
The LRPD Test: Speculative Run-Time Parallelization of Loops with

Privatization and Reduction I?arallelization t

Lawrence Rauchwerger and David Padua

University of Illinois at Urbana-Champaign

Abstract

Current parallelizing compilers cannot identify a significantfrac-

tion of parallelizable loops because they have complex or statically

insufficiently defined access patterns. As parallelizable loops arise

frequently in practice, we advocate a novel framework for their

identification: speculatively execute the loop as a do all, and ap-

ply a fully parallel data dependence test to determine if it had any

cross-iteration dependence; if the test fails, then the loop is re–

executed serially. Since, from our experience, a significant amount

of the available parallelism in Fortran programs can be exploited by

loops transformed through privatization and reductionparalleliza-

tion, our methods can speculatively apply these transformations and

then check their validity at run-time. Another important contribu-

tion of this paper is a novel method for reduction recognition which

goes beyond syntactic pattetm matching: it detects at run-time if the

values stored in art array participate in a reduction operation, even

if they are transferred through private variables and/or are affected

by statically unpredictable control flow, We present experimental

results on loops from the PERFECT Benchmarks which substanti-

ate our claim that these techniques can yield significant speedups

which are often superior to those obtainable by inspector/executor

methods.

1 Introduction

To achieve a high level of performrmce for a particular program

on today’s supercomputers, software developers are often forced

to tediously hand-code optimization tailored to a specific ma-

chine. Such hand-coding is difficult, increases the possibility of

error over sequential programming, and the resulting code may

not be portable to other machines. Restructuring, or parallelizing,

compilers address these problems by detecting and exploiting par-

allelism in sequential programs written in conventional languages.

2The authors are with the Center for Supercomputirsg Research

& Development, 1308 W. Main St., Urbana, IL 61801, emait:

rwerger, padual?csrd. uiuc. edu. Research supported m part by
Intel and NASA Graduate Fellowships, and Army contract #DABT63-92-
C-0033. Th work is not necessamty representative of the posmions or
policies of the Army or the Government.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or s~ecific Permission.

Although compiler techniques for the automatic detection of par-

allelism have been studied extensively over the last two decades

(see, e.g., [25, 36]), current parallelizing compilers cannot extract a

significant fraction of the available parallelism in a loop if it has a

complex and/or statically insufficiently defined access pattern. One

major reason for this inability to statically parallelize some programs

is that the most effective transformations, privatiza~iorz and reduc-

Eion recognition, cannot be applied to a large class of applications

that have irregular domains and/or dynamically changing interac-

tions. Typical examples are complex simulations such as SPICE

for circuit simulation, DYNA-3D and PRONTO-3D for structural

mechanics modeling, GAUSSIAN and DMOL for quantum me-

chanical simulation of molecules, CHARMM and DISCOVER for

molecular dynamics simulation of organic systems, and FIDAP for

modeling complex fluid flows [1 1].

Thus, in order to realize the full potential of parallel comput-

ing it has become clear that static (compile–time) analysis must be

complemented by new methods capable of automatically extracting

parallelism at run–time [9, 11, 14]. Run–time techniques can suc-

ceed where static compilation fails because they have access to the

input data. For example, input dependent or dynamic data distribu-

tion, memory accesses guarded by run-time dependent conditions,

and subscript expressions can all be analyzed unambiguously at

run-time. In contrast, at compile–time the access pattern of some

programs cannot be determined, sometimes due to limitations in the

current anrdysis algorithms but often because the necessary infor-

mation is just not available, i.e., the access pattern is a function of

the input data. For example, most dependence analysis algorithms

can only deal with subscript expressions that are lines in the loop

indices. In the presence of non–linear expressions, a dependence

is usually assumed. Also, generally compilers conservatively as-

sume data dependence in the presence of subscripted subscripts.

Although more powerful analysis techniques could remove this last

limitation when the index arrays are computed using only statically–

known values, nothing can be done at compile–time when the index

arrays are a function of the input data [20, 30, 38].

Most previous approaches to run-time parallelization have con-

centrated on developing methods for constructing execution sched-

ules for partially parallel loops, i.e., loops whose parallelization

requires synchronization to ensure that the iterations are executed in

the correct order. 1 These methods are centered around the extraction
of an inspector loop that analyzes the data access pattern “off–line,”

1The only exception of which we are aware is our inspector method for

deal 1 parallelrzation [26]. Run–time analysis techniques have also been

used to detect access anomahes or race conditions in paratlel programs (see,

e.g., [13, 24, 311). However, these rnerhods are generauy not appropriate for
run-time loop parallehzation since they are optunized for other purposes,

e.g., for them minimizing memory requirements is more unportant than

speed.

SIGPLAN ‘95ia Jolla, CA USA
Q 1995 ACM 0-89791 -697-2/95/0006 ...$3.50

218

i.e., without side effects [8, 20,23,26, 28,29,30,37, 38, 12]. The

inspection phase of these schemes usually yields a partitioning of the

set of iterations into subsets that can be executed in parallel. These

subsets, sometimes called wavejkvsts, are scheduled sequentially by

placing synchronization barriers between them.

Unfortunately the distribution of the original loop into art irt-

spector and executor loop is often not advantageous: if dte address

computation of the array under test depends on the acttral data cclm-

putation, as exemplified by Fig. 1(a), then the inspector becomes

both computationally expensive and has side-effects. This means

that shared arrays would be modified during the execution of the

inspector loop and saving the state of these variables would be

required - making the inspector equivalent to the loop itself. In ad-

dition, the desirable goal of exploiting coarse-grain parallelization,

i.e., at the level of large complex loops, makes it even less likely

that an appropriate “inspector” loop cart be extracted.

1.1 Speculative do all parallelization

In this paper we propose a novel framework for parallelizing do

loops at run-time. The proposed framework differs conceptually

from previous methods in two major points.

Instead of finding a valid parallel execution schedule for the

loop, we focus on the problem of simply deciding if the loop is

fully parallel, that is, determining whether or not the loop has

cross-iteration dependence. (This approach was also taken in

[26].)

Instead of dk.tributing the loop into inspector and executor 100IPS,

we speculatively exe;ute the-loop as a doall, i.e., execute all

its iterations concurrently, and apply a run-time test to check

if there were any cross-iteration dependence. If the run-time

test fails, then we will pay a penalty in that we need to backtrack

and re–execute the loop serially.

Compilers often transform programs to optimize performance.

The two most effective transformations for increasing the amount

of parallelism in a loop (i.e., removing certain types of data de-

pendence) are array privatization and reduction parallelization.

Krothapalli and Sadayappart [15] proposed an inspector method for

run-time privatization which relies heavily on synchronization, in-

serts an additional level of indirection into all memory accesses,

and calls for dynamic shared memory allocation. In our previews

work [26] we gave art inspector method without these drawbacks

for determining whether a do loop can be executed as a deal.1,

perhaps by privatizing some shared variables. No previous run-time

methods have been proposed for parallelizing reduction operations.

In this paper we present several new ideas: First, we advocate

the use of run-time tests to validate the execution of a loop that is

speculatively executed in p~allel. The adv~tage of this approach is
that the computation of the loop is performed concurrently with lhe

tests, i.e., the memory access pattern does not need to be extracted

and analyzed separately as in inspector/executor methods.z In Sec-

tion 5 we present experimental results on loops from the PERFECT

Benchmarks which substantiate our claim that speculative tech-

niques can yield significant speedups which are often superior to

those obtainable by inspector/executor methods. Second, in addi-

tion to array privatization, the new techniques are capable of testing

at run-time the validity of the powerful reduction parallelization

2If desired, all of our run-time tests can be applied in inspector/executor

mode.

transformation. In particular, for an array element (or section), our

run-time methods are able to detect whether it participated exclu-

sively in a reduction operation, or if all its accesses were either

read-only or privatizable. If all the memory references in a do loop

fall under any of these categories then the speculative concurrent

execution of the loop was valid, i.e., the loop was indeed paral-

lel. The new algorithms consider only data dependence caused

by actual cross-iteration data-flow (a flow of vahses). Thus, they

may potentially qtral@ more loops as parallel than the method in

[26] which conservatively considered the dependence due to every

memory reference - even if no cross-iteration data-flow occurred

at run-time. This situation could arise for example when a loop

reads a shared variable, but then only uses it conditionally.

Another important contribution of t.hk paper is a novel method

for reduction recognition: in contrast to the static pattern matching

techniques employed by compilers until now, our method detects

if the values stored in an array participate in a reduction operation,

even if they are tmnsferred through private variables and/or are

affected by statically unpredictable control flow.

Our methods for speculatively executing do loops in parallel are

described in Sections 3 and 4. In Section 5, we present some ex-

perimental measurements of loops from the PERFECT Benchmarks

executed on the Alliant FX/80 and 2800. These measurements show

that the techniques presented in this paper are effective in produc-

ing scalable speedups even though the run-time analysis is done

without the help of any special hardware devices. It is conceivable,

and we believe desirable, that future machines would include spe-

cial hardware devices to accelerate the run-time analysis and in this

way widen the range of applicability of the techniques and increase

potential speedups.

2 Preliminaries

A loop can be executed in fully parallel form, without synchro-

nization, if and only if the desired outcome of the loop does not

depend in any way upon the execution ordering of the data accesses

from different iterations. In order to determine whether or not the ex-

ecution order of the data accesses affects the semantics of the loop,

the data dependence relations between the statements in the loop

body must be anrdyzed [6, 18,25,36, 39]. There are three possible

types of dependence between two statements that access the same

memory location: flow (read after write), anti (write after read), and

output (write after write). Flow dependence express a fundamental

relationship about the data flow in the program. Anti and output de-

pendence, also known as memory-related dependence, are caused

by the reuse of memory, e.g., program variables.

If there are flow dependence between accesses in different iter-

ations of a loop, then the semantics of the loop cannot be guaranteed

if the loop is executed in fully parallel form. For example, the iter-

ations of tie loop in Fig. 1(a) must be executed in order of iteration

number because iteration i + 1 needs the value that is produced

in iteration i, for 1 ~ i < n. In principle, if there are no flow

dependence between the iterations of a loop, then the loop maybe

executed in fully parallel form. The simplest situation occurs when

there are no anti, outpu~ or flow dependence. In thk case, all the

iterations of the loop are independent and the loop, as is, can be

executed as a doa 11 (i.e., a fully parallel execution). If there are

no flow dependence, but there are anti or output dependence, then

the loop must be modhled to remove all these dependence before it

219

dol=l, n doi=l, n/2 do i=l, n

A(K(l)) = A(K(i)) + A(K(i-1)) Sl: tmp = A(2*i) doj=l, m

if (A(K(i)) .eq. true.) then A(2*i) = A(2*i-1) Sl: A(,I)= A(j) + expo

................. S2 : A(2*i-1) = tmp enddo

endif enddo
enddo

enddo

(a) (b) (c)

Figure 1:

cam be executed in parallel. Not all such situations can be handled

efficiently. In order to remove certain types of dependence and

execute the loop as a doa 11, two important and effective trans-

formations can be applied to the loop: privatization and reduction

parallelization.

l+ivatiza~ion creates, for each processor cooperating on the exe-

cution of the loop, private copies of the program variables that give

rise to anti or output dependence (see, e.g., [10, 21, 22, 32, 33]).

The loop shown in Fig. 1(b), is an example of a loop that can be

executed in parallel by using privatization; the anti dependence

between statement S2 of iteration i and statement S1 of iteration

i + I,, for I s i < n/Z, can be removed by privatizing the tempo-

rary vmiable tmp. h this paper, the following criterion is used to
determine whether a variable maybe privatized.

Privatization Criterion: Let Abe a shared array (or array section)

that is referenced in a loop L. A can be privatized if and only if

every read access to an element of A is preceded by a write access

to that same element of A within the same iteration of L.

In general, dependence that are generated by accesses to variables

rhat are only used as workspace (e.g., temporary variables) within an

iteration can be eliminated by privatizing the workspace. However,

according to the above criterion, if a shared variable is initialized

by reading a value that is computed outside the loop, then that

variable cannot be privatized. Such variables could be privatized if

a copy–in mechanism for the external value is provided. The last

value assignment problem is the conceptual analog of the copy–in

problem. If a privatized variable is live after the termination of the

loop, then the privatization technique must ensure that the correct

value is copied out to the original (non privatized) version of that

variable. It should be noted that the need for values to be copied

into or out of private variables occurs infrequently in practice.

Reduction parallelization is another important technique for

transforming certain types of data dependent loops for concurrent

execution.

Definition: A reduction variable is a variable whose value is used in

one associative and commutative operation of the form z = x @ezp,

where @ is the associative and commutative operator and z does not

occur in ezp or anywhere else in the loop.

Reduction variables are therefore accessed in a certain specific pat-

tern (which leads to a characteristic data dependence graph). A sirm

ple but typical example of a reduction is statement S 1 in Fig. 1(c).

The operator @ is exemplified by the + operator, the access pattern

of array A(:) is read, modijj, write, and the function performed by

the loop is to add a value computed in each iteration to the value

stored in A(:). This type of reduction is sometimes called an up dare

and occurs quite frequently in programs.

There are two tasks required for reduction parallelization: rec-

ognizing the reduction variable, and parallelizing the reduction

operation. (In contrast, privatization needs only to recognize pri-

vatizable variables by performing data dependence analysis, i.e., it

is contingent only on the access pattern and not on the operations.)

Parallel metlods are known for performing reduction operations.

One typical method is to transform the do loop into a doall and

enclose the access to the reduction variable in an unordered critical

section [14, 39]. Drawbacks of this method are that it is not scalable

and requires synchronizations which can be very expensive in large

multiprocessor systems. A scalable method can be obtained by

noting that a reduction operation is an associative and commutative

recurrence and can thus be parallelized using a recursive doubliig

algoridun [16, 17, 19]. In this case the reduction variable is priva-

tized in the transformed doall, and the final result of the reduction

operation is computed in an interprocessor reduction phase follow-

ing the doall, i.e,, a scalar is produced using the partial results

computed in each processor as operands for a reduction operation

(with the same operator) across the processors. Thus, the difficulty

encountered by compilers in parallelizing loops with reductions

arises not from finding a parallel algorithm but fkom recognizing

the reduction statements. So far this problem has been handled at

compile–time by syntactically pattern matching the loop statements

with a template of a generic reduction, and then performing a data

dependence analysis of the variable under scrutiny to guarantee that

it is not used anywhere else in the loop except in the reduction

statement [39].

3 Speculative Parallel Execution of do Loops

Consider a do loop for which the compiler cannot statically

determine the access pattern of a shared array A that is referenced

in the loop. Instead of generating pessimistic, sequential code when

it cannot unequivocally decide whether the loop is parallel. the

compiler could decide to speculatively execute the loop as a doa 11,

and produce code to determine at run-time whether the loop was

in fact fully parallel. In addition, if it is suspected that some data

dependence could be removed by privatization and/or reduction

parallelization the compiler may further speculatively apply these

transformations in order to increase the chances that the loop can be

executed as a doa 11. If the subsequent run-time test finds that the

loop was not fully parallel, then it will be re-executed sequentially.

In order to speculatively parallelize ado loop as outlined above we

need the following:

● A mechanism of saving/restoring state: to save the original
values of the program variables for the possible sequential re-

execution of the loop.

c An error (hazard) detection method: to test the validity of the

speculative parallel execution.

o An automatable strategy: to decide when to use speculative

parallel execution.

Saving/Restoring State. There are several ways to maintain back-

ups of the program variables that may be altered by the speculative

220

parallel execution. If the resources (time and space) needed to create

a backup copy are not too big, then a practical solution is check-

pointing prior to the speculative execution. It might be possible to

reduce this cost by identifying and checkpointing a point of mini-

mum state in the program prior to the speculative parallel execution.

A more attractive solution is to privatize all shared variables, copy-

in (on demand) any needed external values, and copy-out any live

values if the test passes, thereby committing the results computed

by the doall loop. This method could also yield better data lo-

cality and reduce the number of messages between processors (e.g.,

it would generate less coherency traffic in a cache coherent dis-

tributed shared-memory machine). Note that privatized arrays need

not be backed up because the original version of the array will not

be altered during the parallel execution.

Hazard Detection. There are essentially two types of errors (haz-

ards) that could occur during the speculative parailel execution: (i)

exceptions and (ii) the presence of cross-iteration dependence in

the loop. A simple way to deal with exceptions is to treat them as

an invalid parallel execution, i.e., if an exception occurs, abandon

the parallel execution, clear the exception flag, restore the vahtes

of any altered program variables, and execute the loop sequentially.

Below, we present techniques that can be used to detect the presence

of cross-iteration dependence in the loop and to test the valifiity

of any privatization and/or reduction parallelization transformations

that were applied.

An Automatable Strategy. The main factors that the compiler

should consider when deciding whether to speculatively paralle lize

a loop are: the probability that the loop is a deal 1, the speedup

obtained if the loop is a doall, and the slowdown incurred if the

loop is not a deal 1. For example, the compiler might base its

decision on a ratio of the estimated run-time cost of an erroneous

pwallel execution to the estimated run-time cost of a sequential

execution. If this ratio is small, then significant performance gains

would result from a successful (valid) parallelization of the loop,

at the risk of increasing the sequential execution time by only a

small amount. In order to perform a cost/benefit analysis artcl to

predict the parallelism of the loop, the compiler should use static

analysis and run-time statistics (collected on previous executions

of the loop or from different codes); in addhion, directives about

the parallelism of the loop might prove useful. In Section 4.1

a complexity analysis of our run-time tests is presented that can

be used to statically predict the minimum obtainable speedup and

the maximum potential slowdown for a loop parallelized using our

tectilques.

3.1 Run-time data dependence analysis

In this section we describe an efficient run-time technique that

can be used to detect the presence of cross–iteration dependence

in a loop that has been speculatively executed in parallel. If there

are any such dependence, then this test will not identify them,

it will only flag their existence. We note that the test need only

be applied to those scalars and arrays that cannot be analyzecl at

compile-time. In addition, if any shared variables were privatized

for the speculative parallel execution, then this test can determine

whether those variables were in fact validly privatized.

An important source of ambiguity that cannot be anaiyzed stati-
cally and potentially generates overly conservative data dependence

models is the run-time equivalent of dead code. A simple example

is when a loop first reads a shared array element into a local vari-

able but then only conditionally uses it in the computation of other

shared variables. If the consumption of the read value does not ma-

terialize at run-time, then the read access did not in fact contribute

to the data flow of the loop and therefore could not have caused a

dependence. Since predicates seldom can be evaluated statically,

the compiler must be conservative and conclude that the read access

causes a dependence in every iteration of the loop. The test given

here improves upon the Privatizing doall test described in [26] by

checking only the dynamic data dependence caused by the actual

cross-iteration flow of values stored in the shared arrays. Thk is

accomplished using a technique we call dynamic dead reference

elimination which is explained in detail following the description of

the test.

The most general version of the test, as applied to a privatized

shared array A, is given below, i.e., it tests for all types of de-

pendence, and also whether the array is indeed privatizable. If

some of these conditions do not need to be verified, then the test

can be simplified in a straightforward manner, e.g., if the array was

not privatized for the speculative parallel execution, then all steps

pertaining to the privatization check are omitted.

The Lazy (value-based) Privatizing doall Test (LPD Test)

1. Marking Phase. (Performed during the speculative parallel

execution of the loop,) For each shared array A[l : s] whose

dependencescannotbe determined at compile time, we declare read

and write shadow arrays, Ar [1:s]and Aw [1 : s], respectively. In

addition, we declare a shadow array AnP[l : s] that will be used to

flag array elements that cannot be vaiidly privatized. Inhially, the

test assumes that all array elements are privatizable, artd if it is found

in any iteration that the value of an element is used (read) before

it is redefined (written), then it will be marked as not privatizable.

The shadow arrays A., A~, and A~P are initialized to zero.

During each iteration of the loop, all definitions or uses of the values

stored in the shared array A are processed

(a)

(b)

(c)

Definitions (done when the value is written): set the element in

Aw corresponding to the array element that is modified (writ-

ten).

Uses (done when the value that was read is used): if this array

element is never modified (written) in this iteration, then set the

corresponding element in A.. If the value stored in this array

element has not been written in this iteration before this use

(read access), then set the corresponding element in A~P, i.e.,

mark it as not privatizable.

Count the total number of write accesses to A that are marked

in this iteration, and store the result in tw~ (A), where i is the

iteration number.

2. Analysis Phase. (Performed after the speculative parallel execu-

tion.) For each shared array A under scrutiny:

(a) Compute (i) tw(A) = ~ twi(A), i.e., the total number of

definitions (writes) that were marked by all iterations in the

loop, and (ii) i!m(A) = mm(Aw [1 : s]), i.e., the total number

of marks in AWII : s].

(b) If my(Aw [:] A A~[:]),3 i.e., if the marked areas are common
anywhere, then the loop is nor a deal 1 and the phase ends.

(Since we define (write) and use (read, but do not define) values

stored at the same location in different iterations, there is at least
one flow or anti dependence.)

9ang returns the “OR of its vector operand’s elements, i.e., any(v[l :

4) = (411v t42] v . . . v +Z]).

221

(c)

(d)

(e)

Else if tw(A) = hn(A), then the loop is a doall (without

privatizing the array A). (Since we never overwrite any memory

location, there are no output dependence.)

Else if any(AW [:] A Amp[:]), then the array A is no~privatizable.

Thus, the loop, as executed, is not a doall and the phase ends.

(There is at least one iteration in which some element of A was

used (read) before it was been modified (written).)

Otherwise, the loop was made into a do all by privatizing the

shared array A. (We remove all memory-related dependence

by privatizing this array.)

Dynamic dead reference elimination. We now describe how the

marking of the read and private shadow arrays, A, and Amp, can

be postponed until the value of the shared variable is actually used

(Step l(b)). More formally, the references we want to identify are

defined as follows.

Definition: A dynamic dead read reference is a read access of a

shared variable that both

(a) does not contribute to the computation of any other shared vari-

able, and

(b) does not control (predicate) the references to other shared vari-

ables.

The value obtained through a dynamic dead read does not con-

tribute to the data flow of the loop. Ideally, such accesses should

not introduce false dependence in either the static or the run-time

dependence analysis. If it is possible to determine the dead refer-

ences at compile time then we can just ignore them in our analysis,

Since this is generally not possible (control flow could be input

dependent) the compiler should identify the references that have

the potential to be unused and insert code to solve this problem at

run-time. In Fig. 3.1 we give an example where the compiler can

identify such a situation by following the clef-use chain built by

using array names only. To avoid introducing false dependence,

the marking of the read shadow array is postponed until the vahte

that is read into the loop space is indeed used in the computation of

other shared variables, In essence we are concerned with the flow

of the values stored rather than with their storage (addresses). We

note that if the search for the actual use of a read value becomes

too complex then it can be stopped gracetitlly at a certain deprh and

a conservative marking of the shadow array can be inserted (on all

the paths leading to a possible use).

As can be observed from the example in Fig. 3.1, this method

allows the LPD test to qualify more loops for parallel execution

then would be otherwise possible by just inspecting the memory

references as in the original PD test [26]. In particular, after marking

and counting we obtain the results depicted in the tables. The loop

fails the PD test since Au(:) A A,(:) is not zero everywhere (Step

2(b)). However, the loop passes the LPD test as AW(:)AAJ:) is zero

everywhere, but only after privatization, since tw(d) # tin(A) and

Aw (:) A AnP(:) is zero everywhere.

Private shadow structures. The LPD test can take advantage of
the processors’ private memories by using private shadow strictures

for the marking phase of the test. Then, at the conclusion of the

private marking phase, the contents of the private shadow structures

are merged into the global shadow structures. Note that since the

order of the writes (marks) to an element of the shadow structure

is not important, all processors can transfer their private shadow

structures to the global structure without synchronization. In fact,

using private shadow structures enables some additional optimiza-

tion of the LPD test as follows. Since the shadow structures are

private to each processor, the iteration number can be used as the

“mark.” In this way, no re–irtitialization of the shadow structures is

required between successive iterations, and checks such as “has this

element been written in this iteration?” simply require checking

if the corresponding element in Aw is marked with the iteration

number, Another benefit of the iteration number “marks” is that

they can double as time-stamps, which are needed for performing

the last–value assignment to any shared variables that are live after

loop termination.

A processor-wise version of the LPD test. The LPD Test deter-

mines whether a loop has any cross-iteration data dependence. It

turns out that essentially the same method can be used to test whether

the loop, as executed, has any cross–processor data dependences.4

The only difference is that all checks in the test refer to proces-

sors rather than to iterations, i.e., replace “iteration”’ by “processor”

in the description of the LPD test so that all iterations assigned

to a processor are considered as one “super-iteration” by the test.

Note that a loop that is not fully parallel could potentially pass the

processor-wise version of the LPD test because data dependence

among iterations assigned to the same processor will not be de-

tected. This is acceptable (even desirable) as long each processor

executes its assigned iterations in increasing order.

3.2 Run–time reduction parallelization

As mentioned in Section 2, there are two tasks required for

reduction parallelization: recognizing the reduction variable, and

paralle~izing the reduction operation. Of these, we focus our atten-

tion on the former since, as previously noted, techniques are known

for performing reduction operations in parallel. So far the problem

of reduction variable recognition has been handled at compile-time

by syntactically pattern matching the loop statements with a tem-

plate of a generic reduction, and then performing a data dependence

analysis of the variable under scrutiny to validate it as a reduction

variable [39]. There are two major shortcomings of such pattern

matching identification methods.

1.

2.

The data dependence analysis necessary to qualify a statement

as a reduction cannot be performed statically in the presence of

input-dependent access patterns.

Syntactic pattern matching cannot identify all potential reduc-

tion variables (e.g., in the presence of subscripted subscripts).

Below we show how each of these two difficulties can be overcome

with a combination of static and run-time methods,

3.2.1 The LRPD test: extending the LPD test for reduc-

tion validation

In this section we consider the problem of verifying that a statement

is a reduction using run-time data dependence analysis. The poten-

tial reduction statement is assumed to syntactically pattern match
the generic reduction tempIate z = z @ exp; reduction statements

that do not meet this criterion are treated in the next section. To

verify that such a statement is a reduction we need to check that the

reduction variable z satisfies the definition given in Section 2, i.e.,

that z is only accessed in the reduction statement, and that it does

not appear in exp.

Our basic strategy is to extend the LPD test to check all statically

unverifiable reduction conditions. We first consider how the test

4This fact was noted by Santosh Abraham[1].

222

do i=l, 5 do i=l,5 do i=l, 5
z = A(K(i)) markread(K(i)) z = A(K(i))
if (Bl(i) .eq. true.) then

A{L(i)) = z +C(i)
z = A.(K(i)) if (B 1(i) .eq. Jrue.)

if (B l(i) .eq. true.) then
endif

markread(K(i))

enddo
markwrite(L(i)) markwrite(L(i))

B1(1:5)=(1 O 10 1) A(L(i)) = z +C(i) A(’L(I)) = z +C(il

then

K(I:5)=(12341) endif

L(1:5) =(22442) enddo

(a) (b)

Originaf shadow arrays

PD test 1 2 3 4 tw trrs

Aw o 1 0 1 3 2

Am 1 1 1 1

A 1 1 1 1

AW(:) ~Ar(:) o 1 0 1

AW(:) A A~p(:) 01 0 1

(d)

.,
endif

enddo

(c)

new shadow atrays

LPD test 1 2 3 4 tw tm

Aw o 1 0 1 3 2

A, 1 0 1 0

A 1 0 1 0

Aw(:) ~Ar(:) o 0 0 0

Aw(:) A An=(:) o 0 0 0

(e)

Figure 2: The transformation of a do loop (a), using the original version of the PD test (b), and the lazy version (c). The markwrite (markread)

op&ation marks the indicated element in the shadow army AW (A-r d Amp) according to the criteria given m-step 1(4 (l”b)) of tie LpD test. Since dynamic

dead read references are not marked in rhe LPD test, the array A fails tk PD test and passesthe LPD test, as shown in (d) and (e), respectively.

would be augmented to check only that the reduction variable is

not accessed outside the single reduction statement. This situation

could arise if the reduction variable is an array element accessed

through subscripted subscripts and the subscript expressions are not

statically analyzable. For example, although statement S3 in the

loop in Fig, 3(a) matches a reduction statement, it is still necessary

to prove that the elements of array A referenced in S1 and S2 do not

overlap with those accessed instatement s3, i.e., that K(i) # R(j)

and L(i) # R(j), for all I s i, j s n. Thus, the LRPD Itest

must check at run-time that there is no intersection between the

references in S3 and those in S1 and/or S2; in addkion it will be

used to prove, as before, that any cross-iteration dependence in

S1 and S2 are removed by privatization. To test this new condition

we use another shadow array Amc to flag the array elements that

are not valid reduction variables. Initially, all array elements are

assumed to be valid reduction variables, i.e., An. [:] = false. k

the marking phase of the test, i.e., during the speculative parallel

execution of the loop, any array element defined or used outside

the reduction statement is invalidated as a reduction variable, i.e,,

its corresponding element in An= is set to true. As before, after

the speculative parallel execution, the analysis phase of the test is

performed. Art element of A is a valid reduction variable if and

only if it was not invalidated during the marking phase, i.e., it was

not marked in d~a asnot a reduction variable for any iteration, The

other shadow arrays AnP, AW and A. are initialized, marked, and

interpreted just as before.

The LRPD test can also solve the case when the exp part of

the RHS of the reduction statement contains references to the array

A that are different from the pattern matched LHS and cannot be

statically analyzed. To validate such a statement as a reduction we

must show that no reference in exp overlaps with those of the LHS,

This is done during the marking phase by setting an element of Z&

to true if the corresponding element of A is referenced in exp.

In summary, the LRPD test is obtained by modifying the LPD

test. The following step is added to the Marking Phase.

1(a’) Definitions and uses: if a reference to A is not one of the two

known references to the reduction variable (i.e., it is outside

the reduction statement or it is contained in exp), then set the

corresponding element of A~m to true (to indicate that the

element is not a reduction variable). (See Fig, 3(a) and (b).)

In the Analysis Phase, Steps 2(d) and 2(e) are replaced by the

following.

2(a’) Else if I.ZrLy(AW [:] A Anp[:] A Anm[:]), then some element

of A written in the loop is neither a reduction variable nor

privatizable. Thus, the loop, as executed, is not a deal 1

and the phase ends. (There exist iterations (perhaps different)

in which an element of A is not a reduction variable, and in

which it is used (read) and subsequently modified.)

2(b’) Otherwise, the loop was made into a doall by parallelizing

reduction operations and privatizing the shared array A. (All

data dependence are removed by these transformations.)

If the analysis phase validates (passes) the speculative parallel

execution of the loop, then, as before, the last–value assignments

are performed for any live shared variables, and the scalar result

of each reduction is computed using the processors’ partial results

in a reduction across the processors. (See Fig. 7.) (If reductions

are implemented by placing the reduction statements in unordered

critical sections, then this last step is not necessary.)

Multiple potential reduction statements. A more complicated

situation is when the loop contains several reduction statements that

refer to the same array A. In this case the type of the reduction

operation perfo~ed on each element must be the s~e ~oughout
the loop execution, e.g., a variable caunot participate in both a mul-

tiplicative and an addhive reduction since the resulting operation is

not commutative and associative and is therefore not parallelizable.

The solution to this problem is to mark the shadow array An= with

the reduction type. Whenever a reference in a reduction statement

is marked, the cument reduction type (e.g., summation, multiplica-

tion) is checked with with previous one. If they are not the same,

the corresponding shadow element of A.= is set to true.

h Fig 3(c) and(d), we show how a loop containing two potential

reduction statements with different operators and an exp operand

that contains references to the array under test can be transformed to
perform a run-time dependence and reduction test. The subsequent

analysis of the shadow arrays will detect which elements were used

in a reduction and which are privatizable or read-only. If any

223

Sl:
S2:
S3:

Sl:

S2:

S3:

Sl:
S2:

doi=l, n
A(K(i)) =

. = A(L(i)) (a)

A(R(i)) = A(R(i)) + expo

doall I= 1, n

markwrite(K(i))
markredux(K(i))
A(K(i)) =

markread(L(i)) Sl:

markredux(L(i))
. = A(L(i))

markwrite(R(i))
A(R(i)) = A(R(i)) + expo

(b)

enddoall

S2:

doi=l, n
A(S(i)) = A(S(i)) + exp(X(i))

A(R(i)) = A(R(i)) + expo
enddo

A_nx (:) = false.
doall i= l,n

markwrite(R(i))
if (A_nx(R(l)) me. true.) then

if (A_nx(R(i)) me. ‘*’) marhedux(R(i))
else

A_nx(R(i)) = ‘*’
endif
markread(X(i))
markredux(X(i))
A(R(i)) = A(R(i)) + exp(A(X(i)))
markwrite(S(i))
if (A_nx(S (i)) .ne. true.) then

if (A_nx(S(i)) .ne. ‘+’) markredux(S(i))

else

A_nx(S(i)) = ‘+’
endif

A(S(i)) = A(S(i)) + expo
enddoall

(c)

(d)

Figure ~: The transformation of the do loops in (a) and (c) M shown m (b) and (d), respectively. The markwrite (mark read) operation marks the

mdlcated element m the shadow array AW (A, and Amp) according to the cntena given in Step 1(a) (1(b)) of the LPD test. The markredux operation sets

the shadow array element of A.nx to tnre. In (d), the type of the reduction is tested by storing the operator us Amx.

element is found not to belong to one of these categories, then

the speculative parallelization was incorrect and a sequential re–

execution must be initiated.

As a final remark, we note that a more aggressive irnpIementation

could promote the type of a reduction at run-time: if a memory

element is first involved in a ‘+’ reduction and then switches over to a

‘*’ reduction and stays that way for all the remaining references, then

the speculative parallel execution can still yield valid partiaI results

on each processor. It is important to remember that a reduction type

can be promoted in only one direction (it cannot be demoted back

to its initial type) and only once per loop invocation. Of course,

the reduction across processors must reflect the reduction operator

promotion.

3.2.2 Static reduction recognition and run-time check

As mentioned at the beginning of this section, syntactic pattern

matching is not a sufficiently powerful method to detect all the values

that are “subject” to a reduction operation. In particulm, syntactic

pattern matching will fail to identify a reduction whenever all the

references on the RHS of the assignment “look different” from the

reference on the LHS. Thus, if a statement is in fact a reduction, but

the references on the LHS and/or the RHS are indirect, then syntactic

pattern matchmg will fail. This situation could arise naturally, e.g.,

through the use of temporary variables or subscripted subscripts. In

the latter case, it can only be determined at run-time if any of the

array elements are reduction variables.

In the following we show that a combination of static and run–

time techniques can be used to successfully identify several types

of potential reductions that could not be recognized with pattern

matching techniques. The general strategy is to speculate that every

assignment to the array of interest is a potential reduction, unless

proven otherwise statically or by other heuristics. At run-time this

assumption is then validated or invalidated on an element by element

basis.

Single statement reduction recognition

We first consider a single statement in which the references on the

RHS are either dependent on the array A (also referenced on the

LHS) or are to values known to be independent of A, e.g., constants,

loop invariants, or distinct global variables.

The simplest case is when the RHS contains exactly one refer-

ence to A. Consider the potential reduction statement A(-R(i)) =

A(X(i)) + ecp. If R(i) = X(i), for some values of i, then the

probability that the surrounding loop is parallel is increased. In

this case, the solution is simply to check this equality condition at

run-time, and mark the shadow array Am= accordingly.

The situation is a bit more complex when the RHS con-

tains multiple references to the array A. Consider the statement

A(R(i)) = A(Xl(i)) + A(XZ(i)) + . . . + A(Xh(i)). This state-

ment is a reduction if and only if R(i) = Xj (i) for exactly one

value of j (see Section 2). As the operation is commutative and

associative, we cannot discount the possibility of a reduction. In

this example, we must check for equality between R(i) and every

X,(i), I < j < k. If this equality condition is not met exactly once,

then Am= (R(z)) is set to true (to indicate it was not a reduction).

We note that a more aggressive strategy could be taken when there

are multiple references to A(R{ i)) on the RHS: promote the ‘+’ re-

duction to a ‘*’ reduction. However, as mentioned in Section 3.2.1,

the reduction type can only be promoted once in the entire loop.

Fig. 4 shows the code generated for run-time validation when the

RHS contains multiple references to A. In the interest of clarity,

reduction type promotion is not shown.

Multiple statement reduction recognition: Expanded Re-

duction Statements

We now relax all restrictions on the RHS and allow in it variables

that are neither explicit functions of the array appearing on the LHS

nor explicit loop invariant. Our goal is to uncover any possible link

between the LHS and the RHS, if indeed one exists. The general

224

do i=l, n

Sl: A(K(i)) =

S2: ,,.,.,,,,, = A(L(i))
S3: A(S(i)) = A(R(i)) + A(T(i)) + A(X(i))

enddo

(a)

function checkequal(x, y, et)

if (x .ne. y) then

markredux(x)

else

Ct=ct+l

endif

return

end

(c)

(b)

A_nx(:) = false.
doall i= l,n

private integer count

count = o

markwrite(K(i))

markredux(K(i))

Sl: A(K(i)) =

markread(L(i))

markredux(L(i))

S2: = A(L(i))

markread(R(i))

markread(T(i))

markread(X(i))

markwrite(S(i))

checkequal(R(i), S(i), count)

checkequaI(T(i), S(i), count)

checkequal(X(i), S(i), count)

C type could be promoted if count= 3

if (count .eq. 1) markredux(S(i))
S3: A(S(i)) = A(R(i)) + A(T(i)) + A(X(i))

enddoall

Figure 4: The code generated for the do loop in (a) is shown in (c). In (c), the procedure in (b) is called. The mark-x operations areas described in Fig. 3.

strategy of our methods is a fairly straightforward demand driven

forward substitution of all the variables on the RHS, a process by

which all control flow dependence are substituted by data depen-

dence as described in [2, 33]. Once this expression of the RHS is

obtained it can be analyzed and validated by the methods described

in the previous section. In the following we explain by way of ex-

~ple how ow new method can identify reductions by performing
in essence a value–based rather than a dependence–based analysis.

In Fig. 5(a) statement S3 is first labeled at compile time as a

potential reduction. Then, by following the clef-use chains of the

variables on the RHS (i.e., z and y) within the scope of the loop

we find that in statement S 1 z may potentially carry the value of

A(R(i)), while y is a constant with respect to A. The algorithm

then examines statement S 3 after forward substitution, but does

not actually replace S 3 in the generated code. The substitution

is done only for compiler analysis purposes. This new version

of s3, referred to as s33, is of the form: S33 : A(R(i)) =

A(K(i)) + constant. Similarly, S5 becomes S55 : A(.L(~))I =
A(K(i)) + constant. Next, we label the statement pairs (S1, s3)

and (S 1, S 5) in the original loop as expanded reduction statements

(ERSS). If we treat each ERS as a single reduction statement, then

this problem is reduced to one treated above.

The code generated for the run time marking of the ERS is

inserted for both sides of the statement (RHS and LHS), but only in

the same basic block as the LHS. As we will see in a later example,

this rule insures that both sides are marked when and if there is an

assignment, i.e., it insures that a value is actually passed from the

RHS to LHS, Any uses of values participating in the reduction that

occur outside the ERS invalidate the ERS, i.e., set the corresponding

element of the shadow array Am= to true. In the case of ERSS

obtained through forward substitution, the value of the reduction

reference may pass through several memory locations (intermediate

variables) before reaching the statement of the LHS. As any use of

an intermediate variable represents a use of a value that participates

in the reduction, it invalidates the reduction for the corresponding

element of A. The uses can be obtained by following the clef-use

chain within the scope of the loop. However, based on the dead

reference elimination principle described in Section 3.1, only those

uses that contribute to the actual data-flow of the loop (when the

value is passed on to a shared variable or controls the access to a

shared variable) are processed. If not all local variables carrying the

reduction value end up being used in the global data-flow within

the loop, then we have either to verify that they (the local variables)

are indeed not live after loop exit, or, if that is not possible, make

a conservative assumption (i.e., that all uses contribute to the data

flow). In Fig. 5(a), statement S4 passes the value of A(K(i)) to the

local variable t, which in turn passes it to A(_L(i)) in s5. The same

value is also passed to the shared variable B(i(i)) in S 6. Both

uses (in S5 and S 6) should, in principle, invalidate An=(K(i)). On

the other hand, statement S5 is another potential reduction of the

same type as in S3 and, thus only the use in S 6 needs to invalidate

An=(K’(i)). The transformed code is shown in Fig. 5(b).

We note that if one of the intermediate variables is itself an

array element addressed indirectly, then an additional run-time test

must be performed. For example, if S1 and S3 in Fig. 5(a) were

of the form: S1 : X(N(i)) = A(K(i)) and S3 : A(R(i)) =

X(P(i)) + y, then a value would be passed from S1 to S3 only if

N(i) = F’(i). However, if the array X is privatizable, and occurs

only in these two statements, then the run-time testis not necessary,

i.e., if N(i) = P(i), then A(K(i)) would be processed with the

read of X(F’(i)) in s3, and otherwise no data flow would occur.

Taking control flow into account. The final situation we consider

is when the forward substitution procedure must take into account

conditional branches and carry information into the expression of the

ERS (see Fig. 6). The additional difficulty presented by this case is

the fact that the exact form of the RHS is not known statically, What

is known, however, is the set of all possible RHS forms, which can be

computed by following all potential paths in the control flow graph.

A direct approach uses a gated static single assignment (GSSA)

[5, 34] representation of the program. In such a representation,
scalar variables are assigned only once. At tie points of confluence

of conditional branches a ~ function of the form @(B, Xl, Xz) is

used (in the GSSA representation) to select one of the two possible

definitions of a variable (Xl or X2), depending on the boolean

225

Sl:

S2:
S3:
Sk
S5:
S6:

Sl:
S2

S3:
Sk

S5:
S6:

do i=l, n
z = A(K(i))

y = constant
A(R(i)) = z + y
t=z

A(L(i)) = t + y
if (exp) B(f(i)) = t

enddo

doall i= l,n

z = A(K(i))

y = constant

markread(K(i))
markwrite(R(i))

if (K(i) .ne. R(i)) then

markredux(K(i))

markredux(ll(i))

endif
A(R(i)) = z + y
t=z

markwrite(L(i))
if (K(i) .ne. L(i)) then

rn;~dnx(K(i))

markredux(L(i))
endif

A(L(i)) = t + y

if (exp) then

(a)

(b)

rns&edux(K(i))
B(f(i)) = t

endif
enddoall

Figure 5: The code generated for the do loop in (a) 1sshown m (b). The
mark-x operations are as described in Fig. 3.

expression B, By proceeding backwards through the clef-use chains

(which include the q$functions) it is easy to expand a scalar variable

in terms of boolean expressions, other scalar variables, and array

elements. In the example of Fig. 6, the variable w in statement S 9

would be expanded as follows:

w=+

=+ #(B3, t,A(M(i)))

* 44B3) 4(B2, z> A(J(i)), A(M(i))))

=+ 4(B3, 4(B2, 4(B1, A(K(i))), A(L(0), A(J(i)))A(M(i))))

which means that the value of w is:

{

A(K(i)) if (133A~2 A ~1) is true

A(L(i)) if (B3 AB2 A -=Bl)k truew.
A(J(i)) if (B3 A 7~2) is true

(1)

A(M(z)) if (7B3) is true

This compound equation can then be used to generate a

mark read and a mark redux operation at statement S9 where

w is read. To save unnecessary work, we only expand those scalars
that are on the RHS of assigmnents to shared variables or in po-

tential reduction statements (e.g., in the case of z in statement S8).

All other scalar references can be safely ignored. Fig. 6(b) shows

the program in Fig. 6(a) after the insertion of the mark read and

mark redux operations, which are based on the expansion of the

scalar variables. The possible drawback of this approach is that the

number of potential reductions and the number of terms in the logic

expressions generated may be quite large. If this happens, we can

gracefully degrade to a more conservative approach: test only some

of the expressions of the ERS and invalidate all the rest.

Sl:
S2:
S3:
S4:

S5:

S6:
S7;
S8:

S9:

Sl:

S2:

S3:
S4:

S5:

S6:

S7:

S8:

S9:

doi=l, n
w = A(M(i))

t = A(J(i))
if (Bl) then

z = A(K(i))

else

z = A(L(i))

endlf

if (B2) t = z

if (B3) w = t
if (B4) A(R(i)) = A(R(i)) + z
if (B5) Y(i) = w

enddo

doall i=l, n

w = A(M(i))

t = A(J(i))

if (Bl) then

z = A(K(i))

else
z = A(fJj))

endif

if (B2) t = z

if (B3) w = t
if (B4) then

markread(Bl *K(i) + notBl *L(i))

markredux(B 1*K(i) + notB 1*L(i))

markwnte(R(i))

A(R(i)) = A(R(i)) + z

endif

if (B5) then

m’ar~ead(B3*B2*Bl *K(i) + B3*B2*notB 1*L(i)

+ B3*notB2*J(i) + notB3*M(i))

markredux(B3*B2*Bl *K(i) + B3 *B2*notBl *L(i)

+ B3*notB2*J(i) + notB3*M(i))
Y(i) = w

endlf

enddoall

(a)

(b)

Figure 6: The code generated for the do loop in (a) is shown in (b).

The mark-x operations are as described in Fig. 3. The expressions in

the markread and markredux operations are abbreviations of i f then

e 1 se statements representing the different assignments to z (S 8) and w

(S 9) as in Equation 1. The operators “*”, “+”, and “not” represent logical

“and”,” or”, and “complement” operators, respectively.

It is important to note that the loop in Fig. 6 exemplifies the

type of loop found in the SPICE2G6 program (subroutine LOAD)

which can account for 70% of the sequential execution time (h

vectorization has dealt with before [35]).

Finally we mention that reductions such as rein, max. etc., would

first have to be syntactically pattern matched, and then substituted

by the min and ma-x functions. From this perspective, they are more

difficult to recognize than simpler arithmetic reductions. However,

after thk transformation, our techniques can be applied as described

above.

4 Putting it All Together

Jn the previous sections we described run-time techniques that

can be used for the speculative parallelization of loops. These

techniques are automatable and a good compiler could easily insert

them in the original code. In thk section, we give a brief outline

of how a compiler might proceed when presented with a do loop

whose access pattern cannot be statically determined.

226

A. At Compile Time.

1.

2.

A cost/benefit analysis is performed using both static analysis

(based on rhe asymptotic complexity of the LPRD test given

below) and run-time collected statistics to determine whether

the loop should be:

(i) speculatively executed in parallel using the LRPD test,

(ii) first tested for full parallelism, and then executed appropri-

ately (using an inspector/executor version of the LIRPD

Test), or

(iii) executed sequentially.

Generate the code needed for the speculative uarallel execution.

A parallel version of the origina;loop is a~gmented with, the

markread, markwrite and markredux operations for the

LRPD test; if necessary to identify reduction variables, the [oop

is also augmented as described in Section 3.2.2. In addition,

code is generated for the analysis phase of the LRPD Test, the

potential sequential re-execution of the loop, and any necessary

checkpointing/restoration of program variables.

B. At Run-Time.

1.

2.

3.

4.

5.

Checkpoint if necessary, i.e., save the state of program variables,

Execute the parallel version of the loop, which includes the

marking phase of the test.

Execute the analysis phase of the test, which gives the pass/fail

result of the test.

If the test passed, then compute the final results of all reduction

operations (from the processors’ partial results) and copy--out

the values of any live private variables. If the test failed, then

restore the values of any altered program variables and execute

the sequential version of the loop.

Collect statistics for use in future runs, and/or for schedule reuse

in this run.

An example using iteration numbers as “marks” in private

shadow arrays is shown in Fig, 7. If the speculative execu Lion

of the loop passes the analysis phase, then the scalar reduction re-

sults are computed by performing a reduction across the processors

using the processors’ partial results. Otherwise, if the test fails, the

loop is re-executed sequentially.

4.1 Complexity of the LRPD test

The tirnerequiredby the LRPD test is T’(n,s, a, p) = O(mz/p+

log p), where p is the number of processors, n is the total iteration

count of the loop, s is the number of elements in the shared anray,

and a is the (maximum) number of accesses to the shared array in a

single iteration of the loop, We assume that the implementation of

the test uses private shadow structures. The analysis below is valid

for all variants of the LRPD test.

The marking phase (Step 1) takes O(n.a/p+s +log p) time, i.e.,

proportional to max(na/p, s, log p) time. We record the read ~and

write accesses, and the reduction and privatization flags in private

shadow arrays using iteration number “marks”, In order to check

whether for a read of an element there is a write in the same iteration,

we simply check that element in the shadow array - a constant time
operation. All accesses can be processed in O(na/p) time, since

each processor will be responsible for O(na/p) accesses. After all

accesses have been marked in private storage, the private shadow

arrays can be merged into the global shadow arrays in 0(s + log p)

time; the log p contribution arises from the possible write conflicts

in global storage that could be resolved using software or hardware

combining. The counting in Step 2(a) can be done in parallel by

giving each processor slp values to add within its private memory,

and then summing the p resulting values in global storage, which

takes O(s/P + log p) time [19]. The comparisons in Step 2(b)

(2(d)) of AW with AT (with A.p and An=) take O(s/p + log p)

time.

If the loop passes the test, then the final result of each reduc-

tion must be computed (unless the reduction was parallelized using

unordered critical sections) and last value assignments must be per-

formed for the live private variables. If the reduction operation

is parallelized using unordered critical sections, then no overhead

is incurred, i.e., the original sequential reduction operation and its

transformed parallel version require the same number of operations

(within a small constant factor). However, if the reduction is paral-

lelized using recursive doubling, then an overhead 0(s + log p) is

incurred when the processors’ partial results are merged pair-wise

into the scalar reduction results. Similarly, the private variables with

the latest time stamps (iteration number “marks”) can be selected

for last value assignment in time 0(9+ log p).

Hash tables. If s >> na/p, then the number of operations in the

LRPD test does not scale since each processor must always inspect

every element of its private shadow stzucture when transfening it to

the global shadow structure (even though each processor is respon-

sible for fewer accesses as the number of processors increases).

Another related issue is that the resource consumption (memory)

would not scale. However, if “shadow” hash tables are used, then

each processor will only have private shadow copies of the array

elements accessed in iterations assigned to it, which will increase

the cost per access by a small constant factor. Thus, if hash tables of

size O(na/p) are used, then the complexity of the marking phase

becomes O(n.a/p + log p). Similarly, using hash tables the analysis

phase and any needed last vahre assigmnents and/or processor-wise

reduction operations can be performed in time O(na/p + log p).

5 Experimental Results

In this section we present experimental results obtained on two

modestly parallel machines with 8 (Alliant FX/80 [3]) and 14 pro-

cessors (Alliant FX/2800 [4]) using a Fortran implementation of our

run-time library. The codes have been manually instnsmented with

calls to the run-time library. However, we remark that our results

scale with the number of processors and the data size and thus they

should be extrapolated for massively parallel processors (MPPs),

the actual target of our run-time methods.

We considered seven do loops from the PERFECT Benchmarks

[7] that could not be parallelized by any compiler available to us.

Our results are summarized in Table 1. For each loop, we note

the type of test applied: doall indicates cross-iteration dependence

were checked (Lazy Doall (LD) test), privat indicates privatization

was checked (LPD test), reduct indicates reduction parallelization

was checked (LRD test). For each method applied to a loop, we

give the speedup that was obtained, and the potential slowdown that

would have been incurred if, after applying the method, the loop

had to be re-executed sequentially. If the inspector/executor version

of the LRPD test was applied, the computation performed by the

inspector is shown in the table: the notation privatization indicates

227

c

c original loop

dimension A(l :m)

do i=l, n

Sl: A@(i)) = A@(i))+ expo

S2: = A(L(i)) Sl:
end do

(a)

S2,

Marking Phase

dimension A(m), pA(m,procs)

dimension A_w(m), pA_w(m,procs)

dimension A_r(m), pA_r(m,procs)

dimension A_nx(m), pA_rrx(m,procs)

Initiahze(pA, pA_w, pA_r, p.Lnx)
doall i=l,n

private p
p = get_proc_ido
pA_w(R(i), p) = i
pA(R(i), p) = pA(R(i), p) + expo

if (pA_w(L(i), p) .ne. i)

pA_r(L(i), p) = 1
pA_nx(L(i), p) = .tnre.

........... = pA(L(i), p)

c Analysis Phase

doall i=l ,n

A_w(l :m) = pA_w(l :m,i)

A_r(l :m) = pA_r(l :m,i)

A_nx(l :m) = pA_nx(l:m,i)

enddoall

result = test(A_w, A_r, A_nx)

if (result .eq. pass) then

c compute reduction

doall i=l, m

if (A_nx(i) .eq. false.)

A(i) = sum (pA(i, 1:procs))

enddoall

else

c execute the loop sequentially

enddoall endif

(b) (c)

Figure 7: The sunphfied code generated for the do loop in (a) is shown us (b) and (c). Privatization is not tested because of a read before a write reference

the inspector verified that the shared array was privatizable and then

dynamically privatized the array for the parallel execution, branch

predicate and subscript array mean that the inspector computed

these values, and replicates loop means that the inspector was work–

equivalent to the original 100p.

In addition to the summary of results given in Table 1, we show

in Figures 8 through 14 the speedup and the potential slowdown

measured for each loop as a function of the number of processors

used. For reference, these graphs show the ideal speedup, which

was calculated using an optimally parallelized (by hand) version

of the loop. The potential slowdown reported is the percentage of

the execution time that would be paid as a penalty if the test had

failed, and the loop was then executed sequentially. In cases where

extraction of a reduced inspector loop was impractical because of

complex control flow and/or inter-procedural problems, we only

applied the speculative methods.

Whenevernecessary in the speculative executions, we performed

a simple preventive backup of the variables potentially written in

the loop. In some cases, the cost of saving/restoring might be

significantly reduced by using another strategy. In order for our

methods to scale with the number of processors, the shadow arrays

must be distributed over the processor space, rather than replicated

on each processor (Section 4.1). For this purpose, we tried using

hash tables. Since we had at most 14 processors, the extra cost of

the hash accesses dominated the benefit of reducing the size of the

shadow arrays. Thk was particularly true for the loops from the

OCEAN and TRFD Benchmarks. However, on a larger machine we

would expect the use of hash tables to pay off. Due to this problem,

the results reported do not reflect the use of hash tables.

The graphs show that in most cases the speedups scale with the

number of processors and are a very significant percentage of the

ideal speedup. When they do not scale, as mentioned above, we
believe that the use of hash tables (for MPPs) will preserve the scal-

ability of our methods. We note that with the exception of the TRFD

loop (Fig. 10), the speculative strategy gives superior speedups ver-

sus the inspector/executor method. For both methods the potential

slowdown is small, and decreases as the number of processors in-

creases. As expected, the potential slowdown is smaller for the

inspector/executor method,

We now make a few remarks about individual loops for which

Table 1 does not give complete information.

The loop from TRACK is parallel for only 90% of its invo-

cations. In the cases when the test failed, we restored state, and

re–executed the loop sequentially. The speedup reported includes

both the parallel and sequential irtstantiations (Fig. 11).

Loop 40 from SPICE is representative of the type of the loop

contained in the LOAD subroutine, which accounts for 70% of the

sequential execution time. Since all the arrays are equivalence

to a global work array, all accesses in the loop were shadowed in

the LRD test, i.e., each array element was proven to be either a

reduction variable, read–only, or independent (i.e., accessed in only

one iteration). For this loop we used an inspector/executor version

of the LRD test (instead of a speculative parallelization) because

of complex memory management problems for the shadow arrays

in the presence of highly irregular and sparse access patterns. The

ideal speedup of loop 40 is not very large since the loop is small,

irnbalanced between iterations, and traverses a linked list. The

liied list traversal was parallelized using techniques we developed

for automatically parallelizing while loops [27]. Thus, although

the obtained speedup is modest, it represents a significant fraction

of the ideal speedup (see Fig. 14). Therefore, since loop 40 is one

of the smallest loops in the LOAD subroutine, we expect to obtain

better speedups on the larger loops (since they have larger ideal

speedups). In the camera-ready version of the paper, we will report

the speedups obtained on all loops in subroutine LOAD.

The speedups obtained for the loops from both OCEAN and

TRFD are modest because they are kernels. In the case of the loop

from TRFD we were able to reuse tie schedule and improve our

results significantly. Because of the large data set accessed the loop

from TRFD is the only case in which speculative execution proved

to be inferior to the inspector/executor method (saving state was a

significant portion of the execution time).

6 Conclusion

In this paper we have approached the problem of parallelizing

statically intractable loops at run-time from a new perspective -

instead of determining a valid parallel execution schedule for the

loop, we speculate that the loop is fully pruallelizable, a frequent oc-

currence in real programs. We proposed efficient, scalable run-time

techniques for veri~ing the correcmess of a speculative parallel ex-

ecution, i.e., methods for checking that there were in fact no cross-

iteration dependence in the loop. From our previous experience

228

Benchmark2 Experimental Results

Subroutine potential Tested Description of Loop Inspector
Loop Technique Speedup Slowdown (% of sequential execution time of program) (computation)

MDG 14 processors

INTERF

pnvatizabon
speculative 11.55] 1.09 dc,all accesses to a privauzable vector guarded data accesses

loop 1000 insp/exec 8.77 1.03 “- pnvat by loop computed predicates (92% T,.q) branch predicate

BDNA 14 processors

ACTFOR

privatization

~ speculative -1.09 doall accesses privatizable array indexed by a data accesses

loop 240 insp/exec 7.72] 1.04 pnvat subscript array computed inside loop (32% T, ,g) subscript array

8 processors

TRFD speculative .85 2.1-f doall small triangular loop accesses a vector data accesses
INTGRL sched reuse 1.93 2.17 indexed by a subscript array computed replicates loop

loop 140 insp/exec 1.05 1.74 outside loop (5% T, ,q)

sched reuse 2.10 1,74

TRACK
NLFILT

accessesarray indexed by subscript array
8 processors doall computed outside loop, accesspattern

loop 300
not applicable

speculative 4.21 1.01 guarded by loop computed predicates (39% T.,q)

ADM accessesprivatizable array thm aliases,

RUN 14 processors doalf array re-dimensioned, access

loop 20
not applicable

speculative 9.01 1.02 pnvat pattern control flow dependent (44% T,,q)

OCEAN 8 processors kemel-tike loop accesses a vector with data accesses

FTRVMT speculative 2.23 1.45 dealt inn-rime determined strides
loop 109 insplexec 2.14

replicates loop
1.30 26K invocations account for437. 2’, .q

SPICE traverses hnked list tenrunated by a NULL
LOAD 8 processors doidf pointer, all referenced arrays equivalence data accesses
loop 40 insplexec 2.75 1.09 reduct to a global work array

with static analysis and parallelization of Fortran programs, we huve

found that the two transformations most effective in removing data

dependence are privatization and reduction parallelization, Thus,

our new run-time techniques for checking the validi~ of specula-

tive applications of these transformations increases our chance of

extracting a significant fraction of the available parallelism in even

the most complex program. The methods in this paper employ a cle-

pendence analysis based on the actual exchange (definition or use)

of vahres rather than on the memory references themselves. This

approach leads to the exploitation of more parallelism than was pre-

viously possibly, e.g., our general method for reduction recognition

that does not rely on syntactic pattern matching.

Our experimental results show that the concept of run-time data

dependence checking is a useful solution for loops that cannot ‘be

analyzed sufficiently by a compiler. Both speculative and inspec-

tor/executor strategies have been shown to be viable alternatives for

even modestly parallel machines like the Alliant FX/80 and 28010.

We would like to emphasize that our methods are applicable to all

loops, without any restrictions on their data or control flow.

We believe that the significance of the methods presented here

will only increase with the advent of massively parallel processors

(MPPs) for which the penalty of not parallelizing a loop could be a

massive performance degradation. As we have shown, our run-time

tests are efficient and scalable, and thus if the target machine has

many (hundreds) processors, then the cost of our techniques will

become a very small fraction of the sequential execution time. b-I

other words, speculating that the loop is fully parallel has the poten-

tial to offer large gains in performance (speedup), while at the same
time risking only small losses. To bias the results even more in our

favor, the decision on when to apply the methods should make use of

2Alt benchmarks are from tfre PERFECT Benchmark Suite

Table 1: Summary of Experimental Results.

run-time collected information about the fully parallel/not parallel

nature of the loop. In addition, specialized hardware features could

greatly reduce the overhead introduced by the methods.

Finally we believe that the true importance of this work is that

it breaks the barrier at which automatic parallelization had stopped:

regulax, well–behaved programs. We think that the use of aggres-

sive, dynamic techniques can extract most of the available par-

allelism from even the most complex programs, making parallel

computing attractive.

Acknowledgment

We would like to thank Paul Petersen for his usefirl advice, and

Wllliarn Blume, Gung-Chung Yang and Andrei Vladimirescu for

identifying and clarifying applications for our experiments. Special

thanks go to Nancy Amato for her careful review of the manuscript

and insightful comments.

References

[1]

[21

[3]

[4]

S. Abraham. Private communication, 1994.

J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of

control dependence to data dependence. In Proceedings of the I(lt)r

ACM Symposiatrs on Principles of Programming Languages, pages
177-189, January 1983.

Athant Computer Systems Corporation. FXISeries Architecture Man-

ual, 1986.

Albant Computers Systems Corporation. Al[iant FX12800 Series Sys-

tem Description, 1991.

229

[5] R. Ballance, A. Maccabe, and K. Ottenstent. The Program Depen-

dence Web: a Representation Supporting Control- Data- and Demand-

Dnven Interpretation of Imperative Languages. In Proceedings of

the SIGPLAN’90 Conference on Programming Lmgmge Design and
Irnplemenladon, pages 257-271, June 1990.

[6] U. Banerjee. Dependence Analysis for Supercomputing, Kluwer.

Boston, MA., 1988.

[7] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, R. Roloff,

A. Sameh, E. Clementr, S. Chin, D. Schneider, G. Fox, P. Messina,

D. Walker, C. Hsiung, J. Schwarzmeler, K. Lue, S. Orzag, F. Seidl,

O. Johnson, G. Swanson, R. Goodrum, and J. Martin. The PER-

FECT club benchmarks: Effective performance evaluation of super-

computers. Technical Report CSRD-827, Center for Supercomputmg

Research and Development, University of Illinois, Urbana, IL, May

1989.

[8] H. Benyman and J. Saltz. A manual for PARTI runtime prirmttves.

Interim Report 90-13, ICASE, 1990.

[9] W. Blrrme and R. Elgenmann. Performance Analysis of Parallelizing

Comprlers on the Perfect Benchmarks ‘M Programs. LEEE Transac-

tions on Parallel and Distributed Systems, 3 (6):643–656, November

1992.

[10] M. Burke, R. Cytron, J. Ferrante, and W. Hsieh. Automatic generation

of nested, fork-join parallehsm. Journal of Super-computing, pages

71-88,1989.

[11] W. J. Camp, S. J. Plimpton, B. A. Hendrickson, and R. W. bland.

Massively parallel methods for engineering and science problems.

Comm ACM, 37(4) !31-41, Apr’d 1994.

[12] D. K. Chen, P. C. Yew, and J. Torrellas. An efficient algorithm for the

rim-time parallelization of doacross loops. In Proceedings of Super-

computing 1994, pages 518–527, Nov. 1994.

[13] A. Dinmng and E. Schonberg. An empirical comparison of monitoring

algorithms for access anomaly detection. In Proc. of 2-rid ACM SIG-

PLAN Symposium on Principles& Practice of Parallel Programming

(PF’OPP), pages 1-10,1990.

[14] R. Elgenmann,J. Hoeffinger, Z. Li, and D. Padua. Experience rn

the Automatic ParalJelization of Four Perfect-Benchmark Programs.

Lecture Notes in Computer Science 589. Proceedings of the Fourth

Workshop on Lmsguagesand Compilers for Parallel Compuiing, Santa

Clara, CA, pages 65–83, August 1991,

[15] V. KrothapalJi and P. Sadayappan. An approach to synchromzation of

parallel computing. In Proceedings of the 1988 International Confer-

ence on Supercompu~mg, pages 573-581, June 1988.

[16] C. Kruskal. Efficient parallel algorithms for graph problems. In Pro-

ceedings of the 1985 International Conference on Parallel Processing,

August 1985.

[17] C. Knrskal. Efficient parallel algorithms for graph problems. In Pro-

ceedings of the 1986 International Conference on Parallel Processing,

pages 869–876, August 1986.

[18] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe.
Dependence graphs and compiler opt.muzations. Jn Proceedings of the

8th ACM Symposium on Principles ofPrograrrrming Languages, pages

207-218, January 1981.

[19] F. Thomson I.aghton, introduction to Parallel Algorithms and Archi-

tectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

[20] S. Leung and J. ZahorJan. Irnprowng the performance of runurne

parallelization. In 4th PPOPP, pages 83–91, May 1993.

[21] Zh,yuan L,. Array privatization for parallel execution of loops. In

Proceedings of the 19th International Symposium cm Computer Archi-

tecture, pages 3 13–322, 1992.

[22] D. E. Maydan, S. P. Amarasmghe, and M. S. Lam. Data dependence

and data-flow analysis of arrays. In Proceedings 5th Workshop on Pro-

gramming Languages and Compi[ers for Parallel Computing, August

1992.

[23] S. Midkiff and D. Padua. Compiler algorithms for synchromzation.

L?Z?E Trans. CompuZ., C-36(12):1485-1495, 1987.

[24] I. Nudler and L. Rudolph. Tools for the efticlent developementof efti-

cient parallel programs. In Proc. 1st Israeli Conference on Computer

System Engineering, 1988.

[25] D. A. Padua and M. J. Wolfe. Advanced compiler optunizations for

supercomputers, Communications of the ACM, 29:1184-1201, De-

cember 1986.

[26] L. Rauchwerger and D. Padua. The privatizing doall test: A rnn-

drne technique for doall loop identification and array privatization. In

Proceedings of the 1994 International Conference on Supercomputing,

pages 33–43, July 1994.

[27] Lawrence Rauchwerger and David A. Padua, Parallelizrng WHILE

Loops forMultiprocessorSy stems. III Proceedurgsof 9thlnternattonal

Parallel Processing Symposium, April 1995.

[28] J. Saltz and R, Mirchandaney, The preprocessed doacross loop. In
Dr. H.D. Schwetrnan, editor, Proceedings of the 1991 International

Conference on Parallel Processing, pages 174–178. CRC Press, Inc.,

1991. Vol. If - Software.

[29] J. Saltz, R. Mmchandaney, and K. Crowley. The doconsiderloop. In

Proceedings of the 1989 International Conference on Supercomputing,

pages 29-40, June 1989.

[30] J. Saltz, R. Mirchandaney, and K. Crowley. Run-time parallelization

and scheduhrtg of loops. IEEE Trans. Comput, 40(5), May 1991.

[31] E. Schonberg. On-the-fly detection of access anomalies. In Proceed-

ings of the SIGPLAN 1989 Conference on Programming Language

Design and Implementation, pages 285–297, Portland, Oregon, 1989.

[32] P. Tu and D. Padua. Array privatization for shared and distributed

memory machines. In Proceedings 2nd Workshop on Languages, Com-

pilers, and Run-Time Envlronmentsfor Distributed Memory Machines,

September 1992.

[33] P. Tu and D. Padua. Automatic amay privatization. In Proceedings 6t/r

Annual Workshop on Languages and Compilers for Parallel Comput-

ing, Portland, OR, August 1993.

[34] Peng Tu and David Padua. GSA based demand-driven symbofic

analysis. Technical Report 1339, University of Illinois at Urbana-

Champaign, Cntr for Supercompuring Res & Dev, February 1994.

[35] A. Vladin-urescu, LSI Circuit Simulation on Vector Computers. PhD

thesis, Electronics Research Laboratory, University of California,

Berkeley, October 1982. Technical Rept. No. UCB/ERL M82/75.

[36] M. Wolfe. Optimizing Compiiersfor Supercomputers. The MIT Press,

Boston, MA, 1989.

[37] J. Wu, J. Saltz, S. Hlranandam, and H. Berryman. Runtime compi-

lation methods for multicomputers. In Dr. H.D. Schwerman, editor,

Proceedings of the 1991 International Conference on Parallel Pro.

cessing, pages 26-30. CRC Press, Inc., 1991. Vol. If Software.

[38] C. Zhu and P. C. Yew. A scheme to enforce data dependence on large

mnkiprocessor systems. IEEE Trans. Softw, Eng,, 13 (6):726-739,June
1987.

[39] H. Zima. Supercompilersfor Parallel and Vector Computers. ACM

Press, New York, New York, 1991.

230

SPeeduP d kmP MDG_lfWERF_lGCJ3

w Numbaf of Prccwws (w?w3)

@&up
1si $

Iz A

,1
40
e

8

7

8

5

4

7
234667 891011>2U ,4

Nurk6 Q(P—

_ SF%CU!AM . . . lNSPECT@EC ,..,, LX#L

SPaadupof kQP BDNA__0R_240
w Numbe of Prcnxsawa(Ew%CO)

s+wdup
1$
12

.

,,

10

e

B

7

8

s

+

2

1
2345878 930111218$4

NW 01P—m

_aEuu.Alr@s .--!NaPEcTfDEc _- low.

SpeB3uP of LmP TRFD.INTGRL-140

w.. Number of Pr— rs (FWSO)
milha?dwVaMSctmdulalw.

awllp
. .

1
.---------- ”---’----

2 3 4 6 8 7 $
N“lnW d -m

_sFewLm& --- LWPECTIE.EC.-. IDFM
NOSmbof, - M Ww4”le hum

spmdup of Loop TFfACK_NIHLT_SOO
VS. Numbw of Pmces!sora (FWSO)

Patialty ParallelLoop

“%~

4

.3

? a 4 6 8 7 8
M,”,* G4i%-.

_ SECU!ATW. .. . low.

Figure 8:

potentialSlwcfown of LwP MDG.lfWERF_lIMO
w Numkw of wcms-wa (fwzscm)

$.hUIOhn
1.63 1

Figure 9:

Figure 10:

~1””=
2S4667S 91011121S14

NW M P—

_ SPECUIATME ..- IN6PECVRE.2

P7JtentiaiSlcwdclw! of Lwp BDNA.ACTFOR-240
w. Numbs+& Prcceaaws(f=wsw)

awdohll
133

1s3

1.4d

MO

1a5

lm

1,,5

?10

1,05

I.m J
2s4se7a s10il?213M

NW mlP—.

_ SFECUIAT?f --- INSPECT=

potentlelSlowdownof Imp TRFD_lNTGRL_140
W. Numlw of Pmceaaom(wSo)

Sw.xhwl
32
al
80
w
2s
27
26
26
2,4
23

20
19
18
17

2 3 4 6 a 7 e
NwnQ2,0! Fm—

—,Tm .. NwEcTJExEc

Potemlal Slowdcwm of LooP TRACK_NI-HLT_Wl
VS. Numberof Pmwsors (FWSO)

Padaliy Padel Loop

awd.
Im

w%

lrm

lam

lWU

1.W

lJxa

?Uz5

ma

mm

2 s 4 6 0 7 a
N..- . m—

_ SPEwlAmE

Figure 11:

231

Sp3edup of LooP.43M.RUN.20
w Numb of Proxsscxs (FX&!J20)

11 2
2246678 01011121a14

Nti o! P=*

_ sFtCUMJNE ,..,, IDEM

Figure 12:

Sw6duP of I.COP OCM.FTRVMT-W3
vs Numb of Prwezssors(FXX?O)

L%lti”p

‘~
8

6

4

sI,“ ,
.-.

---- —- ‘-
_- J

2 ------- ------

1
, 3 * 5 . 7 8

_ SFECUIA7NE ___ INSPECT(BEC .~..,, IDE4L

SPeeduPof LOOP SPICE-LOAD_40
w Numkerof Prccsswrs (FX@O)

Whlla LOOp - Lmkec IM Traversal

Smadw
4,

2 3 4 6 8 7 a
Nu.ter of m-m

_ lNSFEGT~ ,,. . .. IDEAL

Figure 13:

%tsmlal Slcwchvmof LOOP PQM_RUN_XJ
w Num& of Prccsssms (IW%CY3)

“:~

Potential Slowdown ofLWP 0CWf4_FTRVMT_l@
vs Number of Prcwssors (BW?O)

M.
t9

la

17

%6

?,4
------- ----

93
2 3 4 6 n 7 a

Numb, d WI—

_ SF5cwm ___ LNsPElx/mEc

putentlal Slwduivn of LCOP SpCE_LOAD_40
w Numbar of Prcew.xs (W@O)

Mile Loop – Linked M Trawamd

9.WZI.
4.X

1.2s >.

1s ‘..>

124 ‘..
.,..

l=
. .

,= -.\\

118 . .
. .

11% ~.k-

1,14 ------

1,12 -.. .
-+-

710 ------- ---
T.Ja

2 3 4 6 a 7 a
Numb, d FTO-m

Figure 14:

232

