variables.

This paper discusses this problem and presents a
method for automatically detecting non-determinacy
in parallel programs that utilize event style synchro-
nization instructions, using the Post, Wait, and Clear
primitives. With event style synchronization, espe-
cially when there are many references to the same
event, the difficulty lies in computing the execution
order that is guaranteed given the synchronization in-
structions and the sequential components of the pro-
gram. The main result in this paper is an algorithm
that computes such an execution order and yields a
Task Graph upon which a nondeterminacy detection
algorithm can be applied.

We have focused on events because they are a
frequently used synchronization mechanism in par-
allel versions of Fortran, including Cray [Cray87],
IBM [IBMSS], Cedar [GPHL88], and PCF Fortran
[PCF88].
[Keywords: Debugging, Nondeterminacy, Parallel

*This work was supported in part by the National Sci-
ence Foundation under Grant No. US NSF MIP84-10110,
the US Department of Energy under Grant No. US DOE
DE FG02-85ER25001, and a donation from the IBM Corpo-
ration, and Concurrent Computtr Corporation.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089?91-341~8/89/001 I/O580 $1.50

Programming, Parallel Processing, Race Detection,
Software Tools, Synchronizationj

1 Introduction

As the potential of parallel processing is being real-
ized through the development of academic and com-
mercial parallel processing systems, it is also becom-
ing apparent that writing and debugging parallel pro-
grams is considerably harder than writing and debug-
ging sequential programs. The principal reason for
this is that, unlike sequential programs where order-
ing between accesses to the same memory location
are guaranteed by the sequential semantics, in par-
allel programs this ordering can sometimes only be
guaranteed by synchronization instructions. Incor-
rect orderings, for example, due to incorrect synchro-
nization, typically result in incorrect output of the
program.

A determinate program is one which will always
produce the same output on every run’. Programs ex-
ecuting sequentially are inherently determinate. The
tasks2 comprising a nondeterminate parallel program
may execute and access shared memory in different
orders on different runs. A race condition is the
source of nondeterminacy and occurs when there are
no synchronization operations that guarantee order-
ing among two or more references to a shared memory
location, at least one of which is a write. For example,
consider the following program.

Program 1

a=5
cobegin

a=1

1 By multiple runs of a program we mean multiple executions
where both the code and the input are unchanged.

2By a task we mean a single thread of execution.

580

//
b= a-3
if (b>O) then c = 5
else c = 1

coend
print *,b,c

The output of this program could either be b = 2,
c = 5; or b = -2, c = 1 because of the race between
the references to a in a = I and b = a - 3.

This paper is a report on a continuing research ef-
fort at the University of Illinois [AlPa87], [EmPa88],
the goal of which is to develop a debugging tool
for use on programs originally written as parallel
programs3. The tool is intended to detect race con-
ditions through a combination of static (compile-
time) and trace (run-time) analysis. Communication
between asynchronous tasks takes place through a
shared address space and by the use of explicit syn-
chronization instructions. The current implementa-
tion is designed for use with Cedar Fortran [GPHL88],
a Fortran dialect that runs on the Cedar multiproces-
sor [KDLS86] under development at the University of
Illinois. However, the approach described is applice
ble to languages other than Cedar Fortran.

2 Race Detection

We describe our approach to the detection of races
using a combination of static and trace analysis. In
many cases it is possible to detect races by static anal-
ysis alone, which resembles analysis for data depen-
dences [Bane88]. Statements that execute in parallel
and access the same location are identified. If there is
no guaranteed ordering between two or more of these
instances, of which at least one is a write, then a race
has been detected [EmPa88].

In cases similar to that of Program 1 above, com-
plete compile-time detection of nondeterminacy is
easy. In more complicated cases involving loops and
arrays, subscript analysis [Bane881 might be neces-
sary.

Analogously to situations where dependence anal-
ysis fails to give a definite dependence relation be-
tween two statement instances4, static analysis for
race detection may fail to give a definite answer. For
example, consider the following program:

3We distinguish this situation from that of parallel pro-
grams derived by a program restructurer. A restructurer
should always produce determinate programs if the source pro-
gram is sequential.

‘A statement that occurs within a loop may be executed
several times. Such an execution is known as a ~latement
instance.

Program 2

read *,K
doall i = i,N

S: A(K(i)) = . . .
end doall

In this case, the existence of a race between differ-
ent instances of 8 depends on the values of K, which
are not known until run-time. In this case, a poten-
tial race is assumed between instances of S. A simi-
lar situation arises when the subscripts involved are
nonlinear, since there are no efficient algorithms for
precise dependence analysis of nonlinear subscripts.

One way to overcome the above shortcomings of
static analysis is to use trace analysis. Trace analysis
works by first obtaining an memory access trace of
the program for a set of input values. It then analyzes
this trace output for races using algorithms described
below.

Therefore, our approach to detecting races in a par-
allel program has two stages. In the first stage we
perform static analysis to determine as many races as
we can. In addition, we may also find potential races
that are impossible to resolve without trace analysis.
At this stage the user may be satisfied with the im-
precise information available. Otherwise, the trace
analyzer may be used to detect races for specific in-
put values. Trace analysis is slow and is valid only
for the particular data input used,

Thus our work concerns the area of program de-
bugging since the errors detected are only those that
arise for the input set being used to test the program.

3 Task Graphs

In this paper we concentrate on trace analysis. For
this purpose, a graph is constructed from the signif-
icant events that are recorded in a log file by exe-
cuting an instrumented version of the program be-
ing debugged. The arcs in the graph specify guaran-
teed run-time ordering between these events. The
recorded events include shared memory references,
task initiations and terminations, task waits, and the
execution of synchronization instructions. The infor-
mation contained in the log file includes the operation
performed, task number, program line number, value
of the variable, address, etc.

Cedar Fortran has several ways to achieve paral-
lel execution. One way is to use the ctskstart()
and ctskwait 0 instructions [GPKL88]. The instruc-
tion tskid = ctskstart(subr) spawns a new task
to execute subroutine subr and returns an integer

581

to identify it in tskid. Call ctskwait(tskid) sus-
pends the calling task until the task whose identifier
is t skid completes execution.

Parallel execution can also be achieved by the
cdoall and cdoacross loops, which may execute it-
erations of the loop body in parallel. However, for the
trace log, each iteration behaves exactly like a task
created by an implicit ctskstart 0 at the beginning
of the cdoall. Therefore, in this report we do not
distinguish between tasks started by a ctskstart (>
and an iteration of a cdoall or cdoacross.

In addition, synchronization instructions can be
used to order points in asynchronous tasks. Hence,
we identify four types of ordering in the execution of
a parallel program. The first three types of ordering
are collectively called task ordering.

Task Sequential Ordering. This ordering is due
to the sequential execution of instructions be-
longing to the same task.

Task Start Ordering. This ordering is due to
the fact that every instruction in a started task
follows the ctskstart 0 instruction that created
it.

Task Wait Ordering. This ordering is due to the
fact that a ctskwait (> instruction follows every
instruction in the waited for task.

Synchronization Ordering. This ordering is due
to synchronization instructions placed in the pro-
gram.

A TASK GRAPE is a graph with each node represent-
ing a trace item. Corresponding to the four categories
of ordering there are four categories of directed arcs
in the TASK GRAPE:

a Machine Arc[MiPa87]. This is an arc from a
trace item to the immediately following trace
item in the same task.

l Task Start Arc. This is an arc from a Task Start
node to the first node of the started task.

a Task Wait Arc. This is an arc from the last node
of a task being waited upon to the Task Wait
node.

l Synchronization Arc. This is an arc between
nodes that are ordered by synchronization in-
structions.

Machine arcs, Task Start arcs, and Task Wait arcs,
which are collectively known as task arcs, are very

easily generated from the trace log. Generating syn-
chronization arcs can be noticeab1.y more difficult de-
pending on the type of synchronization. Sections 4,
5, and 6 deal with this problem ,for event (i.e., post
and wait) synchronization.

Our approach to detecting races in the trace con-
sists of two steps. The first step is to determine
the timing relationships among trace items as accu-
rately as possible. This is done; by constructing a
TASK GRAPE with the trace items as nodes and a
path from each node to every node that is guaran-
teed to follow it in time. We start by inserting the
task arcs first and then using an iterative algorithm
to add synchronization arcs. The second step is to
detect races within this graph. This step is concep-
tually straightforward since any pair of references to
the same shared memory location (not both reads),
such that there is no path from one to the other, con-
stitutes a race.

The number of races detected in a program could
be very large and easily overwhelm the user, there-
fore they should be reported in a user-friendly man-
ner. For instance, a cdoall with a loop count of
1000 might generate 999 races between successive it-
erations of the loop. Instead of deluging the user with
that many messages, the races could be “folded” into
one message and the race between adjacent iterations
of the cdoall presented in a compact fashion.

A race may cause other races to either manifest
themselves or not, in a random manner. [AlPa87]
defines the “hides” relationship between races. Two
races are related by the “hides” relation if the out-
come of the first can affect the occurrence of the sec-
ond. For example, consider the following program:

Program 3

i = 10
cobegin

a= 5
//

a = IO
coend
if (a .eq. 10) then

cobegin
i= 0

//
1= I

coend
end if

In this program the race on a is related to the race
on i by the “hides” relation. Whether the race on
i occurs depends on the outcome of the race on a.
At least one race from a set of races related by the

582

“hides” relation will always show up in a trace. In
the previous example, even if the race on i is hidden
by the race on a, the race on a will always show up.
Thus, iterative use of trace analysis may be required
to remove all races.

As an illustration of the above ideas we use Pro-
gram 4 below. The parallel construct in this program
is the cdoacross loop in which the iterations are ex-
ecuted in parallel, and cascade synchronization, from
lower to higher iterations, is allowed. This synchro-
nization may be achieved by means of the advance ()
and await () [A1li85] instructions. Advance(x) waits
until the value of x is equal to the current iteration
count and then increments x by 1. Await (x,y) waits
until the value of x plus the value of y is greater than
or equal to the current iteration count. The value y
therefore represents the offset back to the iteration
upon which the current iteration should wait.

Program 4

cdoacross i = I,4
a(it1) = b(i) t 1.0
call advance(x)
c(i) = a(i) + 2.0

end cdoacxoss

Fig. 1. Example of TASK GRAPH

Fig. 1 shows the TASK GRAPH generated from it.
In the TASK GRAPHS presented in this paper, ma-
chine arcs, task start arcs, and task wait arcs are all
represented by dashed arrows. Synchronization arcs
are represented by solid arrows. The synchroniza-
tion arcs between iterations are inserted because the

advance () instruction has an implicit wait until the
previous iteration has executed the same instruction.
This forces the third instruction in iterations 2,3, and
4 to wait until the second instruction in iterations 1,
2, and 3, respectively, have been executed. To check
that this program has no races, it is enough to observe
that for any pair of references to the same memory
location, such as a(3), there is a path from the write
of a(3) to the read of the same variable. This means
that the read always follows the write, and therefore

there is no race.
Before continuing with the following sections, some

definitions will be needed. Given a directed acyclic
graph G = (V,E) consisting of a set of nodes V and
a set of arcs E, we say that a node a is a common
ancestor of N (a subset of V) if there is a path from
a to each and every node in N. We say that a node c
is a closest common ancestor of N if there is no path
from c to any other common ancestor of N. Note that
N may have more than one closest common ancestor.
A root node of G is any node that has no ancestors.

4 Identifying Synchronization

There are many synchronization mechanisms, for ex-
ample, semaphores, locks (to implement mutual ex-
clusion), and events. We have already described one
of them, the advance0 and await () instructions.

Events are considerably more difficult to analyze than
advance 0 and await 0, as we shall describe below.
The remainder of this paper deals with the problem
of generating the synchronization arcs corresponding
to event synchronization.

The principal synchronization mechanism we con-
sider in this paper is the event. An event has two
states: posted and cleared. A posted event usually sig-
nifies that some action has been performed, whereas
a cleared event signifies the opposite. Tasks can per-
form the following operations on an event:

s POST. This sets the state of the event to posted.
It has no effect if the event is already posted.

l WAIT. This suspends the calling task until the
state of the event changes to posted. If the
event is already posted the task proceeds without
pause.

l CLEAR. This resets the state of the event to
cleared.

The complete TASK GRAPH for a program utilizing
event type synchronization consists of machine arcs,
task start arcs, task wait arcs, and synchronization
arcs. The machine arcs, task start arcs, and task wait

583

arcs are easy to insert from the program trace. The
difficult job is to identify the synchronization arcs.
Specifically, the problem is to compute for each event
Wait w, the set of nodes in the graph that always
precede w due to synchronizations.

Each Wait w has to be preceded by at least one
Post on the same event and that event must not be
cleared before w is executed. So, Posts that either
always follow w, or are always cleared before w is ex-
ecuted, cannot trigger w6. Any other Posts on the
same event may trigger w. If there is more than one
such Post, there is no way to decide which of them
actually triggered (or might trigger) w. However, a
node that precedes all of those Posts necessarily pre-
cedes w.

Every common ancestor of this set of Posts satisfies
this requirement, and therefore precedes w. Instead
of the complete set of common ancestors, what is de-
sired is the set of closest common ancestors. This,
as we said in Section 2, is the set of common ances-
tors such that any other common ancestor precedes
at least one of them. Once the set of closest common
ancestors has been found, synchronization arcs can
be added to the TASK GRAPE from each closest com-
mon ancestor to w. This justifies the following set of
rules:

l A Wait on event E can be triggered by any Post

on the same event E, if that Post does not follow
the Wait and is not cleared before the Wait.

l Synchronization arcs are added from the closest
common ancestors of the Posts that might trigger
the Wait to the Wait.

If a Post on E is Cleared before the Wait, then it
follows that the Post must precede the Wait, but it
is still true that this Post cannot trigger the Wait, so
some other Post must trigger it.

As an example of the application of these ruIes con-
sider the TASK GRAPE in Fig. 2. Representations of
TASK GRAPHS in this paper only show nodes that rep-
resent operations on events, task starts, or task waits.
Every node in the TASK GRAPH is assigned a unique
number to identify it. Numbers are assigned so that
for a pair of nodes that are task ordered, the node
that executes later has a higher number. Each node
shows the number, the operation, and the event name

'A Wait w is triggered when some Post on the same event is
executed, thus allowing the task that executed w to proceed.

if it is an event operation.

Fig. 2. Example of the synchronlzdton rule

In this graph it is clear that the Post in node 2
cannot trigger the Wait in node 4 because it is cleared
by the Clear in node 3 before the Wait is executed.
Similarly the Post in node 5 cannot trigger the Wait
because it is executed after the Wait is triggered. But
the Posts in nodes 7 and 8 have nothing to prevent
them from triggering the Wait. There is no way to
decide which of the two Posts actually triggers the
Wait. Therefore the only certainty is that the Wait

proceeds after the closest common ancestor of the two
Posts, which is the Task Start in node 6. Therefore
a synchronization arc is present from node 6 to the
Wait in node 4.

*

I

0 5 POST a

Fig. 3. Example of TASK GRAPH

The presence of more than one event makes iter-
ation essential because an event may influence the
orderings between Posts and Waits on other events.
For example consider the TASK GRAPH in Fig. 3. If
the Wait on event A in node 2 is examined first, both
the Posts in nodes 5 and 6 seem capable of trigger-

584

ing it. However, when the Wait on event B in node
4 is examined it is clear that a synchronization arc
is needed from node 7 to node 4. It becomes clear
that the Post in node 5 follows the Post in node 6.
Therefore, we know that the Wait in node 2 always
follows the Post in node 6. That is the reason for the
presence of a synchronization arc from node 6 to node

5 Algorithm for Adding Syn-
chronization Arcs

We begin with an approximation to the TASK GRAPH

constructed from the program trace output. It in-
cludes all arcs except synchronization arcs. Proce-
dure SYNC, shown below, then iteratively adds syn-
chronization arcs to the TASK GRAPH. As long as it
finds new arcs to add, it checks every Wait w. For
each Wait w, it performs a sequence of three steps.

(1)

(2)

(3)

It computes the set of Posts that might trigger w.
This is the set of all Posts on the same event mi-
nus those Posts that either follow w or are cleared
before w is executed. This set might contract
from iteration to iteration due to new synchro-
nization arcs.

It then computes the set of closest common an-
cestors for this set of Posts.

Finally, an arc is added from every member of
this set of closest common ancestors to w.

Procedure SYNC uses two predicates, iscleared
and Follows, as well as two procedures, AddArc and
CloseCommAnc. IsCleared(p, w) is a predicate that
is true only if there is a Clear on event E, on a path
from node p to node w, where node p is a Post on E
and w is a Wait on E. Follows(m,n) is a predicate that
is true if there is a path from node m to node n in the
current version of the TASK GRAPE. AddArc(N,n) is a
procedure that inserts arcs from every member of the
set of nodes N to node n. If an arc does not already
exist, it adds one and also sets the flag change to true.
CloseCommAnc(N) is a procedure that computes the
closest common ancestors of the set of nodes N, for
the current approximation to the TASK GRAPH.

procedure SYNC
while change do

change +- FALSE

for each Wait w do
TRIG c {}
for each Post p on same event as w do

if (1 isCleared(p, w) A 1 Follows(w,p))
TRIG t TRIG U {p}

AddArc(CloseCommAnc(TRIG),w)

Termination of procedure SYNC is guaranteed by
the fact that the iteration of the while loop stops
as soon as it does not find any new arcs to add. At
no point does it delete an arc, thus precluding the
possibility of oscillations. Since the number of nodes
in the TASK GRAPH is finite, the maximum possible
number of arcs is also finite.

CloseCommAnc is an algorithm that computes the
closest common ancestors of a subset N of nodes in a
directed acyclic graph (DAG). For simplicity of expla-
nation, we assume that the input to the algorithm is
a normalized DAG. We say that a DAG, G = (V,E),
is normalized if <m,n> E E implies that level(n) -
level(m) = 1. The level of a node n in G, denoted
level(n), is defined as

level(n) = 0, if n is a root node
level(n) = <mmyCE (level(m)) + 1, otherwise

where <m,n>’ is an arc from node m to n in G.

Any DAG can be transformed into normalized form
by adding dummy nodes. If there are arcs of the form
<m,n> E E with level(n) > level(m) + 1, we could
replace these arcs with paths containing level(n) -
level(m) - 1 nodes. An example of normalization
is shown in Fig 4.

Unnormalized DAG Normalized DAG.
flhe 0 s are the dummy nodes)

Fig. 4. Example of DAG Normalization

The algorithm to compute the closest common an-
cestors is given below. It uses the function Parent
which operates on a set of nodes S, and returns the set

585

of nodes that immediately precede any of the nodes
in S. More formally, Parent(S) = { m 1 <m,n> E E,
for some n E S}. Parent?(S), when k > 0, denotes
the result of k applications of Parent, and Parent’(S)
= S.

The algorithm starts by computing k, the lowest
level of the nodes in the argument set N (i.e., closest
to the root). Then the algorithm (in the first for
loop) computes the ancestors at level k for each node
in N. These sets are stored in the array AncestorsO.
If for some n E N, level(n) = k, then Ancestors[n] =
{n}, the set containing n itself.

The algorithm proceeds iteratively, on each itera-
tion processing the sets of ancestors of the nodes in
N at a given level. Thus, the first iteration processes
the ancestors at level k, the second iteration, the an-
cestors at level k-l, and so on.

In general, on the iteration processing the ances-
tors at level I (1 5 k) the algorithm first computes
New-Closest-CA, the intersection of the sets of an-
cestors of the nodes in N at level 1. Each member of
the intersection is a closest common ancestor. The in-
tersection is accumulated in the variable Closest-CA
that will eventually contain all closest common an-
cestors.

The Parents of the members of the intersection are
accumulated into the variable Other-CA, so that at
the end of the iteration processing level 1, Other-CA
contains the set of nodes at level I- 1 that are com-
mon ancestors of N, but not closest common ances-
tors. Finally, preparation is made for the next itera-
tion by computing the Ancestors of each original node
at the next lower level, but without including the an-
cestors of those closest common ancestors already in
variable Closest-CA. At the top of each iteration, all
the members of AncestorsO and Other-CA are at the
same level in the graph.

procedure CloseCommAnc (N)
k + FGi; (level(n))

for each n in N
Ancestors[n] t Parentie”‘z(n)-k((n})

Closest-CA t {}
Other-CA c {I
while (all Ancestors[n] # {})

New-Closest-CA t n Ancestors[n]
REN

Closest-CA t Closest-CA U New-Closest-CA
Other-CA c Parent(Other,CA) U

Parent(New-Closest-CA)
for each n in N do

Ancestors[n] +. Parent(Ancestors[n]) -
Other-CA

return(Closest-CA)

6 Example of TASK GRAPH gen-
eration

As an example of the above approach, consider the
graph in Fig. 5. The goal is to compute for each Wait,

the nodes in the program that necessarily precede it.

Pi. 5. Ilh~~trrtion of the SYNC algorithm

To add synchronization arcs, the procedure SYNC
is applied to the graph. On each iteration of the
while loop in SYNC, we assume that the Waits are
considered in ascending order of event name. Fur-
thermore, for Waits on the same event, a Wait w that
always executes before another Wait y is always con-
sidered before y. Therefore, SYNC applied to the
given TASK GRAPH operates as follows. (Each syn-
chronization arc is labelled with the iteration number
that added it.)

The procedure first looks at node 13. The Posts on
event A are nodes 6, 5, and 11. The only common
ancestor of these Posts is the Task Start in node 1 and
so an arc is added from node 1 to node 13. It looks
at the Wait in node 4 next. The only Post on event B
is node 9. Therefore, an arc is added from node 9 to
node 4. For the same reason, it adds an arc from node
9 to node 10. Finally, it adds an arc from node 8 to
node 12. The first iteration of the whiIe loop is over.
Since new arcs have been added another iteration of
the while loop is performed.

On the second iteration, when node 13 is examined
it finds that the Post in node 6 has a path to node
13, via nodes 7, 8, and 12. Rut this path contains a
Clear on event A in node 7. Therefore, node 6 can-
not trigger node 13. So the set of nodes that might

586

trigger node 13 contains only nodes 5 and 11. To find
the closest common ancestors of this set the graph is
traversed backwards, finding two closest common an-
cestors. One is the Task Start in node 3, and the other
is the Post in node 9. Arcs are added from nodes 3
and 9 to node 13. This iteration then completes with-
out any further changes to the graph. Another itera-
tion is performed because new arcs were added. On
the third iteration no new arcs are added, so SYNC
terminates.

Now we have a complete TASK GRAPE and can ap-
ply the race detection algorithm to locate any races
that exist. This involves examining the TASK GRAPH,

looking for references to the same variable (not all
reads) that are not connected by some path. With no
path, the execution order of the two references is not
guaranteed. Any races that are found are reported to
the user.

7 Related Work

Other groups have also studied the problem discussed
in this paper. In [CaSu88] a data flow formulation is
presented for race detection by static analysis. This
formulation does not deal with loops. The princi-
pal synchronization primitive considered is the event,
which is one of the two primitives we handle. Kow-
ever, they do not handle the Clear operation.

In [MiCh88] a system is described that aids the
user in debugging parallel programs. While the pa-
per discusses synchronization edges and their use in
detecting races, it does not describe any procedure to
compute these edges. We feel that this is the main
contribution of our paper.

In [Scho89] a procedure is outlined for detecting
races on the fly. This procedure only handles pairwise
synchronization operations.

8 Conclusion

In this paper we have described a system that auto-
matically detects races in a parallel program. The
Cedar Fortran compiler is used to insert instructions
that write trace information to a file. This processed
program is then compiled and executed, producing a
dynamic execution trace of the program. The trace
output has all the information needed to build a
TASK GRAPH. The trace also logs points of event style
synchronization. We have demonstrated an algorithm
that can identify which nodes in the TASK GRAPH are

synchronized by event operations.
An advantage of our approach is that it does not

place any restriction on the control structure of the

programs. Iterative control structures, such as loops
and subroutines, that are difficult to analyze stati-
cally, can easily be traced. Analysis of dynamic traces
was used because it eliminates uncertainties about
control flow that are present when static analysis is
used exclusively. Also, actual scheduling of the pro-
gram (i.e., the parallel tasks) does not affect the re-
sults of the analysis. In fact, the tasks can be run
sequentially on a uniprocessor to generate the trace,
and races will still be correctly detected.

There are several avenues for future work. We
are studying ways to improve the efficiency of the
algorithm. Several optimizations are possible that
will help speed up the algorithm. This will become
more important as we tackle larger parallel programs.
The implementation presently is restricted to syn-
chronizations using events. We believe the algorithm
is extendable to several other commonly used syn-
chronization mechanisms such as binary and counting
semaphores, lock-unlock, the Cedar synchronization
primitives, etc.

Much of this work is currently in progress. The
tracer, the SYNC procedure, and race detector have
been implemented, and some experiments have been
performed with it to demonstrate correct operation
and the practicality and usefulness of the approach.

References

[Alli85]

[AlPa87]

[Bane881

[CaSu88]

[Cray87]

[EmPa88]

FX/Series Architecture Manual Concur-
rency Supplement, Alliant Computer Sys-
tems Corp., April 1985.

Todd R. Allen, and David A. Padua. De-
bugging Fortran on a Shared Memory Ma-
chine, Proceedings of the 1987 Interna-
tional Conference on Parallel Processing,
pp. 721-727, Aug. 1987.

Utpal Banerjee. Dependence Analysis for
Supercomputing, Kluwer Academic Pub-
lishers, 1988.

David Callahan, and Jaspal Subhlok.
Static Analysis of Low-level Synchroniza-
tion, Proceedings of the Workshop on
Parallel and Distributed Debugging, pp.
100-111, May 1988.

Cray X-MP Multitasking Programmer’s
Reference Manual, Cray Research, Inc.,
1987.

Perry A. Emrath, and David A. Padua.
Automatic Detection of Nondeterminacy

587

in Parallel Programs, Proceedings, Work-
shop on Parallel and Distributed Debug-
ging, pp. 89-99, May 1988.

[GPHL88] M. D. Guzzi, D. A. Padua, J. P. Hoe-
flinger, and D. II. Lawrie. Cedar Fortrun
and Other Vector and Parallel Fortran
Dialects, Proceedings SUPERCOMPUT-
ING ‘88, pp. 114-121, Nov. 1988.

[IBM881 IBM Parallel FORTRAN Language and
Library Reference, IBM Corp., March
1988.

[KDLS86] D. Kuck, E. Davidson, D. Lawrie, and
A. Sameh. Parallel supercomputing today
and the Cedar approach, Science, vol. 231,
pp. 967-974, Feb. 1986.

[MiCh88] Barton P. Miller, and Jong-Deok Choi.
A Mechanism for Eficient Debugging of
Parallel Programs, Proceedings of the
Workshop on Parallel and Distributed De-
bugging, pp. 141-150, May 1988.

[MiPa87] S. P. Midkiff, and D. A. Padua. Compiler
Algorithms for Synchronization, IEEE
transactions on Computers, vol. C-36, No.
12, pp. 1485-1495, Dec. 1987.

[PCF88] PCF Fortran: Language Definition, The
Parallel Computing Forum, August 1988.

[Scho89] On-The-Fly Detection of Access Anoma-
lies, Proceedings of the SIGPLAN ‘89
Conference on Programming Language
Design and Implementation, pp. 285-297,
June 1989.

588

