
Cedar Fortran* and Other Vector and Parallel Fortran Dialects

Mark D. Guzzi**, David A. Padua, Jay P. Hoeflinger, Duncan H. Lawrie

University of Illinois at Urbana-Champaign
Center for Supercomputing Research and Development

305 Talbot Laboratory / 104 S. Wright Street
Urbana, Illinois 61801

ABSTRACT
The introduction of vector processors and multiprocessors punctuate

the most dramatic changes in Fortran and its dialects. The emerging gen-
eration of supercomputers utilize both vector processing and multipmcess-
ing simultaneously. The challenge is to provide language constructs and
software tools that will allow the programmer to easily exploit the capabili-
ties of the machine.

This paper will outline the development of vector and multiprocessor
language constructs in Fomnn. The significant architectures, their
languages, and optimizers will be described. The paper concludes with a
description of Cedar Fortran, the language for the Cedar Multiprocessor
under development at the University of Illinois, Urbana-Champaign.
Cedar is a hierarchical, shared-memory, vector multiprocessor. As such, its
language, Cedar Fortran, contains many of the language features that will
be described for vector processors and multiprocessors.

1. Intmductio?l
The study of supercomputers and their languages is very much a

study in evolution, It is a study of gradual development punctuated with an
occasional dramatic change. The machines and languages that prosper are
those most suited to the current environment rather than those with the most
aestheticly pleasing characteristics. Through this development, Fortran has
proven to be a hearty species that refuses to become extinct. As A. Perlis
writes, “Fortran is not a Rower, but a weed. It is hardy, occasionally
blooms, and grows in every computer.” It adapts to changes in the
landscape, and it survives attempts to be supplanted with more attractive
languages. This paper will describe vecter and parallel machines and their
corresponding Fottran dialects. The relationship between language features
and machine architecture will be explored.

Let us examine the history and development of the Fortran family
tree. Fortran was designed to be simple and efficient for executing numeric
programs on a uniprocessor system. It was developed in 1958 by an IBM
software team headed by John Backus [l]. This early programming
language bore some resemblance IO the assembly language that it was
intended to replace. Possessing limited control structures and cumbersome
I/O statements, Fortran programs were sometimes difficult to write and
read, but Fortran compilers produced fast and efficient code. The Fortran
66 standard did little to alleviate the coarseness of the originaI Fortran. It
was not until the Fortran 77 standard that Fortran became somewhat more
palatable to the users of more modem programming languages.

The introduction of vector processors and multiprocessors punctuate
the most dramatic changes in Foltran and its dialects. Vector statements
have been standardized to the extent that they will be part of the next For-
tran standard. No consensus has yet been reached with regard to language
extensions for multiprocessing. Some proposals for parallel extensions to
Fortran will be presented later in this paper. The emerging generation of
supercomputers utilize both vector processing and multiprocessing simul-
taneously. The challenge is to provide language constructs and software
tools that will allow the programmer to easily exploit the capabilities of the
machine.

%ir work was suppod in pan by the Nattonal Science Foundation under Grant No.
USNSPMIP-8410110. the US Dcyrrtment of Energy under Grant No.
USDOEDE-FG02-85WS001,andbyaQr~arionfromtheIBMCorpantion.
"Thii Authormaybc reshedar:

EnoxeCnauuter Cornoration
257C&rH'tiSttut-
Marlborwgh,MA01752-3004

CH2617-9/88/0000/0114$01.00 0 1988 IEEE

Thii paper will outline the development of vector and multiprocessor
language constructs in Fortran. Tbe significant architectures, their
languages, and optimizers will be described. The paper concludes wifi a
description of Cedar Fortran [2] 131, the language for the Cedar Multipro-
cessor 141 under development at the University of Illinois, Urbana-
Champaign. Cedar is a hierarchical, shared-memory, vector multiproces-
sor. As such, its language, Cedar Fortran, contains many of the language
features that will be described for vector processors and multiprocessors.

2. Vector Processing

With the advent of vector supercomputers in the early 70’s, a new
branch began to form in the Fortran Family tree, a branch that would later
be spliced back into the main development by the Fortran 8x standard. The
vector/array processor system was the general model for most early supcr-
computem. In order to utilize the power of these new vector machines,
statements were added to Fortran to specify vector operations. The first
such machine was the Illiac IV [5] completed in 1971. Several different
Fortran compilers were deveIoped for this machine. The first was the Bur-
roughs Illiac IV Fortran [6] which used confrol sectors as array subscripts.
The elements of a control vector took on values of .t rue. and .f alse. A
value of .true. indicated that the operation should be performed for the
corresponding array element. A * denoted a control vector of any length
with all elements set to .true. Thus, the code fragment

Real AtlOO), BtlOO), C(100)
do 10 i = 1, 100, 2

M (i) = .true.
M (i+l) = .false.

10 continue
A(*) = B(*) + A(*)
C(M(*)) = B(M(*)) + A(M(*))

adds corresponding elements of arrays A and B and assigns the result to
array A. While only the odd elements of A and B are added and assigned to
the odd elements of C.

Control vectors were somewhat cumbersome to use for complicated
vector expressions. The next compiler for the Illiac IV, the IVTBAN Com-
piler [7] of 1973. took another approach to expressing vector operations.
All assignment statements were written in standard Fortran. using array
subscripts. To indicate vector operations, this language used a genwic vec-
tor loop statement do for all to indicate that a loop should be com-
piled as vector instructions. IVTRAN even allowed subroutine and func-
tion cells within the body of the do for all which were recursively
expanded in line to verify the correctness of the loop. This verification con-
sisted of range checking and insuring that all statements could be vector-
ized.

Unlike the serial Fortran do loop statement, the do for all loop
statement used an index set instead of a single index variable to specify the
execution range. The index set consisted of an n-tuple of index variables
and an n-dimensional range expression indicating the range of each variable
in the index set. DO for all loops could not be nested and only limited
conditional statements could be used within the body of the loop. The fol-
lowing code shows a simple, properly formed do for all statement

Real At10,20), Bt10,201
do 10 for all (i,j) / [1...101.C.[1...201

A(i, j) = B(i,j) + A(i,j)
10 cant inue
The [l...lOl.C.(l... 201 speciEes the range of the index variable
i, I through 10, and the index variable j, 1 through 20. The . C . stands
for cross, the cartesian cross product Thus, a grid of values is specified

114

that encompasses all elements of A and B. Complementing IVTRAN, the
IVTRAN ParalyzerNil was the first sourceto-source restructuring parallel
optimizer. Sta&ng with standard Fortran. the paralyzer transformed do
100~s and Derfect 100~ nests into IVTRAN do for all loons. This optim-
izer was significant because it utilized dependence analysis- to detent&e if
loops could be safely parallel&d.

Pipelmed vector pmcessors also emerged in the early 1970’s: the
Texas Instruments Advanced Scientific Computer (ASC) [9] in 1972 and
the Control Data Corporation Star-100 [lo] in 1973. The TI-ASC NX For-
tran[ll] Compiler was one of the Erst vectorizing compilers developed.
This compiler could take standard Fortran 66 and produce vectorized code.
The language did have a few minor vector extensions, such as triplets (see
below). but the use of these extensions was not required for vector code to
be generated.

Lawrence Livermore Labs developed an extented Fortmn language,
Vector LRLTRAN [12] for the CDC Star-100. Starting with LRLTRAN (a
Fortran dialect also developed at Lawrence Livermore Labs), vector exten-
sions were added specifically targeting the Star-100 architecture. All vec-
tors were restricted to one-dimensional arrays. Vector assignments, vector
expressions, vector functions, and control vectors were all implemented, but
all vector operations required contiguous access of stride one.

Vector LRLTRAN also provided a facility for dynamically
equivalencing vectors and subvectors. Given an array A(lO), a subvector
B of 10 elements could be dynamically defined using the statement:

vector (B, A((11, 20)))
B(1) now refers to element A(ll), B(2) refers to A(12). etc. SinCe VeCtorS
are one dimensional and double sets of parentheses arc used to specify vet-
tor ranges, no syntactic ambiguity exists between vector statements and two
dimensional arrays, but the programs can he confusing to the programmer if
he does not pay careful attention to the syntax.

The stride and dimensionality restrictions of Vector LRLTRAN made
working with matrices cumbersome. These restrictions stem from the
desire to translate vector operations in LRLTRAN directly into the vector
machine instructions of the Star-100. Additionally, the use of commas to
specify ranges of vectors was confusing and ensured that the current
notation could never be generalized to express operations on multi-
dimensional arrays as vector operations.

New vector statements, operators, and notations were introduced in
1973 by the IBM Vectran [131 and the BSP Fortran [14] compilers. Triplet
expressions, identify statements, and where statements replaced con-
trol vectors and other vector notations. These vector statements arc part of
the proposed 8x standard. The triplet notation consists of three expressions
separated by colons. These expressions indicate the range of execution of
this statement and correspond to the beginning. end, and stride - as in a
Fortran do loop. If the beginning of the triplet is omitted, it is assumed to
be the beginning of the array; if the end is omitted, it is assumed to be the
end of the array. Unless otherwise specified, the stride is assumed to be 1,
and it may be omitted along with its separating colon. This notation makes
it possible to assign a section of one array to a section of another. array or
array section expression. For example, the following instructions first
assign all of A to be the values of B (a full atray assignment). The next
statement assigns A(1) the value 6 and A(2) the value 8 leaving the other
elements unchanged:

integer A(4), B(4), C(8)
data B/2,4,6,8/, C/1,2,3,4,5,6,1,81
A=B
A(1:2) = B(3:4)

A stride may also be used, so the following statement
~(1:3:2) = B(2:4:2) * C(3:8:41

is equivalent to
A(1) = B(2) * C(3) A(3) = B(4) * C(7)

Array sections can also be specified for multidimensional arrays with
one triplet for each dimension of the array, and triplet notation may be
mixed with the normal array Index notation. The only restriction is that any
two sections appearing together in the same statement must be conformable,
ie. both sections must have an equal number of elements in each
corresponding dimension. For example:

integer A(4,4,4), B(4,8), C(4,6,4,4)
A(1:3:2,2:4:2,1)=B(1:2,2:4:2)*C(3:4,5,2:4:2,1)

All the array sections in the above example are 2 x 2 sections. Expanded,

they are:
A(l,Z,l) = B(1,2) * C(3,5,2,1)
A(3,2,1) = B(2,2) * C(4,5,2,1)
A(1,4,1) = B(1,4) * C(3,5,4,1)
A(3,4,1) - B(2,4) * C(4,5,4,1)

Triplets are not sufficient to express all vector oFrations.
SpeciEcaEy, conditional operations that were possible with control vectors
cannot be performed with triplets. The where statement, another Vectran
construct, is a conditional vector assignment that allows more flexibility
than control vectors, The syntax of the where statement is shown in Fig-
ure 1. The where statement first evaluates a logical array expression. The
statementsinthebodyoftbe wheresreexecutedforeachiudexvahte for
which the logical array expression evaluated .true. The body of the
where statement, either a single statement or a block, contains only array
assignments. The right hand side of every array expression in the bcdy
must be conformable to the logical array expression. This is a vector state-
ment, so the logical array expression and all right hand side (rhs) expres-
sions in the body are evaluated before the assignments are performed. If
the otherwise block is present, the array assignment statements of the
otherwise block will be performed for every corresponding element of
the logicul array expression of the where statement whose value is
.false.

where (<logical-array-expn)
carray-assignment-statements>

[otherwise
carray-assignment-statements>3

end where

Figure 1. Where Statement Specification

A simple example of the use of the where statement would be to
zero all array elements that are negative. In this example only the elements
of a that have values less than zero will be set to zero. AU the other ele-
ments will remain unchanged.

integer A (100)
where (A(l:lOO) .LT. 0)

A(l:lOO) = 0
end where

The combination of triplets and where statements is still not ade
quate to express all vector operations. Particularly, it is not possible to
express operations that have a regular stride in physical memory but an
irregular stride in array indices. Assigning to the diagonal elements of a
two-dimensional array is a simple example. Given an array, a (lo,10) ;
it is not possible to assign just the diagonal elements using triplets and
where statements without control vectors even though the distance
between all the referenced elements is the same (stride = 11 in this case).
The identify statement of Vectran and Fortran 8x [I51 allows abasing to
a part of an array so that such operations can be performed. To access the
diagonal of array A, the following code would be used:

real A(lO,lO)
identify (Diag(1) = A(I,I), I = 1, 10)
Diag(:) = 1

Although suflicient, the identify statement introduces aking
into the program. The forall statement. which has been removed from
the proposed 8x standard, provides the same functionality as identify
without the additional abasing. The forall looks very much like an iden-
tify statement, except that it performs operations within the statement
instead of just abasing. The equivalent code using the forall statement
is:

real A(lO,lO)
forall (I - 1:lO) A(I,Il = 1

The forall also allows conditional assignment making it possible to
express complicated vector operations with a single statement. In the fol-
lowing example, the diagonal elements of a matrix are tested, and any ele-
ment that is negative is set to zero:

integer a(lO,lO) i
forall (i-1:10, a(i,i) .LT. 0) a(i,i) = 0

The forall syntax is shown in Figure 2 and is essentially the same as the
the IVTRAN do for all statement.

11s

forall ([<loop spec>l'...[,<log-array exp>l)
<array-sectTon_expr> = <array-sect.on-expr>

where
<loop-spec> -> <integer-variable> = <triplet>
<log-array-exp>->same as in Where statement.

Figure 2. Forallstatement Specification

Most compilers for vector machines from the late 1970’s and early
1980’s accept standard Foriran as input, and vectorization is done by the
compiler. The Cray m compiler [la (the Cray 1 Fortran compiler)
accepts standard Fornan and directives from the programmer. The com-
pilers for the Cyber 205 (Cyber 205 Fortran 1171) and the Fujitsu VP-200
(Fujitsu Fortran 77 [18]) are also full vectorizing compilers. but the Cyber
205 Fortran also supports the Vectran-style vector extensions. Recently,
many vectorizing compilers have been developed for various architectures:
IBM VS Foman [19], AIliant FX/8 Fortran [201. NEC SX Fortran [213, and
others.

Also during the 1970’s. software tools that perform program restruc-
turing for vector&ion and then report back to the user w& introduced.
tools such as Parr&se [221 1231 WI, developed at the University of Illi-
nois, and PFC [25]. devklo& later at Rice &versity. The go& of such
tools were to provide very powerful system-independent vectorizers. to
evaluate the effectiveness of new optimization& and to involve the user in
the optimization process with the ultimate goal to educate the programmer
to enable him to write better programs.

3. Multiorocessing
The introduction of multiprocessor systems has also had a dramatic

affect on Fortran dialects, but no standardization of multiprocessor con-
structs has been attained. Multiprocessor systems offer greater flexibility
than vector processors, but they also offer a greater challenge in program-
ming and compiling. Unlike compiling and programming for vector
machines, which involve localized decisions, compiling and programming
for multiprocessors often involve global consideration of the program.
Additionally, utilization of a muldprocessor often requires consideration of
both the operating system environment and the machine architecture mak-
ing standardization difficult

From the large number of multiprocessor systems that have been
designed or proposed. two basic multitasking methods have emerged to
increase the performance of a single program: macrotasking and microtask-
ing. Macrotasking involves breaking the problem into large chunks, called
to& that can exeCute more or less independently on the multiple proces-
sors. Macrotasking is usually realized with the familiar fork/join con-
structs of [%I. The fork construct creates a new task that will be
scheduled for execution by the operating system. Creating a new task is
generally a very expensive operation. The useful work performed by the
task must be sufficiently large to compensate for this startup overhead if
macrotasking is to be efficient.

A very interesting system was the Denelcor HEP [271 developed in
the late 1970s. A single HEP cpu executed multiple instruction streams in
parallel. The cpu was time-multiplexed between the instructions streams.
Multiple pipelines and register setS allowed the HEP to switch rapidly
between processes without saving process state information. A minimum
of eight processes was required to keep the cpu fully utilized. Therefore,
even on a uniprocessor system, the HEP relied on macrotasking to increase
PerfOflXUlCe.

The HEP Fortran contained extensions to utilize the multitasking
capabilities of the machine. Two new statements, create and resume,
were added to the Fortran 77 base language. The create statement
allowed the parent process to invoke a subroutine as a new process; the
resume statement allowed a called routine to force its parent to continue
while the called routine executed in parallel. The following two code seg-
ments in HEP F.ntran would both result in subroutine subr executing in
parallel with its parent process.

create subr (x,y, x) call subr (x, y, z)

subroutine subr (x,y,z) subroutine subr (x,y,z)
<some computation> resume
return <some computation>

return

Many current supercomputers consist of a relatively small number of
VW high performance vector processors. They rely on multiprocessing to
provide higher performance than single-processor vector systems. Both the
C~Y-XM/P WI and the ETA-10 [29] provide macrotasking library rou-
tines in their Fortran languages. These systems require the programmer to
divide the work of his program into tasks that may execute in parallel. NO
automatic task generation is done by the compiler. The library routines
instantiate new tasks at the subroutine level. For example, the following
pkce of Chy-XMP For&an code results in two tasks executing the same
subroutine with different parameters:

external subr
integer taskl(3), data(1000)
call tskstart (taskl, subr, data, 1, 500)
call subr (data, 501, 1000)

The first calI creates a new task executing subr with data elements from
1 to 500. Thesecond call invokes subrdirecttywithdataelements from
501 10 IO&I. The task1 array is a control array used by the macrotasking
library.

Along with the ability to create multiple instruction streams, effective
multitasking also requires some method of controlling (synchronizing) the
executing tasks. For the purpose of this paper we distinguish between criti-
cal section synchronization and event-waiting synchronization. A critical
section implies that entrance to a particular section of code must be res-
tricted so that only one processor may execute it at a time. This is done to
prevent processors from interfering with one another. Evenl-waifing syn-
chronization imposes an ordering upon asynchronous events. The
producer-constir problem is a good example of event-waiting synchroni-
zation. Critical section synchronization is usually handled with a sema-
phore [30] mechanism. Event waiting synchronization may be handled in a
variety of ways: a processor may wait until the value of a particular vari-
able becomes zero or explicit event posting and waiting mechanisms may
be used.

The HEP provided synchronization using asynchronous variables.
An asynchronous variable was any variable whose name began with a dol-
lar sign ($). These variables had a full/empty synchronization bit asso-
ciated with them. An asynchronous variable could only be read if its syn-
chronization bit was full; it could only be written if its bit was empty. A
read automatically set the bit u) empty, and a write automatically set the
bit to full. An instruction stream wanting to read or write a such variable
would wait until the synchronization bit was in the proper state. A section
of code bounded by a read and a write of an asynchronous variable there-
fore became a critical section. These variables could aIso be used for
event-waiting synchronization.

Synchronization in Cray-XM/P Fortran is done with calls to the run-
time system. Routines are provided for locking (critical section) and
event-waiting synchronization. Figure 3 compares the HEP and the Cray-
XhJ/P synchronization methods for a simple producer-consumer synchmni-
zation problem and a simple critical section problem.

Another consideration in macrotasking is the nature of the program
data. Multiple tasks executing a single program require that multiple data
spaces also exist. Cray Fortran uses stacks to allocate data local to subrou-
tines and functions. This departs from the more common static allocation
of local data in typical Fortran implementations, but this change is neces-
sary to accommodate macrotasking. In both Cray and HEP, a local variable
allocated on the stack can be passed by reference to newly spawned tasks.
Care has to be taken, however, that variables are not deallocated from the
stack before all tasks finish using those variables.

connnon blocks also require some consideration. Common blocks
are used in Fortran to share data across subroutine calls. In a macmtasking
environment, is there one common block for the entire pmgram or one per
task? In the I-lFLP only one common block exists per program and is shared
by all tasks. In the Cray two types of common ,xe allowed. Plain common
blocks are shared by all tasksinlhepmgram. Task common blocks are
allocated one copy per task. The vsriables within a task common could
be passed by reference to newly spawned tasks.

Microtasking exploits parallelism at a more local level than macro-
tasking. Microtr&ng is often used to execute iterations of a loop in paral-
lel. In addition to loop parallelism, speedups can be achieved by overlap-
ping segments of sequential code. This opemtion is called low-level
spreading if the spreading is done on a statement-by-statement basis; it is
called high-level spreading if the spreading is performed upon large instruc-

116

HEP
Producer-Consumer
Initialixation integer Semp

integer $fll
purge Semp,$fll

Producer e = Semp call evwait (emp)
<produce> <produce>
$fll = 1 call evpost(fl1)

Consumer f = $fll
<consume>
Semp = 1

call evwait(fl1)
<consume>
call evpost (emp)

Critical Section
Initialization integer $lkvar

purge Slkvar
integer lkvar
call lockasgn(lkvar)

Section 1 = Slkvar
<Crit. Sect.>
Slkvar = 1

call lockon(lkvar)
<Crit . Sect. >
call lockof f (lkvar)

tray-XMiP

integer emp, fll
call evasgn (emp)
call evasgntfll)
call evpost (empl

Figure 3. HEP vs. Cray Synchronization

tion streams [31]. This optimization adds to the overall speedup of the pro-
gram because it overlaps instructions that are not vectorirable. Microtask-
ing is efficient on such small execution units because it does not incur the
large task creation overhead of macrotasking. Instead of creating new taska
for each new parallel execution stream. a fixed number of computational
resources, either “helping” tasks or real processors. are allocated at the
beginning of the program. These resource-s remain idle until parallel code is
encountered by an active task. At this point, the “helping” resources join
in the parallel execution. Once a resource joins in the execution, it is com-
mitted until the parallel execution completes. The overhead for starting this
parallel execution is much lower than in macrotasking.

In 1979, Burroughs proposed the FMP multiprocessor and a compan-
ion extended Fortran (called FMP Fortran) [32]. The FMP was never built,
but its design foreshadowed the development of future multiprocessor sys-
tems. The machine was comprised of 512 processing elements with local
memory. All processors could also access a much slower shared extended
memory. Additionally, a processor could broadcast to the other processors
for quick distribution of information. The early strategy of FMP Fortmn
was to allocate all variables in the local memory of the processor unless
instructed to do otherwise. FMP Fortran introduced a new concurrent con-
struct called the doall, one of the first uses of a microtasking construct
The doall allowed the specification of multiple index variables or n-tuples
of indexes, called domains. All iterations of the doall were considered
discrete and independent. The FMP doall format is shown in Figure 4.
This doall required the user to specify the intended use of variables. The
using clause identilied input variables, and the giving clause identified
output variables.

Any variable that does not appear in the using or giving clause is
allocatedlocally to each processor. The using and giving clauses in the
Fh4P do al 1 statement force the user to provide the FMP Fortran compiler
the dependence information necessary to-make proper allocations, and-thus
relieves the compiler of this task. Another important feature of this doall
is that no information is passed between the iterations of the loop. At the
beginning of the loop, the state of the extended memory is “frozen.” All
modifications arelocalunti theendofIhedoall,thenthevariableslisted
in the giving clause are written back. This value/restore form of execu.
tion eliminates the possibility of asynchronous side-effects (loop executions
am determinant), but it also limits the types of loops that carr be converted
into a doall. I.ater versions of the I%@ doall allowed data sharing and
asynchronous operation.

doall <domain>; using <variable list>
<loop body>

enddo [<domain>]; giving <variable list>

Figure 4. FhP Doall &cci!ication

Microtasking has also been used in a number of current multiproces-
sor systems. In some of these systems, the processors execute in a mOre
independent fashion than in the FMP. In all of these systems, data may be
shared between the iterations of the loop. With data sharing, non-
determinacy may be introduced into the execution of the loop. In loops
where the iterations are completely independent (or require some critical
section synchronization), a more general doall loop statement may be
used. The iterations are executed by multiple processors and no guarantee
is made about the order of execution of the iterations of the loop.

Many loops, however, have some serial component. The natural ord-
ering of the loop must be preserved for the loop to execute correctly. The
doacross loop is a parallel loop that assum= synchronization from left to
right [33] [34] [35], meaning that dcpendences may exist between iteration
I and some previous iteration(s). The iterations of the loop are scheduled
“horizontally” - meaning that no. processor will begin execution of itera-
tion I until iteration I-l has been started. (Horizontal scheduling is also
called cascading execution.) Additionally, an iteration may have to wait
during its execution for a previous iteration in order to satisfy dependences.
In other words, a producer-consumer relationship exist-s between the itera-
tionsofthe doacrosslop.

Among the micro&king libraries of current multiprocessor systems,
a great variety of routines exists with varying levels of sophistication. The
Cray-XM/P supports a doall style loop in its microtasking system as well
as high-level spread&. Sequent Fortran [36] provides a doacross style
loop and microtasklng f ark/join style constructs. The microtasklng con-
structs of both are supported in software. The Alliant FX/8 multiprocessor
[37] and the IBM Rp3 multiprocessor [38] support microtasking
doacross loops at the hardware level. Special hardware that schedules
the iterations of concurrent loops is incorporated into their architectures. In
some systems (Cray. Sequent), the user must insert statements or compiler
directives to use the microtasking. In the Alliant, the compiler automati-
cally converts serial do loops into microtasking loops. One of the major
advantages of loop parallelism and high level spreading is that the block-
smtcture of the program is maintained while parallelism is exploited.
Macrotasking usually requires a complete rewriting of the program to break
it into asynchronous tasks.

It may initially seem that microtasking is superior to macrotasking for
exploiting concurrency, but each method has advantages and disadvantages.
In the development of multiprocessor systems, both micmtaskmg and
macrotasking have been used, and they both continue to be used. The
appropriate method of execution depends both on the underlying afchitec-
ture and the nature of the application.

Microtasking has the advantage of reducing overhead and exploiting
parallelism at a finer grain. Micmtasking also has two major disadvantages.
First, the number of helping resources is usually fixed at compile time or at
program startup time (this is done to reduce runtime overhead). Thus, the
system does not adapt well to data size or system load. Second, the:combi-
nation of resource commitment with the non-determinacy of the number of

helping tasks that will actually participate in the execution of the parallel
code restricts the synchronization that may be used safely. Non-cascading
synchronization in microtasking may be disastrous because a task perform-
ing a waiting synchronization may be the only task in the execution. Since
the resoume is committed to its instruction stream, it cannot switch execu-
tion streams to satisfy the wait condition. Deadlock is the result Both of
these problems cart be remedied with operating system intervention, but
then much of the efficiency advanmge is lost

Macr&asking, on the other hand. suffers from higher overhead and
thus necessitates a coarser granularity of tasks, but it does not have the
above problems of micmtasking. Since macrotasking relies on operating
system task management, dynamic adaptation to system load and problem
size can be incorporated into the runtime system. Additionally, macrotask-
ing does not have the deadlock problem of microtasking. When synchroni-
zation is required, a single resource can perform the synchronization and
then context. switch to another instruction stream. At some later time, the
wait condition may be satisfied by the execution of another task, thus
reIeasing the original task.

Many multiprocessor systems, such as the Encore Muhlmax[39], the
Sequent Balance, and IBM Parallel Fortmn 3090 [40], now have or are
developing Fottran systems that incorporate both macmtasking and micro-
tasking. Table 1 compares tbe capabilities of many multiprocessor systems.

This great variety of macrotasking/micmtasking libraries/routines has
caused some cries of despair among the user community: “Parallel pm.

grams are not portable!“,“‘ Pa&e1 programs are more difficult to write!”
etc. In response to these cries. two approaches have been taken. The firs;
approach is to provide an automatic parallelizer - an optimizer that takes a
standard sequential program and converts it into a parallel program. This is
lhe approach taken with IBM VS Fortran and Alliant Fortran.

The other approach is to provide a generic parallel environment in
which to produce parallel code. Software systems such as Linda [4 l] have
been created which present a uniform parallel programming language that
can be implemented on a variety of multiprocessor and distributed systems.
In Linda, shared memory is represented as a tuple space. A tuple consists
of a variable and one (scalar) or more (array) values. Variables are not
written and mad as in most languages. Ikea& a tuple acts like a mailbox.
Values are output to (received by) Ihe tuple. read from the tuple, or
removed (mpu0 from the tuple. A value cannot be overwritten; it must be
costume as input before a new value can be output. Data items me not
referenced by address, but by name. Accessing a shared variable is similar
to searching a distributed database. This shared data feature coupled wib
elegant methods for handling multitasking make Linda a pleasant program-
ming environmqnt.

4. The Cedar Multiurocessor and Cedar Fortran
The Cedar multiprocessor is a hierarchical shared-memory supercom-

puter under development at the University of Illinois, Urbana-Champaign.
The processors are grouped into clusters that share access to a cluster
memory. Processors in one cluster may not access the cluster memory of
another cluster. All processors in the machine share access to a large global
memory through an interconnection network. The Cedar-l machine
comprises four clusters of eight processors for a total of 32 processors. but
this hierarchical architecture may be extended to hundreds of processors.
The clusters in Cedar-l are Alliant IX/!3 multiprocessor systems. Each pro-
cessor is capable of performing vector operations, and the Alliant con-
currency hardware allows the processors in each cluster to share the execu-
tion of concurrent loops.

The Cedar Fortran Language is based on Fortran 77 [42] and has
remained mostly consistent with that standard, but many extensions have
been added to provide for optimized concurrent execution. In trying to
adapt Fortran to a multiprocessor, multitasking system such as Cedar, many
serious problems arose because of the simplicity of the language. The
Cedar extensions mostly take the form of new statements and “intrinsic”
functions: vector statements, statement.9 for expressing concumznt loops,
statementa and functions for synchronization, and functions for multitask-
ing. The concurrent loop extensions mentioned above necessitated another
extension to standard Fortran, block structured data scoping. Data allcca-
tion and scoping presented the greatest problem in adapting Fortran to the
multiprocessor/multitasking environment. The data scoping issues are more
easily understood with knowledge of the parallel control structures that
have been implemented. For this reason, discussion of data scoping will be
postponed until after the imroduction of the control structures.
4.1 Arravfvector Extensions

The vector extensions of Cedar Fortran provide powerful CO~S~I’UC~S
for manipulating data in a vector fashion. Cedar Fortran implements three
vector statement types, niplet notalion assignments, forall statements,
and where statements. The triplet notation and where statements are
compatible with the proposed Fortran 8x standard. Their derivation from
Vc&an was described in a previous section. The forall statement has
been incitided in Cedar Fortran because it provides the same functionality
as the 8x identify statement without introducing more aliasing. The
identify statement has heen omitted in favor of the f oral1 statement.

Conceptually. the triplet is a vector assignment statement, the
forall is a vector loop statement, and the where statement is a vector
if statement These vector statements are essential to the Cedar Fortran
optimizer because they allow all vectorizable instructions to be represented.
Once statements have been expressed in vector form, it is much easier for
the back end compiler to generate efficient code.
4.2 Concurrent Looas

Vector operasions provide one avenue for increasing program perfor-
mance, but not all code is vcctorizable. Concurrent execution with the use
of multiple processing resources provides another avenue of optimization.
Just as vector operations can be substituted for many Fortran do loops. con-
current loops can also bc substituted for do loops. Additionally, high-level
spreading makes it possible to parallelize code that is not in do loops. Con-
current constructs can easily be integrated with vector statements to provide

multiple levels of parallelism.

The language consm~cts used to define concurrent execution in Cedar
Fortmn are derived from the doall and doacross statemenu described
in the previous section. Each of these loop types is further divided into
three groups: cluster statements (cdoall and cdoacroas), spread state-
ments (sdoall and sdoacross), and cmss cluster statements (xdoall
and xdoacross). The distinctions between the groups will he explained
below.

The syntax of the doacross loop in Cedar Fortran (subsequently to
be referred to as CF) is similar tc the standard Fortran do loop; its form is
shown in Figure 5. Provision has been made for statements that are to be
executed once for each processor participating in the loop using the optional
loop statement. Those statements that appear before the loop will be
executed once per processor. Those statements that appear after the loop
will bc executed on every iteration. If the loop statement is not present,
all statements will be executed once per iteration. Type statements may
appear immediately after the doacross statement. The function of these
type statements is to declare dqacross-internal variables and arrays
which may be referenced only inside that doacross loop. Each iteration
of the loop allocates a local, private copy of these internal variables and
arrays. Each variable and army that is to be internal to a doacross loop
must be declared explicitly. Any previous declarations are superccded for
the duration of the loop.

doacross [label[, 11 i = el, ez 1, eal
[<type-statements>]
[<statements>]

[~OOPI
[<statements>]

{label <next-statement>1 I tend doacrossl
where

i is the name of an integer variable, called the doacross-variable.
et. e2, and es are each integer expressions.

Figure 5. Doacross Loop Specification

If data or control dependences exist between the iterations of the
loop, the programmer must insert proper synchronization insuuctions to
insure the correct execution of the loop. Two routines, advance and
await, are provided for doacross synchronization. An iteration of the
doacross uses await to wait for a previous iteration. An advance
releases the await of a future itcmtion. (These routines are very efficient
because they interface directly to the Alliant concurrency bus.) If no data
dependences exist between the iterations of the loop, then the programmer
should use the doall statement instead of doacross. The doall loop
is very similar to the doacross loop; The syntax is identical except for
replacing the "doacross" with "doall". While the iterations of a
doacross are scheduled horizontally, no order is implied in the execution
of the iterations of a doall. This distinction is important because CF will
not ovcrr~dc the programmer’s declaration of independent parallel
execution. The CF compiler may, however, rake advantage of this dcclara-
tion and restructure the loop to achieve greater speedup. If a specific exe
cution or&r is necessary for the loop to execute correctly, a doacross
should be used.

It is sometimes desirable to exit a loop before all the iterations of the
loop have been completed. A goto statement cannot be used to exit from a
parallel loop because a goto would only affect a single processor. The
result would be that one processor would leave the concurrent loop while
the other processors continued to execute within the loop. Instead, the fol-
lowing two statements, quit and qquit have been provided.

quit [label]
qquit [label]

The quit statement causes the parallel loop to be terminated cleanly.
It waits for all iterations with a loop index less than the current loop index
to finish before it actually quits the loop. Without the label, execution
resumes at the Erst statement after the end of the innermost loop containing
the quit. With the label, execution resumes at that label, terminating all
loops out to that level,

If multiple iterations of a loop perform a quit operation, then the
iteration with the smallest iteration number (if the stride is positive) will

118

control the exit of the loop reguaxdless of which iteration actually issued the
quit first in real time. The qquit Statement is similar to the quit state-
ment, except that it terminates the loup immediately. (It does not wait for
Al previous iterations to finish.) It is a “quick quit.” Caution must be
taken when using qquit because previous iterations may be only partially
complete when the loop terminates.
4.3 Macrotasking

In addition to the microtasking of concurrent loops, CF provides
macrotasking via the macrotasking library (similar KI the Cmy macn&&-
ing routines). The macrotasking routines are the interface between the CF
language and the Xylem operating system [43]. This library provides rou-
tines for creating and controlling “tasks.” (An entity of concurrent execu-
lion in Xylem is called a “cluster task” or just a “ask” for convenience.)
A task begins execution at the specified routine and continues indepen-
dently until the end of the subroutine is reached. When the return state+
ment is reached, the task is terminated rather than returning to the parent
task. The macrotasking library provides routines for the creation and
monitoring of these user defined tasks. These routines are described in Fig-
ure 6.
4.4 Cluster. m. and Cross Cluster Lopps

The format of the ctskstart call may initially appear strange to
the reader because it specifies a number of processors to be allocated to the
new task;‘ This number of processors is significant in the execution of con-
current loops. As was mentioned earlier, there are three forms for each
concurrent loop: cdoall. sdoall, and xdoall. and cdoacross,
sdoacross, and xdoacross. The l ‘c’* loops are cluster or “confined”
loops, meaning that the processing resources used for the execution of the
loop are confined to processors allocated to the current cluster task. For
example, a cluster task with Eve processors is started with:
taskid = ctskstart (5, subr, x, y, zl
This creates a task for subroutine subr with arguments x, y. and z.
Within subr, a program segment

cdoall i-l, 100
<statements>

end cdoall
exccutcs a concurrent loop using only the five processors allocated to the
task at the task’s creation. The execution of the loop is confined to the pro-
cessor resources of the cluster task.

Also within subr, a very similar program Segment
sdoall i=l, 100

<statements>
end sdoall

has a very different meaning. In this loop, the execution is being spread to
processing resources outside the current cluster task. A concurrent loop

l int * ctskstart (numgroc, sub 1, argl . . .)
Ctskstart spawns a new task, and returns an integer that identifies

it. The first argument, numgroc. ~pecii%es the number of processors to be
allocated to the new task for execution of any ‘cdoall or cdoacross
loops. If the value is z&o. then the system is free to allocate any number of
processors to the cluster ta@c.

The second argument, sub, is the subroutine or entry point at which
execution will begin in the new task. The remaining arguments are lbosc
passed to the subroutine. These arguments may be of any type (scalar or
array), but they should match the formal panmeters of sub. Expressions
are allowed as arguments and enclosing an argument in parcnthescs
indicates thar the argument is to bc passed by value. The value returned by
ctskstart will either be a positive integer corresponding to the id
number ofthe newly spawnedtask,or -1 ifctskstartfails.
l logical = ctskdone (int)

Ctskdone reports the state of a task created by ctskstart. The
value of the argument identiEes a task and must have been obtained from
ctskstart. Returns .false. if the specified lask has been created and
has not terminated. Returns .t rue. otherwise.

l call ctskwait tint)
Ctskwait suspends the task referencing it until Ihe task whose

identification is the argument completes execution. The value of the
argument must have beenobtined from ctskstart.

Figure 6. Macrotasking Library Routines

statement that begins with an l‘s” indicates that this is a “spread” loop. In
the loop above, each iteration of the loop may be assigned to a different
cluster task. If the CF user specifies his own concurrent loops, then he is
responsible for proper declaration and allocation of variables. However. the
compiler will provide warnings of improper user declarations. Any con-
current loops generated by the CF optimizer will have the variable declam-
tion done automatically to match those loops.

In order to make effective use of the computational resources on
Cedar, a sdoall loop should have a nested cdoall loop to bring all the
processors within each task into execution. It may initially seem strange
that the sdoall allocates whole cluster tasks to the iterations of the loop
instead of just processors, but one must remember the hierarchical structure
of Cedar. In order @ reach the processors within a cluster. one must go
through the cluster control hardware (Alliant concurrency bus). The
sdoall/cdoall loop combination provides the programmer maximum
ff exibility in controlling the parallel execution of hops.

If the programmer desires to run one loop across all processors of the
machine and s/he does not want to deal with the precise details of loop
blocking and processor scheduling, the xdoall or xdoacross state-
ments may be used. These “cross cluster” parallel loops take the confined
processors of the given cluster task and combine them with the processors
of other tasks to create a single loop with processors from different clusters
taking iterations of the loop. The x concurrent loops are functionally
equivalent to a s loop with an inner nested c loop, except the loop blocking
and processor utilization is managed by the compiler instead of the pro-
grammer. (These x concurrent loops are currently unimplemented in CF.)
4.5 Synchronization

With the addition of concurrent loops and macrotasking, a mechan-
ism for coNrolling the execution streams is required. New statements and
intrinsic functions were added to CF to provide for varying granularities of
synchronization. Fine grain synchronization is used between processors
within concurrent loops, larger grain synchronization is used between tasks.

Cedar Fortran provides mechaniims for both critical section and
producer-consumer synchronization, adopting the full set of Cmy lock and
event synchronization routines. These routines are classified as medium
grain synchronization, appropriate for synchronization between ‘cluster
tasks, but too expensive for general use between the proce.%orS in a single
task.

with <resource> whenlif <expression>
<statements>

end with
Figure 7. The With Statement

Besides these synchronization primitives, we End.the’with sta&ment
described by Hoare [44] to be useful in expressing critical section syn-
chronization. The general form of the with block is shown in Figure 7.
Thisconstruct means Ibatthe <statements>are inacfiticalsection for
the <resource>. In CF the <resource> is a variable or array element
declared as sync. In the with/when form, these <statements> will
not be executed until exclusive access can be granted to the <resource>
and the <expression> is true. (Note that the with statement does not
hold the <resource> while it is waiting for the <expression> to
become true.) In the with/if form, exclusive access to the
<resource> is granted and the <expression> is evaluated: if the
<gxpression> is true, the <statements> are execute& otherwise
execution continues immediately after Ihe end with. Exclusive access is
always released at the termination of each with statement

The sync type statement declares a variable or ansly element, x, to
have a data field, a tag field, and a hidden lock field. When referring to the
data elements, one simply uses the variable name, x. The tag Eeld is refer-
enced as X.tag. Figure 8 shows a do loop with a subscripted-subscript
transformed to run in parallel. mis requires both event-waiting and
critical-Section synchronization. Using b(i) as the index variable causes
the order of storing the array a to be unpredictable. The tag Eeld is used to
maintain the order of the accesses to the elements of a. More examples of
the use of this synchronization method can be found in 1451.

Although’ any statements may be contained in the body of a with
statement, the Cedar hardware provides synchronization primitives that can
be used to implement some with SlatementS as single instructions. The
with statement in the above loop, for example, can be implemented as a

119

single instruction in Cedar. If the operations in the body of the with are
limited to only one operation each on tag and data. then the entire body of
the with may be executed as a single instruction. If the body contains
more operations, then additional software synchronization must be used.

The loop:
do i - 1, N

a(b(ill = c(i) t 1
end do

The equivalent parallel versions using the with statemene
doall i = 1, N

with a(b(i)) if (a(b(i)).tag < i)
a(b(i) 1 = c(i) t 1
a(b(ill .tag = i

end with
end doall

Figure 8. With Statement Example

4.6 Data Declarations. Scouinn. nnd Nested Concurrent m
The Cedar architecture physically distinguishes two types of memory:

global memory which is accessible to all processors and cluster memory
which is only accessible to the processors in that cluster. SpeciEcation of
location attributes for data in CF are supported by extending the standard
Fortsan declaration statements with two new attribute statements, global
and cluster. While the architectural classifications of global and cluster
am very distinct, Cedar Forrran. with the help of the Xylem virtual memory
system, presents a more homogeneous virtual address space.. All data that
is declared locally in a subprogram and passed outside that subprogram is
heap-allocated and shamble with other tasks. The cluster and global
attributes define only initial locations of data. Data will be demand-paged
to the physical location necessary to meet the access demands of the pro.
gram. Data that is read and written by multiple tasks must be moved to the
global memory. Read-only data, program code, and unshared data may
move to cluster memory. The programmer must be somewhat aware of the
underlying architecture to avoid excessive paging activity. Data to be
shared by several cluster tasks or that is shared among the iterations of an
sdoall loop should be declared global. Library routines rue provided
to the programmer for changing location attributes of data

Common blocks are used in Fortran to share data across subroutine
calls. In CF, there are two types of common, plain common and process
common. In plain common, one copy of the common is (potentially)
created for each task within the urogram. In process common, one copy
of the common is shared by all tasks within the program. Unlike the task
comon of Gray Fortran, plain connnon of CF cannot be passed by refer-
ence to newly spawned tasks. Unlike local data which can be shared, the
data within a plain common is strictly private to the task. This undesirable
restriction is forced by the back-end compiler. In future implementations, it
is hoped that this restriction will be lifted so that the programmer is
presented with uniform data behavior where data sharing is completely dlc-
tated by visibility and scoping.

Common names may appear in the CF memory attribute type statc-
merits. This means that the common defined by this name and all of the
idenribers located within it are of the indicated type. Any plain common
that is not specifically given attributes will be given the cluster attribute.
Any process conznon that is not specilically given attributes will be
given the global attribute. All identifiers in a common take on the initial
location attribute of the corrrmon block. The actual location may be
changed by demand paging or by library routine calls.

The open scoping of identifiers ln Fortran proved to be unmanageable
for concurrent loops. A C-like block-structured scoping system was added
to CF in order to isolate variables in a single instruction stream.
Specifically, variables and arrays may be declared inside any concurrent
construct. The newly declared variables will be allocated one copy per
iteration of the concurrent construct, and these declarations will supersede
any variable of the same name declared outside the construct. These
dc&rations remain in effect until the construct terminates or until new
declarations of a more nested construct supersede the older declarations.
When a construct &srminates, the declarations as they existed before the
construct began are restored.

The scoping levels have similar implications for got0 statements.
CF allows gotos to be performed only to statements at the m scope.
This essentially means that CF will not allow gotos to be performed into

or out of doall or doacross constructs. Of course, this rule applies to
any type of goto, either explicit, or by result of an arithmetic if or any
other Fortran branching construct. Recall that quit or qquit must be
used to terminate a parallel loop before all iterations have been completed.

Nested concurrent loops should allow greater exploitation of psrallel-
ism within a program. Multi-level loop parallelism can be supported under
the current implementation of CF using a combination of sdoall and
cdoall or cdoacross loops. The Alliant hardware controlling the clus-
ter loop execution permits only the outermost cluster loop to execute con-
currently; all inner cluster concurrent loops will execute sequentially.

When using an sdoall loop. all input and output data from the loop
must be accessible outside the initiating cluster task. All such data should
therefore be declared global to avoid excessive data movement (and that
data cannot appear in plain common blocks). Below is a properly con-
structed nesting of spread and cluster loops.

dimension a (10,20)
global a, i
sdoall i = 1, 10

integer j
loop

cdoall j = 1, 20
a(i, jl = itj

end cdoall
end sdoall

5. Conclusion
In this paper, we have traced the development of vector extensions to

For&us from their diverse beginnings to the current general consensus. The
continuing variety of multiprocessing extensions has also been presented.
Most current multiprocessor extensions are still deeply intertwined with
theii corresponding architectures and operating systems. Cedar Fc&an is
no exception. Our primary goals in designing and implementing the
language were:
(1) to provide a language that easily allowed direct access to all the

power of the Cedar system, both for the programmer and for source.
to-source optimization.

(2) to provide a Fortran dialect in which users could easily adapt their
existing Fortran applications.

In these two goals, we feel we have been reasonably successfuL Our secon-
dary goals were:
(1) to adapt the language to the needs and desires of programmers as they

gain experience with parallel programming.
(2) to add to the overall knowledge and experience of parallel program-

ming and parallel languages.
We are confident that time will provide a general consensus on multiproces-
sor Fortran constructs, just as it has with vector constructs. The diversity of
multiprocessors is much greater than that of vector processors, and the
problem is compounded by the interrelated issues of wncurrent execution
and proper data allocation. The convergence of ideas and attitudes may,
therefore, take more time and effort.

111

PI

131

[41

bl

WI

171

@I

REFERENCES
J. Backus, “The History of FORTRAN I. II. and Ill,” Annual His-
my of Computers. vol. 1.1, July, 1979, pp. 21-37.
M. Guzzi. “Cedar Fortran Programmer’s Manual,” CSRD dot. no.
601, U of I Center for Supercomputing R and D, Jan. 1987.
D. Padua and D. Lawrle, ‘Proposed Cedar Fortran Extensions,”
CSRD dot. no. 509, U of I Center for Supercomputing R and D. Sept.
1985.
D. Kuck, E. Davidson, D. Lawrie, and A. Sameh, “Parallel’Supcr-
computing Today and the Cedar Approach,” Science, Vol. 231 (28
Feb. 1986). pp. 967-974.
G. Barnes, R. Brown, MKato, D. Kuck. D. Slotnick, and R. Stokes,
“The llllac IV Comuputer,” IEEE Transactions on Computers, Vol
C-17 No. 8 (Aug. 1968). pp. 746-757.
Array Processing System Fortran IV Reference Manual, Defense,
Space, and Special Systems Group, Burroughs Corporation, Paoli.
Penn., Change No.3. August’31.1971.
R. Millstein and C. Muntz, “The llliac IV For-u-an Compiler,” ACM
S&plan Nofices, Vol. 10 No. 3 (March 1975). pp. l-8,
D. Presberg and N. Johnson, “The Paralyzer: IVTRAN’s Parallelism
Analyzer and Synthesizer”, ACM Sigplan Notices, Vol. 10 No. 3
@larch 1975), pp. 9-16.

120

[9] L. Higbie, “Supercomputer Architectures,” IEEE Computer, Vol. 6
(Dee 1973). pp. 48-58.

[lo] Control Data Star-100 Computer System - Hardware Reference
Manual, Control Data Corporation Technical Publications Depart-
ment, Arden Hills, Minn., 1971.

[ll] D. Wedel, “Fortran for the Texas Instruments ACS System”, ACM
Sigplan Notices, Vol. 10 No. 3 (March 1975). pp. 119-132.

[12] R. G. Zwakenberg. “Vector Extensions to LRLTRAN”. Sigplan
Notices, Vol. 10, No. 3 (March 1975). pp. 77-86.

[13] G. Paul and M. Wilson, “An Introduction to VECTRAN and Its Use
in Scientific Computing,” Proceedings of the 1978 USL Workshop
on Vector and Parallel Processors, 1978, pp. 176204.

[14] Burroughs Scienfifrc Processor Vector Fortran Specification Defense,
Space, and Special Systems Group, Burroughs Corporation, Paoli,
Penn., 1978.

I151 Fortran 8x, X3J3/S8 (X3.9-198x). American National Standaids Insti-
tute. 1986.

[16] Cray-1 Fortran (CFT) Reference Manual, Pub. no. SR-0009, Cray
Research. Inc., Mendota Heights, Minn., 1979.

[17] Fortran 200 Version 1 Reference Manual, Control Data Corporation
Technical Publications Department, Arden Hills, Minn., 1982.

[18] K. Miura and K. Uchida. “FACOM Vector Processor VP-lOO/VP-
200.” Proc. NATO Advanced Research Workshop on High-speed
Computing, Julich, W. Germany, Springer-Verlag. June 20-22.1983.

[19] R. Scarborough and H. Kokky, “A Vectorizing Fortran Compiler,”
IBM Journal of R and D, 30(2), March 1986, pp. 163-171.

1201 FXIFortran Language Manual, Alliant Computer Systems Corpora-
tion, Acton, Mass., April, 1985.

[21] T. Watanabe. “Architecture and Performance of NEC supercomputer
SX system,” Parallel Computing. Vol. 5 (1987). pp. 247-255.

[22] D. Kuck. Y. Mumoka, and S. Chen, “On the Number of Operations
Simultaneously Executable in For&m-like Programs and their Result-
ing Speedup.” IEE Transactions on Computers, Vol. C-21 no. 12
(Dec. 1972).

[23] D. Kuck, P. Budnick, S. Chen, E. Davis, Jr., J. Han, P. Kraska, D.
Lawrie, Y. Muraoka, R. Strebendt, and R. Towe, “Measurements of
Parallelism in Ordinary Fortran Programs,” IEEE Computer, Vol. 7

- no. 1 (Jan. 1974).
D. Kuck, R. Kuhn, B. Leasure, and M. Wolfe, “The Structure of an
Advanced Vector&r for Pipelined Processors,” Fourth International
Computer Software and Applications Conference, October 1980.

[25] R. Allen and K. Kennedy, “PFC: A Program to convert Fortran to
Parallel Form.” Tech. report MASC-TR 82-6, Department of
Mathematical Sciences, Rice University, March 1982.

[26] J. Dennis and E. Van Horn, “Programming Semantics for Multipro-
grammed Computations,” Communications ofthe ACM, Vol. 9 No. 3
(March 1966), pp. 143-155.

[27] HEP Forfran 77 User’s Guide, Pub. no. 9000006, Delelcor. Inc.,
Aurora, Co. 1982.

[28] Cray Computer System Technical Note: Multitasking User Guide,
Pub. no. SR-0222, Cray Research, Inc.. Mendota Heights, Minn., Jan.
1985.

[29] “Notes from ETA Presentation,” Second International Conference
on Supercomputing. Santa Clara, CA.. May 1987.

[30] E. Dijkstra, “Cooperating Sequential Processes,” Technical Report
EWD-123, Techological University, Eindhoven. The Netherlands,
1965, reprinted in [GenuSq. pp. 43-112.

1311 A. Veidenbaum, “Compiler Gptimizations and Architecture Design
Issues for Multiprocessors,” CSRD dot. no. 520, U of I Center for
Supexomputing R and D, 1985.

[32] Final Report -Numerical Aerodynamic Simulation FaciIity Feasibil-
ity Study, Defense, Space, and Special Systems Group. Burroughs
Corporation, Paoli, Penn., March 1979.

[33] D. Padua, “Multiprocessors: Discussion of Some Theoretical and
Practical Problems”, Ph.D. l’besis, report 79-9990. Dept of Com-
puter Science, Univ. of Illinois Urbana-Champaign, Oct. 1979.

[34] R. Cytron, “Doacross: Beyond vectorization for multiprocessors.”
Proceedings 1986 International Conference on Parallel Processing.
Aug. 1986, pp. 836-844.

1351 C. Polychronopouloq On Program Restructuring, Scheduling. and
Communication For Parallel Processor Systems. CSRD dot. no. 595,
U of I Center for Supercomputing R and D, August 1986.

[36] A. Osterhaug, Guide fo Parallel Programming on Sequent Computer
Sysrems, Sequent Computer Systems, Inc., Beaverton, Oregon, 1986.

[37] FkLS&es Architecture Manual, Alliant Computer Systems Corpora-
tion, Acton, Mass., April, 1985.

[38] G. Plister. W. Brantley, D. George, S. Harvey, W. Kleinfelder, K.
McAuliffe, E. Melton, V. Norton, and J. Weiss, “The IBM Research
Parallel Processor Pmtotype (RP3): Introduction and Architecture.”
Proceedings 1985 International Conference on Parallel Processing,
Aug. 1985, pp. 764-771.

[39] Encore Parallel Processing Guide, Encore Computer Corporation,
Marlborough, Mass., 1988.

[40] Notes from the Argonne Nutional l&s Parallel Computing Forum,
Argonne National Labs, Nov. 1987.

1411 S. Ahuja, N. Carriero, and D. Gelemter, “Linda and Friends,” IEEE
Computer, Vol. 19 no. 8 (Auz. 1986), pp. 26-34.

[42] Programming Language Fortran ANSI x3.9-1978, American National
Standards Institute, 1978.

[43] Perry Emratb, “Xylem: An Operating System for the Cedar Mul-
tiprocessor”, IEEE Software, Vol. 3 No. 4 (July 1985). pp. 30-37.

1441 C. Hoare, “Towards a Theory of Parallel Programming,” Operating
Sysfem Techniques, C. Hoare and R. Perrott (Ed.%). Academic Press,
London, 1972, pp. 61-71.

[45] C. Zhu and P. Yew, A Scheme to Enforce Data Dependence on Lurge
Multiprocessor Systems, CSRD dot. no. 40, U of I Center for Super-
computing R and D, July 1984.

CmY Yes

Encore Parallel yes
Fortran

IBM Parallel PsralIel loop
Fortran PRPQ Continue
-future plans
Sequent no

End Ordered
no

doall
send/wait

end doall
no

Yes

Ye n0

Parallel Yes
End Parallel

ParallelCase yes
End Case

no Yes

Common
Task Common
Shared
Private
Volitile

Y@

shared by
compiler
option

yes yes yes

wait yes Yes
and
barrier

unknown unknown ’ yes

yes Y= no

Table 1. Comparison of Multiprocessor Tasking Systems

121

