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ABSTRACT 
The introduction of vector processors and multiprocessors punctuate 

the most dramatic changes in Fortran and its dialects. The emerging gen- 
eration of supercomputers utilize both vector processing and multipmcess- 
ing simultaneously. The challenge is to provide language constructs and 
software tools that will allow the programmer to easily exploit the capabili- 
ties of the machine. 

This paper will outline the development of vector and multiprocessor 
language constructs in Fomnn. The significant architectures, their 
languages, and optimizers will be described. The paper concludes with a 
description of Cedar Fortran, the language for the Cedar Multiprocessor 
under development at the University of Illinois, Urbana-Champaign. 
Cedar is a hierarchical, shared-memory, vector multiprocessor. As such, its 
language, Cedar Fortran, contains many of the language features that will 
be described for vector processors and multiprocessors. 

1. Intmductio?l 
The study of supercomputers and their languages is very much a 

study in evolution, It is a study of gradual development punctuated with an 
occasional dramatic change. The machines and languages that prosper are 
those most suited to the current environment rather than those with the most 
aestheticly pleasing characteristics. Through this development, Fortran has 
proven to be a hearty species that refuses to become extinct. As A. Perlis 
writes, “Fortran is not a Rower, but a weed. It is hardy, occasionally 
blooms, and grows in every computer.” It adapts to changes in the 
landscape, and it survives attempts to be supplanted with more attractive 
languages. This paper will describe vecter and parallel machines and their 
corresponding Fottran dialects. The relationship between language features 
and machine architecture will be explored. 

Let us examine the history and development of the Fortran family 
tree. Fortran was designed to be simple and efficient for executing numeric 
programs on a uniprocessor system. It was developed in 1958 by an IBM 
software team headed by John Backus [l]. This early programming 
language bore some resemblance IO the assembly language that it was 
intended to replace. Possessing limited control structures and cumbersome 
I/O statements, Fortran programs were sometimes difficult to write and 
read, but Fortran compilers produced fast and efficient code. The Fortran 
66 standard did little to alleviate the coarseness of the originaI Fortran. It 
was not until the Fortran 77 standard that Fortran became somewhat more 
palatable to the users of more modem programming languages. 

The introduction of vector processors and multiprocessors punctuate 
the most dramatic changes in Foltran and its dialects. Vector statements 
have been standardized to the extent that they will be part of the next For- 
tran standard. No consensus has yet been reached with regard to language 
extensions for multiprocessing. Some proposals for parallel extensions to 
Fortran will be presented later in this paper. The emerging generation of 
supercomputers utilize both vector processing and multiprocessing simul- 
taneously. The challenge is to provide language constructs and software 
tools that will allow the programmer to easily exploit the capabilities of the 
machine. 
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Thii paper will outline the development of vector and multiprocessor 
language constructs in Fortran. Tbe significant architectures, their 
languages, and optimizers will be described. The paper concludes wifi a 
description of Cedar Fortran [2] 131, the language for the Cedar Multipro- 
cessor 141 under development at the University of Illinois, Urbana- 
Champaign. Cedar is a hierarchical, shared-memory, vector multiproces- 
sor. As such, its language, Cedar Fortran, contains many of the language 
features that will be described for vector processors and multiprocessors. 

2. Vector Processing 

With the advent of vector supercomputers in the early 70’s, a new 
branch began to form in the Fortran Family tree, a branch that would later 
be spliced back into the main development by the Fortran 8x standard. The 
vector/array processor system was the general model for most early supcr- 
computem. In order to utilize the power of these new vector machines, 
statements were added to Fortran to specify vector operations. The first 
such machine was the Illiac IV [5] completed in 1971. Several different 
Fortran compilers were deveIoped for this machine. The first was the Bur- 
roughs Illiac IV Fortran [6] which used confrol sectors as array subscripts. 
The elements of a control vector took on values of .t rue. and .f alse. A 
value of .true. indicated that the operation should be performed for the 
corresponding array element. A * denoted a control vector of any length 
with all elements set to .true. Thus, the code fragment 

Real AtlOO), BtlOO), C(100) 
do 10 i = 1, 100, 2 

M (i) = .true. 
M (i+l) = .false. 

10 continue 
A(*) = B(*) + A(*) 
C(M(*)) = B(M(*)) + A(M(*)) 

adds corresponding elements of arrays A and B and assigns the result to 
array A. While only the odd elements of A and B are added and assigned to 
the odd elements of C. 

Control vectors were somewhat cumbersome to use for complicated 
vector expressions. The next compiler for the Illiac IV, the IVTBAN Com- 
piler [7] of 1973. took another approach to expressing vector operations. 
All assignment statements were written in standard Fortran. using array 
subscripts. To indicate vector operations, this language used a genwic vec- 
tor loop statement do for all to indicate that a loop should be com- 
piled as vector instructions. IVTRAN even allowed subroutine and func- 
tion cells within the body of the do for all which were recursively 
expanded in line to verify the correctness of the loop. This verification con- 
sisted of range checking and insuring that all statements could be vector- 
ized. 

Unlike the serial Fortran do loop statement, the do for all loop 
statement used an index set instead of a single index variable to specify the 
execution range. The index set consisted of an n-tuple of index variables 
and an n-dimensional range expression indicating the range of each variable 
in the index set. DO for all loops could not be nested and only limited 
conditional statements could be used within the body of the loop. The fol- 
lowing code shows a simple, properly formed do for all statement 

Real At10,20), Bt10,201 
do 10 for all (i,j) / [1...101.C.[1...201 

A(i, j) = B(i,j) + A(i,j) 
10 cant inue 
The [l...lOl.C.(l... 201 speciEes the range of the index variable 
i, I through 10, and the index variable j, 1 through 20. The . C . stands 
for cross, the cartesian cross product Thus, a grid of values is specified 
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that encompasses all elements of A and B. Complementing IVTRAN, the 
IVTRAN ParalyzerNil was the first sourceto-source restructuring parallel 
optimizer. Sta&ng with standard Fortran. the paralyzer transformed do 
100~s and Derfect 100~ nests into IVTRAN do for all loons. This optim- 
izer was significant because it utilized dependence analysis- to detent&e if 
loops could be safely parallel&d. 

Pipelmed vector pmcessors also emerged in the early 1970’s: the 
Texas Instruments Advanced Scientific Computer (ASC) [9] in 1972 and 
the Control Data Corporation Star-100 [lo] in 1973. The TI-ASC NX For- 
tran[ll] Compiler was one of the Erst vectorizing compilers developed. 
This compiler could take standard Fortran 66 and produce vectorized code. 
The language did have a few minor vector extensions, such as triplets (see 
below). but the use of these extensions was not required for vector code to 
be generated. 

Lawrence Livermore Labs developed an extented Fortmn language, 
Vector LRLTRAN [12] for the CDC Star-100. Starting with LRLTRAN (a 
Fortran dialect also developed at Lawrence Livermore Labs), vector exten- 
sions were added specifically targeting the Star-100 architecture. All vec- 
tors were restricted to one-dimensional arrays. Vector assignments, vector 
expressions, vector functions, and control vectors were all implemented, but 
all vector operations required contiguous access of stride one. 

Vector LRLTRAN also provided a facility for dynamically 
equivalencing vectors and subvectors. Given an array A(lO), a subvector 
B of 10 elements could be dynamically defined using the statement: 

vector (B, A((11, 20))) 
B(1) now refers to element A(ll), B(2) refers to A(12). etc. SinCe VeCtorS 
are one dimensional and double sets of parentheses arc used to specify vet- 
tor ranges, no syntactic ambiguity exists between vector statements and two 
dimensional arrays, but the programs can he confusing to the programmer if 
he does not pay careful attention to the syntax. 

The stride and dimensionality restrictions of Vector LRLTRAN made 
working with matrices cumbersome. These restrictions stem from the 
desire to translate vector operations in LRLTRAN directly into the vector 
machine instructions of the Star-100. Additionally, the use of commas to 
specify ranges of vectors was confusing and ensured that the current 
notation could never be generalized to express operations on multi- 
dimensional arrays as vector operations. 

New vector statements, operators, and notations were introduced in 
1973 by the IBM Vectran [131 and the BSP Fortran [14] compilers. Triplet 
expressions, identify statements, and where statements replaced con- 
trol vectors and other vector notations. These vector statements arc part of 
the proposed 8x standard. The triplet notation consists of three expressions 
separated by colons. These expressions indicate the range of execution of 
this statement and correspond to the beginning. end, and stride - as in a 
Fortran do loop. If the beginning of the triplet is omitted, it is assumed to 
be the beginning of the array; if the end is omitted, it is assumed to be the 
end of the array. Unless otherwise specified, the stride is assumed to be 1, 
and it may be omitted along with its separating colon. This notation makes 
it possible to assign a section of one array to a section of another. array or 
array section expression. For example, the following instructions first 
assign all of A to be the values of B (a full atray assignment). The next 
statement assigns A(1) the value 6 and A(2) the value 8 leaving the other 
elements unchanged: 

integer A(4), B(4), C(8) 
data B/2,4,6,8/, C/1,2,3,4,5,6,1,81 
A=B 
A(1:2) = B(3:4) 

A stride may also be used, so the following statement 
~(1:3:2) = B(2:4:2) * C(3:8:41 

is equivalent to 
A(1) = B(2) * C(3) A(3) = B(4) * C(7) 

Array sections can also be specified for multidimensional arrays with 
one triplet for each dimension of the array, and triplet notation may be 
mixed with the normal array Index notation. The only restriction is that any 
two sections appearing together in the same statement must be conformable, 
ie. both sections must have an equal number of elements in each 
corresponding dimension. For example: 

integer A(4,4,4), B(4,8), C(4,6,4,4) 
A(1:3:2,2:4:2,1)=B(1:2,2:4:2)*C(3:4,5,2:4:2,1) 

All the array sections in the above example are 2 x 2 sections. Expanded, 

they are: 
A(l,Z,l) = B(1,2) * C(3,5,2,1) 
A(3,2,1) = B(2,2) * C(4,5,2,1) 
A(1,4,1) = B(1,4) * C(3,5,4,1) 
A(3,4,1) - B(2,4) * C(4,5,4,1) 

Triplets are not sufficient to express all vector oFrations. 
SpeciEcaEy, conditional operations that were possible with control vectors 
cannot be performed with triplets. The where statement, another Vectran 
construct, is a conditional vector assignment that allows more flexibility 
than control vectors, The syntax of the where statement is shown in Fig- 
ure 1. The where statement first evaluates a logical array expression. The 
statementsinthebodyoftbe wheresreexecutedforeachiudexvahte for 
which the logical array expression evaluated .true. The body of the 
where statement, either a single statement or a block, contains only array 
assignments. The right hand side of every array expression in the bcdy 
must be conformable to the logical array expression. This is a vector state- 
ment, so the logical array expression and all right hand side (rhs) expres- 
sions in the body are evaluated before the assignments are performed. If 
the otherwise block is present, the array assignment statements of the 
otherwise block will be performed for every corresponding element of 
the logicul array expression of the where statement whose value is 
.false. 

where (<logical-array-expn) 
carray-assignment-statements> 

[otherwise 
carray-assignment-statements>3 

end where 

Figure 1. Where Statement Specification 

A simple example of the use of the where statement would be to 
zero all array elements that are negative. In this example only the elements 
of a that have values less than zero will be set to zero. AU the other ele- 
ments will remain unchanged. 

integer A (100) 
where (A(l:lOO) .LT. 0) 

A(l:lOO) = 0 
end where 

The combination of triplets and where statements is still not ade 
quate to express all vector operations. Particularly, it is not possible to 
express operations that have a regular stride in physical memory but an 
irregular stride in array indices. Assigning to the diagonal elements of a 
two-dimensional array is a simple example. Given an array, a ( lo,10 ) ; 
it is not possible to assign just the diagonal elements using triplets and 
where statements without control vectors even though the distance 
between all the referenced elements is the same (stride = 11 in this case). 
The identify statement of Vectran and Fortran 8x [I51 allows abasing to 
a part of an array so that such operations can be performed. To access the 
diagonal of array A, the following code would be used: 

real A(lO,lO) 
identify (Diag(1) = A(I,I), I = 1, 10) 
Diag(:) = 1 

Although suflicient, the identify statement introduces aking 
into the program. The forall statement. which has been removed from 
the proposed 8x standard, provides the same functionality as identify 
without the additional abasing. The forall looks very much like an iden- 
tify statement, except that it performs operations within the statement 
instead of just abasing. The equivalent code using the forall statement 
is: 

real A(lO,lO) 
forall (I - 1:lO) A(I,Il = 1 

The forall also allows conditional assignment making it possible to 
express complicated vector operations with a single statement. In the fol- 
lowing example, the diagonal elements of a matrix are tested, and any ele- 
ment that is negative is set to zero: 

integer a(lO,lO) i 
forall (i-1:10, a(i,i) .LT. 0) a(i,i) = 0 

The forall syntax is shown in Figure 2 and is essentially the same as the 
the IVTRAN do for all statement. 
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forall ([<loop spec>l'...[,<log-array exp>l) 
<array-sectTon_expr> = <array-sect.on-expr> 

where 
<loop-spec> -> <integer-variable> = <triplet> 
<log-array-exp>->same as in Where statement. 

Figure 2. Forallstatement Specification 

Most compilers for vector machines from the late 1970’s and early 
1980’s accept standard Foriran as input, and vectorization is done by the 
compiler. The Cray m compiler [la (the Cray 1 Fortran compiler) 
accepts standard Fornan and directives from the programmer. The com- 
pilers for the Cyber 205 (Cyber 205 Fortran 1171) and the Fujitsu VP-200 
(Fujitsu Fortran 77 [18]) are also full vectorizing compilers. but the Cyber 
205 Fortran also supports the Vectran-style vector extensions. Recently, 
many vectorizing compilers have been developed for various architectures: 
IBM VS Foman [19], AIliant FX/8 Fortran [201. NEC SX Fortran [213, and 
others. 

Also during the 1970’s. software tools that perform program restruc- 
turing for vector&ion and then report back to the user w& introduced. 
tools such as Parr&se [221 1231 WI, developed at the University of Illi- 
nois, and PFC [25]. devklo& later at Rice &versity. The go& of such 
tools were to provide very powerful system-independent vectorizers. to 
evaluate the effectiveness of new optimization& and to involve the user in 
the optimization process with the ultimate goal to educate the programmer 
to enable him to write better programs. 

3. Multiorocessing 
The introduction of multiprocessor systems has also had a dramatic 

affect on Fortran dialects, but no standardization of multiprocessor con- 
structs has been attained. Multiprocessor systems offer greater flexibility 
than vector processors, but they also offer a greater challenge in program- 
ming and compiling. Unlike compiling and programming for vector 
machines, which involve localized decisions, compiling and programming 
for multiprocessors often involve global consideration of the program. 
Additionally, utilization of a muldprocessor often requires consideration of 
both the operating system environment and the machine architecture mak- 
ing standardization difficult 

From the large number of multiprocessor systems that have been 
designed or proposed. two basic multitasking methods have emerged to 
increase the performance of a single program: macrotasking and microtask- 
ing. Macrotasking involves breaking the problem into large chunks, called 
to& that can exeCute more or less independently on the multiple proces- 
sors. Macrotasking is usually realized with the familiar fork/join con- 
structs of [%I. The fork construct creates a new task that will be 
scheduled for execution by the operating system. Creating a new task is 
generally a very expensive operation. The useful work performed by the 
task must be sufficiently large to compensate for this startup overhead if 
macrotasking is to be efficient. 

A very interesting system was the Denelcor HEP [271 developed in 
the late 1970s. A single HEP cpu executed multiple instruction streams in 
parallel. The cpu was time-multiplexed between the instructions streams. 
Multiple pipelines and register setS allowed the HEP to switch rapidly 
between processes without saving process state information. A minimum 
of eight processes was required to keep the cpu fully utilized. Therefore, 
even on a uniprocessor system, the HEP relied on macrotasking to increase 
PerfOflXUlCe. 

The HEP Fortran contained extensions to utilize the multitasking 
capabilities of the machine. Two new statements, create and resume, 
were added to the Fortran 77 base language. The create statement 
allowed the parent process to invoke a subroutine as a new process; the 
resume statement allowed a called routine to force its parent to continue 
while the called routine executed in parallel. The following two code seg- 
ments in HEP F.ntran would both result in subroutine subr executing in 
parallel with its parent process. 

create subr (x,y, x) call subr (x, y, z) 

subroutine subr (x,y,z) subroutine subr (x,y,z) 
<some computation> resume 
return <some computation> 

return 

Many current supercomputers consist of a relatively small number of 
VW high performance vector processors. They rely on multiprocessing to 
provide higher performance than single-processor vector systems. Both the 
C~Y-XM/P WI and the ETA-10 [29] provide macrotasking library rou- 
tines in their Fortran languages. These systems require the programmer to 
divide the work of his program into tasks that may execute in parallel. NO 
automatic task generation is done by the compiler. The library routines 
instantiate new tasks at the subroutine level. For example, the following 
pkce of Chy-XMP For&an code results in two tasks executing the same 
subroutine with different parameters: 

external subr 
integer taskl(3), data(1000) 
call tskstart (taskl, subr, data, 1, 500) 
call subr (data, 501, 1000) 

The first calI creates a new task executing subr with data elements from 
1 to 500. Thesecond call invokes subrdirecttywithdataelements from 
501 10 IO&I. The task1 array is a control array used by the macrotasking 
library. 

Along with the ability to create multiple instruction streams, effective 
multitasking also requires some method of controlling (synchronizing) the 
executing tasks. For the purpose of this paper we distinguish between criti- 
cal section synchronization and event-waiting synchronization. A critical 
section implies that entrance to a particular section of code must be res- 
tricted so that only one processor may execute it at a time. This is done to 
prevent processors from interfering with one another. Evenl-waifing syn- 
chronization imposes an ordering upon asynchronous events. The 
producer-constir problem is a good example of event-waiting synchroni- 
zation. Critical section synchronization is usually handled with a sema- 
phore [30] mechanism. Event waiting synchronization may be handled in a 
variety of ways: a processor may wait until the value of a particular vari- 
able becomes zero or explicit event posting and waiting mechanisms may 
be used. 

The HEP provided synchronization using asynchronous variables. 
An asynchronous variable was any variable whose name began with a dol- 
lar sign ($). These variables had a full/empty synchronization bit asso- 
ciated with them. An asynchronous variable could only be read if its syn- 
chronization bit was full; it could only be written if its bit was empty. A 
read automatically set the bit u) empty, and a write automatically set the 
bit to full. An instruction stream wanting to read or write a such variable 
would wait until the synchronization bit was in the proper state. A section 
of code bounded by a read and a write of an asynchronous variable there- 
fore became a critical section. These variables could aIso be used for 
event-waiting synchronization. 

Synchronization in Cray-XM/P Fortran is done with calls to the run- 
time system. Routines are provided for locking (critical section) and 
event-waiting synchronization. Figure 3 compares the HEP and the Cray- 
XhJ/P synchronization methods for a simple producer-consumer synchmni- 
zation problem and a simple critical section problem. 

Another consideration in macrotasking is the nature of the program 
data. Multiple tasks executing a single program require that multiple data 
spaces also exist. Cray Fortran uses stacks to allocate data local to subrou- 
tines and functions. This departs from the more common static allocation 
of local data in typical Fortran implementations, but this change is neces- 
sary to accommodate macrotasking. In both Cray and HEP, a local variable 
allocated on the stack can be passed by reference to newly spawned tasks. 
Care has to be taken, however, that variables are not deallocated from the 
stack before all tasks finish using those variables. 

connnon blocks also require some consideration. Common blocks 
are used in Fortran to share data across subroutine calls. In a macmtasking 
environment, is there one common block for the entire pmgram or one per 
task? In the I-lFLP only one common block exists per program and is shared 
by all tasks. In the Cray two types of common ,xe allowed. Plain common 
blocks are shared by all tasksinlhepmgram. Task common blocks are 
allocated one copy per task. The vsriables within a task common could 
be passed by reference to newly spawned tasks. 

Microtasking exploits parallelism at a more local level than macro- 
tasking. Microtr&ng is often used to execute iterations of a loop in paral- 
lel. In addition to loop parallelism, speedups can be achieved by overlap- 
ping segments of sequential code. This opemtion is called low-level 
spreading if the spreading is done on a statement-by-statement basis; it is 
called high-level spreading if the spreading is performed upon large instruc- 
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HEP 
Producer-Consumer 
Initialixation integer Semp 

integer $fll 
purge Semp,$fll 

Producer e = Semp call evwait (emp) 
<produce> <produce> 
$fll = 1 call evpost(fl1) 

Consumer f = $fll 
<consume> 
Semp = 1 

call evwait(fl1) 
<consume> 
call evpost (emp) 

Critical Section 
Initialization integer $lkvar 

purge Slkvar 
integer lkvar 
call lockasgn(lkvar) 

Section 1 = Slkvar 
<Crit. Sect.> 
Slkvar = 1 

call lockon(lkvar) 
<Crit . Sect. > 
call lockof f (lkvar) 

tray-XMiP 

integer emp, fll 
call evasgn (emp) 
call evasgntfll) 
call evpost (empl 

Figure 3. HEP vs. Cray Synchronization 

tion streams [31]. This optimization adds to the overall speedup of the pro- 
gram because it overlaps instructions that are not vectorirable. Microtask- 
ing is efficient on such small execution units because it does not incur the 
large task creation overhead of macrotasking. Instead of creating new taska 
for each new parallel execution stream. a fixed number of computational 
resources, either “helping” tasks or real processors. are allocated at the 
beginning of the program. These resource-s remain idle until parallel code is 
encountered by an active task. At this point, the “helping” resources join 
in the parallel execution. Once a resource joins in the execution, it is com- 
mitted until the parallel execution completes. The overhead for starting this 
parallel execution is much lower than in macrotasking. 

In 1979, Burroughs proposed the FMP multiprocessor and a compan- 
ion extended Fortran (called FMP Fortran) [32]. The FMP was never built, 
but its design foreshadowed the development of future multiprocessor sys- 
tems. The machine was comprised of 512 processing elements with local 
memory. All processors could also access a much slower shared extended 
memory. Additionally, a processor could broadcast to the other processors 
for quick distribution of information. The early strategy of FMP Fortmn 
was to allocate all variables in the local memory of the processor unless 
instructed to do otherwise. FMP Fortran introduced a new concurrent con- 
struct called the doall, one of the first uses of a microtasking construct 
The doall allowed the specification of multiple index variables or n-tuples 
of indexes, called domains. All iterations of the doall were considered 
discrete and independent. The FMP doall format is shown in Figure 4. 
This doall required the user to specify the intended use of variables. The 
using clause identilied input variables, and the giving clause identified 
output variables. 

Any variable that does not appear in the using or giving clause is 
allocatedlocally to each processor. The using and giving clauses in the 
Fh4P do al 1 statement force the user to provide the FMP Fortran compiler 
the dependence information necessary to-make proper allocations, and-thus 
relieves the compiler of this task. Another important feature of this doall 
is that no information is passed between the iterations of the loop. At the 
beginning of the loop, the state of the extended memory is “frozen.” All 
modifications arelocalunti theendofIhedoall,thenthevariableslisted 
in the giving clause are written back. This value/restore form of execu. 
tion eliminates the possibility of asynchronous side-effects (loop executions 
am determinant), but it also limits the types of loops that carr be converted 
into a doall. I.ater versions of the I%@ doall allowed data sharing and 
asynchronous operation. 

doall <domain>; using <variable list> 
<loop body> 

enddo [<domain>]; giving <variable list> 

Figure 4. FhP Doall &cci!ication 

Microtasking has also been used in a number of current multiproces- 
sor systems. In some of these systems, the processors execute in a mOre 
independent fashion than in the FMP. In all of these systems, data may be 
shared between the iterations of the loop. With data sharing, non- 
determinacy may be introduced into the execution of the loop. In loops 
where the iterations are completely independent (or require some critical 
section synchronization), a more general doall loop statement may be 
used. The iterations are executed by multiple processors and no guarantee 
is made about the order of execution of the iterations of the loop. 

Many loops, however, have some serial component. The natural ord- 
ering of the loop must be preserved for the loop to execute correctly. The 
doacross loop is a parallel loop that assum= synchronization from left to 
right [33] [34] [35], meaning that dcpendences may exist between iteration 
I and some previous iteration(s). The iterations of the loop are scheduled 
“horizontally” - meaning that no. processor will begin execution of itera- 
tion I until iteration I-l has been started. (Horizontal scheduling is also 
called cascading execution.) Additionally, an iteration may have to wait 
during its execution for a previous iteration in order to satisfy dependences. 
In other words, a producer-consumer relationship exist-s between the itera- 
tionsofthe doacrosslop. 

Among the micro&king libraries of current multiprocessor systems, 
a great variety of routines exists with varying levels of sophistication. The 
Cray-XM/P supports a doall style loop in its microtasking system as well 
as high-level spread&. Sequent Fortran [36] provides a doacross style 
loop and microtasklng f ark/join style constructs. The microtasklng con- 
structs of both are supported in software. The Alliant FX/8 multiprocessor 
[37] and the IBM Rp3 multiprocessor [38] support microtasking 
doacross loops at the hardware level. Special hardware that schedules 
the iterations of concurrent loops is incorporated into their architectures. In 
some systems (Cray. Sequent), the user must insert statements or compiler 
directives to use the microtasking. In the Alliant, the compiler automati- 
cally converts serial do loops into microtasking loops. One of the major 
advantages of loop parallelism and high level spreading is that the block- 
smtcture of the program is maintained while parallelism is exploited. 
Macrotasking usually requires a complete rewriting of the program to break 
it into asynchronous tasks. 

It may initially seem that microtasking is superior to macrotasking for 
exploiting concurrency, but each method has advantages and disadvantages. 
In the development of multiprocessor systems, both micmtaskmg and 
macrotasking have been used, and they both continue to be used. The 
appropriate method of execution depends both on the underlying afchitec- 
ture and the nature of the application. 

Microtasking has the advantage of reducing overhead and exploiting 
parallelism at a finer grain. Micmtasking also has two major disadvantages. 
First, the number of helping resources is usually fixed at compile time or at 
program startup time (this is done to reduce runtime overhead). Thus, the 
system does not adapt well to data size or system load. Second, the:combi- 
nation of resource commitment with the non-determinacy of the number of 

helping tasks that will actually participate in the execution of the parallel 
code restricts the synchronization that may be used safely. Non-cascading 
synchronization in microtasking may be disastrous because a task perform- 
ing a waiting synchronization may be the only task in the execution. Since 
the resoume is committed to its instruction stream, it cannot switch execu- 
tion streams to satisfy the wait condition. Deadlock is the result Both of 
these problems cart be remedied with operating system intervention, but 
then much of the efficiency advanmge is lost 

Macr&asking, on the other hand. suffers from higher overhead and 
thus necessitates a coarser granularity of tasks, but it does not have the 
above problems of micmtasking. Since macrotasking relies on operating 
system task management, dynamic adaptation to system load and problem 
size can be incorporated into the runtime system. Additionally, macrotask- 
ing does not have the deadlock problem of microtasking. When synchroni- 
zation is required, a single resource can perform the synchronization and 
then context. switch to another instruction stream. At some later time, the 
wait condition may be satisfied by the execution of another task, thus 
reIeasing the original task. 

Many multiprocessor systems, such as the Encore Muhlmax[39], the 
Sequent Balance, and IBM Parallel Fortmn 3090 [40], now have or are 
developing Fottran systems that incorporate both macmtasking and micro- 
tasking. Table 1 compares tbe capabilities of many multiprocessor systems. 

This great variety of macrotasking/micmtasking libraries/routines has 
caused some cries of despair among the user community: “Parallel pm. 



grams are not portable!“,“‘ Pa&e1 programs are more difficult to write!” 
etc. In response to these cries. two approaches have been taken. The firs; 
approach is to provide an automatic parallelizer - an optimizer that takes a 
standard sequential program and converts it into a parallel program. This is 
lhe approach taken with IBM VS Fortran and Alliant Fortran. 

The other approach is to provide a generic parallel environment in 
which to produce parallel code. Software systems such as Linda [4 l] have 
been created which present a uniform parallel programming language that 
can be implemented on a variety of multiprocessor and distributed systems. 
In Linda, shared memory is represented as a tuple space. A tuple consists 
of a variable and one (scalar) or more (array) values. Variables are not 
written and mad as in most languages. Ikea& a tuple acts like a mailbox. 
Values are output to (received by) Ihe tuple. read from the tuple, or 
removed (mpu0 from the tuple. A value cannot be overwritten; it must be 
costume as input before a new value can be output. Data items me not 
referenced by address, but by name. Accessing a shared variable is similar 
to searching a distributed database. This shared data feature coupled wib 
elegant methods for handling multitasking make Linda a pleasant program- 
ming environmqnt. 

4. The Cedar Multiurocessor and Cedar Fortran 
The Cedar multiprocessor is a hierarchical shared-memory supercom- 

puter under development at the University of Illinois, Urbana-Champaign. 
The processors are grouped into clusters that share access to a cluster 
memory. Processors in one cluster may not access the cluster memory of 
another cluster. All processors in the machine share access to a large global 
memory through an interconnection network. The Cedar-l machine 
comprises four clusters of eight processors for a total of 32 processors. but 
this hierarchical architecture may be extended to hundreds of processors. 
The clusters in Cedar-l are Alliant IX/!3 multiprocessor systems. Each pro- 
cessor is capable of performing vector operations, and the Alliant con- 
currency hardware allows the processors in each cluster to share the execu- 
tion of concurrent loops. 

The Cedar Fortran Language is based on Fortran 77 [42] and has 
remained mostly consistent with that standard, but many extensions have 
been added to provide for optimized concurrent execution. In trying to 
adapt Fortran to a multiprocessor, multitasking system such as Cedar, many 
serious problems arose because of the simplicity of the language. The 
Cedar extensions mostly take the form of new statements and “intrinsic” 
functions: vector statements, statement.9 for expressing concumznt loops, 
statementa and functions for synchronization, and functions for multitask- 
ing. The concurrent loop extensions mentioned above necessitated another 
extension to standard Fortran, block structured data scoping. Data allcca- 
tion and scoping presented the greatest problem in adapting Fortran to the 
multiprocessor/multitasking environment. The data scoping issues are more 
easily understood with knowledge of the parallel control structures that 
have been implemented. For this reason, discussion of data scoping will be 
postponed until after the imroduction of the control structures. 
4.1 Arravfvector Extensions 

The vector extensions of Cedar Fortran provide powerful CO~S~I’UC~S 
for manipulating data in a vector fashion. Cedar Fortran implements three 
vector statement types, niplet notalion assignments, forall statements, 
and where statements. The triplet notation and where statements are 
compatible with the proposed Fortran 8x standard. Their derivation from 
Vc&an was described in a previous section. The forall statement has 
been incitided in Cedar Fortran because it provides the same functionality 
as the 8x identify statement without introducing more aliasing. The 
identify statement has heen omitted in favor of the f oral1 statement. 

Conceptually. the triplet is a vector assignment statement, the 
forall is a vector loop statement, and the where statement is a vector 
if statement These vector statements are essential to the Cedar Fortran 
optimizer because they allow all vectorizable instructions to be represented. 
Once statements have been expressed in vector form, it is much easier for 
the back end compiler to generate efficient code. 
4.2 Concurrent Looas 

Vector operasions provide one avenue for increasing program perfor- 
mance, but not all code is vcctorizable. Concurrent execution with the use 
of multiple processing resources provides another avenue of optimization. 
Just as vector operations can be substituted for many Fortran do loops. con- 
current loops can also bc substituted for do loops. Additionally, high-level 
spreading makes it possible to parallelize code that is not in do loops. Con- 
current constructs can easily be integrated with vector statements to provide 

multiple levels of parallelism. 

The language consm~cts used to define concurrent execution in Cedar 
Fortmn are derived from the doall and doacross statemenu described 
in the previous section. Each of these loop types is further divided into 
three groups: cluster statements (cdoall and cdoacroas), spread state- 
ments (sdoall and sdoacross), and cmss cluster statements (xdoall 
and xdoacross). The distinctions between the groups will he explained 
below. 

The syntax of the doacross loop in Cedar Fortran (subsequently to 
be referred to as CF) is similar tc the standard Fortran do loop; its form is 
shown in Figure 5. Provision has been made for statements that are to be 
executed once for each processor participating in the loop using the optional 
loop statement. Those statements that appear before the loop will be 
executed once per processor. Those statements that appear after the loop 
will bc executed on every iteration. If the loop statement is not present, 
all statements will be executed once per iteration. Type statements may 
appear immediately after the doacross statement. The function of these 
type statements is to declare dqacross-internal variables and arrays 
which may be referenced only inside that doacross loop. Each iteration 
of the loop allocates a local, private copy of these internal variables and 
arrays. Each variable and army that is to be internal to a doacross loop 
must be declared explicitly. Any previous declarations are superccded for 
the duration of the loop. 

doacross [label[, 11 i = el, ez 1, eal 
[<type-statements>] 
[<statements>] 

[ ~OOPI 
[<statements>] 

{label <next-statement>1 I tend doacrossl 
where 

i is the name of an integer variable, called the doacross-variable. 
et. e2, and es are each integer expressions. 

Figure 5. Doacross Loop Specification 

If data or control dependences exist between the iterations of the 
loop, the programmer must insert proper synchronization insuuctions to 
insure the correct execution of the loop. Two routines, advance and 
await, are provided for doacross synchronization. An iteration of the 
doacross uses await to wait for a previous iteration. An advance 
releases the await of a future itcmtion. (These routines are very efficient 
because they interface directly to the Alliant concurrency bus.) If no data 
dependences exist between the iterations of the loop, then the programmer 
should use the doall statement instead of doacross. The doall loop 
is very similar to the doacross loop; The syntax is identical except for 
replacing the "doacross" with "doall". While the iterations of a 
doacross are scheduled horizontally, no order is implied in the execution 
of the iterations of a doall. This distinction is important because CF will 
not ovcrr~dc the programmer’s declaration of independent parallel 
execution. The CF compiler may, however, rake advantage of this dcclara- 
tion and restructure the loop to achieve greater speedup. If a specific exe 
cution or&r is necessary for the loop to execute correctly, a doacross 
should be used. 

It is sometimes desirable to exit a loop before all the iterations of the 
loop have been completed. A goto statement cannot be used to exit from a 
parallel loop because a goto would only affect a single processor. The 
result would be that one processor would leave the concurrent loop while 
the other processors continued to execute within the loop. Instead, the fol- 
lowing two statements, quit and qquit have been provided. 

quit [label] 
qquit [label] 

The quit statement causes the parallel loop to be terminated cleanly. 
It waits for all iterations with a loop index less than the current loop index 
to finish before it actually quits the loop. Without the label, execution 
resumes at the Erst statement after the end of the innermost loop containing 
the quit. With the label, execution resumes at that label, terminating all 
loops out to that level, 

If multiple iterations of a loop perform a quit operation, then the 
iteration with the smallest iteration number (if the stride is positive) will 
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control the exit of the loop reguaxdless of which iteration actually issued the 
quit first in real time. The qquit Statement is similar to the quit state- 
ment, except that it terminates the loup immediately. (It does not wait for 
Al previous iterations to finish.) It is a “quick quit.” Caution must be 
taken when using qquit because previous iterations may be only partially 
complete when the loop terminates. 
4.3 Macrotasking 

In addition to the microtasking of concurrent loops, CF provides 
macrotasking via the macrotasking library (similar KI the Cmy macn&&- 
ing routines). The macrotasking routines are the interface between the CF 
language and the Xylem operating system [43]. This library provides rou- 
tines for creating and controlling “tasks.” (An entity of concurrent execu- 
lion in Xylem is called a “cluster task” or just a “ask” for convenience.) 
A task begins execution at the specified routine and continues indepen- 
dently until the end of the subroutine is reached. When the return state+ 
ment is reached, the task is terminated rather than returning to the parent 
task. The macrotasking library provides routines for the creation and 
monitoring of these user defined tasks. These routines are described in Fig- 
ure 6. 
4.4 Cluster. m. and Cross Cluster Lopps 

The format of the ctskstart call may initially appear strange to 
the reader because it specifies a number of processors to be allocated to the 
new task;‘ This number of processors is significant in the execution of con- 
current loops. As was mentioned earlier, there are three forms for each 
concurrent loop: cdoall. sdoall, and xdoall. and cdoacross, 
sdoacross, and xdoacross. The l ‘c’* loops are cluster or “confined” 
loops, meaning that the processing resources used for the execution of the 
loop are confined to processors allocated to the current cluster task. For 
example, a cluster task with Eve processors is started with: 
taskid = ctskstart (5, subr, x, y, zl 
This creates a task for subroutine subr with arguments x, y. and z. 
Within subr, a program segment 

cdoall i-l, 100 
<statements> 

end cdoall 
exccutcs a concurrent loop using only the five processors allocated to the 
task at the task’s creation. The execution of the loop is confined to the pro- 
cessor resources of the cluster task. 

Also within subr, a very similar program Segment 
sdoall i=l, 100 

<statements> 
end sdoall 

has a very different meaning. In this loop, the execution is being spread to 
processing resources outside the current cluster task. A concurrent loop 

l int * ctskstart (numgroc, sub 1, argl . . .) 
Ctskstart spawns a new task, and returns an integer that identifies 

it. The first argument, numgroc. ~pecii%es the number of processors to be 
allocated to the new task for execution of any ‘cdoall or cdoacross 
loops. If the value is z&o. then the system is free to allocate any number of 
processors to the cluster ta@c. 

The second argument, sub, is the subroutine or entry point at which 
execution will begin in the new task. The remaining arguments are lbosc 
passed to the subroutine. These arguments may be of any type (scalar or 
array), but they should match the formal panmeters of sub. Expressions 
are allowed as arguments and enclosing an argument in parcnthescs 
indicates thar the argument is to bc passed by value. The value returned by 
ctskstart will either be a positive integer corresponding to the id 
number ofthe newly spawnedtask,or -1 ifctskstartfails. 
l logical = ctskdone (int) 

Ctskdone reports the state of a task created by ctskstart. The 
value of the argument identiEes a task and must have been obtained from 
ctskstart. Returns .false. if the specified lask has been created and 
has not terminated. Returns .t rue. otherwise. 

l call ctskwait tint) 
Ctskwait suspends the task referencing it until Ihe task whose 

identification is the argument completes execution. The value of the 
argument must have beenobtined from ctskstart. 

Figure 6. Macrotasking Library Routines 

statement that begins with an l‘s” indicates that this is a “spread” loop. In 
the loop above, each iteration of the loop may be assigned to a different 
cluster task. If the CF user specifies his own concurrent loops, then he is 
responsible for proper declaration and allocation of variables. However. the 
compiler will provide warnings of improper user declarations. Any con- 
current loops generated by the CF optimizer will have the variable declam- 
tion done automatically to match those loops. 

In order to make effective use of the computational resources on 
Cedar, a sdoall loop should have a nested cdoall loop to bring all the 
processors within each task into execution. It may initially seem strange 
that the sdoall allocates whole cluster tasks to the iterations of the loop 
instead of just processors, but one must remember the hierarchical structure 
of Cedar. In order @ reach the processors within a cluster. one must go 
through the cluster control hardware (Alliant concurrency bus). The 
sdoall/cdoall loop combination provides the programmer maximum 
ff exibility in controlling the parallel execution of hops. 

If the programmer desires to run one loop across all processors of the 
machine and s/he does not want to deal with the precise details of loop 
blocking and processor scheduling, the xdoall or xdoacross state- 
ments may be used. These “cross cluster” parallel loops take the confined 
processors of the given cluster task and combine them with the processors 
of other tasks to create a single loop with processors from different clusters 
taking iterations of the loop. The x concurrent loops are functionally 
equivalent to a s loop with an inner nested c loop, except the loop blocking 
and processor utilization is managed by the compiler instead of the pro- 
grammer. (These x concurrent loops are currently unimplemented in CF.) 
4.5 Synchronization 

With the addition of concurrent loops and macrotasking, a mechan- 
ism for coNrolling the execution streams is required. New statements and 
intrinsic functions were added to CF to provide for varying granularities of 
synchronization. Fine grain synchronization is used between processors 
within concurrent loops, larger grain synchronization is used between tasks. 

Cedar Fortran provides mechaniims for both critical section and 
producer-consumer synchronization, adopting the full set of Cmy lock and 
event synchronization routines. These routines are classified as medium 
grain synchronization, appropriate for synchronization between ‘cluster 
tasks, but too expensive for general use between the proce.%orS in a single 
task. 

with <resource> whenlif <expression> 
<statements> 

end with 
Figure 7. The With Statement 

Besides these synchronization primitives, we End.the’with sta&ment 
described by Hoare [44] to be useful in expressing critical section syn- 
chronization. The general form of the with block is shown in Figure 7. 
Thisconstruct means Ibatthe <statements>are inacfiticalsection for 
the <resource>. In CF the <resource> is a variable or array element 
declared as sync. In the with/when form, these <statements> will 
not be executed until exclusive access can be granted to the <resource> 
and the <expression> is true. (Note that the with statement does not 
hold the <resource> while it is waiting for the <expression> to 
become true.) In the with/if form, exclusive access to the 
<resource> is granted and the <expression> is evaluated: if the 
<gxpression> is true, the <statements> are execute& otherwise 
execution continues immediately after Ihe end with. Exclusive access is 
always released at the termination of each with statement 

The sync type statement declares a variable or ansly element, x, to 
have a data field, a tag field, and a hidden lock field. When referring to the 
data elements, one simply uses the variable name, x. The tag Eeld is refer- 
enced as X.tag. Figure 8 shows a do loop with a subscripted-subscript 
transformed to run in parallel. mis requires both event-waiting and 
critical-Section synchronization. Using b(i) as the index variable causes 
the order of storing the array a to be unpredictable. The tag Eeld is used to 
maintain the order of the accesses to the elements of a. More examples of 
the use of this synchronization method can be found in 1451. 

Although’ any statements may be contained in the body of a with 
statement, the Cedar hardware provides synchronization primitives that can 
be used to implement some with SlatementS as single instructions. The 
with statement in the above loop, for example, can be implemented as a 
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single instruction in Cedar. If the operations in the body of the with are 
limited to only one operation each on tag and data. then the entire body of 
the with may be executed as a single instruction. If the body contains 
more operations, then additional software synchronization must be used. 

The loop: 
do i - 1, N 

a(b(ill = c(i) t 1 
end do 

The equivalent parallel versions using the with statemene 
doall i = 1, N 

with a(b(i)) if (a(b(i)).tag < i) 
a(b(i) 1 = c(i) t 1 
a(b(ill .tag = i 

end with 
end doall 

Figure 8. With Statement Example 

4.6 Data Declarations. Scouinn. nnd Nested Concurrent m 
The Cedar architecture physically distinguishes two types of memory: 

global memory which is accessible to all processors and cluster memory 
which is only accessible to the processors in that cluster. SpeciEcation of 
location attributes for data in CF are supported by extending the standard 
Fortsan declaration statements with two new attribute statements, global 
and cluster. While the architectural classifications of global and cluster 
am very distinct, Cedar Forrran. with the help of the Xylem virtual memory 
system, presents a more homogeneous virtual address space.. All data that 
is declared locally in a subprogram and passed outside that subprogram is 
heap-allocated and shamble with other tasks. The cluster and global 
attributes define only initial locations of data. Data will be demand-paged 
to the physical location necessary to meet the access demands of the pro. 
gram. Data that is read and written by multiple tasks must be moved to the 
global memory. Read-only data, program code, and unshared data may 
move to cluster memory. The programmer must be somewhat aware of the 
underlying architecture to avoid excessive paging activity. Data to be 
shared by several cluster tasks or that is shared among the iterations of an 
sdoall loop should be declared global. Library routines rue provided 
to the programmer for changing location attributes of data 

Common blocks are used in Fortran to share data across subroutine 
calls. In CF, there are two types of common, plain common and process 
common. In plain common, one copy of the common is (potentially) 
created for each task within the urogram. In process common, one copy 
of the common is shared by all tasks within the program. Unlike the task 
comon of Gray Fortran, plain connnon of CF cannot be passed by refer- 
ence to newly spawned tasks. Unlike local data which can be shared, the 
data within a plain common is strictly private to the task. This undesirable 
restriction is forced by the back-end compiler. In future implementations, it 
is hoped that this restriction will be lifted so that the programmer is 
presented with uniform data behavior where data sharing is completely dlc- 
tated by visibility and scoping. 

Common names may appear in the CF memory attribute type statc- 
merits. This means that the common defined by this name and all of the 
idenribers located within it are of the indicated type. Any plain common 
that is not specifically given attributes will be given the cluster attribute. 
Any process conznon that is not specilically given attributes will be 
given the global attribute. All identifiers in a common take on the initial 
location attribute of the corrrmon block. The actual location may be 
changed by demand paging or by library routine calls. 

The open scoping of identifiers ln Fortran proved to be unmanageable 
for concurrent loops. A C-like block-structured scoping system was added 
to CF in order to isolate variables in a single instruction stream. 
Specifically, variables and arrays may be declared inside any concurrent 
construct. The newly declared variables will be allocated one copy per 
iteration of the concurrent construct, and these declarations will supersede 
any variable of the same name declared outside the construct. These 
dc&rations remain in effect until the construct terminates or until new 
declarations of a more nested construct supersede the older declarations. 
When a construct &srminates, the declarations as they existed before the 
construct began are restored. 

The scoping levels have similar implications for got0 statements. 
CF allows gotos to be performed only to statements at the m scope. 
This essentially means that CF will not allow gotos to be performed into 

or out of doall or doacross constructs. Of course, this rule applies to 
any type of goto, either explicit, or by result of an arithmetic if or any 
other Fortran branching construct. Recall that quit or qquit must be 
used to terminate a parallel loop before all iterations have been completed. 

Nested concurrent loops should allow greater exploitation of psrallel- 
ism within a program. Multi-level loop parallelism can be supported under 
the current implementation of CF using a combination of sdoall and 
cdoall or cdoacross loops. The Alliant hardware controlling the clus- 
ter loop execution permits only the outermost cluster loop to execute con- 
currently; all inner cluster concurrent loops will execute sequentially. 

When using an sdoall loop. all input and output data from the loop 
must be accessible outside the initiating cluster task. All such data should 
therefore be declared global to avoid excessive data movement (and that 
data cannot appear in plain common blocks). Below is a properly con- 
structed nesting of spread and cluster loops. 

dimension a (10,20) 
global a, i 
sdoall i = 1, 10 

integer j 
loop 

cdoall j = 1, 20 
a(i, jl = itj 

end cdoall 
end sdoall 

5. Conclusion 
In this paper, we have traced the development of vector extensions to 

For&us from their diverse beginnings to the current general consensus. The 
continuing variety of multiprocessing extensions has also been presented. 
Most current multiprocessor extensions are still deeply intertwined with 
theii corresponding architectures and operating systems. Cedar Fc&an is 
no exception. Our primary goals in designing and implementing the 
language were: 
(1) to provide a language that easily allowed direct access to all the 

power of the Cedar system, both for the programmer and for source. 
to-source optimization. 

(2) to provide a Fortran dialect in which users could easily adapt their 
existing Fortran applications. 

In these two goals, we feel we have been reasonably successfuL Our secon- 
dary goals were: 
(1) to adapt the language to the needs and desires of programmers as they 

gain experience with parallel programming. 
(2) to add to the overall knowledge and experience of parallel program- 

ming and parallel languages. 
We are confident that time will provide a general consensus on multiproces- 
sor Fortran constructs, just as it has with vector constructs. The diversity of 
multiprocessors is much greater than that of vector processors, and the 
problem is compounded by the interrelated issues of wncurrent execution 
and proper data allocation. The convergence of ideas and attitudes may, 
therefore, take more time and effort. 

111 

PI 

131 

[41 

bl 

WI 

171 

@I 

REFERENCES 
J. Backus, “The History of FORTRAN I. II. and Ill,” Annual His- 
my of Computers. vol. 1.1, July, 1979, pp. 21-37. 
M. Guzzi. “Cedar Fortran Programmer’s Manual,” CSRD dot. no. 
601, U of I Center for Supercomputing R and D, Jan. 1987. 
D. Padua and D. Lawrle, ‘Proposed Cedar Fortran Extensions,” 
CSRD dot. no. 509, U of I Center for Supercomputing R and D. Sept. 
1985. 
D. Kuck, E. Davidson, D. Lawrie, and A. Sameh, “Parallel’Supcr- 
computing Today and the Cedar Approach,” Science, Vol. 231 (28 
Feb. 1986). pp. 967-974. 
G. Barnes, R. Brown, MKato, D. Kuck. D. Slotnick, and R. Stokes, 
“The llllac IV Comuputer,” IEEE Transactions on Computers, Vol 
C-17 No. 8 (Aug. 1968). pp. 746-757. 
Array Processing System Fortran IV Reference Manual, Defense, 
Space, and Special Systems Group, Burroughs Corporation, Paoli. 
Penn., Change No.3. August’31.1971. 
R. Millstein and C. Muntz, “The llliac IV For-u-an Compiler,” ACM 
S&plan Nofices, Vol. 10 No. 3 (March 1975). pp. l-8, 
D. Presberg and N. Johnson, “The Paralyzer: IVTRAN’s Parallelism 
Analyzer and Synthesizer”, ACM Sigplan Notices, Vol. 10 No. 3 
@larch 1975), pp. 9-16. 

120 



[9] L. Higbie, “Supercomputer Architectures,” IEEE Computer, Vol. 6 
(Dee 1973). pp. 48-58. 

[lo] Control Data Star-100 Computer System - Hardware Reference 
Manual, Control Data Corporation Technical Publications Depart- 
ment, Arden Hills, Minn., 1971. 

[ll] D. Wedel, “Fortran for the Texas Instruments ACS System”, ACM 
Sigplan Notices, Vol. 10 No. 3 (March 1975). pp. 119-132. 

[12] R. G. Zwakenberg. “Vector Extensions to LRLTRAN”. Sigplan 
Notices, Vol. 10, No. 3 (March 1975). pp. 77-86. 

[13] G. Paul and M. Wilson, “An Introduction to VECTRAN and Its Use 
in Scientific Computing,” Proceedings of the 1978 USL Workshop 
on Vector and Parallel Processors, 1978, pp. 176204. 

[14] Burroughs Scienfifrc Processor Vector Fortran Specification Defense, 
Space, and Special Systems Group, Burroughs Corporation, Paoli, 
Penn., 1978. 

I151 Fortran 8x, X3J3/S8 (X3.9-198x). American National Standaids Insti- 
tute. 1986. 

[16] Cray-1 Fortran (CFT) Reference Manual, Pub. no. SR-0009, Cray 
Research. Inc., Mendota Heights, Minn., 1979. 

[17] Fortran 200 Version 1 Reference Manual, Control Data Corporation 
Technical Publications Department, Arden Hills, Minn., 1982. 

[18] K. Miura and K. Uchida. “FACOM Vector Processor VP-lOO/VP- 
200.” Proc. NATO Advanced Research Workshop on High-speed 
Computing, Julich, W. Germany, Springer-Verlag. June 20-22.1983. 

[19] R. Scarborough and H. Kokky, “A Vectorizing Fortran Compiler,” 
IBM Journal of R and D, 30(2), March 1986, pp. 163-171. 

1201 FXIFortran Language Manual, Alliant Computer Systems Corpora- 
tion, Acton, Mass., April, 1985. 

[21] T. Watanabe. “Architecture and Performance of NEC supercomputer 
SX system,” Parallel Computing. Vol. 5 (1987). pp. 247-255. 

[22] D. Kuck. Y. Mumoka, and S. Chen, “On the Number of Operations 
Simultaneously Executable in For&m-like Programs and their Result- 
ing Speedup.” IEE Transactions on Computers, Vol. C-21 no. 12 
(Dec. 1972). 

[23] D. Kuck, P. Budnick, S. Chen, E. Davis, Jr., J. Han, P. Kraska, D. 
Lawrie, Y. Muraoka, R. Strebendt, and R. Towe, “Measurements of 
Parallelism in Ordinary Fortran Programs,” IEEE Computer, Vol. 7 

- no. 1 (Jan. 1974). 
D. Kuck, R. Kuhn, B. Leasure, and M. Wolfe, “The Structure of an 
Advanced Vector&r for Pipelined Processors,” Fourth International 
Computer Software and Applications Conference, October 1980. 

[25] R. Allen and K. Kennedy, “PFC: A Program to convert Fortran to 
Parallel Form.” Tech. report MASC-TR 82-6, Department of 
Mathematical Sciences, Rice University, March 1982. 

[26] J. Dennis and E. Van Horn, “Programming Semantics for Multipro- 
grammed Computations,” Communications ofthe ACM, Vol. 9 No. 3 
(March 1966), pp. 143-155. 

[27] HEP Forfran 77 User’s Guide, Pub. no. 9000006, Delelcor. Inc., 
Aurora, Co. 1982. 

[28] Cray Computer System Technical Note: Multitasking User Guide, 
Pub. no. SR-0222, Cray Research, Inc.. Mendota Heights, Minn., Jan. 
1985. 

[29] “Notes from ETA Presentation,” Second International Conference 
on Supercomputing. Santa Clara, CA.. May 1987. 

[30] E. Dijkstra, “Cooperating Sequential Processes,” Technical Report 
EWD-123, Techological University, Eindhoven. The Netherlands, 
1965, reprinted in [GenuSq. pp. 43-112. 

1311 A. Veidenbaum, “Compiler Gptimizations and Architecture Design 
Issues for Multiprocessors,” CSRD dot. no. 520, U of I Center for 
Supexomputing R and D, 1985. 

[32] Final Report -Numerical Aerodynamic Simulation FaciIity Feasibil- 
ity Study, Defense, Space, and Special Systems Group. Burroughs 
Corporation, Paoli, Penn., March 1979. 

[33] D. Padua, “Multiprocessors: Discussion of Some Theoretical and 
Practical Problems”, Ph.D. l’besis, report 79-9990. Dept of Com- 
puter Science, Univ. of Illinois Urbana-Champaign, Oct. 1979. 

[34] R. Cytron, “Doacross: Beyond vectorization for multiprocessors.” 
Proceedings 1986 International Conference on Parallel Processing. 
Aug. 1986, pp. 836-844. 

1351 C. Polychronopouloq On Program Restructuring, Scheduling. and 
Communication For Parallel Processor Systems. CSRD dot. no. 595, 
U of I Center for Supercomputing R and D, August 1986. 

[36] A. Osterhaug, Guide fo Parallel Programming on Sequent Computer 
Sysrems, Sequent Computer Systems, Inc., Beaverton, Oregon, 1986. 

[37] FkLS&es Architecture Manual, Alliant Computer Systems Corpora- 
tion, Acton, Mass., April, 1985. 

[38] G. Plister. W. Brantley, D. George, S. Harvey, W. Kleinfelder, K. 
McAuliffe, E. Melton, V. Norton, and J. Weiss, “The IBM Research 
Parallel Processor Pmtotype (RP3): Introduction and Architecture.” 
Proceedings 1985 International Conference on Parallel Processing, 
Aug. 1985, pp. 764-771. 

[39] Encore Parallel Processing Guide, Encore Computer Corporation, 
Marlborough, Mass., 1988. 

[40] Notes from the Argonne Nutional l&s Parallel Computing Forum, 
Argonne National Labs, Nov. 1987. 

1411 S. Ahuja, N. Carriero, and D. Gelemter, “Linda and Friends,” IEEE 
Computer, Vol. 19 no. 8 (Auz. 1986), pp. 26-34. 

[42] Programming Language Fortran ANSI x3.9-1978, American National 
Standards Institute, 1978. 

[43] Perry Emratb, “Xylem: An Operating System for the Cedar Mul- 
tiprocessor”, IEEE Software, Vol. 3 No. 4 (July 1985). pp. 30-37. 

1441 C. Hoare, “Towards a Theory of Parallel Programming,” Operating 
Sysfem Techniques, C. Hoare and R. Perrott (Ed.%). Academic Press, 
London, 1972, pp. 61-71. 

[45] C. Zhu and P. Yew, A Scheme to Enforce Data Dependence on Lurge 
Multiprocessor Systems, CSRD dot. no. 40, U of I Center for Super- 
computing R and D, July 1984. 

CmY Yes 

Encore Parallel yes 
Fortran 

IBM Parallel PsralIel loop 
Fortran PRPQ Continue 
-future plans 
Sequent no 

End Ordered 
no 

doall 
send/wait 

end doall 
no 

Yes 

Ye n0 

Parallel Yes 
End Parallel 

ParallelCase yes 
End Case 

no Yes 

Common 
Task Common 
Shared 
Private 
Volitile 

Y@ 

shared by 
compiler 
option 

yes yes yes 

wait yes Yes 
and 
barrier 

unknown unknown ’ yes 

yes Y= no 

Table 1. Comparison of Multiprocessor Tasking Systems 
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