
Efficient Building and Placing of Gating Functions *

Peng Tu and David Padua

Center for Supercomputing Research and Development

University of Illinois at Urbana-Champaign

1308 W. Main Street, Urbana, Illinois 61801-2307

tu ,padua@csrd. uiuc. adu

Abstract

In this paper, we present an almost-linear time algorithm

for constructing Gated Single Assignment (GSA), which is

SSA augmented with gating functions at @–nodes. The

gating functions specify the control dependence for each

reaching definition at a @-node. We introduce a new con-

cept of gating path, which is a path in the control flow graph

from the immediate dominator u of a node o to v, such that

every node in the path is dominated by w Previous algo-

rithms start with #—function placement, and then traverse

the control flow graph to compute the gating functions. By

formulating the problem into gating path construction, we

are able to identify not only a ~—node, but also a gat-

ing path expression which defines a gating function for the

b–node.

1 Introduction

The Gated Single-Assignment (GSA) program representa-
tion is an extension of the Static Single Assignment (SSA)
representation [CFR+ 91]. GSA was introduced by Bal-
lance, Ma,ccabe and Ottenstein as a part of Program De-
pendence Web (PDW) [BM090]. GSA is a convenient
representation for several program analysis and optimiza-

tion techniques, including constant propagation with con-

ditional branches [WZ91]; equality of symbolic expressions

[AWZ88, Hav93]; induction variable substitution [W0192];

symbolic dependence analysis [B E94] and demand-driven

symbolic analysis for array privatization [TP95, TP93]. In

the SSA representation, @–functions of a single type are

placer! at the confluence nodes of a program flow graph to

represent different definitions of a variable reaching from

different incoming edges. The condition under which a

definition reachs a confluence node is not represented in

the d–function. By contrast, in the GSA representation,

several types of gating junctions are defined to represent

the different condition classes at different confluence nodes.

“The research described was supported by contract DAB T63-92-
C-0033 from the Advanced Research ProJect Agency, This work IS

not necessarily representative of the positions or pohcles of the U. S.

Army or the government.

Some extra parameters are introduced in the gating func-

tions to represent the conditions. In this paper, we present

an almost linear time algorithm to construct the GSA. The

new algorithm is more efficient and simpler than the ex-

isting algorithms for GSA construction [BM090, Hav93].

Since SSA is a special case of GSA, it can also be used as

an efficient alternative algorithm for SSA construction.

The existing algorithms for building the GSA follow two

steps. The first step is the same ~ —function placement pro-

cedure as in the SSA construction [CFR+ 91]. In the sec-

ond step, the GSA conversion algorithms collect the control

dependence of the definitions reaching a ~–function and

transforms the ~–function into a gating function. The orig-

inal GSA conversion algorithm [BM090] assumed a Pro-

gralm Dependence Graph (PDG) [FOW87] as its initiaJ rep-

resentation. Havlak developed another algorithm [Hav93]

to construct a variant of the GSA, known as Thinned GSA.

Because it starts with the program flow graph, it is, there-

fore. somewhat simrier. For each d–function. both al-

gorithms traverse tie control flow graph to find the gat-

ing conditions for each reaching definition. To convert a

~–function to a gating function, O(E) edges may be vis-

ited (where E is the number of edges in the flow graph).

Since the number of b–functions in the momam is O(N)

(where N is the number of nodes in the p~og~am), and ‘th~

same edge may be visited for every q$—function, the time

complexity of these algorithms is O(E x N).

The algorithm in this paper constructs and places the

gating functions from a program control flow graph in a sin-

gle step. In our algorithm, SSA and GSA constructions are

unified under a single process of gating path construction.

It uses the path compression technique [Tar79] to reduce

the total number of visits to the edges in the flow graph.

Tarjan describes two ways to implement the path compres-

sion,, A simple method has an O(E log(lV)) time bound; a

sophisticated off-line algorithm maintaining balanced sub-

trees has an O(Ea(E, N)) time bound. Yet another on-line

O(EW(E, N)) method, called stratified path compression by

Farrow [Far77, Tar79], can also be used. This GSA algo-

rithm is also almost as efficient as the best known algo-

rithms for @—function placement in SSA conversion.

The rest of the paper is divided into the following sec-

tions. In Section 2, we introduce some background and no-

tations. In Section 3, we define the notation of gating path

and discuss its relation to the dominance frontiers in the

cent ext of ~ —placement. Our gating path based GSA con-

struction algorithm is presented in Section 4. In section 5,

we work through an example. Section 6 shows some timing

results using the simple path compression implement ation.

SIGPLAN ‘95La Jolla, CA USA
1995 ACM 0-89791 -697-2/95/0006

Some conclusions are presented in Section 7.

2 Background and Notations

Representing data flow and control flow properties of pro-

grams is an important issue in optimizing compilers for ac-

curate and efficient transformations. SSA form has been

shown to be useful in capturing the data flow informa-

tion required by some important program optimizations

[AWZ88, RWZ88]. In the SSA form, each definition of

a variable is given a unique new name, and each use of

a variable is renamed to refer to a single reaching defini-

tion. tVhen several definitions of a variable, al, ag, am,

reach a confluence node in program control flow graph, a

~–function assignment statement, an = ~(al, u2, am),

is created to merge them into a single new definition an.

Hence, in the SSA representation every use of a variable ex-

cept those in a ~—function has only one reaching definition

that is identified by a unique variable name. SSA captures

the data flow information (clef-use chains) of a program in

a compact form.

An efficient algorithm for constructing SSA with a min-

imal number of ~–functions was originally designed by

Cytron, Ferrante, Rosen, Wegman and Zadeck [CFR+ 91].

The algorithm for placing the &functions is 0(N2) in

the worst case, but often appears to be linear when ap-

plied to real programs. Johnson and Pingali [JP93, JPP94]

proposed another algorithm to place ~–functions in O(E)

time. Later, Cytron and Ferrante proposed an almost linear

time O(Ea(E)) using path compression. Recently, Sreed-

har and Gao [SG94] have developed another O(E) time al-

gorithm. We should point out that although our algorithm

also uses the path compression technique, our problem is

more complicated and our approach is completely different

from Cytron and Ferrante’s.

Whereas a ~–function represents the merge of multiple

reaching definitions, it does not contain the condition that

specifies which reaching definition will be the value of the

function. Gating functions were introduced by Ballance,

Maccabe and Ottenstein [BM090] to capture the control

conditions that guard the paths to a ~—function. There

are three types of gattng function:

The y function, which is an if – then – else construct,

captures the condition for each definition to reach a

confluence node. For instance, Xa = y(13, Xl, A-z) rep-

resents X3 = Xl if B and X2 if =B.

The p function, which only appears at loop headers,

selects the initial and loop-carried values. For instance,

.Yz = p(.YO, X3) represents that Xg’s initial value is XO

and its subsequent value is X3.

The ~ function determines the value of a variable at

the e~lt of the end of the loop.

In [BM090], the conversion to GSA is done after

d–placement. The algorithm works by expanding each @
node into a GSA gating tree that contains the control in-

formation for the different reaching definitions. The trans-

lation for each 4 node may potentially scan all the edges

in the flow graph. Therefore, O(E) is its worst case time

complexity. The translation for all the @ nodes is O(E x N)

because there can be 0(.V) confluence nodes in a program.

Paul Havlak introduced a, variant of GSA, called Thinned

GSA, and an algorithm for ~ translation that is similar

to the original GSA algorithm with the same complex-

ity. Both algorithms start from the ~ nodes after the SSA

~–placement. Using the control dependence graph, they

extract the related control information by walking through

the flow graph along the paths that connect the definitions

and the @—function.

A program control flow graph CFG = (N, E) is a directed

graph whose nodes N are the basic blocks in a program.

Each edge u - v c E in the graph represents a possible flow

of control from u to u. Two additional nodes, Entry and

Exit, are added to the flow graph such that every entrance

block of the program has an edge from the Entry node

and every exit block of the program has an edge to the

Exit node.

A node v domznates another node w, denoted as UBW,
if every path from Entry to w contains v. A node u post-
dominates another node w if every path from w to Exit

contains u. Node v strictly dominates w, denoted as v >> w,

if v dominates w and v # w. Node v is the immediate dom-
inator of w, denoted as v = idorn(w), if v dominates w

and every other dominator of w dominates v. Every node

in a flow graph except Entry has a unique immediate dom-

inator. The edges {Liom{w) _ UIW c N — {Entry}} form

a dominator tree such that v dominates w if and only if

v is a proper ancestor of w in the dominator tree (where

the word proper means v # w). The postdominator tree

is defined similarly using the post-dominating relation. In

the rest of the paper, the words predecessor, successor, and

path refer to the flow graph, and the words parent, child,
ancestor, and descendant refer to the dominator tree.

The dominance ~r-ontier [CFR+91] DI’(A’) of a C’FG
node X is the set of nodes Y c G’FG such that X dom-

inates a predecessor P of Y but does not strictly dominate

1’-:

DF(X) = {Y](3P --i Y)(X~P and X > Y)}.

Given a set X of the CFG nodes, the set DF(X) is the

union of the dominance frontiers defined by each node in

x:
DF(,Y) = uz6xDF(X).

The iterated domtnance frontier DF+(X) is the transitive

closure of DF(X):

DF1(X) = DF(X);

DF’(X) = DF(X u DFC-l(X)).

The iterated dominance frontier DF+ (X) for a set of nodes

X is defined as a union of individual iterated dominance

frontiers.

A fundamental result proven in [CFR+ 91] states that if

X is the set of assignment nodes for a variable V, then

DF+ (X) is the minimum set of nodes that need ~–function

assignment nodes for V.

3 Gating Paths and @-Function Nodes

In this section, we present another way to determine the set
of nodes that need ~—function assignment nodes. We prove
that the phi-nodes computed are the same as those us-
ing the iterated dominance frontier algorithm in [CFR+ 91].
This provides a,way to look at the problem from a different
perspective.

Definition 1. Given a control flow graph CFG, a gattng
path for a node v is a path in the CFG from idom(v) to v

containing only the proper descendants of idom (v) in the

dominator tree as intermediate nodes.

48

In other words, a gating path is a path from idom(u) to o

in the CFG such that every node in the path is dominated

by id07fZ(~).

In the rest of this section, we prove a theorem that relates

the gating paths to the placement of @functions.

The Lemma 1 and its Corollary establish the existence of

gating paths in CFG.

Lemma 1. For any path d ~ v in CFG, if d >> v and d

only occurs once in the path, d must dominate every node

in the path.

Proof. If there is a node u in the path such that u is not

dominated by d, i.e., d ~ u z v, d ~ u, then the path

Entry ~ u ~ v avoids the d. This is a contradiction of

d>v.

Corollary 1. For every node v, there is a gating path

from idom(v) to v.

Proof. Since tdorn(v) > v, there is a path P from

idorn(v) to v. Removing all the idom(v) : idorn (v) cycles,
we obtain a new patil from idorn(v) to v where idorn(v)

only occurs once. By Lemma 1, the idorn(v) dominates ev-

exy node in the new path. Hence the new path is a gating
path.

Lemma 2 and Lemma 3 establish the fact that dominance

frontier relations only exist among the nodes in the sibling

subtrees under a common parent in the dominator tree of

CFG. That is, if v c DF+ (.Y), then r’dom(v) B X and,

therefore, idom(v) is a proper ancestor of A“ in the domina-

tor tree. Because X ~ U, X and v must belong to different

subtrees under idorn(v).

Lemma 2. If v s DF(X), then zdom(v) > .X”.
Proof. From the definition of DF(X), X # idorn(v).

If idom(v) ~ .Y, then there is a path from Entry to .Y

that avoids the idorn(v). Because v e DI’(X), there is a

w s Pred(v), such that X>uY, but .Y $ v. Let X ~ w *

v be a path from .k’ to v. Removing the .Y ~ X cycles

in the path, we obtain a path such that X appears only

once. The idorn(v) must not be in the subpath X ~ w;

otherwise, by Lemma 1, X >> idom(v) and, therefore, X >>

v. Concatenating this path with the idom (u) avoiding path

from Entry to X, we obtain a path from Entry to v which

avoids idom(v). This is a contradiction. Therefore, we have

proven idom(v) > X.

Lemma 3. If v E DF+(X), then idorn(v) > X.

Proof. By applying Lemma 2, if v c DF1 (X), then

tdom(u) >> .Y. Assume it is true for v 6 DF’–l.

By induction, for v c DF’(.Y), let v c DF(u), u c

DF’–l (X). We have ~dorn(u) >> X by induction premises

and idom(v) > u by Lemma 1. Because idorn(v) > a

implies idom(v)~idom(u), we obtain idom(o) B X.

The Lemma 4-6 relates the gating paths to the iterated

dominance frontiers.

Lemma 4. If v E DF(l”’)j then there is a gating path

from dom (v) to v passing through X.

Proof. From the definition of DF(.T) and Corollary 1,

there is a gating path X L w where w e Pred(v). From

Lemma 1 and Lemma 2, we have zdorn(U) > X and, hence,

a gating path from idom(v) to X. Because the path X ~ w

contains only the proper descendants of X and, hence, of

idorn(v), concatenating the paths results in a, gating path

idorn(u) LX ~ W — v from idorn(v) to v passing through

A“.

Lemma 5. If v c DF+ (X), then there is a gating path

from zdorn(v) to v passing through .Y.

IProof. Immediate by induction from Lemma 3 and

Le;mma 4.

ILemma 6. If there is a gating path from idom(v)

through .Y to v where idorn(v) # .X, then v c DF+ (X).
Proof. We prove this by induction on the number of con-

fluence nodes on the subpath A’ ~ w-u. Since there is a

gating path from idorn(v) through X to v and idom(v) #

X, v must be a confluence node. Otherwise, w # idom(v)

would be u’s immediate dominator. Let the number of con-

fluence nodes on the subpath X ~ v be n.

1,

2.

If n = 1, v is the only confluence node, In the path

from Xtov, X~w - V, every intermediate node

can have only one predecessor in the flow graph. Hence

X~w. Because idom(v) # X and idom(v) B X,X ~
v. Hence v G DF(X).

Assume the Lemma is true for n < i. For n = Z, let

u be the second to last confluence node in X $ w ~

v, and the path Pti = idom(u) ~ u be the subpath

from idom(u) to u. If X is in Pu and A’ # idom(u),
then Pu is a gating path for u passing through X with

n,=k <i. Therefore, a 6 DFk<’(X). Moreover,
since there is only one non-confluence node from u to

v, v E DF(u) = DFk+l(X). If X = idom(u) or X is

not on P., then X~idom(u) >> u~w where w is the

second to last node on X ~ idorn(u) & u L w + v.
Hence v ~ DF(X). This proves the Lemma.

Using the results from Lemma 5 and Lemma 6, we obtain

the fo!lowing Theorem for determining if a node u is in

DF+(,%).
Theorem 1. Given an initial set %’ of CFG nodes, for

any node v in CFG, v ~ DF+ (X) if and only if there is

a gating Path from zdorn(v) to v containing a node that

belongs to 2? (i.e., there is a gating path idom(v) ~ X ~ v

where X E X’).

Proof. Immediate from Lemma, 5, Lemma 6, and the fact

that DF+(X) = L.JXEXDF+ (X).
Applying theorem 1, if we can compute a gating path

expression for each node v in a C’FG and determine if v has

a gating path that contains nodes in X, we can determine

if v needs a ~—function assignment. In the next section, we

present an algorithm which builds a gating path expression

of v in such a way that it is exactly the gating function in

GSA if v E DF+(X).

4 Algorithm for GSA Construction

Given a CFG(N, E), we can treat any path in the CFG
as a string of edges in E, but not all such strings over E
are paths in CFG. A path expression [Tar81b] P of type
(u, v) is a simple regular expression over E such that every

string in u(P) is a path from node u to node v (where u(P)

represents the string generated by the regular expression

P). Every subexpression of a path expression is also a path

expression whose type can be determined as follows.

Let P be a path expression of type (u, u).

● If P = PI u Pz, then PI and P2 are path expressions of

type (u, v).

● If 1? = PI . P2, then there exists a unique node w such

that PI is a path expression of type (u, w) and P2 is a

path expression of type (w, u).

● If P = P?, then u = v and PI is a path expression of

type (u, v) = (u, u).

49

For instance, in the following statements

if (B) then

Blockl

else
Block”

,.. endif

‘\
‘~ .,there are two paths from the if node to the endif node rep-

~esented by path expressions: pt = (t.f (1?) ~ Blockl =

endtf) and pf = (t.f (B) ~ B/ock2 - endtf). The nota-
tion (a — b - c) represents a path of two edges from a to b

and from h to c. To simplify the discussion, we assume the

endif is the entry of a basic block. The union of the two

path expressions, (pt U p~), is of type (z.f (B), endif) and

represents all paths from the if (B) to the endif.

4.1 Path Expressions Represent ed as Gat ing
Functions

Different paths reaching a ~-function node are represented
by path expressions. Our strategy is to define the sym-

bols used to represent the edges such that a path expres-
sion takes the same form as a gating function. Only the

outgoing edges from conditional statements (or conditional
edges) are necessary to unambiguously represent a path.
We will represent paths using a form of gating functions

containing only the conditional edges. However, in the pro-
cess of building such gating functions, we also need to use
the unconditional edges. We use a white space symbol A

to represent an unconditional edge. For example, each of

.P(Blockl, endi~) = A and P(Block2, endij) = A repre-

sents an unconditional edge.

We now define the gating symbols for the edges of branch

statements. A branch statement like if(B) has two outgo-

ing edges. Let’s call them Bt and 13~. To build the gating

function for a path, we use the gating function notation to

represent the edges. The Bt edge is represented by the ex-

pression Y(B, A, 0), and the IIf edge is represented by the

expression 7(B, 0, A). Here we use another white space

symbol 0 to represent a branch that is not taken. It is

easy to extend the notation to statement types with more

than two outgoing branches. In summary, a path expres-

sion is represented as a gating function using the following

symbols:

A white space symbol .k represents an unconditional

edge.

A white space symbol O represents an edge not taken

at a branch node.

A y expression -((B, el, ez, en) where only one e; is

A and ‘all the other e’s are 0 represents the i’s edge

from an n-way branch statement with condition P.

Given a gating expression R(zL, v) representing a path

from node a to node v, the following equations define the

properties of the symbols that can be applied to simplify

I?(U, 2).

R= RI URz:case Rl=O
return Rz

case Rz = @
return RI

case RI = y(B, RI,, Rlf) and
R2 = Y(B, R2,, R2f)

return -y(B, (RI, U R2,), (RIf u R2f))

R = R, . R, : case (RI = 0) or (R2 == 0)
return 0

case RI = A

return Rz
case Rz = A

return RI

case RI = Y(B, RI,, RI~)
return -Y(B, (Rlt R2), (Rlf “ R2))

Note that in the case where R = RI U Rz and RI =

Y(B, RI,, RI,), RI and Rz must have the same type. That

is, R2 must have the same starting node as RI. Therefore,

Rz must be in the form of 7(B, R2t, Rz,).

Back to the above example,

pt(if,endif)= 7(B, A, 0) . A
= ~(B, A,@);

P.f (~.f, endif) = Y(B, 0, A). A
= ~(B, O, A);

we can obtain

P(zf, endif) = pt(if, endif) U Pf(i.f, endif)

= Y(B, A, @) U Y(B, @, A)

= -Y(B, A, A).

Applying Cytron et al.’s renaming procedure [CFR+ 91]

to insert variabIe names into a gating function R(u, v) =
-y(B, R,, Rf), we need to know from which predecessors of

u that each of Rt and Rf reach v. This is done by labeling

each path with the predecessor number of v. If R = RI uR2,

and the path R1 enters o from the ith predecessor of u, then

RI is labeled with i. This is done by labeling all the A in

RI with a superscript i. Hence,

P(if, endi~) = p: (i~, endi~) U p~(i~, end~.f)

= ~(B, Al, O) Uy(~,O, A2)

= ~(B, Al, A2).

The superscript label can be used in the renaming pro-

cedure to determine which parameter in a gating function

should be substituted by the name on the top of the stack

for a variable. For further details of this procedure, in-

terested readers should refer to [CFR+ 91]. Consider, for

example, that Bioc.kl contains an assignment to a variable

A, which after renaming becomes A~l and that Block2 has

no assignment to A. Let the definition of A reaching the if

statement be AO,,g. Then the gating function for A takes

on the form:

AN.W = V(B, A1, A2).

In the renaming process, the reaching definition to v from

predecessor I is AB1, and from predecessor 2 is Ao~t9.
Hence, Al in the gating function is replaced by A~l and

A2 is replaced by AO~,9. The gatkg function

ANe~ = Y(B, AB1, Ao~,g)

correctly reflects the reaching definitions from different

paths.

In summary, gating functions in GSA specify the condi-

tions for each reaching definition at a ~–node. These con-

ditions are concatenation of conditional branches on the

gating path of the q5-node. Path expression is a regular

expression representing a path in the flow graph, Using

the above representation of path expression, we obtain a

path expression which is exactly the gating function for the

~–node.

50

Algorithm: Building and placing gating functions

input: The assignment nodes X

initialize: foreach v ~ N do
@(z)) ~ false
GP(v) -0
G*(v) + @
ListP(v) + 0
if vEX

X(v) - true
fi

od
loop: foreach u ~ N in reverse rljn do
derive: foreach v E children(u) do

foreach e = (w, v) c E do

~dom node: if w == u then
GP(u) - GP(tl) U (e)

sibhng node: else

(d,p(sufiroot(w), v)} - EVAL(e)
o(v) — O(v) or ~

ListP(U) ,+ ListP(v) with p(stdwoot(w), v)

~ (* The Vvlth operator insert an element to a list *)

od
od

segueftce: Topsort(childre n(u))

merge: foreach v ~ children(u) in Toporder do

foreach p(sukoot(w), v) C ListP(v) do

mu entry: if suh’oot(w) == v then
G*(v) _ G*(u) I-Jp(subroot(w), v)

gamma: else
GP(w) – GP(V) U (GP(subToot(w)) . jO(SUbTOO~(W), v))

@(v) - Q(v) or O(sulwoot(w))
fi

update: UPDATE(V, G+’(v))
LIN1f(u, v)

od

od

od

4.2 Algorithm for Building Gating Functions

In this section, we present an algorithm to construct the

gating path expression and, therefore, the gating function

for each node. Our algorithm assumes that a CFG and

its dominator tree DT are given. We also assume that

each node in the CFG is assigned a depth-first number

djn. The dominator tree can be computed in O(Ea(E, N))

time using the dominator algorithm of Lengauer and Tar-

jan [LT79], or in 0(.E) time using a more complicated al-
gorithm of Harel [Har85]. The dfn can be computed in

linear time [ASU86]. The djn number has the property of

d~n(idom(v)) < d~n(v) for each node v # Entry. Each

loop step of the algorithm processes a set of sibling nodes

with a common parent u. The outer loop processes nodes

in reverse d~n sequence. Since d~n(idom(v)) < d~n(v) all

the siblings of v and their descendants must have already

been visited by the outer loop before idom(v) is visited.

In the derioe phase, the algorithm processes the set of sib-

lings children(u). Depending on the class to which an edge

e = (w, v) c E belongs, one of the following step is taken

1. If e comes directly from v’s immediate dominator (i.e.

w = u = idom(v)), then the edge itself is a gating path

from idom(v) to v. The algorithm updates the gating

path of GP(v) with the union of e and the old GP(v).

2. If e comes from a node that is a descendant of a

sibling of v (i.e. w # u and v > w), the algo-
rithm calls EVAL(e) to compute a path expression

p(subroot(zo), v). The subTooi(ro) is the root of the

subtree to which w belongs (i.e. the sibling of v dom-

inating w). The path expression p(s-abroot(w), v] rep-

resents all paths from p(subroot(w)) to v which end

with edge e and contain only the proper descendants

of swbroot(w) as intermediate nodes. EVAL(e) also re-
turns true if one of the nodes along the path belongs

to %, indicating by Theorem 1 that v is a phi–function

node. ‘The gating expression returned from EVAL(e)

is added to LzstP(v), which is a list containing all the

lpaths starting from the siblings of v to v.

3. If e comes from a node which is a descendant of v (i.e.

w # u and v>>w), then it forms a loop with header v.

The algorith~ work. exactly as in etep 2 above. The

the path expression computed by EVAL(e) is later

used to update G*(v) to represent the path from the

loop back edge e. G* (v) is used to build a p function

51

for the loop.

Using Tarjan’s technique for operations on a forest

[Tar79], we define the following operations on the forest

of subtrees in a dominator tree:

●

●

●

EVAL(e): Let e = (w,.). If r = subroot(zo) - WI _

‘w~+ . . . - Wk == w is the tree path from the root of

tree containing w to w, then EVAL returns a path ex-

pression representing (R(r) R(w~). R.(wz).. . . . R(w). e)

with each A superscripted by the predecessor number

of e to o. It also returns the value of (O(r) V X(T) V
@(wl) v X(wl) ,.. V O(w) V X(W)) indicating whether

there is a node in the path that belongs to .?. In this

expression, V represents the logic or operation. O(z)

is true if node r needs a pht —function, and A’(z) is

true if x E A?. In the process, EVAL(e) performs path

compression which updates the R’s for the intermedi-

ate nodes and relinks them directly to r.

LIN1{(u, v): If u and v are roots, combine the trees

with roots u and v by making u the parent of v. LINK
may also adjust the tree and the R’s to construct a

balanced tree for the almost linear time algorithm.

UPDATE(V. P): If v is a root. assimr R(v) to P if v,,, ,“ \,
is not the immediate post-dominator of idom(rt); oth-

erwise, assign R(v) to A.

If the CFG is reducible, then the paths between the sib-

ling trees is cycle free. We can then obtain a, topsort order

among the siblings in ch iidren(u). Irreducible graphs can

also be handled by computing a path sequence for each

dominator strong components. Due to limited space, we

cannot detail how to compute the path sequence. Inter-

ested readers should refer to [Tar81a]. The two existing

GSA algorithms only handle reducible graph, but the al-

gorithm here can be extended to handle irreducible graph.

In the merge phase, the algorithm follows the topsort order

and computes for each child of u a path expression GP(v)

representing all the gating paths of v. In the processes, if

there is a p(o, v) in PLzst(n), indicating that u is a, loop

header, step mu entry is executed. G*(u) is used to con-

struct a, p function for the loop header v.

The algorithm completes the processing of the sibling

set by executing UPDATE(U, GP(v)) and LINIT(u, v) for

each child v of u. The LINK(u, v) operation is straightf-

orward. Two path expressions are stored at each node v.

GP(v) represents the gating path from idorn(v) to v. It

is the gating function placed at v if @(v) is true. R(v)

represents the path expression from the parent of v to v

in the tree where v currently belongs. R(v) is used by

EVAL to compute the path expression from v to the root

of tree where v currently belongs. R(zJ) may be changed

by path compression. The UPDATE(V, GP(v)) is slightly

different from the Tarj an’s algorithm. Here, it contains an

optimization step to simplify subsequent path expressiorw.

UPDATE(V, GP(u)) sets the value of the label l?(v) to

GP(v). If a v is the immediate post-dominator of idorn(u),

then any path from idom(v) unconditionally passes through

v. Therefore, we can set R(v) to A in the UPDATE op-

eration to represent the unconditional reach and, in this

way, to simplify the path expressions for subsequent calls

to EV-AL.

This algorithm is a variant of Tarjan’s fast algorithm for

solving path problems using dominator strong components

decomposition [Tar81 a]. Its correctness can be derived from

the following Lemma, which we quote without proof here.

We will work through an example to illustrate the algo-

rithm.

Lemma 7. [Tar81a]

●

b

For edges e = (w, v) in CFG such that w # u, the cor-

responding path expression in the ListP(v) computed

by the derive phase is an unambiguous path expres-

sion representing exactly the paths from sutwoot(w) to

v that end with e and contain only proper descendants

of subroot(w) as intermediate nodes.

For each node v in CFG, GP(v) as computed by the. .
algorithm is an unambiguous path expression repre-

senting exactly the paths from idonz(v) to v that con-

tain only proper descendants of idorn(v) as intermedi-

ate nodes.

Lemma 7 in conjunction with Theorem 1 prove that the

algorithm correctly builds and inserts the gating function

for a CFG.

Theorem 2. The gating path expression algorithm

builds and inserts the gating functions correctly.

The algorithm requires N time on the step initialize;

N – 1 calls on UPDATE; N – 1 calls on LINK; E calls on

EVAL. The top sort at each major loop iteration sorts on

disjoined subsets. For the whole algorithm, the topsort time

is the summation of individual subset sizes, which is O(N).

The merge step takes O(N). Hence, the time complexity

is O(Ea(E, N)) if the stratified path compression is used

to implement the forest operations, and O(E log N) if path

compression is used. Because the sequence of EVAL and

LINA’ can be easily determined beforehand, the off-line al-

gorithm in [Tar79] can also be used to achieve 0(Ea(13, N))

time complexity,

Theorem 3. The time complexity of the algorithm is

O(Ea(E, N)).

For each node v, the algorithm computes the O(v), GP(v)
and G* (v). If O(v) is true, then a ,gating function is placed

at v. Let X be the variable requiring the gating functions.

The gating functions are built from GP(v) and G* (v) as

follows:

● If G*(v) = 0, then v is not a loop header. The -y

function X = GF’(u) is placed at v.

● If G* (v) # 0, then v is a, loop header, A p function

X = p(GP(v), G*(v)) is placed at v and an ~ function

X = q(=G*, X) is placed immediately after v,

The placement of -y function is straightforward. For a loop

header node v, we construct a p function to select the first

parameter for the first iteration of the loop and the second

parameter for the rest. Hence, y’s first parameter should

be GP(v) and its second parameter should be G*(v). The

~ function determines the exiting value of a variable from V.

The exiting paths of a loop are the paths that avoid all the

back edges(i.e., avoid G*(v)). The ~G*(v) is constructed

by reversing all the 0’s in G-(v) to A and the rest to 0’s.

5 Working through an Example

We use the program in Figure 1 to illustrate how the al-

gorithm works. Shown in Figure 2 is the dominator tree

of the program. Each node is also labeled with its depth-

first number d~n. Solid edges are the dominator tree edges;

dashed edges are nontree edges in the CFG. Note that

tree edges do not necessarily exist in the CFG. Edges from

branch nodes are labeled by the branch conditions.

52

1:

2:

3:

4:
5:

6:
7:

8:

9:

10:

11:

12:
13:

14:
15:

read(A)

if (P) then goto 5

if (Q) then

A:=5

while (R) do
A:=A+l

enddo

else
if (T) then

A:=A*3

else

A :=A+6

endif

endif

write(A)

Figure 1. A program example.

1

5?red A

2

fi~

t ?(P) f

:...%............ . 6 8
while andif ?(Q) ~

‘;:.,t ;,.,... ;.
.. ... f 7 9 10

A :-A+l 4 \ ‘.., j write A:-5 elm
...+.>.! ..#...

::
$./ 11

enddo ?(T)
i
$..

~,. %

‘.-. .- 4 2 3....... ~if
A:-A*3 A:-A+6

w.. ---------..‘-. --.. ”--.. . . . ----

Figure 2.

Let us first

Dominator tree of the example program.

examine the situation when the algorithm
processes node 11 (statement 9), i.e. a = if (T). Tvhe chil-
dren of node 11 are nodes 12,13,14 (statements 10,1’2,13).
Node 12 (statement 10) has u as its only predecessor. Since

u is its immediate dominator, the idom node branch of the

algorithm is executed and obtains GP(12) = Tt. Node 13
(statement 12) also has a as its only predecessor. Simi-

larly, the algorithm computes GP(13) = Tf. In both cases,
there is no assignment statement along the path after u.
Hence, @(l I), 0(12) remains false, indicating that node 12
and 13 do not need rj-functions. Node 14 (statement 13)
has two predecessors: node 12 and 13 (statement 10 and
12). In both cases, the sibhng node branch of the algo-
rithm is executed. Both nodes are roots of trees contain-
ing no other nodes. Because node 12 (statement 10) con-
tains an assignment to A and the edge is an unconditional
branch and node 12 (statement 10) is the first predeces-
sor of node 14 (statement 13), EVAL returns (true, Al).
Similarly, EVAL returns Aa and true on the edge from
node 13 (statement 12). Hence 0(14) becomes true and
LzstP(14) contains two paths starting from its siblings:
node 12 and 13 (statement 10 and 12). Following the

toporder to process the sibling set ensures that when merg-

ing, paths in LMP(14), GP(12), GP(13) already count all

the paths from the immediate dominator u. The result af-

ter the merge phase for node 14 (statement 13) is hence
(GP(12) A’) U (GP(13) . A’) = -y(T, A1, A2). It can then

be used by renaming pass to make A14 = -Y(T, A12, A13).

LINK is called to link the subtree rooted at each child to u
and form a larger subtree of the dominator tree. UPDATE

is called on each child to store the gating path expression

for future EVAL calls. Since node 14 (statement 13) im-

mediately post-dominates u, its gat ing pat h expression is

set to A for future EVAL calls.

A more complicated situation happens when branch node

2 (statement ~) is processed (i.e., u = i.f (P)). Node 2

(statement 2) has three children in the dominator tree:
node 3, 6 and 8 (statement 5, 14 and 3). In the case

of node 3 (statement 5), it has three predecessors: node
2, 5, and 9 (statement 2, 7 and 4). Node 2 (statement
z) is idom (3) (the immediate dominator of statement 5),

hence GP(3) = Pt. The path from node 5 (statement

7) leads to node 3 (statement 5) itself, indicating a loop
with node 3 (statement 5) as the loop header. Therefore,

GF’” (3) = Rt. The path from node 9 (statement 4) evalu-
ates to node 3’s (statement 5’s) sibling node 8 (statement

3) and the path is Q,. Hence, Q, is inserted into LzstP(3).
In the case of node 6 (statement 14), it has two predeces-

sors: node 3 and 14 (statement 5 and 13). The path from
node 3 (statement 5) evaluates to its sibling node 3 (state-

ment 5), which is Rf. The path from node 14 (statement

13) evaluates to its sibling node 8 (statement 3), which
is Qf (note that EVAL evaluates to A for the subpath
from node 14 to node 11 (statement 13 to statement 9) be-

cause R(14) is A (as explained in UPDATE(14, GP(14))).
Hence, LzstP(6) contains Rf and Qf. Node 8 (statement

3) has only node 2 (statement 2) as predecessor. Since
idom(8) = 2, GP(8) equals Pf. The toporder is 8, 3, 6 since

node 3 has a path from 8 and node 6 has paths from both
8 and 3. Merge the paths for each node. GP(8) remains

Pt. GP(3) becomes P, U (Pf ~Q,) = ~(P, A’, 7(Q, A’, 0)).

Since G.P* (3) = Rt, a H function is also needed at

node 3 (statement 5). The form of the ~ function is
,u(GP(3), GP*(3)) = K(7(P, A1, 7(Q, A2, 0)), Y(R, A’, 0)).
For node 6 (statement 14), GP(6) becomes (P, ~ Rf) U
(Pj ~ Qf) = Y(P,Y(R, 0, A’), ?(Q, 0, A2)). It is easy to
verify that 0(3) and 0(6) are set to be true by the al-

gorithm indicating they need ~–functions. The final re-

sult after renaming will be: for node 3 (statement 5),

A3 := P(T(P,Ao, ?(Q, A9, 0)), 7(R,A4, 0)); and for node
6 (statement 14), Y(P, 7(R, 0, As), -Y(Q, 0, AI*)).

6 :[mpkmentation and Measurement

We implemented the algorithm using path compression in
the POLARIS restructuring compiler [BEF+ 94]. The sim-
ple algorithm uses only path compression and has a com-
plexi ty of O(E log N). Following are the timing results for
the programs in the Perfect Benchmark [CKPK90]. Table 1
shows the characteristics of the programs in terms of num-

ber of edges and number of subroutines. It also shows the

total execution time in seconds on a SUN-10 workstation

for building the gating functions.

Figure 3 shows the timing results for all the subroutines
versus the number of edges in the subroutines. Also plotted
as a }.eference is the shape of the curve for 0.5 + 0.0015 x

(Elog(E)) with the same E’s as in the codes.

53

Program / Edges I Routines

ARC2D II 2493 42
BDNA

DYFESM
FL052

MDG

MG3D
OCEAN

QCD
SPEC77

TRACK
TRFD

4021
2593

2312

1150

2999
238(J

2019
3769

2144
662

45
77

30

18

28

38

36
64
32

10

Total Time

3.50

10.11
3.05

3.81
2.16

4.68
5.93

2.41

4.10

3.58
0.68

Table 1. Timings of some Perfect Benchmark codes

Time for Perfect Benchmark Programs
(Total 516 Subroutines)

61
I 0.5+0.0015’EIC9(E)

5-

4-

3-

2-

1-

0
0 200 400 600 800 1000

Number of Edges

Figure 3. Timings of the algorithm with path
compression.

Conclusions

In this paper, we present an almost-linear time algorithm
to pIace and build gating functions in a single step for GSA

construction. The algorithm is based on the well-known

path compression technique [Tar79]. Our technique reveals
the relationship between the gating path and the iterative
dominance frontier in the flow graph and provides a new

perspective of the SSA and GSA representation. As com-
paried with GSA algorithms, the new algorithm is more
concise and more efficient. Our preliminary experiment

demonstrates that it is fast for the programs in the Per-
fect Benchmark suite.

References

[ASU86] A. V. Aho, R. Sethi, and J.D. Unman.
Compilers: Principles, Techniques, and Tools.
Addison- Wesley, 1986.

[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck.
Detecting equality of variables in programs. In
Proc. of the 15tti ACM Symposium on Prin-
ciples of Programming Languages, pages 1–11,
1988.

[BE94]

[BEF+94]

[BM090]

[CFR+91]

[CKPK90]

[Far77]

[FOW87]

[Har85]

[Hav93]

[JP93]

[JPP94]

[LT79]

William Blume and Rudolf Eigenmann. The

range test: A dependence test for symbolic,

non-linear expressions. In Proceedings of Super-

computing ’94, November 1994.

Bill Blume, Rudolf Eigenmann, Keith Faigin,
John Grout, Jay Hoeflinger, David Padua, Paul
Petersen, Bill Pottenger, Lawrence Rauchw-
erger, Peng Tu, and Stephen Weatherford. Po-

laris: The next generation in parallelizing com-

pilers. In Proc. 7th Workshop on Programming
Languages and Compilers for Parallel ComPut-

ing, August 1994.

R. Ballance, A. Maccabe, and K. Ottenstein.
The program dependence web: a representa-

tion supporting control-, data-, and demand-
driven interpretation of imperative languages.

In Proceedings of the SIGPLAN’90 Conference
on Programming Language Design and Imple-

mentation, pages 257–271, June 1990.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Effi-

ciently computing static single assignment form
and the control dependence graph. ACM Trans-

actions on Programming Languages and Sys-
tems, 13(4):451-490, October 1991.

George Cybenko, Lyle Kipp, Lynn Pointer, and
David Kuck. Supercomputer performance eval-

uation and the perfect benchmarks. In Pro-

ceedings of IC’S1 Amsterdam, Netherlands, pages

162-174, March 1990.

R. Farrow. Efficient on-line evacuation of func-
tions defined on paths in trees. Technical report,

Rice University, Dept. Math. Sci., 1977.

J. Ferrante, K. J. Ottenstein, and J. D. Warren.
The program dependency graph and its uses

in optimization. ACM Transactions on Pro-
gramming Languages and Systems, 9(3):319–

349, June 1987.

P. Harel. A linear time algorithm for finding

dominators in flowgraphs and related problems.

In Proc. of the 17th ACM Symposium on Theory
of Computing, May 1985.

Paul Havlak. Construction of thinned gated
single-assignment form. In Pro.. 6rd Workshop
on Programming Languages and Compilers for

Parallel Computing, August 1993.

R. Johnson and K. Pingali. Dependence-based

program analysis. In Proc. the SIGPLAN ’93

Conference on Program Language Design and
Implementation, June 1993.

R. Johnson, D. Pearson, and K. Pingali. The
program structure tree: Computing control re-
gions in linear time. In Proc. the SIGPLAN ’94
Conference on Program Language Design and
Implementationj June 1994.

Thomas Lengauer and Robert Endre Tarjan.
A fast algorithm for finding dominators in a
flowgraph. ACM Transactions on Program-
ming Languages and Sgstems, 1(1):121–141,
July 1979.

54

[RWZ88]

[SG94]

[Tar79]

[Tar81a]

[Tar81b]

[TP93]

[TP95]

[WO192]

[WZ91]

B. K. Rosen, M. N. Wegman, and F. K. Zadeck.

Global value numbers and redundant compu-

tation. In Proc. of the 15th ACM A$YT7tp08k&~
on Principles of Programming Languages, pages

12-27, 1988.

V.C. Sreedhar and G.R, Gao. Computing @

nodes in linear time using dj-graph. Techni-

cal Report Technical Report ,ACAPS TechnicaJ
Memo 75, McGill University, School of Com-

puter Science, January 1994.

Robert Endre Tarjan. Applications of path com-

pression on balanced trees. Journal of ACM,
26(4):690–715, October 1979.

Robert Endre Tarjan. Fast algorithm for solving
path problems. Journcd of the ACM, 28(3):594-
614, July 1981.

Robert Endre Tarjan. A unified approach to

path problems. Journal oj the A CM, 28(3):577-
593, July 1981.

Peng Tu and David Padua. Automatic array
privatization. In Pvoc. 6rd Workshop on Pro-

gramming Languages and Compilers for Parai-
lel Computing, August 1993.

Peng Tu and David Padua. GSA based demand-

driven symbolic analysis for parallelizing com-
pilers. In Proc, ACM 1995 International Con-
ference on Supercomputing, July 1995.

Michael Wolfe. Beyond induction variables.
Proc. the SIGPLA N’92 Conference on Pro-

gramming Language Design and Implementa-
tion, June 1992.

M. N. Wegman and F. K. Zadeck. Constant
propagation with conditional branches. ACM
Transactions on Programming Languages and

Sgsterns, 13(2):181-210, April 1991.

55

