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Abstract
Current parallelizing compilers cannot identify a signifi-

cant fraction of fully parallel loops because they have complex

or statically insufficiently defined access patterns. For this

reason, we have developed the Privatizing DOALL test – a

technique for identifying fully parallel loops at run-time, and

dynamically privatizing scalars and arrays. The test itself is

fully parallel, and can be applied to any loop, regardless of

the structure of its data and/or control flow, The technique

can be utilized in two modes: (i) the test is performed be-

fore executing the loop and indicates whether the loop can

be executed as a DO ALL; (ii) speculatively – the loop and

the test are executed simultaneously, and it is determined

later if the loop was in fact parallel. The test can also be

used for debugging parallel programs. We discuss how the

test can be inserted automatically by the compiler and out-

line a cost/performance analysis that can be performed to

decide when to use the test. Our conclusion is that the test

should almost always be applied - because, as we show, the

expected speedup for fully parallel loops is significant, and

the cost of a failed test (a not fully parallel loop), is mini-

mal. We present some experimental results on loops from the

PERFECT Benchmarks which confirm our conclusion that

this test can lead to significant speedups.

1 Introduction
During the last two decades, compiler techniques for the auto-

matic detection of parallelism have been studied extensively

[17, 27]. From this work it has become clear that, for a class

of programs, compile-time analysis has to be complemented

with run-time techniques if a significant fraction of the im-

plicit parallelism is to be detected [6, 8]. The main reason

for this is that the access pattern of some programs cannot

be determined statically, either because of limitations of the

current analysis algorithms or because the access pattern is

a function of the input data. For example, most dependence
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analysis algorithms can only deal with subscript expressions

that are linear in the loop indices. In the presence of non-

linear expressions, a dependence is usually assumed. Com-

pilers usually also conservatively assume data dependence in

the presence of subscripted subscripts. More powerful anal-

ysis techniques could remove this last limitation when the

index arrays are computed using only statically-known val-

ues. However, nothing can be done at compile-time when the

index arrays are a function of the input data [13, 21, 29].

Run-time techniques have been used practically from the

beginning of parallel computing. During the 1960s, relatively

simple run-time techniques, used to detect pa~allelism be-

tween scalar operations, were implemented in the hardware

of the CDC 6600 and the IBM 360/91 [23, 24]. Some of to-

day’s parallelizing compilers postpone part of the analysis to

run-time by generating two-version loops. These consist of an

if statement that selects either the original serial loop or its

parallel version. The boolean expression in the if statement

typically tests the value of a scalar variable.

During the last few years, new techniques have been devel-

oped for the run-time analysis and scheduling of loops with

cross-iteration dependence [5, 13, 16, 19, 20, 21, 28, 29].

Most of this work has focussed on developing run-time

methods for constructing parallel schedules for DOACROSS

loops. Unfortunately, these methods have significant se-

quential components, rely heavily on global synchronizations

(communication), or do not extract the maximum available

parallelism (they make conservative assumptions). As a re-

sult, these methods have not produced scalable speedups and

have not succeeded in gaining wide acceptance.

In this paper we approach the problem of determining the

parallelism of loops at run-time from a different viewpoint –

instead of finding a valid parallel execution schedule for the

loop, we focus on the problem of simply deciding if the loop

is fully parallel. That is, determining whether or not the loop

has cross-iteration dependence. Our interest in identifying

fully parallel loops is motivated by the fact that they arise

frequently in real programs. As we show, the analysis needed

to test whether or not a loop is fully parallel can be done very

efficiently at run-time and produces scalable speedups. User

directives or execution statistics can be used to identify the

loops to which this test is to be applied. The techniques pre-

sented are also capable of eliminating some memory-related

dependence by dynamically privatizing scalars and arrays.

In Section 2, we discuss the analysis techniques. In Sec-

tion 3, we describe how these techniques can also be used for
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debugging parallel programs and for speculative paralleliza-

tion. In Section 4, we discuss some important compile-time

issues. Finally, in Section 5, we present some experimen-

tal measurements of loops from the PERFECT Benchmarks

executed on the Alliant FX/80 and 2800. These measure-

ments show that the techniques presented in this paper are

effective in producing speedups even though the analysis is

done without the help of any special hazdware devices. It is

conceivable, and we believe desirable, that future machines

would include special hardware devices to accelerate the run-

time analysis and in this way widen the range of applicability

of the techniques and increase potential speedups,

2 Detecting Parallelism at Run-Time

A loop can be executed in fully parallel form, without syn-

chronization, if and only if the desired outcome of the loop

does not depend in any way upon the execution ordering of

the data accesses from different iterations. In order to de-

termine whether or not the execution order of the data ac-

cesses atfects the semantics of the loop, the data dependence

relations between the statements in the loop body must be

analyzed [3, 11, 17, 27, 30]. There are three possible types

of dependence between two statements that access the same

memory location: flow (read after write ), anti (write after

read), and output (writ e after write). Flow dependence aze

data producer and consumer dependence, i.e., they express a

fundamental relationship about the data flow in the program.

Anti and output dependence, also known as memory-related

dependence, are caused by the reuse of memory, e.g., pro-

gram variables.

Sl: DOi=l, n Sl: DOi = 1, n/2
S2: A[i] = 2*A [i] S2: tmp = A [2*i]
S3 : ENDDO S3 : A[2*i] = A[2*i-1]

S4 : A[2*i-1] = tmp
S5 : ENDDO

(a) (b)

Sl: DOi=2, n
S2 : A[i] = A[i] + A[i-1]
S3 : ENDDO

(c)

Figure 1:

If there are flow dependence between accesses in different

iterations of a loop, then the semantics of the loop cannot

be guaranteed if the loop is executed in fully parallel form.

The iterations of such a loop are not independent because

values that are computed (produced) in some iteration of the

loop are used (consumed) during some later iteration of the

loop. For example, the iterations of the loop in Fig. l(c),

which computes the prefix sums for the array A, have to be

executed in order of iteration number because iteration z + 1

needs the value that is produced in iteration i, for 2 s i s n.

In principle, if there are no flow depemiences between the

iterations of a loop, then the loop may be executed in fully

parallel form. The simplest situation occurs when there are

no anti, output, or flow dependence. In this case, all the

iterations of the loop are independent and the loop, as is,

can be executed in parallel. For example, there are no cross-

iteration dependence in the loop shown in Fig. 1(a), since

iteration z only accesses the data in A[i], for 1 < i < n. If

there are no flow dependence, but there are anti or output

dependence, then the loop must be modified to remove all

these dependence before it can be executed in parallel. In

order to remove certain types of anti and output dependence

a transformation called privatization can be applied to the

loop. Privatization creates, for each processor cooperating

on the execution of the loop, private copies of the program

variables that give rise to anti or output dependence (see,

e.g., [7, 14, 15, 25, 26]). The loop shown in Fig. l(b), which,
for even values of i, swaps A[i] with A[i - I], is an example of

a loop that cam be executed in pazallel by using privatization;

the anti dependence between statement S4 of iteration i and

statement S2 of iteration i -i- 1, for 1 < i < n/2, can be

removed by privatizing the temporary variable tmp.

In this section we describe run-time techniques that can be

used to determine if a loop can be executed in parallel. We

first describe the DOALL test which determines if the loop,

in its original form, cam be executed in parallel, i.e., it de-

cides if there are any cross-iteration dependence in the loop.

We then explain how to augment the DOALL test to also
determine at run-time whether all existing memory-related

dependence can be removed by privatization. If it is found

that all dependence can be eliminated, then the augmented

DOALL test will transform the loop by privatizing the vari-

ables which give rise to the anti and/or output dependence.

We will call the augmented version of the DOALL test the

Privatizing DOALL test.

In order to identify the dependence relations among the

iterations of the loop, both tests inspect the accesses to the

variables that cannot be analyzed at compile time. Briefly,

the inspection is done by using shadow versions of the vari-

ables under scrutiny to follow (keep a record of) the data

access pattern of the original loop. After processing all the

accesses contained in the original loop, some additional com-

putation determines whether all iterations of the loop can be

performed in parallel while guaranteeing the semantics of the

loop. For the Privatizing DOALL test, an additional phase

may be required to actually allocate the private variables.

It must be emphasized that both DOALL tests are de-

signed to be used only at run-time on loops for which the

compiler could not evaluate with certainty the data depen-

dence relations. We recall that there are several possible

situations in which it is either difficult or impossible to de-

termine the data dependence relationships at compile time:

very complex subscript expressions which could only be com-

puted statically through deeply nested forward substitutions

and constant propagations across procedure boundaries, non-

linear subscript expressions (a fairly rare case) and, most of-

ten, subscripted subscripts.

Another very important point is that these run-time tests

must be fully parallel. If the tests cannot be executed in par-

allel, then they would not scale with the number of processors

or the data size, and the overhead associated with the tests

could become a sequential bottleneck of the loop.

2.1 The DOALL test

The DOALL test described below is a pass/fail test for full

parallelism of a loop, i.e., it detects if there are any cross-

iteration dependence in the loop. If there are any depen-

34



S1:DO1 =1,8 w[1:81 = [132375612]
S2 : A[W[i]] = . . . R[I:8]= [192278812]

S2: . . . = A[R[i]]

S3: ENDDO w~[I:8] = [132475612]
R/ [1:8] = [19210888I2]

Figure 2: Results of the DOALL test.

dences, then this test will not identify them, it will only flag

their existence. We first describe the DOALL test, as applied

to a shared array A, and then give a few examples illustrating

its use.

DOALL Test

1. Marking Phase. For each shared array A[l : s] whose

dependence cannot be determined at compile time, we

declare read and write shadow arrays, A? [1 : s] and

AW [1 : s], respectively; the shadow arrays are initialized

to zero, and are marked as follows.

In parallel, for each iteration i of the loop, process all

accesses to the shared array A:

(a)

(b)

(c)

Writes: If this is the first write to this array ele-

ment in this iteration, then set the corresponding

element in AW.

Reads: If this array element is never written in

this iteration, then set the corresponding element

in A,.

Count the total number of write accesses to A that

are marked in this iteration, and store the result

in twi(A), where z is the iteration number.

2. Analysis Phase. For each shared array A under scrutiny:

(a)

(b)

(c)

Compute (i) tw(A) = ~ t~i (A), i.e., the total

number of writes that were marked by all itera-

tions in the loop, and (ii) tin(A) = sum(Aw[I : s]),

i.e., the total number of marks in Aw[l : s].

If any(AW[:] A A,[:]),l i.e., if the marked areas

are common anywhere, then the loop IS NOT a

DOALL and the phase ends. (Since we read and

write from the same location in different iterations,

there is at least one flow or anti dependence.)

Else if tw(A) = tin(A), then the loop IS a DOALL

and the phase ends. (Since we never overwrite

any memory location, there are no output depen-

dence.)

1any returns the “OR” of its vector operand’s elements, I.e.,
any(v[l : n]) = (0[1] v ?42]v . . . v V[n]).

(d) Otherwise, it IS NOT a DOALL. (There are out-

put dependence since we overwrite at least one

memory location. )

We now give a few examples of the DOALL test. Consider

the loop shown in Fig. 2. Assume that the shared array

A[l : 12] is accessed in a manner such that the dependence

cannot be determined at compile time. In the first example,

the reference pattern of A within the loop is given by the

subscript arrays W[l : 8] and R[l : 8]. The DOALL test

allocates, and initializes to zero, the write and read shadow

arrays, AW [1 : 12] and A, [1 : 12], respectively. We obtain the

results depicted in the table. Because AW [2] = A. [2] = 1, we
know there exists at least one flow or anti dependence. Since

the number marked does not equal the number written, we

know that there are output dependence. Therefore, the loop

cannot be executed in parallel. In the second example, we use

the subscript arrays W’ [1 : 8] and R’ [1 : 8], and the shadow

arrays AL [1 : 12] and A; [1 : 12]. Because the number of

writ e accesses marked equals the number written, and since

A~ [:] A A, [:] is zero everywhere, we conclude that there are

no cross-iteration dependence, i .e., the loop can be executed

in parallel.

It should be noted that an implementation of the DOALL

test need not adhere exactly to the above description. For ex-

ample, communication costs may be reduced by strip-mining

the loop and marking in private storage, and then merging

the private arrays into a global shadow array. The complexity

of the DOALL test is analyzed in Section 2.3.

2.2 The Privatizing DOALL Test

The DOALL test described above is only able to detect the

presence of dependence among the iterations of the loop. In

this section we explain how to augment the 130 ALL test so

that it can determine if all dependence can be removed by

privatization. If it is found that all the dependence can be

eliminated, then this Privatizing DOALL test will transform

the loop by allocating the private variables.

We now define a private variable, and state the criterion

that must be satisfied in order for a variable to be determined

as privat izable by the Privatizing D OALL test.

Definition. A private variable can only be accessed by the

loop iteration to which it belongs.
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S1 : DOi=l, n RI[I:8] =[222IO8881O]

S2 : = AIRl[i]] W[I:8]= [135473612]

S3 : A[W[i]] = . . . R2[I:8] = [1321073812]

S4: . . . = A[R2 [i]]

S5 : ENDDO

Position in shadow arrays Written Counted

1 2 3 4 5 6 7 8 9 10 11 12 tw(A)

,4...[1.191
tin(A)

1 0 1 1 1 1 1 () o () o 1 8 7

A,~l : 12j o 1 0 0 0 0 f) 1 (1 1 () ()

Anp[l : 12] o 1 0 0 0 (1 c1 1 () 1 () o

AW[:] A A,[:] o 0 0 0 0 0 () (1 () (1 o ()

Au[:] A A~P [:] o 0 0 (1 (1 1) () () () () o 0

Figure 3: Results of the Privatizing DOALL test.

Privat izat ion Criterion. Let A be a shared array that is

referenced in a loop L. A can be privatized by the Pri-

vatizing DOALL test if every read access to an element

of A is preceded by a write access to that same element

of A within the same iteration of L.

In general, dependence that are generated by accesses to

variables that are only used as workspace (e.g., temporary

variables) within an iteration can be eliminated by privatiz-

ing the workspace. However, there are some types of de-

pendence that the Privatizing DOALL test does not handle.

Specifically, if a shared variable is initialized by reading a

value that is computed outside the loop, then we will not

privatize that variable. Such variables could be privatized

if a copy-in mechanism for the external value is provided.

Since this situation occurs infrequently in practice we have

not addressed it in our tests.

The last value assignment problem is the conceptual ana-

log of the copy-in problem. If a privatized variable is live

after the termination of the loop, then thr privatization tech-

nique must ensure that the correct value is copied out to the

original (non privatized) version of that variable. One way

in which this problem can be handled by our run-time tests

is to associate a time stamp (iteration number) with each

private variable, which is updated at every write. After the

loop has been executed, the value of the private variable with

the latest time stamp is copied to the original version of the
variable. It should be noted that private loop variables are

seldom live after the loop.

In order to simplify the description of the Privatizing

DOALL test given below, we do not address the last value

assignment problem. (The additions to the D OALL test are

italicized. )

Privatizing DOALL ‘Test

1. Marking Phase. For each shared array A[l : s] whose

dependence cannot be determined at compile time, in

addition to the shadow arrays, A. [1 : s] and AW [1 : s], we

declare a shadow array A.P [1 : s] that will be used to flag

array elements that can NOT be privatized. As before,

the shadow arrays are initialized to zero. Initially, we

assume that all array elements are privatizable, and if it

is found in any iteration that an element is read before

it is written, then it will be marked as non privatizable.

In parallel, for each iteration z of the loop, process all

accesses to the shared array A:

(a)

(b)

(c)

Writes: If this is the first write to this array ele-

ment in this iteration, then set the corresponding

element in AW.

Reads: If this array element is never written in

this iteration, then set the corresponding element

in A.. If this array element has not been written

in this iteration before this read access, then set

the corresponding element in AWP, i.e., mark it as

NOT privatizable.

Count the total number of write accesses to A that

are marked in this iteration, and store the result

in tw, (A), where i is the iteration number.

2. Analysis Phase. For each shared array A under scrutiny:

(a)

(b)

(c)

(d)

(e)

Compute (i) tw(A) = ~ tw~ (A), i.e., the total

number of writes that were marked by all itera-

tions in the loop, and (ii) tin(A) s sum(A~ [1 : s]),

i.e., the total number of marks in AW [1 : s].

If any(AW [:] A A, [:]), i.e., if the marked areas

are common anywhere, then the loop IS NOT a

DOALL and the phase ends. (Since we read and

write from the same location in different iterations,

there is at least one flow or anti dependence.)

Else if tw(A) = tin(A), then the loop IS a DOALL

and the phase ends. (Since we never overwrite
any memory location, there are no output depen-

dence.)

Else if any(Aw [:] A AmP [:]), then the loop IS NOT

a DOALL and the phase ends. (There is at least

one dependence that cannot be removed by privati-

zat ion).

Otherwise, the loop can be made into a DOALL

by privatizing all elements of the shared array that

are written in the loop. (We remove all memory-

related dependence by privatizing these array ele-

ments.)

In order to illustrate the differences between the DOALL

test and the Privatizing DOALL test, we consider the loop

shown in Fig. 3, which contains memory-related dependence
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index 1 2 3 4 5 6 7 8 9 10 11 12

AW[l : 12] 1 0 1 1 1 1 1 0 0 0 0 1

Prefix Sums 1 1 2 3 4 5 6 6 6 6 6 7

PA[l : 7] A[l] A[3] A[4] A[5] A[6] A[7] A[12]

Rl[l : 8] 2 2 2 10 8 8 8 10

PR1[l : 8] 2 2 2 10 8 8 8 10

W[l : 8] 1 3 5 4 7 3 6 12

PW[l : 8] l+d 2+d 4+d 3+d 6+d 2+d 5+d 7+d

R2[1 :8] 1 3 2 10 7 3 8 12

PR2[1 : 8] l+d 2-td 2 10 6+d 2+d 8 7+d>

Table 1: Allocating the private variables, and creating private subscript arrays.

that can be removed by privatization. Assume the loop has

8 iterations, accesses a vector of dimension 12, and that the

access pattern is given by the subscript arrays Rl, R2 and W.

After marking and counting we obtain the results depicted

in the table. Since AW [:] A A, [:] and AW [:] A AnP [:] are zero

everywhere, the loop can be made into a DOALL, but only

aft er privatization since tw(A) # tin(A).

2.2.1 Allocating the Private Variables

If the Privatizing DOALL test determines that privatization

can be used to transform the loop into a DOALL, then there

are two choices: privatize the entire shared variable, or only

privatize the shared memory locations (e.g., elements of the

array) that are written in the loop. If only the elements that

are written are privatized, it is possible that this technique

might yield performance gains over traditional compile time

privatization techniques, which usually privatize the entire

array [14, 15, 25, 26]. In fact, if the data access pattern is

sparse enough, it is even conceivable that the reduction in

the size of the working set could lead to superlinear speedups

due to cache effects.

If it is decided to privatize only the elements that are writ-

ten, then the private variables can be allocated as follows.

Consider the array A from the previous example. The ele-

ments of A that will be privatized are exactly those elements

k for which AW [k] = 1. Since tin(A) = 7, we will allocate

enough space for seven elements of A; denote this space by

PA[l : 7]. We can determine the positions of the privatized

elements of A in PA from the prefix sums of AW [1:12], e.g.,

the private version of A[5] is contained in PA[4] since the

prefix sum value of AW [5] = 4 (see Table 1).

In general, on each access to a shared array element A[k], it

must be determined whether or not A [k] has been privat ized,

e.g., by checking A~ [k]. However, in the case of subscripted
subscripts, we can remove the need for this check from the

execution as follows. Each iteration is provided with a pri-

vate subscript array (of the same dimension as the original

subscript array), and all references to the subscript array will

use the private version. If A [k] is not pri vatized, then refer-

ences to it in the subscript array will remain the same. If

A[k] is privatized, then occurrences of k in the subscript ar-

ray will be replaced by the prefix sum \alue in AW [k] plus

the offset between the starting addresses of A and PA. The

private versions Pl?l, P W, and PR2, of the subscript arrays

Rl, W, and R2, respectively, are shown in Table 1, where d

is the offset between the starting addresses of PA and A,

i.e., d = &PAIO] – &AIO]. Actually, we can handle other

cases besides subscripted subscripts in a similar manner by

constructing a private subscript array PS[l : s], and and

transforming references such as A[i] into A[PS[i]]. The val-

ues of PS [:] are set as follows: if A[k] is not private, then

PS[k] = k, and if A[k] is private, then PS[lc] = sk + d, where

sk is the prefix sum value in AW [k], and d is again the offset

between the starting addresses of A and PA. Since this tech-

nique requires indexing out of bounds, it may cause problems

on certain architectures and would be best implemented in

machine language.

2.3 Complexity of the DOALL Tests

We now examine the complexity of the DO ALL and the Pri-

vatizing DOALL tests. Let p denote the number of proces-

sors, let n denote the total iteration count of the loop, let

s denote the number of elements in shared array, and let

a denote the (maximum) number of accesses to the shared

array in a single iteration of the loop. As explained be-

low, the time required by the Privatizing DOALL test is

T’(n, s, a,p) = o(na/p + logp).

The marking phase (Step 1) takes time O(na/p + logp),

i.e., time proportional to max(na/p, logp). TNe record the

read and write accesses, and the privatization flags in pri-

vat e shadow arrays. In order to check whether for a read of

an element there is a write in the same iteration, we sim-

ply check that element in the shadow array – a constant

time operation. All accesses can be processed in O(na/p)

time, since each processor will be responsible for O(na/p)

accesses. Aft er all accesses have been marked in private st or-

age, the private shadow arrays can be mergecl in the global

shadow arrays in O(na/p + log p) time; the IIog p cent ri?.m-

tion arises from the possible write conflicts in global storage

that could be resolved using software or hardware combin-

ing. Ifs > na/p, then the time required to merge the private

shadow arrays into the global shadow arrays may dominate

the time required for the actual marking. This can be avoided

by using private hash tables of size O(na/p) instead of the

private shadow arrays. The hash tables can be transferred

to the global shadow arrays in O(na/p + logp) time, and

the check needed to avoid marking both a read and a write

in the same iteration will remain a constant time operation

(although slightly more expensive). Note that we minimize

communication, since everything except the final merge step

is done in private storage.

The counting in Step 2(a) can be done in parallel by giving

each processor s/p values to add within its private memory,

and then summing the p resulting values in global storage;

37



this method takes O(s/p + logp) time [12]. The comparisons

in Step 2(b) (2(d)) of the AW and A, (-4nP) shadow arrays

will take at most O(s/p + logp) time. If s > W} then the

complexity can be reduced to O(na/p + log p) by using hash

tables.

From the above analysis, we conclude that the DOALL and

the Privatizing DOALL tests require little communication

and should scale well wit h all of the parameters, i.e., the

number of processors, the size of the shared variable, and the

number of references to the shared variable (encompassing

both the number of iterations, and the number of accesses

within an iteration).

2.3.1 Complexity of Run-Time Privatization

If the Privatizing DOALL test determines that privatization

is needed, then we either privatize the entire shared array A,

or we privatize only the elements of the shared array that are

written during the loop. If the entire array is privatized, then

the allocation can be done in constant time.

When privatizing only the elements that are written, the

information needed is t m (A), the number of elements writ-

ten, and the prefix sums of AW. Since AW is computed during

the test itself, the only additional information needed is the

prefix sums, which can be computed in time O(s/p+logp) by

recursive doubling [12]. In fact, the prefix sums can be com-

puted when determining tin(A) without much extra work. If

the entire array is not privatized, then in the special case of

subscripted subscripts, private copies of the subscript arrays

are also created. Given the original subscript array and A~,

each private subscript array can be created in time O(m),

where m is the size of the original subscript array.

If a private variable is live after the loop terminates, then

we will also need to perform a last value assignment. In this

case, as mentioned before, we can keep time stamps (iteration

numbers) with the private variables. Then, after the termi-

nation of the loop, the private variable with the latest time

stamp is copied to the original version of the variable. The

private variables with the latest time stamp can be selected

in time 0(.s log p).

2.3.2 Schedule Reuse

Thus far, our analysis has assumed that the DOALL test or

the Privatizing DOALL test must be run each time a loop is

executed in order to determine if that loop is parallel. How-

ever, if the loop is executed again, with the same data access

pattern, the first test can be reused amortizing the cost of

the test over all invocations. This is a simple illustration of

the schedule reuse technique, in which a correct execution

schedule is determined once, and subsequently reused if all

of the defining conditions remain invariant (see, e.g., [21]).

If it can be determined at compile time that the data access

pattern is invariant across different executions of the same

loop, then no additional computation is required. Otherwisel

some additional computation must be included to check this

condition, e.g., for subscripted subscripts the old and the new

subscript arrays can be compared.

a Verifying of Parallelized Loops
We have presented the DOALL and the Privatizing DOALL

tests as run-time techniques that can be used to detect the

parallelism of a loop before executing it. Another important

area of application for these tests is to detect race conditions

[9] in loops that the programmer identifies as parallel. In fact,

the DOALL test can be used as an efficient on-the-fly test [22]

for the cases when there are no synchronization operations

between parallel loop iterations. When used for this purpose,

the marking phase could be run in parallel by incorporating it

in the body of the parallel loop, and the analysis phase could

be done after the completion of the loop. It is important to

note that since the DOALL test itself is fully parallel, the

outcome of the test will be valid for any 100P, regardless of

its data dependence structure.

There are several situations in which it may be useful to

have a run-time test that can determine, for a particular in-

put set, whether or not a loop has been validly parallelized.

For example, such a test can be used to check manually paral-

lelized loops. Writing and especially debugging parallel pro-

grams is a very complex task, and there are many cases in

which it may be difficult to verify a program’s correctness by

only analyzing its output. For example, in loops where access

to a variable is guarded by a branch condition the DOALL

test can be used to verify that no illegal concurrent accesses

to that variable are made. In fact, using the DOALL test, we

have found an instance in which the programmer incorrectly

identified a loop as a DOALL for this reason.

3.1 Speculative Execution

Thus far, we have advocated the DOALL test as a method

which should be used at run-time to determine whether a

loop should be be executed sequentially or in parallel. There

are, however, certain circumstances under which it may be

preferable to go even further and actually execute the loop in

parallel, and determine later if, for the given input, the loop

was in fact parallel. If it was not, the loop is re-execut ed

sequentially. One example of such a situation is when it

is known (from, e.g., static analysis, run-time statistics, or

compiler directives) that the loop is usually fully parallel.

Another case is when the work required to extract the data

access pattern (for study by the tests) is comparable to the

work performed by the loop itsel~ in this scenario, not too

much extra work (besides the test itself) is performed, and,

at the conclusion, both the status of the pass/fail test and the

results of the, possibly invalid, parallel execution are known.

Speculative use of the tests would be implemented in essen-

tially the same way discussed in Section 3. In addition, the

prior state of any variables modified by the parallel execu-

tion must be available for the sequential re-execution of the

loop which will be required if the test fails. One alternative

to saving/restoring the state of these variables is to privatize

them, and to copy-in any needed external values. Then, if

the test passes, only the usual copy-out of the live variables

is necessary. In any case, the cost of the solution adopted for

this problem must be factored into the decision of whether

or not to use speculative execution. Another issue that must

be dealt with is exception handling. A simple solution is to

abandon the parallel execution if an exception occurs, and

execute the loop sequentially.

As a final remark, we note a method that can be used to

minimize the risks of speculative execution: one processor

executes the loop sequentially, and the rest of the processors,

speculatively, execute the loop in parallel. Of course, the

sequential and the parallel executions would need separate
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**Original Version**
DO 540 1=1, NP

DO 530 J=I, I

IJ=IA(I)+J

. . . .
DO 520 K=I, I

MAXL=K
IF(K. Eq .1) MAXL=J
DO 510 L=l ,MAXL

KL=IA(K)+L
. . . . .

C **DOAL,L ‘rest checks the writes to X**

X( IJ, KL)= . . . .

510 CONTINUE

520 CONTINUE

530 CONTINUE

540 CONTINUE

**Extracted LOOP for Marking**

DOALL I = 1,NP
c **private variables -- do once per processor**

integer X-w( :,:), tw-i, IJ, MAXL, J, K, L, KL
LOOP ** do once per iteration (I) **

tw.i = O
DO J=I, I

IJ=IA(I)+J

DO K=I, I

MAXL=K

IF(K. EQ .1) MAXL=J

DO L=l ,MAXL

KL=IA(K)+L
C **mark shadow array X-w (if not already marked)**

IF (X-W(IJ ,KL) .NE. I) THEN
X-W(IJ, KL) = I
tw. i = tw-i + 1

ENDIF
ENDDO

ENDDO
ENDDO
tw(x) = tw-i + tw(X)

ENDDOALL

Figure 4: An example of how the original data accesses are replaced by accesses to the shadow variables for the marking phase

of the D OALL test. This loop is extracted from loop 540 in subroutine INTGRL of TRFD from the PERFECT Benchmarks.

The DOALL test is applied to the shared array X. In the inspector loop (right), writes are marked in the shadow array X.w by

iteration number, so the shadow amay can be reused. The number of writes marked is recorded in the private variable t w_i.

copies of the output data for the loop. As long as the cost of

creating these copies is not too great, this technique should

maximize the potential gains attainable from parallel execu-

tion, while, at the same time, minimizing the costs incurred

by failed tests, i.e., from testing loops that are, in fact, not

parallel.

A Automatic Application of the Tests

In the previous sections we have discussed run-time data de-

pendence and privatization techniques. These techniques are

automatable and a good compiler could easily insert them in

the original code. In this section, we address some of the is-

sues that are involved with the automatic utilization of these

tests. We begin with a brief outline of how a compiler might

aPply the DOALL test.

1. At Compile Time.

(a)

(b)

(c)

Generate an inspector loop for the marking phase

of the test. This is done by collecting all accesses

to the shared variables under study into a sepa-

rate loop, where they are replaced by accesses to

the appropriate shadow variables. An example is

shown in Fig. 4, where there are only output de-

pendence.

A cost/performance analysis determines whether

the test should be applied. If not, the inspector

will be discarded and a sequential version of the

loop will be generated.

Generate a multi-version loop with options for

sequential and parallel executions of the original

loop. The run-time selection among the versions

of the loop will depend upon the outcome of the

analysis of the shadow variables marked by the in-

spector loop. The analysis can be done by calls to

a run-time library.

2. At Run-Time,

(a)

(b)

(c)

(d)

Execute the marking phase of the test, i.e., run the

inspect or generated in Step 1(a).

Execute the analysis phase of the test, which gives

the pass/fail result of the test,

Execute the selected version of the loop indicated

by the result of Step 2(b).

Collect statistics for use in future runs, and/or for

schedule reuse in this run.

Generating the Inspector Loop

An inspector loop can be formed from the cmiginal loop by

replacing accesses to the shared variables with accesses to the

appropriate shadow variables; also, to avoid side effects, ~1
other program variables written in the loop must be priva-

tized. However, since we want the inspector to run as fast

as possible, we want to exclude any computation from the

original loop that does not aflect the pattern of access to the

variables under study. In the best case, the access pattern of

the shared variable is known before entering the loop, e.g.,

the subscripts are in a pre-determined subscript array. In this

simple case, the access pattern of the array can be processed

in complete isolation from the rest of the loop. However,

there are cases in which it is not possible for the data access

operations to be completely isolated from the other compu-

tation in the loop. Specifically, if the address (subscript)

computation of an array element is performed in the same r-

block (strongly connected component in the dependence flow

graph) as the statement that references the array using that

subscript, then the address computation cannot be removed

from the inspector loop. For example, the access pattern may

be computed inside the loop itself, perhaps in a preparation

phase, e.g., a loop first collects in a subscript array the indices

of the elements of a much larger data structure that will be
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processed subsequently in the loop. In this case, the inspec-

tor loop will have to include the access pattern computation.

Another difficult case is when the statements accessing the

array in question are control flow dependent upon data com-

putation performed inside the loop (with the exception of

loop indices and loop invariant variables ). In this case, the

inspector must either execute the computation that defines

the predicates, or assume conservatively that all branches are

taken (possibly introducing false dependence). In order to

minimize such situations, the compiler should reduce the con-

trol flow affecting data accesses as much as possible by using

known techniques such as loop distribution, loop invariant

hoisting, and, generally, code motion.

Determining When to Apply the Test

Although it is not strictly necessary for the compiler to per-

form any cost /performance analysis, the overall usefulness

of the tests will be enhanced if their run-time overhead is

avoided when the test is likely to fail. There are three

main factors that the compiler should consider when deciding

whether or not to apply the test: the probability that test

will pass (i.e., that the loop is in fact a DOALL), the speedup

that would be obtained if the test passes, and the slowdown

incurred if the loop is not a DOALL.

In order to predict the outcome of the test, the compiler

should use both static analysis and run-time statistics (col-

lected on previous executions of the loop); in addition, direc-

tives about the parallelism of the loop might prove useful.

Given a loop L that is in fact a DOALL, the ideal speedup,

Sp~~, of L is the ratio between its sequentird and its parallel
execution times, T.. * and T~oall, respectively. However, if L

is parallelized by the DOALL test, the attainable speedup, Sp,

must account for the overhead required by the marking and

analysis phases of the test, T~m,k and T’am.lV8~., respectively.

Using static analysis, the compiler can compute an esti-
. .

TTmate for Sp by estlmatmg TS~q, ~0~~/, ~a~~ and Tana/vsts.

The values T.eq and Tdoa[l can be estimated using some ar-

chitectural model, e.g., instruction counting. Our analysis

in Section 2.3 predicts that T~.rk = O(na/p + Iogp) and

Z“..IV,,, = O(na/p + logp), where p is the number of pro-

cessors, n is the number of iterations of the loop, and a is

the maximum number of accesses to the shared array in a

single iteration of the loop. In practice, T~~~/v.,, should

be fairly well modeled by this expression, i.e., Tana[v,i, =

c(na/p + log p), where c is some small constant. However, the

estimate of Tmark may not always be as good. The reason
for this is that our analysis in Section 2.3 implicitly assumed

that the data access pattern is known before loop entry. As

discussed above, in the worst case T~.yk z TdO.ll, i.e., the

inspector loop is computationally equivalent to the original

loop. However, in all cases, an estimate of Tmark can be

obtained by static analysis of the inspector loop, e.g., by in-

struction counting.

Note that in the worst possible case T~.,k x Tamclv,i~ x

Tdoall, and that even in this case the attainable speedup pre-

dicted for the DOALL test is x ~Sp;d. Although 33% of

ideal speedup may not appear impressive on an eight proces-

sor machine, these tests were designed for massively parallel

processors (MPPs), and on such a machine this in an excellent

performance when compared to the alternative of sequential

execution.

It is also instructive to examine slowdown incurred by a

failed test, i.e., when the loop must be executed sequentially,

In this case, T.,q is increased by T~~.k + T~~~Iy,,~. Note

that since the DOALL test is fully parallel, in the worst case

we have T~~rk z T~nm[us,S z ~‘T~~q, i.e., when the mark-

ing phase is work-equivalent to the loop. Thus, the cost of

performing a failed test is proportional to ~Ts,q:

Therefore, unless it is known a priori with a high degree of

confidence that the loop is not parallel, the test should prob-

ably be applied, i.e., the potential payoff is worth the risk of

slightly increasing the sequential execution time.

Based on the outcome of the cost/performance analysis,

the compiler will determine whether the test should be per-

formed, and if it decides to use the test, it must also decide

how the test should be applied: using the inspector/executor

paradigm (i.e., first test, and then execute) or in a specu-

lative manner (i.e., test and execute simultaneously, as de-

scribed in Section 3.1). In practice, when Tm ark approaches

Tdoa/(, the use of the tests in a speculative way may be benefi-

cial. The additional overhead mentioned in Section 3.1 (state

save/restore) must be considered when deciding whether to

use speculative execution.

5 Experimental Results
In this section we present experimental results obtained on

two modestly parallel machines with 8 (Alliant FX/80 [1])

and 14 processors (Alliant FX/2800 [2]) using a Cedar For-

tran [10] implementation of the DOALL tests. It should be

pointed out that our results scale with the number of proces-

sors and the data size and that they should be extrapolated

for MPPs, the actual target of our run-time methods.

We considered five loops contained in the PERFECT

Benchmarks [4] that could not be parallelized by any com-

piler available to us. A summary of our results is given in

Table 2. For each loop, the methods applied and the speedup

obtained are reported. As a reference, we also give the ideal

speedup, which was measured using an optimally parallelized

(by hand) version of the loop. In addition, when the in-

specter/executor version of the DOALL test was applied we

mention the computation performed by the inspector; the no-

tations bTanch predicates and subscTipi amay mean that the

inspector computed these values, and replicates loop means

that the inspect or was work-equivalent to the original loop.

In the following, we discuss each loop in more detail. Our es-

timates are made using a simple instruction counting model:

for loops (vectors), we use the product of the number of in-

structions and the number of iterations (elements).

In order for our methods to scale with the number of pro-

cessors, the shadow arrays must be distributed over the pro-

cessor space, rather than replicated on each processor (Sec-

tion 2.3). As discussed in Section 2.3, one way to accomplish

this is to use hash tables for the shadow arrays. However,

since our implemental ion of the D OALL tests does not yet

optimize with hash tables, in some cases the speedups shown
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Benchmark Experiment al Results
P

Subroutine Technique Speedup #Proc Description of Data Accesses Inspect or

Loop obtained ideal (computation)

OCEAN kernel-like loop accesses a vector with data accesses

FTRVMT insp/exec 2.1 6.0 8 run-time determined strides replicates loop

Loop 109

MDG accesses to a privatizable vector guarded by data accesses

INTERF insp/exec 8.8 12.4 14 loop computed predicates branch predicates

Loop 1000 private

BDNA accesses a privatizable array indexed by a data accesses

ACTFOR insp/exec 7.6 11.6 14 subscript array computed inside loop subscript array

LOOP 240 private

TRFD small triangular loop accesses a vector data accesses

INTGRL inspjexec 1.5 4.6 8 indexed by a subscript array computed

Loop 540

replicates loop
sched reuse 2.2 outside loop

TRACK accesses an array indexed by a subscript not applicable

NLFILT speculative 4.2 4.4 8 array computed outside loop, access pattern

~ Loop 300 guarded by loop computed predicates

Table 2: Summary of Experimental Results

in Figures 5 through 9 do not appear to scale. In particular,

in cases in which the size of the array under test is > na/p,
. . .

our implementation wdl display Tm.,~ H Tanajy,;s z s in-

stead of N na/p as predicted, (i.e., the marking and analysis

phases of the test will touch the entire shared array, regardless

of its access pattern in the loop under study). This situation

is encountered with the loops from Ocean and TRFD.

OCEAN-FTRVMT–Loop 109. This loop is utilized in

the computation of a 2-dimensional FFT. It is invoked 26,000

times, and accounts for 40% of the sequential execution

time of the program. For this loop we estimate T~a,k $x

T~~~IY~,~ x T~~~Il, and predict Sp % ~~~~~, = ~spid. In fact,

as shown in Fig. 5, the speedup obtained hy the DOALL test

is about 1/3 of the ideal speedup.

MDG–INTERF–Loop 1000. Thk loop calculates inter-

molecular interaction forces. In order to avoid false depen-

dence, our inspector computes the branch predicates and has

an estimated complemty Tm~7~ x .2TdOaii. Since TannlY~i~ is

small (the shadow vector has only 14 elements), we expect the

Privatizing DOALL test to obtain Sp = .? Sp,d. The results

shown in Fig. 6 display a pretty good fit to this estimation.

BDNA–ACTFOR–Loop 240. This loop selects certain

elements from a large array, and processes the selected ele-

ments later in the loop. The speedup obtained for this loop

using the Privatizing DOALL test is almost 2/3 of the ideal

speedup (see Fig. 7). This speedup cannot be accurately

predicted at compile time because the number of selected

elements is not known until run-time, and the inspector exe-

cutes the selection phase (computing the subscripts), but not

the subsequent processing phase.

TRFD–INTGRL–Loop 540. For this small triangular

loop, SPi~ % 4.5 on the Alliant FX/80 because of load im-

balance. Statically, we would predict Tdoall = T~~,k =

T...tY,,., and Sp H ~ Sp,d. However, since our implemen-

tation does not yet optimize with hash tables, the access

pattern of our shadow arrays is rectangular (versus the tri-

angular pattern of the loop) and T~~,k = Tmn~lU~~S % 2Tdoa[[,

so that Sp x ~Sp,d < 1.

However, Loop 540 is executed seven times (within an

outer loop) and uses a larger subscript array on each subse-

quent execution. We could use schedule reuse if the current

subscript array were a subset of the one from the previous in-

vocation. In order to obtain this subset relation, we executed

the calling loop in reverse order – and verified our action with

the DOALL test. For the seven invocations of Loop 540, we

obtained Sp = $Sp%d - including the subscript array corrn-

parisons (see Fig. 8). The example shows that in the most

disadvantageous cases we can obtain significant speedups by

using a simple schedule reuse technique.

TRACK–NLFILT–Loop 300. Since the inspector would

have had to perform almost all of the computation of the

loop, we decided to use speculative execution as described in

Section 3.1. Of the 59 executions of the loop, only five times

it was not a DOALL. In these cases we restored the values

of the variables modified by the loop (which were saved be-

fore invoking the loop) and re-executed the loop sequentially.

The results are depicted in Fig. 9. Note that the speedup

obtained here is for a loop that has had both parallel and

sequent ial instant iations. Of course, such a speculative tech-

nique can be costly if the test fails most of the time, but in

cases such as this where extracting the access pattern is not

possible without executing the whole loop, it is an attractive

alternative.

6 Conclusion
In this paper we have approached the problem of determin-

ing the parallelism of loops at run-time from a different view-

point – instead of finding a valid parallel execution schedule

for the loop, we have solved the problem of simply deciding

if the loop is fully parallel - a frequent occurrence in real

programs. In addition, the techniques presented are also ca-

pable of eliminating some memory-related dependence by

dynamically privatizing scalars and arrays.

We have shown that the concept of run-time data depen-

dence checking is a useful solution for loops that cannot be
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sufficiently analyzed by a compiler. We would like to re-

emphasize that our met hods are applicable to all loops, with-

out any restrictions on their data or control flow. Both in-

specter/executor and speculative strategies have been shown

to be viable alternatives for even modestly parallel machines

like the Alliant FX/80 and 2800. However, we believe that

the true significance of these methods will be the increase

in real speedup obtainable on massively parallel processors

(MPPs). As we have shown, the cost associated with the

DOALL test is proportional to $T..~ + logp, where P is the

number of processors available. If the target architecture is

an MPP with hundreds or, in the future thousands, of proces-

sors, then this cost will become a very small fraction of se-

quential execution time (T,eq). When applying the DOALL

test to a loop, our performance gain/loss will range from at

least 1/3 of the ideal speedup (which can reach into the hun-

dreds for MPPs) when the test passes, to an additional few

percentage points of the sequential execution time if the test

fails. In other words, the test has the potential to offer large

gains in performance (speedup), while at the same time risk-

ing only small losses. To bias the results even more in our

favor, the decision on when to apply the test should make use

of run-time collected information about the fully parallel/not

parallel nature of the loop. In addition, specialized hardware

features could greatly reduce the overhead introduced by the

test.

In the near future we plan to implement these methods

in POLARIS, a restructuring compiler currently being de-

veloped at the University of Illinois, that targets the latest

generation of massively parallel architectures.
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