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Static and Dynamic Evaluation
of Data Dependence Analysis Techniques

Paul M. Petersen and David A. Padua, Senior Member, |IEEE

Abstract —Data dependence analysis techniques are the main component of today’s strategies for automatic detection of
parallelism. Parallelism detection strategies are being incorporated in commercial compilers with increasing frequency because of
the widespread use of processors capable of exploiting instruction-level parallelism and the growing importance of multiprocessors.
An assessment of the accuracy of data dependence tests is therefore of great importance for compiler writers and researchers. The
tests evaluated in this study include the generalized greatest common divisor test, three variants of Banerjee’s test, and the Omega
test. Their effectiveness was measured with respect to the Perfect Benchmarks and the linear algebra libraries, EISPACK and
LAPACK. Two methods were applied, one using only compile-time information for the analysis, and the second using information
gathered during program execution. The results indicate that Banerjee’s test is for all practical purposes as accurate as the more
complex Omega test in detecting parallelism. However, the Omega test is quite effective in proving the existence of dependences, in
contrast with Banerjee’s test, which can only disprove, or break dependences. The capability of the Omega test of proving
dependences could have a significant impact on several compiler algorithms not considered in this study.

Index Terms —Dependence analysis, automatic parallelization, parallelism detection, compiler optimizations, evaluation of compiler

techniques.

1 INTRODUCTION

D ATA dependence analysis is at the core of current
strategies for the automatic detection of implicit par-
allelism in programs written in conventional sequential
languages, such as Fortran and C. Dependence analysis
techniques estimate, at compile-time, the execution-time
interactions between different statements or between dif-
ferent executions of the same statement. This estimation is
conservative in that whenever the dependence analysis
technique is unable to determine whether the interaction
will take place, it assumes an interaction. An execution-time
interaction exists between two statement executions when
both access the same memory location and one of the ac-
cesses is @ memory write. To illustrate how dependence
analysis is used to detect implicit parallelism, consider a
Fortran Do loop. If the dependence analysis tests determine
at compile-time that there will be no interactions between
the iterations, then it is clear that the Do loop can be
straightforwardly transformed into a PARALLEL DO loop
whose iterations can execute concurrently with each other.
Dependence analysis is not only necessary for automatic
detection of parallelism, but also crucial for many other
important compiler transformations, such as those for im-
proving memory locality, load balancing, and reducing the
overhead due to task initiation and synchronization. For
this reason, experimental evaluation to determine the accu-
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racy of dependence analysis techniques is very important.
Such evaluation is necessary to guide research and to help
compiler writers select a dependence analysis strategy.

In this paper, we present an experimental evaluation of
several dependence analysis techniques, including the con-
stant test, the GCD test, three variants of Banerjee’s inequali-
ties [3], an integer programming test based on the Simplex
method, and the Omega test [18]. Both static (compile-time)
and dynamic (run-time) evaluations are presented.

The study has two major objectives. The first is to deter-
mine to what extent statically unknown loop limits affect
the accuracy of the dependence analysis. The second objec-
tive is to determine whether the theoretically most accurate
tests, the Simplex-based integer programming test and the
Omega test, produce better results than more efficient ap-
proximations, such as Banerjee’s test, when applied to real
programs. Even though there have been other studies of
dependence analysis [10], [14] to our knowledge this is the
first work that uses run-time information to evaluate the
accuracy of dependence analysis techniques. Run-time
evaluation is the only method to accurately evaluate the
effect of dependence analysis tests on program speedup.

The rest of this paper is organized as follows. In Section 2,
we briefly discuss the dependence analysis techniques used
in this study (we assume that the reader is familiar with the
notion of dependence and some of the techniques mentioned
below). In Sections 3 and 4, we discuss the static and dy-
namic studies, respectively. Finally, in Section 5, we present
our conclusions.

2 BACKGROUND

In this study, we will concentrate on the analysis of data
dependence when the interaction involves array elements.
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Most of the dependence analysis techniques described in
the literature (including all the tests considered in this pa-
per) focus on statements with array references and assume
that, when two different statements are analyzed, both are
inside the same, possibly multiply-nested, Do loop.
Consider the loop in Fig. 1. Here X is an n-dimensional
array, and f, and g; are functions from Z"to Z, where Z is
the collection of all integers. The set of all possible values

that the vector of loop indices, 1 =(l, I,, ..., l4), may as-
sume is called the iteration space.
DO [, = L1,U1
DO Ig= L4,Uq4
SUZ X(fl(jl,~~-,Id);~~~,fn(Il,~~~,Id)):~~~
Swi ...IX(gl(fl,...,fd),...,gn(]l,...,fd))
END DO
END DO

Fig. 1. Generic loop nest.

To decide whether there is a flow dependence from S, to S,
(that is, to determine whether a value computed by S, is
used by S,), it is necessary to determine whether there are
two executions of S, and S, such that:

1) the execution of S, iteration
1= (17, 15, ..., 13), and the execution of S, takes place
in iteration 1”7 = (17, 17,..., 17). Both 1"and 1”are in
the iteration space and, therefore,

(L <1 17<U;, 1< <d).

takes place in

2) f(1") = g;(1”) forall (1 <i<n).

3 <.

The conditions that determine a flow dependence if S,
is lexically located after S, are the same except that condi-
tion 3) is replaced by (3): 1" < 1”.

The task of determining dependence is sometimes de-
composed into several subproblems, one for each possible
ordering relationship between the components of the vec-
tors 1’ and 1”. For example, if 1/, I” € Z?, then the cond-
tion 1’ < 1” can be decomposed into four cases:

<l and 1)<
1<y and =1
i<l and 1} >17
=17 and 15<1]

In general, these cases are specified using direction vectors of
the form ¥ = (y,, ..., y,), where each y is either <, >, or =
and represents the ordering relation between I} and 1. In
the case of the previous example, the feasible direction
vectors are (<, <), (<, 2), (<, >), and (=, <). The set of distance
vectors associated with a dependence are all the vectors
1” — 1" such that 1" and 1” satisfy conditions 1), 2), and 3)
above.

We say there is a potential flow dependence from a state-
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ment S, to a statement S, both in the body of the same,
possibly multiply-nested, loop, if both statements refer to
the same array with S, referencing the array on the left-
hand side and S,, referencing the array on the right-hand
side. If the same array appears on both the right- and left-
hand sides of a statement S, we say that there is a potential
flow dependence of S with itself.

The same discussion presented above applies to the two
other types of data dependences, namely anti- and output-
dependences. The difference is that for an anti-dependence
to exist, it is necessary that the element of array X be on the
right-hand side in S, and on the left-hand side of S,,. For
output dependences, both occurrences of X should be on the
left-hand side.

For each potential dependence we must invoke a depend-
ence test to determine whether an actual dependence exists.
When the test determines that no actual dependence exists,
we say that it breaks the potential dependence. All the tests
described below require that the f;’s and g;’s be linear in the
loop indices with constant coefficients. Otherwise the poten-
tial dependence is assumed to be an actual dependence.

We say that a multidimensional array reference
X(f, f,, ..., f,) has coupled subscripts when a loop index
appears in two or more of the f; expressions. When a po-
tential dependence involves coupled subscripts, it may be
necessary to simultaneously consider all of the subscripts in
a multidimensional array reference to break the depend-
ence. As discussed below, three of the tests considered in
this study (GCD, Simplex-based integer programming, and
Omega tests) handle coupled subscripts, while Banerjee’s
tests conservatively analyze each subscript separately.

The rest of this section consists of two subsections. One
discusses simple and approximate tests and the other de-
scribes the integer-programming tests, namely the Omega
and the Simplex-based tests.

2.1 Simple and Approximate Dependence Tests
Approximate dependence techniques, especially those de-
veloped by Banerjee [2], [17] have been widely adopted in
both experimental and commercial compilers. In the last
few years, a renewed interest in the subject of dependence
analysis has arisen, and techniques have been developed
that are, in some cases, more accurate than Banerjee’s tests
[13], [11], [25].

The goal of the techniques presented in this section is to
break potential dependences without incurring the cost
associated with the integer programming tests discussed in
Section 2.2. Except for the generalized GCD test, these tech-
niques analyze one subscript at a time. A potential depend-
ence is broken only if the test shows that, for some sub-
script position i, there are no index vectors 1’ and 1” within
the iteration space that satisfy the equation f.(1") = g,(1”),
where f; and g; are the subscript expressions in Fig. 1. Per-
forming the test independently for each subscript is conser-
vative because, in the presence of coupled subscripts, the
system of equations may not have a solution even if all the
individual equations have solutions.

2.1.1 Simple Dependence Tests

The first test described here, the constant test, cannot only
break dependences but also conclusively prove depend-
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ences. If all the subscripts in the two array references are
loop invariant and have the same value, then there will be a
data dependence for all possible direction vectors. If any
pair of corresponding subscripts are constant and different,
then there is no data dependence regardless of any other
subscript values. Loop invariant terms that are common to
both subscripts in the potential dependence are canceled
before the comparison is made.

The greatest common divisor (GCD) test establishes an ex-
istence criterion for the solution to the equation
f.(1") = g;(1”) mentioned above. This test is based on the
fact that when both f; and g; are linear, a solution to the
equation exists if the greatest common divisor of the coeffi-
cients that multiplies the components of 17 and 1” also di-
vides the constant term. Conversely, if it does not divide
the constant term, then no solution can exist. In the work
reported here we used the generalized GCD method [3];
this is an extension of the GCD method that simultaneously
considers all subscripts in a multidimensional array. When
the GCD method breaks a potential dependence, it simulta-
neously breaks all the direction vectors. The GCD method
cannot prove dependence because it does not take into ac-
count the value of the loop limits.

2.1.2 Banererjee'’s Inequalities for Loops with Known
Limits
Assume that
f(1)=al, +al,++ayl, +a,
and
9,(1) =Dbyl, +b,l, + - + byl + by.
Then, the equation f,(1") = g,(1”) can be written as
(al] = byI)) + -+ (a4l — byly) = (b, — a).
The function F(I) = (@] = byI]) + -+ (a41) —byly) is
continuous in R?. Let Bmin: Bmax denote any two values of F
in a connected set R c RZd, which contains all possible

values of the iteration space. Suppose also that B, < b, — a,

< Bmax- Then, from the intermediate value theorem, we
know that the equation F(I)= b, —a, has a solution
U =(u, U,, ..., u,d) € R and Banerjee’s test assumes that a
dependence exists. This is a conservative assumption be-
cause U only belongs to the iteration space when it is an
integer vector.

Conversely, with B, and B, defined as the minimum
and maximum values, respectively, of Fin R, if the relation
Binin < by — 89 < Bnax does not hold, then no solution can exist
and the potential dependence is broken. Data dependence
tests based on the original formulation of Banerjee’s test
apply in two general cases [3], [24]: 1) when all the loop
limits are constant and, therefore, the iteration space has a
(d-dimensional) rectangular shape and 2) when the loop
limits are either constant or linear functions of the indices of
the outer loops and all the coefficients are constants. In this
latter case the iteration space has the form of a trapezoid.
Constant, in this context, refers to a constant value that is
known to the compiler, perhaps after value analysis.

In case 1), the dependence test can use the additional
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constraints of a direction vector to aid in breaking the de-
pendence arc. In case 2), there is no known closed-form
expression that takes into account the constraints imposed
by a direction vector [3]. For complex trapezoidal iteration
spaces, we must use an involved algorithm to determine if
the iteration space is empty. Thus, even though the trape-
zoidal formulation of Banerjee’s inequalities appears as if it
might be superior, the inability to consider direction vectors
in a simple manner causes it to be a weak dependence test
in practice. The implementation used for the studies pre-
sented here tries only to break a subset of the direction
vectors to avoid the complexities just mentioned.

Banerjee’s test cannot prove dependence because it is
only able to show the existence of a real valued solution in
the region of interest, which does not always imply the ex-
istence of an integer valued solution. Furthermore, Baner-
jee’s test is applied one subscript at a time and therefore it
may conservatively assume dependence in the presence of
coupled subscripts.

2.1.3 Banerjee’s Inequalities for Loops with Unknown
Limits

This test, first described in [1], is similar to Banerjee’s test
when applied to rectangular iteration spaces, but it can also
be applied to trapezoidal loops. If the stride of the loop is a
positive constant, then whenever a loop lower limit is not
known we assume — as its value, and whenever the loop
upper limit is not known we assume +e as its value. This
differs from the traditional Banerjee’s test only in that the
arithmetic is done in the extended real number system [20]
(i.e., R U {~=, +}) and the traditional extensions are made
on the operations (e.g., X + o = +e0, X/ = 0 if X is real).

2.2 Integer Programming Based Tests

As discussed above, data dependence analysis of linear
array references is equivalent to deciding whether there is
an integer solution to a set of linear equalities and inequali-
ties. The integer programming problem can be stated as
follows: Does there exist X such that AX = b, BX >0, X > 0,
for integer X [21]. In this definition, matrix A contains the
coefficients of the equalities, and matrix B refers to the coef-
ficients of the inequalities that describe the limits of the it-
eration space.

General integer programming techniques have several
advantages over the approximations mentioned in the
preceding section. The ability to simultaneously consider
all subscripts of an array reference allows this class of de-
pendence tests to correctly analyze coupled subscripts.
The affine loop limits of trapezoidal loops are naturally
incorporated into the inequalities. Furthermore, execution
constraints, such as covering conditionals, can be intro-
duced into the equations. Finally, these tests work on the
integer domain and therefore the existence of a noninteger
solution does not make the test assume the existence of a
dependence, as is the case for Banerjee’s test. The impor-
tance of these advantages, however, must not be evalu-
ated theoretically, but rather in the context of real pro-
grams and the overall analysis strategy. For example, one
previous study, [14], determined that after some simple
dependence tests were applied to the Perfect Benchmarks,
a linear programming algorithm (without integer con-
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straints) was always exact on the leftover dependences. In
all cases either the linear programming algorithm broke
the dependence or all the components of the obtained so-
lution were integer.

2.2.1 Simplex Based Integer Programming Test

Several methods are available to solve the integer pro-
gramming problem. One method of implementation uses a
branch-and-bound algorithm which first applies a linear
programming algorithm to find a real-valued solution. The
linear programming algorithm used in our implementation
is the Simplex method.

The solution is checked to see if all of its components are

integers. The first noninteger component (x;) is selected and
used to create two new problems with new constraints. The
first problem is the same as the original problem with the
additional constraint x; <|[value of x; |. The second prob-
lem is the same as the original problem with the additional
constraint x; >[value of x;|. This constraint process gen-
erates a binary tree of problems that repeatedly divide the
problem domain.

In effect, the branch-and-bound algorithm does an ex-
haustive search of the problem domain; however, it opti-
mizes the search. Any region of the problem domain that
does not have at least a real valued solution will not be
searched for an integer solution. Once an integer solution is
found, the process stops and reports success. If, on the
other hand, all branches of the exhaustive search lead to
empty sets, then the process reports that no solution exists.
Our implementation assumes that the problem domain is
bound and that the coefficients of the equations are con-
stants. In other words, our implementation can only break
dependences when the limits of the iteration space and the
coefficients of the subscript expressions are known at com-
pile-time.

2.2.2 Omega Test

The Omega test is an extension of the Fourier-Motzkin
algorithm with integer constraints on the solution vector
[18]. It is a powerful method that subsumes the Simplex-
based method just discussed and includes a number of
additional capabilities. In the experiments presented be-
low, although the Omega test is used only to determine
whether there is an integer-valued solution to a depend-
ence equation, the test can also eliminate value-based
transitive dependences and accurately determine distance
vectors. These additional capabilities are important for a
number of compiler algorithms, including those for array
privatization and register usage and cache locality opti-
mization.

In addition to solving the integer-programming problem
when all coefficients have known constant values, the Omega
test also handles unknown additive terms. In particular, the
loop limit values do not need to be known for the method to
work. Consider, for example, the subscripts X(I + N) and
Xy where 1 < I, I’ < N (N is the loop upper limit). The
Omega test is capable of analyzing such expressions involv-
ing unknown additive constrained variables. After the addi-
tion of the loop limit, we find that the system of equations is
inconsistent since | + N=I"forall I, I’in [1 ... N].

For simple subscripts of the kind also handled by Ban-
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erjee’s test, the Omega test is usually a small constant factor
slower than Banerjee’s test [18]. However, as the subscripts
to be analyzed increase in complexity, the execution time of
this test will greatly increase to a worst-case time exponen-
tial in the number of variables. We have specifically in-
cluded the Omega test in this experiment to determine the
impact advanced data dependence tests can have on the
effectiveness of a compiler in the automatic detection of
parallelism.

3 STATIC EVALUATION OF DEPENDENCE ANALYSIS
TECHNIQUES

For the static evaluation of the dependence tests described
in Sections 2.1 and 2.2, we used a subset of the Perfect
Benchmarks [8], a collection of 13 Fortran programs that
represent some of the applications most frequently exe-
cuted on parallel and vector computers, and LAPACK and
EISPACK, two well-known linear algebra routine libraries.

We included in this study both programs and routines
because they have different characteristics. For example,
strides are more likely to be a variable in a library routine
than in a program because library routines tend to be more
flexible. As a consequence, dependence analysis, when per-
formed on the subroutine, has less information available.
We would, therefore, expect to see the effectiveness of data
dependence analysis vary according to the type of code
being analyzed. Another difference that motivated our in-
clusion of EISPACK and LAPACK is that linear algebra
algorithms commonly involve coupled subscripts which are
handled conservatively by Banerjee’s tests.

In order to remove induction variables and thereby im-
prove the effectiveness of the static dependence analysis by
exposing more information to the dependence tests, the
programs and routines were preprocessed by KAP/Con-
current (optimization level 4 with no loop unrolling) before
doing static dependence analysis. No interprocedural
analysis was performed. Intraprocedural constant propa-
gation was done before the tests were applied.

Also, no other transformations were applied by the com-
piler. Specifically, reductions and other linear recurrences
were not transformed into parallel form, and privatization
and scalar expansion transformations were not applied.

Two experiments were conducted. The two differ in the
order in which the dependence tests were applied. The re-
sults of these experiments for the Perfect Benchmarks are
shown in Tables 1 and 2; those for EISPACK and LAPACK
are shown in Tables 3, 4, 5, and 6. The order in which the
dependence tests were applied is shown below the label
Proved Independent. One order is reported in Tables 1, 3, and
5; a different order is reported in Tables 2, 4, and 6.

The tables show how many potential dependences are
proven to be dependences by the tests and how many are
broken (i.e., proven independent). Additionally, the contri-
bution of each dependence test to each category is pre-
sented. In the Assumed Dependent row, we see the number
of potential dependences that had to be assumed depend-
ent because of the lack of compile-time information or be-
cause the subscripts could not be expressed as linear func-
tions of the loop indices.
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DEPENDENCE ANALYSIS RESULTS FOR PERFECT BENCHMARKS DEPENDENCE ANALYSIS RESULTS FOR EISPACK
Original Loop Limils Original Loop Limits
Loop Limits Assumed Constant Loop Limits Assumed Constant
” Type ‘ Count [€) | Count [ ‘ Difference ” || Type ‘ Count %) ‘ Count %) ‘ Difference ”
Proved Dependent Proved Dependent
Constant Test 116616 26.7% | 116616 26.7% 0.0% Constant Test 1077 1.7% | 1077 7% 0.0%
Branch and Bound Simplex 1553 0.4Y% 30697 7.0% 6.6% Omega Test 18790 28.9% | 21579 33.2% 4.3%
Omega Test 70770 16.2% | 39684 9.1% AR Branch and Bound Simplex 0 0.0% 0 0.0% 0.0%
Total Proved Dependent 188939 43.3% | 186997 42.9% ~0.4% Total Proved Dependent 19867 30.6Y | 22656 34.8Y% 4.2%
Assumed Dependent Agsumed Dependent
[ Unanalyzable Subscripts 16049  3.7% | 15515 3.6% | -0.1% | [ Unanalyzable Subscripts 1400 2.2% | 1412 2.2% | 0.0% ||
Proved Independent Proved Independent
Constant Test 150716 34.5% | 150716 34.5% 0.0% Constant Test 3301 5.1% 3301 5.1% 0.0%
Greatest Common Divisor 34645 7.9% 34675 7.9% 0.0% Greatest Common Divisor 2128 3.3% 2128 3.3% 0.0%
Banerjee’s Test for Rectangular Loops | 13320  3.1% | 42781 9.8% 6.7% Banerjee’s Test for Unbounded Loops 29377  45.2% | 29993 46.1Y% 0.9%
Banerjee’s Test for Trapezoidal Loops 15 0.1% | 3418 0.8% 0.7% Banerjee’s Test for Rectangular Loops 0 0.0% 0 0.0% 0.0%
Banerjee’s Test for Unbounded Loops 28567  6.5% 0 0.0% -6.5% Banerjee’s Test for Trapezoidal Loops 0 0.0% 226 0.4% 0.4%
Branch and Bound Simplex 92 0.1% 1491 0.3% 0.2% Omega Test 8938 13.8Y% 5295 8.1% -5.7%
Onmega Test 3982 0.9% 727 0.2% ~0.7% Branch and Bound Simplex 0 0.0% 0 0.0% 0.0%
Total Broken Dependences 231337 53.0% | 233808 53.6% 0.6% Total Broken Dependences 43744  67.3Y% | 40943 63.0% -4.3Y%
[ Total [ 436325 [ 436320 I 1 [Totar [ 65011 [ 65011 [ 1
Obtained by Switching Banerjee’s Test for Unbounded Loops with Banerjee’s
TABLE 2 Test for Rectangular Loops, and the Omega Test with the Branch and Bound
Simplex Test
DEPENDENCE ANALYSIS RESULTS FOR PERFECT BENCHMARKS
Original Loop Limils
Loop Limits  Assumed Constant TABLE 5
[ Tspe [ Gount [ Cownt O [Difference | DEPENDENCE ANALYSIS RESULTS FOR LAPACK
Proved Dependent
Constant Test 116616 26.7% | 116616 26.7% 0.0% Original Loop Limils
Omega Test . 72323 16.6% 70381 16.1% -0.5% Loop Limits Assumed Constant
Branch and Bound Simplex 0 0.0% 0 0.0% 0.0% I Type [ Count (%) ] Count (%) | Difference ||
Total Proved Dependent 188939 43.3% | 186997 42.9Y% -0.4% Proved Dependent
Assumed Dependent ; . . Constant Test 798  0.8% 798 0.8% 0.0%
[ Unanalyzable Subscripts 16049 3.7% | 15515 3.6% | -0.1% ] Branch and Bound Simplex 149 0.1% | 11324 11.2% 11.1%
Proved Independent Omega Test 32716  32.4% | 23364 23.2% -9.2%
Constant Test 150716  34.5% | 150716 34.5% 0.0% Total Proved Dependent 33663 33.4% | 35486 35.2% 1.8%
Greatest Common Divisor 34645  7.9% | 34675 7.9% 0.0% Assumed Dependent,
Banerjee’s Test for Unbounded Loops 41902 9.6% | 44901 10.3% 0.7% [ Umamalyzable Subscripts 14018 13.9% | 5795 5.7% | 5.2 |
Banerjee’s Test for Rectangular Loops 0 0.0% 0 0.0Y% 0.0% Proved Independent
Banerjee’s Test for Trapezoidal Loops 0 0.0% 1234 0.3% 0.3% Constant Test 3325 3.3% 3325 3.3% 0.0%
Onega Test ) 4074 L.0% | 2282 0.5% 0.4% Greatest Common Divisor 13164 13.0% | 13428  13.3% 0.3%
Branch and Bound Simplex 0 0.0% 0 0.0% 0.0% Banerjee’s Test for Rectangular Loops | 1581  1.6% | 28629  28.4% 26.8Y%
Total Broken Dependences 231337 53.0% | 233808  53.6% 0.6% Banerjee’s Test for Trapezoidal Loops 149 0.1% | 4278 4.2y 4.1
[Total [ 436325 [ 436320 [ | Banerjee’s Test for Unbounded Loops 28370 28.1% | 1529 1.5% -26.6%
- e ; . - Branch and Bound Simplex 29 0.1% | 3308 3.3% 3.24%
Obtained by Switching Banerjee’s Test for Unbounded Loops with Banerjee’s P . , ,
! Omega Test 6596  6.5% | 5117 5.1% -1.4%
Test for Rectangular Loops, and the Omega Test with the Branch and Bound Total Broken Dependences 53214 52.7% | 59614 69.14 6.a%
Simplex Test [[Total [ 100895 [ 100895 [ 1
DEPENDENCE ANALYSIS RESULTS FOR EISPACK DEPENDENCE ANALYSIS RESULTS FOR LAPACK
Original Loop Limits Original Loop Limits
Loop Limits  Assumed Constanl Loop Limits  Assumed Constant
H Type ‘ Count ) ‘ Count [¢3) [ Difference | ” Type ‘ Count [3) ‘ Count [3) ‘ Difference H
Proved Dependent Proved Dependent
Constant Test 1077 1.7% 1077 1.7% 0.0% Constant Test 798 0.8% 798 0.8% 0.0%
Branch and Bound Simplex 0 0.0% | 13322 20.5% 20.5% Onega Test 32865 32.6Y% 34362 34.19% 1.5Y%
Onmega Test 18790 28.9% | 8361 12.9% -16.0% Branch and Bound Simplex 0 0.0% 0 0.0% 0.0%
Total Proved Dependent 19867 30.6% | 22760 35.0% 4.4% Total Proved Dependent 33663 33.4% | 35160 34.8% 1.4%
Assumed Dependent Assumed Dependent
[ Unanalyzable Subscripts 1400 2.2% | 1308 2.0% | -0.2% [ [[Unanalyzable subscripts 14018 13.9% | 6121 6.1% | -7.8% ||
Proved Independent Proved Independent
Constant Test 3301 5.1% | 3301 5.1% 0.0% Constant Test 3325  3.3% 3325 3.3% 0.0%
Greatest Common Divisor 2128 3.3% | 2128 3.3% 0.0% Greatest Common Divisor 13164 13.0% | 13428 13.3% 0.3%
Banerjee’s Test for Rectangular Loops | 1571  2.4% | 25865 39.8% 37.4% Banerjee’s Test for Unbounded Loops 29786  29.5% | 32979 32.7% 3.2%
Banerjee’s Test for Trapezoidal Loops 0 0.0% | 3007 4.6% 4.6% Banerjee’s Test for Rectangular Loops 0 0.0% 0 0.0% 0.0%
Banerjee’s Test for Unbounded Loops 27806  42.8% | 1347 2.1% -40.7% Banerjee’s Test for Trapezoidal Loops 0 o0.0% 1379 1.4y, 1.4%
Branch and Bound Simplex 0 0.0% 3766 5.8% 5.8% Omega Test 6625 6.6Y% 8503 8.4Y% 1.8%
Omega Test 8938 13.8% | 1529 2.4% -11.4% Branch and Bound Simplex 0 0.0% 0 0.0% 0.0%
Total Broken Dependences 43744  67.3% | 40943 63.0% -4.3% Total Broken Dependences 53214 52.7% | 59614 59.1% 6.4%
[[Total [ 65011 [ 65011 \ [ Total 100895 100895

The notions of prove and disprove used in the tables refer
only to the context of the available information. For exam-
ple, if the upper limit, N, of a loop is a formal parameter to
the subroutine containing the loop, we assume that N can
have any value. The test may prove that there is a depend-
ence under this assumption. However, it is possible that if
the value of N were known (for example via interprocedural
constant propagation), the same test could prove that there
is no dependence

We used the following mechanism to obtain the values
presented in the tables. Before we applied the sequence of
tests in each of the experiments, the equations f(---) = g;(---)

Obtained by Switching Banerjee’s Test for Unbounded Loops with Banerjee’s
Test for Rectangular Loops, and the Omega Test with the Branch and Bound
Simplex Test

were simplified and loop invariant expressions on both sides
of the equations were canceled. The potential dependence is
passed to the sequence of tests only if the equations are linear
and the coefficients of the subscript expression are known at
compile-time. Otherwise, the counter for the assumed de-
pendences is incremented by the number of feasible direc-
tions of the potential dependence. In this way we keep a
count of the potential dependences that cannot be analyzed
because compile-time information is lacking.
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An accumulator associated with each dependence test
gets incremented each time the corresponding test is the
first to detect independence. The accumulators associated
with Banerjee’s tests and the integer programming tests are
incremented by one each time the corresponding test breaks
a potential dependence for a given direction vector. The
constant and GCD test accumulators are incremented by
the number of feasible direction vectors for the potential
dependence since these two tests apply to all direction
vectors. Notice that by counting in this way, the weight of
each potential dependence grows with its level of nesting.

In this work, only dependences within the same loop nest
are considered. Furthermore, as mentioned above, only
dependences caused by references to array elements are
considered. Each of the two experiments consists of two
parts. For the first part (shown in the Original Loop Limits
column), the loop limits are those of the original source
program. In this case, the rectangular and trapezoidal ver-
sions of Banerjee’s test and the Simplex-based integer pro-
gramming test cannot be applied to all loops because they
require that the loop limits be known at compile-time.

For the second part of each experiment (shown in the
Loop Limits Assumed Constant column) we artificially
changed all loop limits so that their values became known
at compile-time. This step is intended to estimate the effect
of unknown loop limits in dependence analysis. Any lower
limit of a loop that was not a linear function of the indices
in the enclosing loop nest was replaced by 1, and any upper
limit that was also not a linear function of the indices in the
loop nest was replaced by the constant 40. The choice of 40
as the upper limit is arbitrary and was chosen to maintain
consistency with earlier experiments [22] at Illinois. The
stride or step of the loop was defined to be 1 if it was not an
integer constant. Notice that the total number of potential
dependences decreases when constants replace loop limits
because, in the programs we analyzed, a few loop limits are
expressions involving array elements that generate poten-
tial dependences. These potential dependences disappear
when the expression is replaced by a constant.

The loops in the Perfect Benchmarks vary widely in the
amount of information available at compile-time. Table 7
shows the percentage of lower limit, stride, and upper limit
values that cannot be detected at compile time after
(intraprocedural) constant propagation, induction variable
elimination, and dead-code elimination have been applied.
When averaged over the entire collection, it is significant to
note that the stride is almost always known at compile-
time, the upper limit is almost never known, and the lower
limit is known most of the time.

Several important observations can be derived from
Tables 1, 2, 3, 4, 5, and 6. First is the large number of de-
pendences that are proven and broken by the constant
dependence test in the Perfect Benchmarks. This result is
consistent with the results obtained by other studies [10],
[14]. However, the effectiveness of the constant test is sig-
nificantly lower for EISPACK and LAPACK.

A second observation is the unexpected effectiveness of
Banerjee’s test for unbounded loops. Consider first the
Original Loop Limits column of Tables 1, 3, and 5, where the
loop limits are processed as they appear in the source pro-
gram. We observe that, when the test for unbounded loops
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TABLE 7

PERCENTAGE OF STATICALLY UNKNOWN LOOP LIMITS
Benchmark | Lower Limit | Upper Limit | Stride
adm(AP) 5.0% 97.7% 0.0%
arc2d(SR) 77.6% 95.1Y% 0.0%
bdna(N4) 4. 2% 62.7% 0.0%
dyfesm(SD) 0.9% 73.6% 0.0%
£1052q(TF) 2.2% 89.2% 1.6%
mdg (LW) 3.8% 66.0% 3.8%
mg3d(SM) 14.2% 100.0% | 36.1%
ocean(0C) 3.7% 93.4Y% 6.6Y%
qcd2(LG) 7.0% 66.9% 0.0%
spec77(WS) 2.6% 22.1% 0.0%
track (MT) 7.7% 42.9% 0.0%
trfd(TI) 4.1% 64.9Y% 0.0%
TOTAL 11.9% 71.0% 3.2%

is applied after the tests for rectangular and trapezoidal
loops, it breaks potential dependences in more than 6%,
42%, and 28% of the cases, respectively, which is more than
the other two implementations of Banerjee’s test combined.
In Tables 2, 3, and 5 it is shown that when the unbounded
loop test is applied before the other two tests, it breaks de-
pendences in more than 9%, 45%, and 29% of the cases re-
spectively, and the application of the rectangular and
trapezoidal loop tests contribute nothing. We conclude that
Banerjee’s test can be applied with maximum accuracy
without the need for complete information about the loop
limits. Also, only rarely the potential dependences removed
by Banerjee’s inequalities truly require the use of a trape-
zoidal dependence test. These results do not change sub-
stantially even when the loop limits are artificially set to the
constant value of 40.

A third observation is that the percentage of potential
dependences that have not been broken or proven conclu-
sively after the application of Banerjee’s tests varies sub-
stantially among the three collections used in this study.
For the Perfect Benchmarks, it is 20.9%; for LAPACK it is
53%; and for EISPACK it is 44.9%. Finally, the Omega test
does an excellent job analyzing these remaining potential
dependences. Practically all the potential dependences
that were proven dependent in EISPACK and LAPACK
are those identified by the Omega test. Also, in the case of
the Perfect Benchmarks, over 16% of the dependences
were proven conclusively by the Omega test. In fact, the
percentage of potential dependences assumed dependent
would be over five times higher in the Perfect Bench-
marks if the Omega test had not been applied. For EIS-
PACK and LAPACK, the percentage of assumed depend-
ences in the absence of the Omega test would be over 20
and over three times higher, respectively. Furthermore,
the percentage of assumed dependences is quite small in
both the Perfect Benchmarks and EISPACK. In the case of
LAPACK, the effectiveness of the Omega test on the po-
tential dependences remaining after Banerjee’s test is
somewhat lower, and a relatively large percentage of the
dependences (13.9%) has to be conservatively assumed.
On the other hand, the percentage of “proven independ-
ent” dependences resulting from the Omega test (1.75%
for the Perfect; about 20% for EISPACK; and about 12%
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for LAPACK) shows that the Omega test has a negligible
impact on the Perfect Benchmarks. However, despite the
fact that it is applied as the last test in the sequence, it has
an important impact on the static counts for the EISPACK
and LAPACK collections.

3.1 Unanalyzable Subscripts

One way to improve dependence information is to apply the
data dependence tests to a larger percentage of the potential
dependences. Classifying the reason a potential dependence
is unanalyzable by the techniques discussed in this paper is
useful to determine where additional effort may prove bene-
ficial. As can be seen from Table 8, in the case of the Perfect
Benchmarks, the reasons for which a subscript is unanalyz-
able can be divided into three similarly sized categories.

TABLE 8
CLASSIFICATION OF STATICALLY UNKNOWN SUBSCRIPTS

Type of Unknown Subscript | Count
Linear 5242
Nonlinear 6503
Array References 4304
Total 16049

The three categories describe a characteristic of the sub-
scripts that makes them difficult to analyze. The reasons
include linear subscripts with unknown loop invariant coef-
ficients (Linear), nonlinear subscripts caused either by
loop variant coefficients or nonlinear operators on the loop
indices contained in the expressions (Nonlinear), and ar-
ray references contained in the subscripts (Array). If two or
more features are present in the same subscript pair, the
left-most classification in the order {Array, Nonlinear,
Linear} is chosen.

From Table 8, we see that the most common reason a
potential dependence is unanalyzable is the presence of a
nonlinear operator or a loop variant coefficient. The opera-
tors include division and exponentiation, as well as intrin-
sic function calls. More aggressive symbolic manipulation
may reduce the size of this category by simplifying the ex-
pressions in some cases. The number of loop variant coeffi-
cients may be reduced by applying more aggressive algo-
rithms to remove any remaining induction variables and by
performing interprocedural analysis to make the assump-
tions at call sites less conservative.

The second most common category includes linear sub-
scripts with unknown but loop invariant coefficients. As-
sertions about the relations among these variables may al-
low more aggressive analysis. Finally, the last category of
unanalyzable subscripts include references to array ele-
ments in the subscript. The use of subscripted subscripts is
a difficult problem in dependence analysis, as it is compa-
rable to using pointers to reference an element. Runtime
techniques have been shown to be a viable alternative for
this problem [19].

All the categories can be reduced by having more infor-
mation about the subscripts. Interprocedural analysis and
symbolic value propagation are two methods of collecting
more information about the calculations that go into the
variables involved in a subscript expression [4], [23].
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4 DYNAMIC EVALUATION OF DATA DEPENDENCE
ANALYSIS

The second method of evaluation is based on information
gathered dynamically. Dynamic data dependence evalua-
tion uses the results of the conservative static data depend-
ence analysis and compares them with what happens dur-
ing execution to evaluate the effectiveness of the static
analysis. Our objective here is to relate a dependence test to
the program speedup it makes possible. In other words, the
fact that the Omega test breaks only 1% of the potential
dependences in the Perfect Benchmarks seems to indicate
that this test does not have a profound impact on the re-
sulting speedup. However, if the few dependences that the
Omega test breaks happen to be the critical ones, then the
conclusion should be the opposite. Dynamic evaluation is
the only method by which this effect can be shown.

An ideal test that calculates the flow dependences en-
countered during a program’s execution will be used be-
low to evaluate the effectiveness of different dependence
tests. By restricting the analysis to flow dependences, this
study will focus almost exclusively on the effect of trans-
portation of data on parallelism and ignore the effects of
memory-related dependences. We believe this is reason-
able because the effect of memory-related dependences
can usually be removed by compiler transformations such
as renaming or expansion. To make the comparison
meaningful, the dependence tests evaluated below will
also analyze flow dependences exclusively. One possible
problem with this approach is that it may negatively af-
fect the evaluation of the dependence analysis techniques.
The reason is that memory-related dependences can influ-
ence the number and type of flow dependences. Consider
for example the loop in Fig. 2. Unless the array A is identi-
fied as loop-private (and therefore the memory-related
dependences due to this array are removed), conventional
tests, such as Banerjee’s test, would consider that there is
a dependence form s1 to s2 on the outer loop. However,
as will be seen below, this does not seem to be a major
problem for the programs we have measured because the
average parallelism obtained by the ideal test is generally
close to the average parallelism obtained by the depend-
ence tests evaluated in this study.

DO I=1,10
DO J=1,10
Sl: A(J) = ...
END DO
DO J=1,10
S2: ... = A(J)
END DO
END DO

Fig. 2. Code fragment illustrating the effect of privatization on the num-
ber of flow dependences identified by Banerjee’s test.

We did not apply the Simplex-based integer program-
ming test in this part of the study because it does not break
any dependences after the Omega test is applied. Also, the
rectangular and trapezoidal versions of Banerjee’s test were
not applied because they do not detect any dependences
beyond those detected by the Banerjee’s test for unbounded
loops.
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4.1 Overview of the Evaluation Method

The results of the dynamic evaluation of dependence analy-
sis reported in this paper were obtained as part of a larger
compiler evaluation project [16]. The purpose of this study
was to evaluate parallelizing compilers and parallelization
techniques in a machine-independent form.

By measuring the performance of a particular program
on a single machine, it is easy to determine which of two
compilers is more effective. All we have to do is create an
executable program with each compiler, run the programs,
and record the execution times. The compiler that produces
the fastest program is obviously better. However, with a
real parallel machine it is difficult to experimentally isolate
the effects of the architecture from those of the compiler
strategy. Differences among the available resources on real
parallel machines may make it impossible to observe any
potential differences in parallelism.

We have chosen, therefore, to evaluate a compiler or com-
pilation technique using, as the metric, the program speedup
they enable on an ideal target parallel machine. This ideal
parallel machine consists of an unlimited number of proces-
sors. Each has unit time access to a common shared memory.
Conflict-free memory access is assumed. Also, each arithme-
tic operation takes one time unit to execute.

The execution time on the ideal machine is computed by
viewing the program as a directed graph, generated at run-
time, where the nodes represent the operations that the pro-
gram executes for a particular input data set, and the arcs
represent the flow and control dependences that have to be
honored to execute the program correctly. The critical path
computation, detailed in [16], dynamically determines the
length of the longest path in the directed graph correspond-
ing to an execution of the program under study. The ratio of
the total number of nodes to the length of the critical path is
the value we use for average parallelism. This approach was
originally introduced by Kumar [12] and later extended by
Chen and Yew [7] with the purpose of measuring important
characteristics of sequential programs.

To illustrate this idea, we will use the code fragment
listed in Fig. 3 whose execution is graphically represented
in Fig. 4. The solid arcs portray the flow dependences
caused by values that flow between operations. The dashed
arcs represent control dependences generated by condi-
tional statements.

Notice that if we assign a weight of one to each node, the
critical path through the graph corresponds to the shortest
execution time on the ideal machine. Notice also that the
memory-related dependences (i.e., anti and output depend-
ences) do not influence the critical path of the program. Thus,
in the loop above, S5 is antidependent on sS4 because A has to
be fetched before it is modified to guarantee correct execu-

S1: A=C+1
DO I=1,3
S2: J =0 + 1
S3: IF J < 20 THEN
S4: B(I) = A + B(I)
END IF
S5: A =J * C
END DO

Fig. 3. Code fragment for dataflow graph.
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tion. However, such antidependence does not appear in the
graph of Fig. 4. This omission is easy to justify because most
memory-related dependences can be removed by paralleliz-
ing compilers using renaming, expansion, or privatization.

All the measurements presented below were obtained by
adding arcs that guarantee that only loop-level parallelism
is exercised. The arcs of this type (called constraining arcs)
that should be added to the graph in Fig. 4 are shown as
grey arcs in Fig. 5. The use of constraining arcs preclude the
possibility of statement reordering. However, other sources
of parallelism will be exploited, including those that can be
exposed by loop reverse, skewing, or transformation into
doacross loops [15], [9].

The measurements of each dependence test were per-
formed on graphs that included all the arcs used for the
ideal test plus additional arcs corresponding to the poten-
tial flow dependences not broken by the test. These arcs are
called static flow dependences, and the objective of our study
is to determine to what extent these arcs increase the critical
path of the directed graph. One implementation detail of
these arcs is that the distance of any dependence that can-
not be broken statically is assumed to be 1.

4.2 Effectiveness of Dependence Tests

A number of papers [18], [10], [14] show that each of the
many different dependence tests are capable of solving a
number of data dependence problems not solved by others.

For example, the Omega test is in general more accurate
than Banerjee’s test. One reason is that the Omega test can
take into account the coupling of the different subscripts to
break dependences.

B(3)

Fig. 4. Execution graph of program flow dependences.

Fig. 5. Graph of flow dependences with constraining arcs.
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The Omega test can potentially have a dramatic effect on
the performance of a target parallel program. Consider the
loop in Fig. 6. While Banerjee’s test cannot break the de-
pendences in this loop, the Omega test can. With the input
of N = 100, the Omega test produces a speedup of 34.1 on
our ideal machine. However, the evaluation of a test should
be based on complete programs rather than isolated loops.
The dynamic analysis described above makes it possible to
automatically analyze large programs to determine the spe-
cific effects of any data dependence test.

DI = 1.0 / A(I,I)

DO J = I+l, N
SUM = 0.0
DO K =1, I-1

SUM = SUM + A(K,I)*A(K,J)*A(K,K)

END DO
A(I,J) = DI*(A(I,J)-SUM)

END DO

END DO

Fig. 6. Example loop from CHOFAC/dyfesm(SD).

For evaluation purposes, we need to use an ideal depend-
ence test not just a better test. This ideal test should be able to
determine dependence or independence for all possible sub-
scripts on each reference to an array, it must be able to spec-
ify exactly which set of definitions could have contributed to
the value placed in this location. To approach the effect of an
ideal dependence test, we use dynamic information reflected
in a directed graph without imposing any of the flow de-
pendence arcs computed statically.

The dynamic experiments were performed on the same
collections used in the static evaluation. Before running the
experiments, the programs were preprocessed in the same
way they were for the static evaluation. That is, they were
transformed by KAP/Concurrent and only induction vari-
able elimination was applied. No other transformations
were applied. In particular, scalar expansion, privatization,
and linear recurrence substitution were not applied. The
effect of these transformations, especially that of linear re-
currence substitution, will be the subject of future work. We
should point out that one important consequence of not
performing linear recurrence substitution is that the aver-
age parallelism, even for the ideal test, is sometimes quite
small. From our work on automatic detection of parallelism
[6], we know that much better speedups are possible when
reductions (a special case of linear recurrences) are recog-
nized and replaced by equivalent parallel forms. We will
first discuss the experiments on the Perfect Benchmarks
which are summarized in Tables 9 and 10.

The first column in both tables lists the inherent paral-
lelism obtained using the ideal dynamic dependence test
just mentioned. The average parallelism in this column is
the total number of nodes of the graph divided by the criti-
cal path length of the graph corresponding to the ideal test.
The other columns list the results of three other dependence
test sequences. The term GCD in these tables stands for the
generalized GCD test. The values in the last three columns
are computed in the same way as the values of the first col-
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TABLE 9
AVERAGE INTERPROCEDURAL PARALLELISM
IN PERFECT BENCHMARKS CONSTRAINED
BY STATIC DEPENDENCE ANALYSIS

Constant and GCD tests Constant and
Ideal followed by GCD tests

Benchmark test Omega test | Banerjee’s test only
adm (AP) 45.5 8.4 8.4 2.8
arc2d(SR) | 336.0 330.8 330.8 3.1
bdna(NA) | 139.5 73.4 72.6 2.4
dyfesm(SD) 17.9 10.5 10.5 3.6
£1052q(TF) | 206.9 206.4 206.4 2.7
ndg (LW) 5.3 5.2 5.2 5.1
ng3d (SM) 1.3 1.3 1.3 1.1
ocean(0C) | 272.4 2.4 2.4 2.0
qcd2(LG) 2.4 2.3 2.3 2.2
spec?7(WS) 13.8 13.5 13.5 13.2
track (MT) 38.7 32.9 32.9 1.7
trfd(TI) 87.9 58.0 58.0 2.9

TABLE 10

AVERAGE INTRAPROCEDURAL PARALLELISM
IN PERFECT BENCHMARKS CONSTRAINED
BY STATIC DEPENDENCE ANALYSIS

Constant and GCD tests Constant and
Ideal followed by GCD tests

Benchmark test Omega test | Banerjee’s test only
adm (AP) 45.5 3.0 3.0 1.9
arc2d(SR) | 336.0 252.5 262.5 2.2
bdna(NA) | 139.5 73.4 72.6 2.4
dyfesm(SD) 17.9 5.3 5.3 1.1
£1052q(TF) | 206.9 206.2 206.2 2.7
mdg (LW) 5.3 4.6 4.6 3.5
mg3d (SM) 1.3 1.2 1.2 1.1
ocean(0C) | 272.4 2.4 2.4 2.0
qcd2(LG) 2.4 1.5 1.5 1.4
spec?7(WS) 13.8 2.3 2.3 2.2
track (MT) 38.7 1.7 1.7 1.6
trfd(TI) 87.9 26.6 26.6 1.5

umn, except that the critical path length will usually differ
because the graph now includes the static flow dependence
arcs identified by each dependence sequence. Normally the
results calculated by critical path analysis assume that all
subroutines are effectively inlined. Table 9 gives the results
for this assumption. Interprocedural parallelism allows
loops with caALL statements to concurrently execute subject
only to the restriction of the dynamic flow dependences.
This means that for the parallelism reported in all columns
of Table 9, we assume an ideal interprocedural dependence
analysis test.

We define intraprocedural parallelism to be the parallel-
ism inherent in a program when loops that contain subrou-
tine calls are serialized. Instead of effectively inlining the
subroutine at each call site, artificial dependence arcs con-
necting all CALL statements are added thereby forcing only
one subroutine call to be active at any time. Table 10 gives
the results for this second assumption.

Several of the programs have a significant drop in par-
allelism over the ideal case when they are constrained by
static dependence analysis. The most notable are
ocean (0C) and adm(AP). The reason for this degradation
is that none of the dependence tests can handle the case
where the coefficients of the index variables are loop in-
variant variables whose values are unknown at compile-
time. Simple symbolic dependence analysis makes it possi-
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ble to show that the majority of the loops that were de- TABLE 11
graded, for these cases, are parallel [5]. In fact, AVERAGE INTERPROCEDURAL PARALLELISM IN EISPACK
KAP/Concurrent (using a different set of dependence CONSTRAINED BY STATIC DEPENDENCE ANALYSIS
tests), was able to statically determine that most of these Constant and GCD tests Constant and
loops were parallel. The source of the problems in these Tdeal followed by GCD tests
programs are subscript references that have been line- Benzhrt“::f t;ftg Onega ;ZSE Banerjee’s ;ZS; only —
arized, which illustrates the necessity for dependence tests et | s 5.0 5.0 4.5
to consider not only linear subscripts with constant coeffi- rbltest | 3.5 2.0 2.0 2.0
cients, but also special cases where loop invariant variables rfgz::’; 3;2 3?(13 zg"; ;s
are used as coefficients. rltest | 16.0 13.4 3.4 31
A comparison of Tables 9 and 10 for the programs rsbtest | 9.2 5.6 5.6 5.5
flo52q(TF), arc2d(SR), and trfd(TI) shows that they izggzzz:z 22 Zi’ 2; i-g
all have a minimal loss of parallelism when serializing sub- fsgtest .5 5.7 s 6 4z
routine calls and eliminating interprocedural parallelism. In rsptest | 6.0 6.0 6.0 5.1
fact, KAP/Concurrent, which currently does not have in- rstest | 2.8 2.7 2.6 1.7
terprocedural analysis capabilities detects much of the par- rettest) 2.8 20 20 20
allelism in these programs. The conclusion reached is as
one would expect: parallelizing compilers that do not per TABLE 12

form interprocedural analysis work effectively only when AVERAGE INTRAPROCEDURAL PARALLELISM IN EISPACK

the programs are easy to analyze and do not require inter- CONSTRAINED BY STATIC DEPENDENCE ANALYSIS
procedural parallelism.

Constant and GCD tests Constant and
When Tables 9 and 10 are compared, the four programs, Ideal followed by 6CD tests
track (MT), spec77(WS), dyfesm(SD), and adm(AP), Benchmark | test | Omega test | Banerjee’s test only
show a large loss of average parallelism. These programs cgtest | 37.9 5.4 5.0 1.4
H chtest 5.0 2.1 2.1 1.5
also cor_respond to_ instances \_/vhere KAP was unable to coltest | 3.5 50 20 0
automatically exploit any meaningful parallelism. rggtest 7.6 4.5 4.3 1.6
Two other general observations should be made about rgtest | 32.3 4.6 4.6 1.4
the dynamic result on the Perfect Benchmarks. One is that rltest | 16.0 7.3 T.s L7
R rsbtest 9.2 2.0 2.0 1.5
in many cases the constant and GCD tests by themselves rsgabtest | 6.0 0.6 2.1 1.3
are not sufficient to extract a significant fraction of the rsghatest | 6.2 2.8 2.3 1.3
ideal parallelism. The second observation is somewhat rsgtest | 5.8 2.3 2.1 1.4
ted. The measured inherent parallelism, when rsptest | 6.0 2T 2T nr
unexpef: ) ) p ' rstest 2.8 2.5 2.4 1.5
constrained by static dependence arcs, does not change rsttest | 2.6 1.5 1.5 1.3
significantly when the more powerful dependence analy- rttest 3.2 1.6 1.6 1.3
sis techniques used in the Omega test are applied. Thus,
for the Pfer_fect Benchmarks, Banerjefe’s inequalities seem TABLE 13
to be sufficient to detect loop parallelism. AVERAGE INTERPROCEDURAL PARALLELISM IN LAPACK
For the dynamic analysis of EISPACK and LAPACK CONSTRAINED BY STATIC DEPENDENCE ANALYSIS
su_broutlne_s, we used_the drivers and input dataset_s dis- Cor=tant and 60D tosis T P—]
tributed with the routines. The results are presented in Ta- Ideal followed by GCD tests
bles 11, 12, 13, and 14. From examining these results, it is Benchmark | test | Omega test | Bamerjee’s test only
obvious that libraries have slightly different characteristics iﬁiﬁiiﬂ 1;2 12.1 132 f?
than do applications. For example, we see that for many of cseptim | 37.3 35.3 35.3 3.0
the subroutines we do see a slight performance change ssvdtim | 23.2 22.0 22.0 6.6
when applying the Omega test. Again, as with the Perfect _hand | 1092 oy o b
Benchmarks, we see that the constant and GCD tests are not sblasb | 28.6 23.2 20.3 1.8
sufficient to uncover the available parallelism. sblasc | 14.1 10.2 9.8 1.7
TABLE 14
5 CONCLUSIONS AVERAGE INTRAPROCEDURAL PARALLELISM IN LAPACK
In this paper, we have evaluated three classes of impor- CONSTRAINED BY STATIC DEPENDENCE ANALYSIS
tant .dependence analysis tests using both static and dy- Gomstant and GCD tosts Gomstant and
namic measurements. These classes are the constant and Tdeal followed by GCD tests
GCD tests, variants of Banerjee’s test, and tests based on Benchmark tleIStG Omega t:s; Banerjee’s tZS; only -
- - sgeptim . . . .
InteQer programmlng. A sneptim 8.6 6.7 6.4 1.3
The dynamic evaluation was necessary because the sseptim | 37.3 33.7 33.7 3.0
statically computed dependence information may not re- ssvdtim | 23.2 10.7 10.7 4.9
- - - sband | 109.2 5.1 5.1 1.1
late to the speedup that is obtalne_d for a program. A sin- abinsa | 10.2 70 .8 15
gle dependence may be responsible for precluding the sblasb | 28.6 16.6 15.1 1.5
parallelization of a loop. But we believe that static infor- sblasc | 14.1 9.4 9.0 1.5
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mation is useful as a means to determine areas in which to
concentrate further research.

It has been shown that the unbounded loop test is a
practical implementation that can be used to replace the
published implementations of Banerjee’s rectangular and
trapezoidal tests. The main advantage of the unbounded
loop test is that it has semisymbolic properties. These
properties allow it to be applied in cases where a full
symbolic implementation of the standard Banerjee ine-
qualities might be too expensive.

The Omega test had an important effect on the poten-
tial dependences that are not broken or conclusively
proven by the constant, GCD, or Banerjee’s test. In fact,
the Omega test proved dependence in 70% of these lefto-
ver cases. Such proven dependences, with exact depend-
ence distances in some cases, may prove valuable in trans-
formations not studied here, such as array privatization
and loop restructuring for register assignment and local-
ity enhancement.

In Section 4 we extended the evaluation of data depend-
ence analysis into the dynamic domain by considering the
effects of the dependence analysis on the parallelism ex-
ploited in a program. This method is similar to performing
the actual parallel compilation and execution on a parallel
machine. However, our method attempts to isolate the im-
portant features of a parallel architecture without being
constrained by artificial limitations, such as cache/memory
bandwidth or a limited number of processors.

The major results of the dynamic evaluation shows that
the Omega test does not significantly improve the average
parallelism over the parallelism exposed by Banerjee’s
inequalities on the Perfect Benchmarks, and it only mini-
mally improves the linear algebra routines. These results,
however, could change if the conditions of the experiment
were different. For example, if the compiler did a better
job of induction variable substitution and symbolic value
propagation, and if linear recurrence substitution were
applied, the outcome of the analysis could be different.
The Omega Project Software has capabilities for symbolic
value propagation that interfaces naturally with the
Omega test, but we did not use it in this study. Also, the
results are a function of the programs analyzed and, for
programs with a more complex structure, the impact of
the Omega test could be much greater.

One important potential application of our evaluation
technique is the ability to locate the exact places in the
source code that are causing difficulty for the compiler.
These locations might be useful to programmers as targets
for hand transformations, or to compiler writers for iden-
tifying limitations in analysis and translation techniques.
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