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Abstract 

One of the major difficulties of explicit parallel pro- 
gramming for a shared memory machine model is de- 
tecting the potential for nondeterminacy and identi- 
fying its causes. There will often be shared variables 
in a parallel program, and the tasks comprising the 
program may need to be synchronized when accessing 
these variables. 

This paper discusses this problem and presents a 
method for automatically detecting non-determinacy 
in parallel programs that utilize event style synchro- 
nization instructions, using the Post, Wait, and Clear 
primitives. With event style synchronization, espe- 
cially when there are many references to the same 
event, the difficulty lies in computing the execution 
order that is guaranteed given the synchronization in- 
structions and the sequential components of the pro- 
gram. The main result in this paper is an algorithm 
that computes such an execution order and yields a 
Task Graph upon which a nondeterminacy detection 
algorithm can be applied. 

We have focused on events because they are a 
frequently used synchronization mechanism in par- 
allel versions of Fortran, including Cray [Cray87], 
IBM [IBMSS], Cedar [GPHL88], and PCF Fortran 
[PCF88]. 
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1 Introduction 

As the potential of parallel processing is being real- 
ized through the development of academic and com- 
mercial parallel processing systems, it is also becom- 
ing apparent that writing and debugging parallel pro- 
grams is considerably harder than writing and debug- 
ging sequential programs. The principal reason for 
this is that, unlike sequential programs where order- 
ing between accesses to the same memory location 
are guaranteed by the sequential semantics, in par- 
allel programs this ordering can sometimes only be 
guaranteed by synchronization instructions. Incor- 
rect orderings, for example, due to incorrect synchro- 
nization, typically result in incorrect output of the 
program. 

A determinate program is one which will always 
produce the same output on every run’. Programs ex- 
ecuting sequentially are inherently determinate. The 
tasks2 comprising a nondeterminate parallel program 
may execute and access shared memory in different 
orders on different runs. A race condition is the 
source of nondeterminacy and occurs when there are 
no synchronization operations that guarantee order- 
ing among two or more references to a shared memory 
location, at least one of which is a write. For example, 
consider the following program. 

Program 1 

a=5 
cobegin 

a=1 

1 By multiple runs of a program we mean multiple executions 
where both the code and the input are unchanged. 

2By a task we mean a single thread of execution. 
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// 
b= a-3 
if (b>O) then c = 5 
else c = 1 

coend 
print *,b,c 

The output of this program could either be b = 2, 
c = 5; or b = -2, c = 1 because of the race between 
the references to a in a = I and b = a - 3. 

This paper is a report on a continuing research ef- 
fort at the University of Illinois [AlPa87], [EmPa88], 
the goal of which is to develop a debugging tool 
for use on programs originally written as parallel 
programs3. The tool is intended to detect race con- 
ditions through a combination of static (compile- 
time) and trace (run-time) analysis. Communication 
between asynchronous tasks takes place through a 
shared address space and by the use of explicit syn- 
chronization instructions. The current implementa- 
tion is designed for use with Cedar Fortran [GPHL88], 
a Fortran dialect that runs on the Cedar multiproces- 
sor [KDLS86] under development at the University of 
Illinois. However, the approach described is applice 
ble to languages other than Cedar Fortran. 

2 Race Detection 

We describe our approach to the detection of races 
using a combination of static and trace analysis. In 
many cases it is possible to detect races by static anal- 
ysis alone, which resembles analysis for data depen- 
dences [Bane88]. Statements that execute in parallel 
and access the same location are identified. If there is 
no guaranteed ordering between two or more of these 
instances, of which at least one is a write, then a race 
has been detected [EmPa88]. 

In cases similar to that of Program 1 above, com- 
plete compile-time detection of nondeterminacy is 
easy. In more complicated cases involving loops and 
arrays, subscript analysis [Bane881 might be neces- 
sary. 

Analogously to situations where dependence anal- 
ysis fails to give a definite dependence relation be- 
tween two statement instances4, static analysis for 
race detection may fail to give a definite answer. For 
example, consider the following program: 

3We distinguish this situation from that of parallel pro- 
grams derived by a program restructurer. A restructurer 
should always produce determinate programs if the source pro- 
gram is sequential. 

‘A statement that occurs within a loop may be executed 
several times. Such an execution is known as a ~latement 
instance. 

Program 2 

read *,K 
doall i = i,N 

S: A(K(i)) = . . . 
end doall 

In this case, the existence of a race between differ- 
ent instances of 8 depends on the values of K, which 
are not known until run-time. In this case, a poten- 
tial race is assumed between instances of S. A simi- 
lar situation arises when the subscripts involved are 
nonlinear, since there are no efficient algorithms for 
precise dependence analysis of nonlinear subscripts. 

One way to overcome the above shortcomings of 
static analysis is to use trace analysis. Trace analysis 
works by first obtaining an memory access trace of 
the program for a set of input values. It then analyzes 
this trace output for races using algorithms described 
below. 

Therefore, our approach to detecting races in a par- 
allel program has two stages. In the first stage we 
perform static analysis to determine as many races as 
we can. In addition, we may also find potential races 
that are impossible to resolve without trace analysis. 
At this stage the user may be satisfied with the im- 
precise information available. Otherwise, the trace 
analyzer may be used to detect races for specific in- 
put values. Trace analysis is slow and is valid only 
for the particular data input used, 

Thus our work concerns the area of program de- 
bugging since the errors detected are only those that 
arise for the input set being used to test the program. 

3 Task Graphs 

In this paper we concentrate on trace analysis. For 
this purpose, a graph is constructed from the signif- 
icant events that are recorded in a log file by exe- 
cuting an instrumented version of the program be- 
ing debugged. The arcs in the graph specify guaran- 
teed run-time ordering between these events. The 
recorded events include shared memory references, 
task initiations and terminations, task waits, and the 
execution of synchronization instructions. The infor- 
mation contained in the log file includes the operation 
performed, task number, program line number, value 
of the variable, address, etc. 

Cedar Fortran has several ways to achieve paral- 
lel execution. One way is to use the ctskstart() 
and ctskwait 0 instructions [GPKL88]. The instruc- 
tion tskid = ctskstart(subr) spawns a new task 
to execute subroutine subr and returns an integer 
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to identify it in tskid. Call ctskwait(tskid) sus- 
pends the calling task until the task whose identifier 
is t skid completes execution. 

Parallel execution can also be achieved by the 
cdoall and cdoacross loops, which may execute it- 
erations of the loop body in parallel. However, for the 
trace log, each iteration behaves exactly like a task 
created by an implicit ctskstart 0 at the beginning 
of the cdoall. Therefore, in this report we do not 
distinguish between tasks started by a ctskstart (> 
and an iteration of a cdoall or cdoacross. 

In addition, synchronization instructions can be 
used to order points in asynchronous tasks. Hence, 
we identify four types of ordering in the execution of 
a parallel program. The first three types of ordering 
are collectively called task ordering. 

Task Sequential Ordering. This ordering is due 
to the sequential execution of instructions be- 
longing to the same task. 

Task Start Ordering. This ordering is due to 
the fact that every instruction in a started task 
follows the ctskstart 0 instruction that created 
it. 

Task Wait Ordering. This ordering is due to the 
fact that a ctskwait (> instruction follows every 
instruction in the waited for task. 

Synchronization Ordering. This ordering is due 
to synchronization instructions placed in the pro- 
gram. 

A TASK GRAPE is a graph with each node represent- 
ing a trace item. Corresponding to the four categories 
of ordering there are four categories of directed arcs 
in the TASK GRAPE: 

a Machine Arc[MiPa87]. This is an arc from a 
trace item to the immediately following trace 
item in the same task. 

l Task Start Arc. This is an arc from a Task Start 
node to the first node of the started task. 

a Task Wait Arc. This is an arc from the last node 
of a task being waited upon to the Task Wait 
node. 

l Synchronization Arc. This is an arc between 
nodes that are ordered by synchronization in- 
structions. 

Machine arcs, Task Start arcs, and Task Wait arcs, 
which are collectively known as task arcs, are very 

easily generated from the trace log. Generating syn- 
chronization arcs can be noticeab1.y more difficult de- 
pending on the type of synchronization. Sections 4, 
5, and 6 deal with this problem ,for event (i.e., post 
and wait) synchronization. 

Our approach to detecting races in the trace con- 
sists of two steps. The first step is to determine 
the timing relationships among trace items as accu- 
rately as possible. This is done; by constructing a 
TASK GRAPE with the trace items as nodes and a 
path from each node to every node that is guaran- 
teed to follow it in time. We start by inserting the 
task arcs first and then using an iterative algorithm 
to add synchronization arcs. The second step is to 
detect races within this graph. This step is concep- 
tually straightforward since any pair of references to 
the same shared memory location (not both reads), 
such that there is no path from one to the other, con- 
stitutes a race. 

The number of races detected in a program could 
be very large and easily overwhelm the user, there- 
fore they should be reported in a user-friendly man- 
ner. For instance, a cdoall with a loop count of 
1000 might generate 999 races between successive it- 
erations of the loop. Instead of deluging the user with 
that many messages, the races could be “folded” into 
one message and the race between adjacent iterations 
of the cdoall presented in a compact fashion. 

A race may cause other races to either manifest 
themselves or not, in a random manner. [AlPa87] 
defines the “hides” relationship between races. Two 
races are related by the “hides” relation if the out- 
come of the first can affect the occurrence of the sec- 
ond. For example, consider the following program: 

Program 3 

i = 10 
cobegin 

a= 5 
// 

a = IO 
coend 
if (a .eq. 10) then 

cobegin 
i= 0 

// 
1= I 

coend 
end if 

In this program the race on a is related to the race 
on i by the “hides” relation. Whether the race on 
i occurs depends on the outcome of the race on a. 
At least one race from a set of races related by the 
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“hides” relation will always show up in a trace. In 
the previous example, even if the race on i is hidden 
by the race on a, the race on a will always show up. 
Thus, iterative use of trace analysis may be required 
to remove all races. 

As an illustration of the above ideas we use Pro- 
gram 4 below. The parallel construct in this program 
is the cdoacross loop in which the iterations are ex- 
ecuted in parallel, and cascade synchronization, from 
lower to higher iterations, is allowed. This synchro- 
nization may be achieved by means of the advance () 
and await () [A1li85] instructions. Advance(x) waits 
until the value of x is equal to the current iteration 
count and then increments x by 1. Await (x,y) waits 
until the value of x plus the value of y is greater than 
or equal to the current iteration count. The value y 
therefore represents the offset back to the iteration 
upon which the current iteration should wait. 

Program 4 

cdoacross i = I,4 
a(it1) = b(i) t 1.0 
call advance(x) 
c(i) = a(i) + 2.0 

end cdoacxoss 

Fig. 1. Example of TASK GRAPH 

Fig. 1 shows the TASK GRAPH generated from it. 
In the TASK GRAPHS presented in this paper, ma- 
chine arcs, task start arcs, and task wait arcs are all 
represented by dashed arrows. Synchronization arcs 
are represented by solid arrows. The synchroniza- 
tion arcs between iterations are inserted because the 

advance () instruction has an implicit wait until the 
previous iteration has executed the same instruction. 
This forces the third instruction in iterations 2,3, and 
4 to wait until the second instruction in iterations 1, 
2, and 3, respectively, have been executed. To check 
that this program has no races, it is enough to observe 
that for any pair of references to the same memory 
location, such as a(3), there is a path from the write 
of a(3) to the read of the same variable. This means 
that the read always follows the write, and therefore 

there is no race. 
Before continuing with the following sections, some 

definitions will be needed. Given a directed acyclic 
graph G = (V,E) consisting of a set of nodes V and 
a set of arcs E, we say that a node a is a common 
ancestor of N (a subset of V) if there is a path from 
a to each and every node in N. We say that a node c 
is a closest common ancestor of N if there is no path 
from c to any other common ancestor of N. Note that 
N may have more than one closest common ancestor. 
A root node of G is any node that has no ancestors. 

4 Identifying Synchronization 

There are many synchronization mechanisms, for ex- 
ample, semaphores, locks (to implement mutual ex- 
clusion), and events. We have already described one 
of them, the advance0 and await () instructions. 

Events are considerably more difficult to analyze than 
advance 0 and await 0, as we shall describe below. 
The remainder of this paper deals with the problem 
of generating the synchronization arcs corresponding 
to event synchronization. 

The principal synchronization mechanism we con- 
sider in this paper is the event. An event has two 
states: posted and cleared. A posted event usually sig- 
nifies that some action has been performed, whereas 
a cleared event signifies the opposite. Tasks can per- 
form the following operations on an event: 

s POST. This sets the state of the event to posted. 
It has no effect if the event is already posted. 

l WAIT. This suspends the calling task until the 
state of the event changes to posted. If the 
event is already posted the task proceeds without 
pause. 

l CLEAR. This resets the state of the event to 
cleared. 

The complete TASK GRAPH for a program utilizing 
event type synchronization consists of machine arcs, 
task start arcs, task wait arcs, and synchronization 
arcs. The machine arcs, task start arcs, and task wait 

583 



arcs are easy to insert from the program trace. The 
difficult job is to identify the synchronization arcs. 
Specifically, the problem is to compute for each event 
Wait w, the set of nodes in the graph that always 
precede w due to synchronizations. 

Each Wait w has to be preceded by at least one 
Post on the same event and that event must not be 
cleared before w is executed. So, Posts that either 
always follow w, or are always cleared before w is ex- 
ecuted, cannot trigger w6. Any other Posts on the 
same event may trigger w. If there is more than one 
such Post, there is no way to decide which of them 
actually triggered (or might trigger) w. However, a 
node that precedes all of those Posts necessarily pre- 
cedes w. 

Every common ancestor of this set of Posts satisfies 
this requirement, and therefore precedes w. Instead 
of the complete set of common ancestors, what is de- 
sired is the set of closest common ancestors. This, 
as we said in Section 2, is the set of common ances- 
tors such that any other common ancestor precedes 
at least one of them. Once the set of closest common 
ancestors has been found, synchronization arcs can 
be added to the TASK GRAPE from each closest com- 
mon ancestor to w. This justifies the following set of 
rules: 

l A Wait on event E can be triggered by any Post 

on the same event E, if that Post does not follow 
the Wait and is not cleared before the Wait. 

l Synchronization arcs are added from the closest 
common ancestors of the Posts that might trigger 
the Wait to the Wait. 

If a Post on E is Cleared before the Wait, then it 
follows that the Post must precede the Wait, but it 
is still true that this Post cannot trigger the Wait, so 
some other Post must trigger it. 

As an example of the application of these ruIes con- 
sider the TASK GRAPE in Fig. 2. Representations of 
TASK GRAPHS in this paper only show nodes that rep- 
resent operations on events, task starts, or task waits. 
Every node in the TASK GRAPH is assigned a unique 
number to identify it. Numbers are assigned so that 
for a pair of nodes that are task ordered, the node 
that executes later has a higher number. Each node 
shows the number, the operation, and the event name 

'A Wait w is triggered when some Post on the same event is 
executed, thus allowing the task that executed w to proceed. 

if it is an event operation. 

Fig. 2. Example of the synchronlzdton rule 

In this graph it is clear that the Post in node 2 
cannot trigger the Wait in node 4 because it is cleared 
by the Clear in node 3 before the Wait is executed. 
Similarly the Post in node 5 cannot trigger the Wait 
because it is executed after the Wait is triggered. But 
the Posts in nodes 7 and 8 have nothing to prevent 
them from triggering the Wait. There is no way to 
decide which of the two Posts actually triggers the 
Wait. Therefore the only certainty is that the Wait 

proceeds after the closest common ancestor of the two 
Posts, which is the Task Start in node 6. Therefore 
a synchronization arc is present from node 6 to the 
Wait in node 4. 

* 

I 

0 5 POST a 

Fig. 3. Example of TASK GRAPH 

The presence of more than one event makes iter- 
ation essential because an event may influence the 
orderings between Posts and Waits on other events. 
For example consider the TASK GRAPH in Fig. 3. If 
the Wait on event A in node 2 is examined first, both 
the Posts in nodes 5 and 6 seem capable of trigger- 
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ing it. However, when the Wait on event B in node 
4 is examined it is clear that a synchronization arc 
is needed from node 7 to node 4. It becomes clear 
that the Post in node 5 follows the Post in node 6. 
Therefore, we know that the Wait in node 2 always 
follows the Post in node 6. That is the reason for the 
presence of a synchronization arc from node 6 to node 

5 Algorithm for Adding Syn- 
chronization Arcs 

We begin with an approximation to the TASK GRAPH 

constructed from the program trace output. It in- 
cludes all arcs except synchronization arcs. Proce- 
dure SYNC, shown below, then iteratively adds syn- 
chronization arcs to the TASK GRAPH. As long as it 
finds new arcs to add, it checks every Wait w. For 
each Wait w, it performs a sequence of three steps. 

(1) 

(2) 

(3) 

It computes the set of Posts that might trigger w. 
This is the set of all Posts on the same event mi- 
nus those Posts that either follow w or are cleared 
before w is executed. This set might contract 
from iteration to iteration due to new synchro- 
nization arcs. 

It then computes the set of closest common an- 
cestors for this set of Posts. 

Finally, an arc is added from every member of 
this set of closest common ancestors to w. 

Procedure SYNC uses two predicates, iscleared 
and Follows, as well as two procedures, AddArc and 
CloseCommAnc. IsCleared(p, w) is a predicate that 
is true only if there is a Clear on event E, on a path 
from node p to node w, where node p is a Post on E 
and w is a Wait on E. Follows(m,n) is a predicate that 
is true if there is a path from node m to node n in the 
current version of the TASK GRAPE. AddArc(N,n) is a 
procedure that inserts arcs from every member of the 
set of nodes N to node n. If an arc does not already 
exist, it adds one and also sets the flag change to true. 
CloseCommAnc(N) is a procedure that computes the 
closest common ancestors of the set of nodes N, for 
the current approximation to the TASK GRAPH. 

procedure SYNC 
while change do 

change +- FALSE 

for each Wait w do 
TRIG c {} 
for each Post p on same event as w do 

if (1 isCleared(p, w) A 1 Follows( w,p)) 
TRIG t TRIG U {p} 

AddArc(CloseCommAnc(TRIG),w) 

Termination of procedure SYNC is guaranteed by 
the fact that the iteration of the while loop stops 
as soon as it does not find any new arcs to add. At 
no point does it delete an arc, thus precluding the 
possibility of oscillations. Since the number of nodes 
in the TASK GRAPH is finite, the maximum possible 
number of arcs is also finite. 

CloseCommAnc is an algorithm that computes the 
closest common ancestors of a subset N of nodes in a 
directed acyclic graph (DAG). For simplicity of expla- 
nation, we assume that the input to the algorithm is 
a normalized DAG. We say that a DAG, G = (V,E), 
is normalized if <m,n> E E implies that level(n) - 
level(m) = 1. The level of a node n in G, denoted 
level(n), is defined as 

level(n) = 0, if n is a root node 
level(n) = <mmyCE (level(m)) + 1, otherwise 

where <m,n>’ is an arc from node m to n in G. 

Any DAG can be transformed into normalized form 
by adding dummy nodes. If there are arcs of the form 
<m,n> E E with level(n) > level(m) + 1, we could 
replace these arcs with paths containing level(n) - 
level(m) - 1 nodes. An example of normalization 
is shown in Fig 4. 

Unnormalized DAG Normalized DAG. 
flhe 0 s are the dummy nodes) 

Fig. 4. Example of DAG Normalization 

The algorithm to compute the closest common an- 
cestors is given below. It uses the function Parent 
which operates on a set of nodes S, and returns the set 
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of nodes that immediately precede any of the nodes 
in S. More formally, Parent(S) = { m 1 <m,n> E E, 
for some n E S}. Parent?(S), when k > 0, denotes 
the result of k applications of Parent, and Parent’(S) 
= S. 

The algorithm starts by computing k, the lowest 
level of the nodes in the argument set N (i.e., closest 
to the root). Then the algorithm (in the first for 
loop) computes the ancestors at level k for each node 
in N. These sets are stored in the array AncestorsO. 
If for some n E N, level(n) = k, then Ancestors[n] = 
{n}, the set containing n itself. 

The algorithm proceeds iteratively, on each itera- 
tion processing the sets of ancestors of the nodes in 
N at a given level. Thus, the first iteration processes 
the ancestors at level k, the second iteration, the an- 
cestors at level k-l, and so on. 

In general, on the iteration processing the ances- 
tors at level I (1 5 k) the algorithm first computes 
New-Closest-CA, the intersection of the sets of an- 
cestors of the nodes in N at level 1. Each member of 
the intersection is a closest common ancestor. The in- 
tersection is accumulated in the variable Closest-CA 
that will eventually contain all closest common an- 
cestors. 

The Parents of the members of the intersection are 
accumulated into the variable Other-CA, so that at 
the end of the iteration processing level 1, Other-CA 
contains the set of nodes at level I- 1 that are com- 
mon ancestors of N, but not closest common ances- 
tors. Finally, preparation is made for the next itera- 
tion by computing the Ancestors of each original node 
at the next lower level, but without including the an- 
cestors of those closest common ancestors already in 
variable Closest-CA. At the top of each iteration, all 
the members of AncestorsO and Other-CA are at the 
same level in the graph. 

procedure CloseCommAnc (N) 
k + FGi; (level(n)) 

for each n in N 
Ancestors[n] t Parentie”‘z(n)-k((n}) 

Closest-CA t {} 
Other-CA c {I 
while (all Ancestors[n] # {}) 

New-Closest-CA t n Ancestors[n] 
REN 

Closest-CA t Closest-CA U New-Closest-CA 
Other-CA c Parent(Other,CA) U 

Parent(New-Closest-CA) 
for each n in N do 

Ancestors[n] +. Parent(Ancestors[n]) - 
Other-CA 

return( Closest-CA) 

6 Example of TASK GRAPH gen- 
eration 

As an example of the above approach, consider the 
graph in Fig. 5. The goal is to compute for each Wait, 

the nodes in the program that necessarily precede it. 

Pi. 5. Ilh~~trrtion of the SYNC algorithm 

To add synchronization arcs, the procedure SYNC 
is applied to the graph. On each iteration of the 
while loop in SYNC, we assume that the Waits are 
considered in ascending order of event name. Fur- 
thermore, for Waits on the same event, a Wait w that 
always executes before another Wait y is always con- 
sidered before y. Therefore, SYNC applied to the 
given TASK GRAPH operates as follows. (Each syn- 
chronization arc is labelled with the iteration number 
that added it.) 

The procedure first looks at node 13. The Posts on 
event A are nodes 6, 5, and 11. The only common 
ancestor of these Posts is the Task Start in node 1 and 
so an arc is added from node 1 to node 13. It looks 
at the Wait in node 4 next. The only Post on event B 
is node 9. Therefore, an arc is added from node 9 to 
node 4. For the same reason, it adds an arc from node 
9 to node 10. Finally, it adds an arc from node 8 to 
node 12. The first iteration of the whiIe loop is over. 
Since new arcs have been added another iteration of 
the while loop is performed. 

On the second iteration, when node 13 is examined 
it finds that the Post in node 6 has a path to node 
13, via nodes 7, 8, and 12. Rut this path contains a 
Clear on event A in node 7. Therefore, node 6 can- 
not trigger node 13. So the set of nodes that might 
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trigger node 13 contains only nodes 5 and 11. To find 
the closest common ancestors of this set the graph is 
traversed backwards, finding two closest common an- 
cestors. One is the Task Start in node 3, and the other 
is the Post in node 9. Arcs are added from nodes 3 
and 9 to node 13. This iteration then completes with- 
out any further changes to the graph. Another itera- 
tion is performed because new arcs were added. On 
the third iteration no new arcs are added, so SYNC 
terminates. 

Now we have a complete TASK GRAPE and can ap- 
ply the race detection algorithm to locate any races 
that exist. This involves examining the TASK GRAPH, 

looking for references to the same variable (not all 
reads) that are not connected by some path. With no 
path, the execution order of the two references is not 
guaranteed. Any races that are found are reported to 
the user. 

7 Related Work 

Other groups have also studied the problem discussed 
in this paper. In [CaSu88] a data flow formulation is 
presented for race detection by static analysis. This 
formulation does not deal with loops. The princi- 
pal synchronization primitive considered is the event, 
which is one of the two primitives we handle. Kow- 
ever, they do not handle the Clear operation. 

In [MiCh88] a system is described that aids the 
user in debugging parallel programs. While the pa- 
per discusses synchronization edges and their use in 
detecting races, it does not describe any procedure to 
compute these edges. We feel that this is the main 
contribution of our paper. 

In [Scho89] a procedure is outlined for detecting 
races on the fly. This procedure only handles pairwise 
synchronization operations. 

8 Conclusion 

In this paper we have described a system that auto- 
matically detects races in a parallel program. The 
Cedar Fortran compiler is used to insert instructions 
that write trace information to a file. This processed 
program is then compiled and executed, producing a 
dynamic execution trace of the program. The trace 
output has all the information needed to build a 
TASK GRAPH. The trace also logs points of event style 
synchronization. We have demonstrated an algorithm 
that can identify which nodes in the TASK GRAPH are 

synchronized by event operations. 
An advantage of our approach is that it does not 

place any restriction on the control structure of the 

programs. Iterative control structures, such as loops 
and subroutines, that are difficult to analyze stati- 
cally, can easily be traced. Analysis of dynamic traces 
was used because it eliminates uncertainties about 
control flow that are present when static analysis is 
used exclusively. Also, actual scheduling of the pro- 
gram (i.e., the parallel tasks) does not affect the re- 
sults of the analysis. In fact, the tasks can be run 
sequentially on a uniprocessor to generate the trace, 
and races will still be correctly detected. 

There are several avenues for future work. We 
are studying ways to improve the efficiency of the 
algorithm. Several optimizations are possible that 
will help speed up the algorithm. This will become 
more important as we tackle larger parallel programs. 
The implementation presently is restricted to syn- 
chronizations using events. We believe the algorithm 
is extendable to several other commonly used syn- 
chronization mechanisms such as binary and counting 
semaphores, lock-unlock, the Cedar synchronization 
primitives, etc. 

Much of this work is currently in progress. The 
tracer, the SYNC procedure, and race detector have 
been implemented, and some experiments have been 
performed with it to demonstrate correct operation 
and the practicality and usefulness of the approach. 
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