
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998 5

On the Automatic Parallelization of
the Perfect Benchmarks

Rudolf Eigenmann, Member, IEEE, Jay Hoeflinger, and David Padua, Senior Member, IEEE

Abstract —This paper presents the results of the Cedar Hand-Parallelization Experiment, conducted from 1989 through 1992, within
the Center for Supercomputing Research and Development (CSRD) at the University of Illinois. In this experiment, we manually
transformed the Perfect Benchmarks into parallel program versions. In doing so, we used techniques that may be automated in an
optimizing compiler. We then ran these programs on the Cedar multiprocessor (built at CSRD during the 1980s) and measured the
speed improvement due to each technique.

The results presented here extend the findings previously reported in [11]. The techniques credited most for the performance
gains include array privatization, parallelization of reduction operations, and the substitution of generalized induction variables. All
these techniques can be considered extensions of transformations that were available in vectorizers and commercial restructuring
compilers of the late 1980s. We applied these transformations by hand to the given programs, in a mechanical manner, similar to
that of a parallelizing compiler. Because of our success with these transformations, we believed that it would be possible to
implement many of these techniques in a new parallelizing compiler. Such a compiler has been completed in the meantime and we
show preliminary results.

Index Terms —Program parallelization, parallelization techniques, restructuring compilers, performance evaluation.

—————————— ✦ ——————————

1 INTRODUCTION

1.1 Background and Motivation
HIS paper presents the results of an extensive experi-
ment, the Cedar Hand-Parallelization Experiment, con-

ducted from 1989 through 1992 within the Center for Super-
computing Research and Development (CSRD) at the Uni-
versity of Illinois. This experiment formed the basis of our
current work on the Polaris parallelizing compilation sys-
tem. The primary objective of this experiment was to study
application programs in order to identify parallelization
techniques for optimizing compilers. We took a set a repre-
sentative application programs, turned them into parallel
codes, and demonstrated that they can exploit parallel ma-
chines efficiently. Although we started from a compiler
viewpoint, we broadened our project to consider additional
questions, such as whether there is enough parallelism in
real programs, whether there are engineering methods
other than high-level algorithm replacements that can
transform these programs into efficient parallel codes, and
whether there are tools and methodologies that can guide a
programmer in this process. We have commented on these
questions in several reports [11], [12], [13].

According to our main interest, we will emphasize the
implications of this project on the design of future compil-
ers. We will discuss program transformations and their
automatability in an optimizing compiler. Our discussions

will be at the level of the application programmer who has
found transformations that are successful in turning pro-
grams into parallel form. Some of these transformations are
automatable in a straightforward manner. Others will re-
quire considerable work to implement the associated pro-
gram analysis techniques. Some of the described transfor-
mations may never be implemented in a parallelizing com-
piler because they may be too complex or rarely useful, or
the compiler may not be able to determine their applicabil-
ity. Furthermore, we cannot make claims about the effi-
ciency of the new techniques.

The results of our experiment and the early successes of
our follow-on compiler implementation project1 made it
clear to us that application experiments such as these are
extremely worthwhile efforts, complementary to compiler
projects. These studies not only show us what may be im-
plemented in compilers of the future, but they also provide
quantitative evidence for urgent questions, such as what
programs can be implemented efficiently on parallel ma-
chines, what tools and methods programmers use to ac-
complish this, and what the resulting performance is on the
given machines.

1.2 Overall Results
In our experiments, we have measured the speed im-
provements for the Perfect Benchmarks programs that
resulted from our program transformations. We have
measured the performance on two machines: the Alliant
FX/8 and the Cedar machine, built at CSRD during the
1980s. The Alliant FX/8 had a shared-memory architec-
ture with eight vector processors. The Cedar architecture

1. The name of the follow-on compiler is Polaris. Because of the substan-
tial time that passed between the first version of this report and its publica-
tion, early results of the new compiler have been presented already in sev-
eral conferences.

1045-9219/98/$10.00 © 1998 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• R. Eigenmann is with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907-1285.

 E-mail: eigenmann@ecn.purdue.edu.
• J. Hoeflinger and D. Padua are with the Department of Computer Science,

University of Illinois, Urbana, IL 61801.
 E-mail: {hoefling, padua}@uiuc.edu.

Manuscript received 2 Dec. 1994.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 101045.

T

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

consists of four Alliant FX/8 machines (each called a cluster)
connected through an additional global shared memory. In
this paper, we define “speedup” as the ratio of the best
vector/concurrent execution time to the execution time of
the serial, scalar program (i.e., using neither vector nor con-
current parallelism, but scalar-optimized). An excellent
speedup would be about 16 for the FX/8 and about 50 for
the Cedar machine. More details on these architectures can
be found in [25].

Table 1 summarizes our measurements. The column
“Automatically compiled” shows the performance gain
achieved by the commercial parallelizing compilers KAP
and VAST. The column “Manually improved” shows the
results of our hand optimizations, which we will discuss in
this paper.

Automatic parallelization had limited effectiveness with
the technology used by KAP and VAST. VAST was the
standard optimizing compiler available on the FX/8 ma-
chine (it did not generate code optimized for Cedar). The
KAP results in the table were gathered from a version of
KAP which we modified to generate code for the Cedar
machine [10].

Notice that the automatically compiled speedup for
Cedar, cited in the table, is almost always less than the
automatically compiled speedup for a single FX/8. This is
the case even though the Cedar machine contained four
FX/8 machines. The reason for this is that early compiler
technology typically could parallelize only very small
loops and the overhead of starting such small loops on
Cedar is larger than the overhead of starting small loops
on the FX/8.

Table 2 lists the major techniques that we have applied
to obtain the manually improved results and the gains
that can be attributed to individual transformations. The
gains are given in terms of the execution time ratio of the
program variant, where the technique was not applied
versus the best variant. More precisely, we computed
these ratios as Twithout/Tbest, where Tbest is the fully opti-
mized program execution time and Twithout is the program
execution time when the technique is not applied. The
individual loop-by-loop timings are given in Tables 3
through 9. In the Twithout program variants, techniques that
are used in commonly available restructurers are applied.
Hence, the numbers reflect potential performance im-
provements relative to the state of the art of compiler
technology at the time of our experiments.

1.3 Related Work
The primary contribution of this paper is the quantitative
analysis of real program patterns and the discussion of their
implications for compiler design. There exist very few similar
publications. One related program analysis project was pre-
sented in [35], where the authors reach qualitatively similar
conclusions that there is a need for advanced compiler tech-
niques including symbolic analysis and the privatization of
data structures. Other related projects have studied the effec-
tiveness of existing parallelizing compilers or their tech-
niques. A summary of these studies is given in [8].

A second contribution of this paper is the discussion of
new parallelizing compiler techniques. There exists a large

body of publications on this subject. A survey can be found
in [8]. Several papers are directly related to the techniques
discussed here. Early results of the presented work [11]
have led to new efforts elsewhere, such as the work on
techniques for handling general forms of induction vari-
ables [37], [22] and for analyzing privatizable arrays [26],
[27]. There has also been significant new work in data de-
pendence analysis for parallelizing compilers, including
techniques for more exact subscript analysis [32], more effi-
cient analysis in practical situations [28], [17], and enhanc-
ing tests with symbolic analysis capabilities [21].

In our work, we have focused on machines that provide
a hardware-supported global address space to the pro-
grammer and the compiler. They represent an important
and widely available class of parallel machines. Discussions
on complementing techniques for code generation on mes-
sage passing machines can be found in [15], [18].

1.4 Cedar Fortran
The parallel Fortran language that we used for expressing
our explicitly parallel program variants is called CEDAR

FORTRAN. In our descriptions, we will use the three differ-
ent types of parallel loops of CEDAR FORTRAN: The XDOALL

loop uses a self-scheduling scheme to distribute its loop
iterations to all 32 processors of the Cedar machine. In
contrast, the SDOALL self-schedules iterations between
only four processors (one from each cluster). Usually, in-
side an SDOALL, there is a nested CDOALL loop, which exe-
cutes its iterations using the cluster’s eight processors.
CEDAR FORTRAN expresses array vector operations using
triplet notation similar to Fortran90. By default, CEDAR

FORTRAN data is placed in cluster memory. Data can be
given a GLOBAL attribute, placing it in the global shared
memory. Scalars and arrays declared inside a parallel
loop define loop-private data which are given the scope of
a single loop iteration.

TABLE 1
SPEEDUPS VERSUS SERIAL FOR PERFECT BENCHMARKS

PROGRAMS ON ALLIANT FX/8 AND CEDAR

program Performance improvement factor
serial

execution
Automatically

compiled
Manually
improved

time
(seconds)

FX/8
(VAST)

Cedar
(KAP)

FX/8 Cedar

ARC2D 2,943 8.7 13.5 10.6 20.8
FLO52 906 9.0 5.5 14.6 15.3
BDNA 969 1.9 1.8 5.6 8.5

DYFESM 663 3.9 2.2 10.3 11.4
ADM 796 1.2 0.6 7.1 10.1
MDG 4,134 1.0 1.0 7.3 20.6

MG3D 12,164 1.5 0.9 13.3 48.8a

OCEAN 2,947 1.4 0.7 8.9 16.7
TRACK 136 1.0 0.4 4.0 5.2
TRFD 864 2.2 0.8 16.0 43.2
QCD 416 1.1 0.5 7.4 20.8b

SPEC77 2,375 2.4 2.4 10.2 15.7
a
The manually improved version of MG3D includes the nonautomatable

elimination of file I/O.
b
The manually improved version of QCD includes the difficult-to-automate

parallelization of a hand-coded random number generator. Leaving the
random number generator serial reduces the speedup to 2.0.

EIGENMANN ET AL.: ON THE AUTOMATIC PARALLELIZATION OF THE PERFECT BENCHMARKS 7

1.5 Notation
All programs referred to in this paper are from the Perfect
Benchmarks. We will refer to an individual loop within
the body of the paper by the notation “PROGRAM-
routine/loop_label,” or “routine/loop_label,” while men-
tioning the name of the benchmark program involved.

1.6 Outline of the Paper
In Section 2, we will describe the new transformations and
quantify their effectiveness on time-critical loops in our
program suite. In Section 3, we will give an overview of the
transformations applied to each program and note addi-
tional changes made to individual programs. We also will
describe some of the difficulties that can be expected when
implementing these techniques in a compiler. Finally, in
Section 4, we will present early results of a new paralleliz-
ing compiler which incorporates the proposed techniques.

2 NEW TRANSFORMATION TECHNIQUES:
PERFORMANCE AND RELEVANT CODE PATTERNS

This section describes, for each of the important transfor-
mations applied in our manual experiments with the Per-
fect Benchmark codes, the resulting performance difference
and the program patterns for which these techniques were
applied. We also will briefly discuss analysis techniques
that may need to be developed to implement the techniques
in a parallelizing compiler. The development of these
analysis techniques is beyond the scope of this paper, how-
ever. We hope that our results will serve as a solid basis for
future development projects.

2.1 Array Privatization
Data that are used temporarily within a loop iteration can
be privatized to the loop so that each processor participat-
ing in the loop execution has separate storage for the data.
This resolves many data dependences that would arise if all
loop iterations used the same temporary storage for their
operations. For example, the loop in Fig. 1 uses a temporary
array work. In the parallel execution of the loop, the ar-
ray is declared private to the loop. This allocates for each

iteration a separate instance of work, hence eliminating the
conflicts between different iterations trying to access the
same temporary storage concurrently.

We have found this temporary usage pattern to be very
common in the Perfect codes. This is not too surprising, for it is
natural to use temporary data structures in all programs. The
more our optimization efforts sought to parallelize outermost
loops in a program, the more likely it was that this temporary
usage pattern occurred within a single loop iteration.

Array privatization, in combination with the other tech-
niques described in this paper, enabled many of the most
time-consuming loops in the Perfect codes to be run con-
currently. Table 3 shows the performance degradation that
we measured on the Cedar multiprocessor when not ap-
plying the technique. Also listed in Table 3 are all loops in
our program suite where array privatization made a sig-
nificant difference. The loop execution time with all paral-
lelization techniques applied (Tbest) and without array pri-
vatization applied (Twithout) are shown. Column 4 shows the
performance difference that resulted from applying array
privatization in this loop, measured as Twithout/Tbest. The last
column shows the overall program performance difference
made by applying array privatization to this loop. These
factors are very high where inner loops cannot be parallel-
ized, and, thus, disabling array privatization serializes the
loop. Even where inner loops could be parallelized, the
parallelization of outer loops can prove very effective be-
cause the overall startup cost is lower for outer loops. Pri-
vatized data are allocated in local memory. Hence, the
transformation also has the important effect of exploiting

TABLE 2
IMPORTANCE OF PROGRAM TRANSFORMATIONS: INCREASE IN EXECUTION TIME WHEN INDIVIDUAL TECHNIQUES WERE DISABLED.

(E.G., THE PROGRAM MDG SLOWS DOWN BY A FACTOR OF 21 IF ARRAYS ARE NOT PRIVATIZED)

Technique ADM ARC2D BDNA DYFESM FLO52 MDG MG3D OCEAN QCD SPEC77 TRACK TRFD
privatize
arrays

9.6 1.2 1.4 2.2 1 21 18 3.8 8.2 6.8 6 13.3

parallelize
complex

reductions

a 3.3 2.1 1.1 21 15.2 3.4 b

substitute
generalized

induction
variables

8.3 12.7

parallelize
loops with
non-affine

array
subscripts

3 11.5 13

a
ADM contains reductions in significant loops. Most of them can be parallelized using existing techniques.

b
TRFD contains accumulation operations that would become important for parallelization if advanced induction variable substitution and array privatization

were not available.

DO i = 1,n CDOALL i = 1,n

DO j = 1,m REAL work(1:m)

work(j) =... DO j=1,m

ENDDO work(j) =...

... → ENDDO

DO j=1,m ...

... = work(j) DO j=1,m

ENDDO ... = work(j)

ENDDO ENDDO

ENDDO

Fig. 1. The array privatization transformation.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

local memories. In fact, this was one of the most important
methods to exploit the Cedar memory hierarchy.

Array privatization is a natural extension of the scalar pri-
vatization technique. Current compilers are able to recognize
temporarily used scalar variables and either expand them into
arrays indexed by the loop iteration number, or privatize them
by declaring them local to a loop. In fact, in previous evalua-
tion experiments, we have found this technique to be the most
important one applied by current parallelizing compilers.
However, although array privatization techniques have been
known for several years and some parallelizing compilers are
able to apply the transformation, we have not seen any avail-
able compiler solve the important program patterns we have
encountered.

2.1.1 Analysis and Program Patterns
This section describes the information necessary to deter-
mine whether an array is privatizable. It also describes the
code patterns where the techniques made a significant
difference. Furthermore, it will explain the program
analysis that was necessary in our experiments to deter-
mine whether array privatization could be applied.

Data items can be privatized to a loop if they are defined in
each loop iteration before they are used. To find this informa-
tion, one needs to analyze definitions and uses of arrays or
array sections in each candidate loop. Furthermore, one must
make sure that the values of the privatizable data items are not
used after the loop, or, if they are used, provisions must be
made to transfer the values of the privatized data items to the

TABLE 3
PERFORMANCE IMPACT OF THE ARRAY PRIVATIZATION TECHNIQUE IN THE TIME-CRITICAL LOOPS

PROGRAM-
subroutine/loop

total loop execution
time in seconds

Twithout/Tbest Twithout/Tbest

Tbest Twithout for loop for program

ARC2D-filerx/15 7.3 22.0 3.0 1.1
ARC2D-filery/39 3.4 12.0 3.5 1.06
ADM-dudtz/40 3.8 92.5 24 2.1
ADM-dvdtz/40 3.5 76.5 21 1.9
ADM-dtdtz/40 3.8 78.8 21 1.9
ADM-dcdtz/40 2.6 51.7 20 1.6
ADM-dkzmh/30 2.5 37.6 15 1.4
ADM-dkzmh/60 3.8 86.8 23 2.0
ADM-run/20 4.4 72.2 16.5 1.8
ADM-run/30 4.4 72.0 16.4 1.8
ADM-run/40 4.2 72.1 17 1.8
ADM-run/50 3.4 50.8 15 1.6
ADM-run/60 4.4 72.0 16.4 1.8
ADM-run/100 3.2 50.0 15.6 1.5
ADM-wcont/40 2.7 36.2 13.4 1.4
ADM-smooth/10 1.4 18.5 13.2 1.2
BDNA-actfor/240 19.0 62.0 3.3 1.4
DYFESM-mxmult/10 19.0 60.0 3.2 1.7
DYFESM-solvh/20 11.5 26.5 2.3 1.3
MDG-interf/1000 163.0 3,792.0 23.2 19
MDG-poteng/2000 13.4 352.0 26.3 2.7
MDG-intraf/1000 1.9 11.4 6.0 1.05
MG3D-migrat/200 264.0 5,226.4 19.8 19.7
OCEAN-acac/30 3.3 92.5 28 1.5
OCEAN-ocean/60 0.3 0.05 5.6 0.9
OCEAN-ocean/270 1.3 16.2 12.5 1.0
OCEAN-ocean/340 2.9 30.7 10.6 1.1
OCEAN-ocean/360 2.7 25.6 9.5 1.1
OCEAN-ocean/400 2.3 20.9 9.1 1.1
OCEAN-ocean/420 2.3 25.6 11.1 1.1
OCEAN-ocean/440 2.6 24.5 9.5 1.1
OCEAN-ocean/460 7.7 103.7 13.5 1.5
OCEAN-ocean/480 4.1 91.4 22.3 1.4
OCEAN-ocean/500 2.2 48.0 21.8 1.2
OCEAN-scsc/40 2.5 48.0 19.2 1.2
QCD-measur/3 1.8 2.9 1.6 1.0
QCD-qqqmea/1 3.7 108.6 29.4 6.2
QCD-rotmea/2 3.7 48.4 13.1 3.2
SPEC77-gloop/1000 58.7 743.7 12.7 5.5
SPEC77-gwater/1000 13.5 248.0 18.4 2.6
TRACK-extend/400 4.0 48.9 12.2 2.7
TRACK-fptrack/300 3.0 15.5 5.2 1.4
TRACK-nlfilt/300 3.5 76.7 22 3.8
TRFD-olda/100 8.0 (174) 21.8 9.3
TRFD-olda/300 5.4 (85) 15.7 5

Best Loop Variants are Compared with Those Where the Transformation Is Not Applied. (The Numbers in Parentheses Give the Timings Without Reduction
Parallelization.)

EIGENMANN ET AL.: ON THE AUTOMATIC PARALLELIZATION OF THE PERFECT BENCHMARKS 9

original item outside the loop. However, in our experiments,
we rarely needed such last-value assignments. In many cases it
was easy to prove that the private arrays were not live at the
end of the loop. It was more difficult to prove when the arrays
being used as temporaries in a loop were subroutine parame-
ters or were in common blocks. Such situations often arise
when the programmer is explicitly managing storage by using
large arrays declared in the main program. Examples of this
are in ARC2D (subroutines filerx and filery) and TRFD
(loops olda/100 and olda/300).

The identification of privatizable arrays is quite simple
for arrays that are declared locally in a subroutine that is
called within the loop being analyzed. By the Fortran77
language definition, such variables are undefined after the
subroutine exits, thus guaranteeing that they will not carry
values across loop iterations. (There are two exceptions to
this: variable values made available to subsequent calls of
the same subroutine through save statements or through
the static allocation option offered by many compilers.)
DYFESM is an example of a program that contains many
subroutine-local arrays that can be privatized.

In general, the identification of privatizable arrays is
complex. Often, the privatizable data structure is an array
range, which is defined and used by a loop body in simple
statements (such as assignments), compound statements
(such as inner loops), or both. The ranges are determined
by the value of scalar variables whose analysis involves the
interprocedural search for their values, relations between
variables, and conditions under which such relations hold.
The area being written and read within an array is often
accessed over a series of subranges. These subranges must
be pieced together in the analysis, and it must be shown that
the range being read is fully within the range that was writ-
ten. The loop ocean/420 in OCEAN is an example of this.

In some cases, elements that are adjacent to privatizable
array sections are read-only and can be shared by parallel
loop iterations. The situation may allow the enlargement of
privatized arrays by initialized read-only boundary ele-
ments in order to avoid conditional operations in the loop
body. Code examples of this were found in ADM
(subroutines dtptz, dudtz, and dvdtz).

To analyze array definitions and uses, we had to search
interprocedurally and propagate constants, symbolic val-
ues, relations between variables, and sometimes informa-
tion about the values of subscript array elements. In
ARC2D-filerx/15, the range of an array (work) is defined
under a condition (variable PERIDC), whose relation to

other variables can be symbolically analyzed in the pro-
gram initialization routine. Also important is a subscript
array whose ith element is initialized to (i + 1) mod n, which
can be recognized as a permutation vector of length n.

Another interesting pattern is found in MDG, loop in-
terf/1000. An array (RL) is defined and then used under
control of two separate IF-statements, with different IF-
conditions. It can be seen from the program text that the
define-condition is always true when the use-condition is
true. This relation can be proven symbolically. The candi-
date parallel loop calls a subroutine (cshift) that defines
this relation. A similar situation exists in QCD (measur/3).

To privatize the arrays in loop actfor/240 in BDNA, one
has to recognize subscripted subscript patterns, which is
very difficult in general. However, in the given situation, all
necessary information can be derived from the program
text [36], [5].

2.2 Parallel Reductions
Statements of the type sum = sum +�a�i� (where i is the
loop index) form a recurrence pattern that usually must be
executed serially. However, because the sum operation is
mathematically commutative and associative, a parallel
execution is possible by accumulating partial sums on each
processor, and then summing the partial results, as shown
in Fig. 2. The partial results may be summed after the loop
or added inside the loop in a critical section. Note that this
transformation may change the result, because reordering
the sum operations may lead to round-off errors that are
different from those in the original program. The programs
in the Perfect Benchmarks suite have not been found to be
sensitive to such reorderings.

Reordering certain arithmetic operations in order to in-
crease parallelism is a technique known as tree height re-
duction [24]. Simple reduction operations are recognized
by parallelizing compilers and transformed into the ap-
propriate vector or vector-concurrent constructs. We have
measured this capability and found it to be one of the
most effective ones. Current commercial compilers apply
the technique most often, where a sum operation is per-
formed on a scalar variable that is not referenced else-
where in the loop.

However, in our experiments, we have found important
loops that contain multiple sum statements adding to the
same variable. We have also found loops where this vari-
able is an array whose index may vary and be unknown
at compile time. The compilers we evaluated could not

REAL a(m),a1(m, number_of_processors)

CDOALL i = 1,m

a1(i,1:number_of_processors) = 0

REAL a(m) ENDDO

DO i=1,n CDOALL i = 1,n

... � ...

expr = ... expr = ...

a(t(i)) = a(t(i)) + expr a1(t(i),myproc) = a1(t(i),my_proc) + expr

ENDDO ENDDO

CDOALL i = 1,m

a(i) = a(i) + SUM(a1(i,1:number_of_processors))

ENDDO

Fig. 2. Expanded parallel reduction transformation.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

parallelize such loops, which was one important reason for
their limited performance on the Perfect Benchmarks.2

Reduction operations are a subclass of recurrence com-
putations for which there are efficient parallel implementa-
tions. General recurrence patterns are of the form x(i) = a0(i)
x(i) + a1(i) x(i � 1) + � + an(i) x(i � n) (where i is the loop
index). Parallel solvers for general recurrences are well
known, and today’s parallelizing compilers are capable of
replacing these patterns with calls to the appropriate solver
routines. However, in our experiments, we have not found
any performance gains from such transformations. One rea-
son for this is that the available recurrence solver libraries
were not tailored to the specific recurrence patterns that oc-
curred in our test suite, so that, sometimes, the input arrays
had to be rearranged before calling the solver. Even more
importantly, the iteration counts for the recurrence loops
found in our program suite were too small to amortize the
overhead introduced by a parallel recurrence algorithm. Be-
cause we have usually found recurrences to be inside parallel
loops, this was not a serious problem, and we have not in-
vested much effort to improve these situations. Parallel re-
currence solvers may become more effective in other pro-
grams by tailoring them to the specific program patterns.

2.2.1 Analysis and Program Patterns
Parallelizing compilers usually recognize reduction opera-
tions by searching for a pattern defined by the statements
and their data dependences. Traditionally, candidate reduc-
tion operations must: be confined to a single statement, have
a self-, flow-, output-, and anti- dependence, and accumulate
into a scalar variable using a commutative/associative op-
eration. Also, the statement in which they occur must be dis-
tributable from the adjacent loop body.

To handle the more complex patterns that we have found
in our program suite, it is necessary to deal with multiple
accumulation statements and accumulations into array ele-
ments within inner loops. Most of the information necessary
to do this transformation can be gathered locally in the can-
didate loop, although in some programs the information
needed must be gathered interprocedurally, as in DYFESM-
assemr/40. Additional information, such as the length of the
accumulated array and the size of the section that may need
to be synchronized, is needed to determine the best method
for implementing parallel reductions. We have observed that
the number of iterations of the enclosing loop determines
whether transforming reductions to parallel form increases or
decreases the speed of the program. Thus, the number of
iterations is crucial information. Also, the techniques for
mapping parallel loops to the machine (Section 2.4) are im-
portant in finding the proper transformation in each case.

Parallel reductions can be implemented in several different
ways.

1) Synchronization in place. Each sum operation can be
made indivisible by protecting it with a lock/unlock
pair. If efficient, hardware-supported synchronization

2. The VAST parallelizer was able to parallelize loops with multiple state-
ments of the form TOT�i� = TOT�i� + � by placing await and advance
synchronization around them and pulling as much computation out of the
critical section as possible. This works well where the body of the parallel
loop is sufficiently large.

functions are available, or if few synchronizations are
necessary, then this is a feasible solution. This variant
requires the fewest code changes, and, in contrast to
Methods 2) and 3), it does not require the allocation of
a temporary array nor its initialization and final sum.
(This transformation may require complex interpro-
cedural analysis and code modifications.)

2) Privatized parallel reductions. This method builds par-
tial sums in loop-private variables. These variables
are then used to update the original variable in a criti-
cal region within the loop or in the postamble.3 Using
private partial sum variables improves locality, but
still requires a synchronized section.

3) Expanded parallel reductions. Using this method, the par-
tial sum variables are expanded by a dimension, which
has as many elements as the number of processors, and
given a global scope. Each processor accumulates into a
slice of this array using its processor number as the
slice index. The partial sums can be added to the origi-
nal variable after the parallel loop. This variant may in-
cur more overhead, due to the accumulation into global
memory elements, but it yields a completely parallel
loop. If the accumulators are array elements, the sum
operation to be performed after the end of the loop can
be done in a vector-concurrent loop, i.e., a concurrent
loop over all array elements with a vector sum opera-
tion inside. This translation is illustrated in Fig. 2.

With architectures using a page (or cache line) migrating
mechanism, care must be taken to avoid accessing the same
page with multiple processors at the same time, as in
Method 3 above. Method 2 above limits the access of the
global array to a single processor at one time, which re-
duces coherence traffic.

Table 4 presents the effect of this transformation in the
same terms as for privatization in Table 3. We used in-place
synchronization in DYFESM (mxmult/10) and SPEC77
(gwater/1000 and gloop/1000). Both loops in SPEC77 call
specific routines in order to accumulate values. Subroutine
assemr in DYFESM, which is called inside the parallel
loop, contains accumulation statements that update part of
the array MX.

Privatized parallel reductions were applied in BDNA
and MG3D. The pattern in loop migrat/200 of program
MG3D is a single statement accumulation. Both loops
BDNA-actfor/240 and 350 (the inner loop of nest 500) have
simple accumulation patterns, while loop 500 has more
complex patterns (using arrays FAX�FAY�FAZ).

We have applied expanded parallel reductions in ADM,
which has a number of loops (dudtz/40, dvdtz/40,
dtdtz/40, dcdtz/40, wcont/40, and hyd/30) with simple
accumulation patterns. Alternatively, the accumulations
can be synchronized (using current compiler capabilities),
which we expect to perform close to the level we achieved
with our transformations.

Of further interest are the reduction patterns in MDG and
TRFD. In loop MDG-interf/1000, a scalar variable (VIR) and
three arrays (FX�FY�FZ) are used for accumulating values.

3. The postamble is a section of code at the loop end that is executed once
by each participating processor.

EIGENMANN ET AL.: ON THE AUTOMATIC PARALLELIZATION OF THE PERFECT BENCHMARKS 11

The sum statements are in an inner loop and operate on
different elements of the array for each iteration of the par-
allel outer loop. In our experiments, a combination of the
expanded and privatized parallel reduction scheme was
applied. The parallel loop was stripmined4 into a
SDOALL/CDOALL pair, and we then applied a combination of
privatized and expanded parallel reductions. A similar
pattern occurs in subroutine poteng, where scalar accu-
mulations are parallelized using privatized parallel reduc-
tions. In TRFD-olda/100, elements of two arrays (XRSIQ
and XIJ) are being used to accumulate sums. Since this
accumulation pattern takes place inside a parallel loop, it
did not need to be parallelized. TRFD-olda/300 showed the
same pattern for arrays XIJKS and XKL. In an earlier ver-
sion of TRFD, where the outer loop was not yet parallel-
ized, parallel reduction transformations proved effective.

2.3 Generalized induction variables (GIV)
In Fortran DO loops, array subscripts often use the values of
induction variables [1], which are updated in each iteration
in the form V = V op K, where the value K is loop-invariant.
Such a recursive assignment causes cross-iteration data de-
pendences. If a compiler can solve such a recurrence and
express the value of the induction variable in terms of the
loop indices as, for example, V = f(I, J), where I and J are
loop indices, then uses of V in the loop can be replaced by
the expression f(I, J). This eliminates the dependence in the
calculation of the induction variable, as well as depend-
ences caused by using V in array subscripts. There are well-
known compiler techniques for recognizing and replacing
an induction variable whose values form an arithmetic pro-
gression. These techniques typically deal with induction
variables assigned in the form of V = V + K.

In our experiment with the Perfect Benchmarks, we
found induction variables whose values do not constitute
arithmetic progressions. Here, we call them generalized

4. Stripmining splits a loop into two nested loops.

induction variables, or GIVs. We found two types of GIVs.
The first type is updated using multiplication instead of
addition, thus forming a geometric progression. The sec-
ond type is updated using addition, but does not form an
arithmetic progression in all points of the loop because
the loops are triangular (i.e., the inner loop limit depends
on the value of an outer loop index).

We have described GIVs in a preliminary report ([11]),
which has led to the development of several recognition
techniques, as mentioned in Section 1. All these techniques
introduce nonlinear subscript expressions, which cannot be
understood by previous data-dependence analysis tech-
niques. In [4], we have described a new analysis technique
that can handle such nonlinear subscripts.

The effect of the Generalized Induction Variable transfor-
mation is shown in Table 5. The table shows the same type of
information as Tables 3 and 4. Without correct handling of the
GIVs, all listed loops can be parallelized only on the inner-
most loops. We have measured this inner parallelization to
perform worse than serial execution. Because of this, Column
Twithout shows the serial timings. As shown, not applying the
parallel reduction techniques results in a 15 to 20-fold slow-
down of the loops. Because the loops are time consuming
parts of their respective programs, the corresponding program
slowdown would be between the factors of five and 10.

2.3.1 Analysis and Program Patterns
In order to substitute induction variables, one must first
determine the value of the induction variable prior to the
loop, find all the induction sites, and determine the loop
bounds of the loops enclosing the induction sites. From this
information, we can then compute the value of the induc-
tion variable at each reference in the loop body.

The first step is the same for all types of loops. The second
step is more difficult in triangular loops, although it can be
considered an extension of the rectangular loop case. For ex-
ample, assume a doubly nested loop with indices I and J,

TABLE 4
PERFORMANCE IMPACT OF THE PARALLEL REDUCTION TRANSFORMATION

PROGRAM-
subroutine/loop

total loop execution
time in seconds

Twithout/Tbest Twithout/Tbest

Tbest Twithout for loop for program
MDG-interf/1000 163 3792.0 23.2 19
MDG-poteng/2000 13.4 352.0 26.3 2.6
DYFESM-mxmult/10 19.0 60.0 3.2 1.7
DYFESM-formr0/20 7.0 20.0 2.8 1.2
BDNA-actfor/240 19.0 62.0 3.3 1.4
BDNA-actfor/500 21.0 253.0 12.0 3
FLO52-euler/70 0.5 5.7 11.4 1.1
MG3D-migrat/200 264.0 5226 19.8 19.7
SPEC77-gloop/1000 58.7 743.7 12.7 5.5
SPEC77-gwater/1000 13.5 248.0 18.4 2.6

TABLE 5
PERFORMANCE IMPACT OF THE GENERALIZED INDUCTION TECHNIQUE

PROGRAM-
subroutine/loop

total loop execution
time in seconds

Twithout/Tbest Twithout/Tbest

Tbest Twithout for loop for
program

OCEAN-ftrvmt/109 89 1377 15.5 8.3
TRFD-olda/100 8.0 174.2 21.8 9.3
TRFD-olda/300 5.4 85.3 15.8 5.0

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

loop bounds M and N, and an induction variable that incre-
ments in steps of one. In each iteration of the outer loop, the
induction variable increases by the iteration count of the in-
ner loop. In the rectangular case, this is a constant N. In a
triangular case, where the inner loop goes from one to I, it is a
variable number I. At the end of the ith iteration of the outer
loop, this amounts to i N in the rectangular case and

� �
� Ç i i i

i

i
()/1 2

1
 for a triangular nest. In iteration j of the

inner loop, the expression is (i � 1) N + j for the rectangular
case and (i � 1) i/2 + j for the triangular case.

This is, of course, a simplified computation that assumes
an induction variable starting at zero and incrementing by
one. However, relaxing these constraints is straightforward.
Also, note that the expression for the triangular induction
variable is not linear.

In TRFD, the loops olda/100 and olda/300 contain ad-
ditive GIVs, which are incremented inside triangular loops.
An additional complication is found in olda/300, where the
GIV pattern in the first iteration of the outermost loop dif-
fers from all the other iterations. We transformed this case
by peeling the first iteration.

In the program OCEAN, loop ftrvmt/109, we found a
multiplicative GIV. Further complicating the analysis of
this GIV was the use of a complex control flow within the
loop. The loop has the following form:

DO 109 jl = 1,i2k

IF (jl.EQ. 1) THEN

S1: exj = (1.,0.)

...

ELSE IF (jl.EQ. jli) THEN

S2: exj = CMPLX(0.,sgn1)

...

ELSE

S3: exj = exj*exk

...

ENDIF

 109 CONTINUE

Notice that the two IF statements use the value of the
loop index in their decision of where to branch. This is cru-
cial because it allows the compiler to determine the order in
which the various branches occur. Analysis of the flow can
ascertain that statement S1 executes first, followed by
statement S3, which executes jli � 1 times, followed by
statement S2, followed by statement S3, which executes
another i2k - jli times. For this analysis to work, we
must verify that ��� jli�� i2k.

With this analysis, it is possible to determine closed
forms for EXJ for all values of JL:

DO 109 jl = 1,i2k

IF (jl.EQ. 1) THEN

exj = (1.,0.)

...

ELSE IF (jl.LT. jli) THEN

exj = (exk**(jl-1))

...

ELSE

exj = CMPLX(0.,sgn1) *

(exk**(jl-jli))

...

ENDIF

109 CONTINUE

2.4 Techniques that Map Parallel Loops to the
Machine

The restructuring compiler that we used as a starting point
for our hand-optimized codes (KAP/Cedar [10]) often was
able to discover parallelism, but then mapped it to the ma-
chine poorly. In this section, we will show various methods
to improve this. Specifically, we will discuss issues of
stripmining, loop coalescing, outer loop parallelization,
loop fusion, and data localization.

2.4.1 Balanced Stripmining
The stripmining transformation splits a single loop into two
nested loops. In Cedar programs, this is usually applied for
exploiting multiple levels of parallelism. The naive strip-
mining method we implemented in KAP/Cedar turns each
parallel loop into an SDOALL/CDOALL/vector nest in the
following way: An innermost loop executes 32-element
vector instructions, an intermediate CDOALL loop executes
eight iterations, and an outermost SDOALL loop iterates over
these groups of 8 � 32. This method produces poor speedup
when the number of iterations is small.

The VAST parallelizer, for the Alliant FX/8 machine,
splits the iteration space onto processors in a cyclic way.
The iterations are divided across processors first. The por-
tions assigned to each processor are then executed by the
vector instructions. In this stripmining method, parallel
processors tend to access adjacent data elements, which
increases spatial locality in the shared cache. This is effec-
tive for doing computation within a single cluster.

Our multiversion, balanced stripmining method is simi-
lar to the stripmining applied by KAP. However, it first
determines what resources are needed. If it can be deter-
mined at compile time that the number of iterations is ex-
tremely small, a single processor may be allocated to the
loop, doing either vector or scalar instructions. A medium
number of iterations may warrant the use of a whole Cedar
cluster, and loops with large iteration counts may be
mapped to the whole Cedar machine.

If the number of iterations cannot be determined from
the program, or if it is known that the number of iterations
will vary widely over the course of the execution, a multi-
version loop can be constructed. The program selects be-
tween a single-processor, a single-cluster, and a four-cluster
version, depending on the number of iterations. The four-
cluster version strip-mines the iteration space onto the
processors in contiguous blocks to produce vector instruc-
tions with a stride of one. Stride-one vector references are
beneficial in the Cedar architecture because of the way the
prefetch unit operates [16].

When the original loops are doubly-nested, they are
coalesced into a single loop first, so that the combined it-
eration space is available to divide among the processors.
The stripmining transformation itself divides the iterations
among the clusters first, and then among the processors of a
cluster. Finally, it assigns the remaining elements to the
vector instructions. This ensures the minimum number of
next-iteration operations across clusters and between proc-
essors on a single cluster.

Analysis and Program Patterns. In order to decide what
translation to use for a given loop nest, we need to analyze

EIGENMANN ET AL.: ON THE AUTOMATIC PARALLELIZATION OF THE PERFECT BENCHMARKS 13

the size of the loop body and the number of iterations.
The size of the loop body will help us determine whether
the parallel loop overhead can be amortized by the per-
formance gains of the parallel loop. The number of itera-
tions determines how many next-iteration operations
will be done during the loop. We have found that, where
it is crucial, this information often can be derived from
the program text. However, in many cases, this informa-
tion must be gathered from subroutines other than the
one being transformed. We will discuss this further in
Section 2.5.

Many interesting program patterns can be found in
FLO52. Loop eflux/30 was originally a perfectly nested
two-level loop in the serial version of the program. We did
the Balanced Strip-mining transformation to each loop
separately. The outer loop became an SDOALL/serial nest,
and the inner loop became a CDOALL/vector nest. In addi-
tion, we moved the serial loop inside the CDOALL loop in
order to push out the parallel loops as far as possible. The
result was a SDOALL/CDOALL/serial/vector nest. These
transformations improved the run-time of the loop from 5.7
to 3.9 seconds. Table 6 shows this improvement, together
with that of other loops of the same program. Loops
eflux/20, eflux/30, and dflux/30 were originally singly
nested (1D). Loops eflux/10 and dflux 38 were doubly
nested, and we have coalesced them before stripmining
(2D). In bcwall/30, we applied the multiple-version trans-
formation described above (MV).

2.4.2 Loop Coalescing
When there are multiply nested parallel loops whose it-
eration count is either unknown at compile time or not
constant, it may be beneficial to coalesce the loops into
one single loop. A simple example of this is the nest
mnlbyx/50 in DYFESM, where the bounds of two out of
three loops are unknown.

We have found a more complex loop pattern that war-
rants coalescing in ftrvmt/109 of OCEAN. In every invoca-
tion of the doubly nested loop, the loop body executes 64
times. However, the loop is triangular and the number of
iterations in the two loops vary, as shown in Table 7.
When parallelizing a single loop of this nest, the parallel
performance gain is limited due to the small iteration count
in half of all loop executions. In this situation, it is advanta-
geous to coalesce the two levels and make a single parallel
loop out of them. For Cedar, this loop may become an
XDOALL. This transformation has been described in [19].

Once these loops were coalesced, the number of itera-
tions became large enough that every invocation of the loop
could exploit the Cedar resources. As a result, the speed of
the loop doubled. The loop nest accounts for approximately
50 percent of the serial program execution time.

2.4.3 Outer Loop Parallelization and Loop Fusion
Within a Cedar cluster, fast communication hardware is
available to start, terminate, and synchronize parallel ac-
tivities. However, global memory is the only medium for
intercluster communication. Because of this, it is impor-
tant to select loops with either a high number of itera-
tions or a large loop body for parallel execution across
the Cedar clusters.

Large loop iteration counts often can be obtained with
large input data sets. The Cedar architecture can work effi-
ciently given large data sets, as we have shown in our pre-
vious work [10]: Linear algebra routines working on matri-
ces of size 1,000 by 1,000 can exploit the 32 Cedar proces-
sors well. Although it seems commonly accepted for highly
parallel systems to refer to large data sets, ordinary pro-
grams may have small iteration counts and, thus, the pro-
grammer or the compiler may have to find transformations
to increase the grain size of their parallel algorithms.

An example of such a transformation is illustrated in Fig. 3.
The major subroutine of the program FLO52 consists of two
loops, each having a sequence of small inner loops. The
original version of our compiler parallelized the inner loops
only, which is represented by variant A. Variant B shows a
program where the two outer loops were parallelized. In
variant C, these two loops were fused; thus, the whole sub-
routine became one parallel loop. The inner loops were also
vectorized or strip-mined for vector-concurrent execution,
when necessary.

The resulting performance gain was 50 percent on the
Alliant FX/8 architecture, as compared to 100 percent on

TABLE 6
PERFORMANCE IMPACT OF THE

BALANCED STRIPMINING TECHNIQUE

PROGRAM-
subroutine/loop

total loop
 execution time

in seconds

Twithout/Tbest Twithout/Tbest

Tbest Twithout for loop for
program

FLO52-eflux/10 3.9 5.9 1.5 (2D) 1.03
FLO52-eflux/20 1.1 3.0 2.7 (1D) 1.03
FLO52-eflux/30 3.9 5.7 1.5 (1D) 1.04
FLO52-dflux/30 3.2 5.5 1.7 (1D) 1.03
FLO52-dflux/38 0.4 0.5 1.25 (2D) 1.00
FLO52-bcwall/30 1.7 2.8 1.6 (MV) 1.02

TABLE 7
NUMBER OF ITERATIONS IN OCEAN-FTRVMT/109 LOOP NEST

Numbers of iterations
Inner loop 64 32 16 8 4 2 1
Outer loop 1 2 4 8 16 32 64

Fig. 3. Combining multiple parallel loops into a single one.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

Cedar. This is due to the difference in startup overhead
between the CDOALL and SDOALL loops, and the increased
parallelism encompassed by outer loops. The major gain is
due to the first step of parallelizing the outer loop instead of
the inner one. A small additional gain is due to fusing the two
outer parallel loops into a single loop. On the FX/8 machine,
where startup overheads are small, this additional gain is not
noticeable. The example in Fig. 3 shows that compiling a
structure of multiple small SDOALL loops into a single SDOALL

can result in a significant code improvement on Cedar.
The compiler used in our studies (KAP/Cedar [10])

often was able to find large concurrent loops or to inter-
change loops to an outer position. It failed in other cases
when too many potential data dependences were de-
tected, or when the outer loop was in a calling subroutine.
Our manual analysis has shown that outer loops, in fact,
can be parallelized in most programs. Although this is not
a transformation per se (it is no different from finding
parallelism using all the techniques described so far), it is
mentioned here for its importance as a program transfor-
mation goal.

2.4.4 Data Localization
Data localization techniques are important for reducing
latencies and contention of data accesses to the global,
shared memory. One of the most important transformations
for data localization is the array privatization technique.
Data declared loop-private are placed in cluster memory
and, thus, contribute to the exploitation of local memories.

In addition to the array privatization technique, data can
be localized by keeping copies of global data in private
(cluster) memory. This can be useful within single loops if
there are many accesses to these data. If data are produced
by one loop and consumed by another, then it may be pos-
sible to partition and distribute them to cluster memories
across the sequence of parallel loops. We refer to these two
techniques as intraloop localization and interloop data parti-
tioning and distribution, respectively.

Intraloop localization. If global data are read-only, they
can be localized easily by copying them to local memory at
the beginning of the loop. This is particularly important if
the data are accessed in scalar mode, repeatedly within a
loop iteration (or a sequence of iterations assigned to the
same cluster), or in vector operations with a large stride.
Both these types of accesses suffer from long latencies to
global memory in the Cedar architecture. The only Cedar
mechanism for reducing such latencies is the vector pre-
fetch, whose applicability is limited to long vector opera-
tions with a small stride.

Data that are read and written can also be localized to a
loop if there are a number of references to each data ele-
ment. Multiple references can amortize the cost of copying
the data to and from the global memory at the beginning
and end of the loop, respectively.

We have applied such transformations in a number of
loops, as shown in Table 8. All but the first line show the ef-
fect of read-only data localization.5 The first line measures the
effect of the localization of a read-write array with data copy
instructions at the beginning as well as the end of the loop.

Interloop data partitioning and distribution. Data can be
privatized to a loop when its life is confined to a loop itera-
tion. When the lifetime spans several loops, one can attempt
to place data partitions onto each cluster memory and to
assign corresponding subsets of the loop iteration spaces to
the cluster processors. This works without further commu-
nication for data that are read-only, or that are read by the
same cluster on which they were written.

In our experiments, we searched for data partitioning
and distribution techniques in particular, since they would
have allowed us to take advantage of the Cedar’s distrib-
uted cluster memory architecture, one of the distinguishing
features of this machine. However, we have not been able
to identify such transformations as important performance
enablers in our program suite. Nevertheless, we believe that
data partitioning and distribution techniques will become
important for overcoming the increased memory access
latencies that are intrinsic to future highly parallel systems.
This is true in particular where access latency ratios of
global to local accesses may be substantially larger than in
the Cedar architecture.

2.5 Analysis Techniques
In the above discussions of program transformations, we
have briefly described program analysis techniques that
may become necessary. Further analysis techniques may
become important on a more global scope since they benefit
many transformations or are basic enablers for detecting
parallel loops. Such techniques include interprocedural
analysis, data dependence analysis, and the analysis of
programs at run-time.

2.5.1 Interprocedural Symbolic Analysis
One of the most important analysis techniques needed
when implementing the described transformations is the
investigation of variable values and the propagation of this
knowledge to the loops to be restructured. In our manual

5. The timing numbers are extrapolated from an experiment run on one
cluster only.

TABLE 8
PERFORMANCE IMPACT OF DATA LOCALIZATION

PROGRAM-subroutine/loop total loop execution
time in seconds

Twithout/Tbest Twithout/Tbest

access Tbest Twithout for loop for program
FLO52-psmoo/40&80 r/w 9.9 19.8 2.0 1.17
FLO52-step/20 r/o 1.7 2.4 1.4 1.01
ARC2D-xpenta/11 r/o 5.8 6.7 1.15 1.01
MDG-interf/1000 r/o 163 187 1.15 1.12
TRFD-olda/100 & 300 r/o 13.4 15.91 1.18 1.13

“R/W” is Read/Write Access and “R/O” is Read-Only Access.

EIGENMANN ET AL.: ON THE AUTOMATIC PARALLELIZATION OF THE PERFECT BENCHMARKS 15

experiments, we often have used the knowledge that vari-
ables stay within certain bounds, that subscript arrays are
initialized with values that allow arrays to be privatized
and loops to be run in parallel, or that the program takes
control paths that guarantee the safe and efficient applica-
tion of the transformation. We have pointed out the need
for such analysis techniques in previous sections. An im-
portant observation was that there were only a few cases in
which crucial variable values were read from input files
and could not be derived from the program text. Often,
variables were given values in an initialization routine.

Therefore, in many programs of our suite, sufficient in-
formation exists in the program text to do a thorough job of
compile-time analysis. We believe that, although the tech-
niques may be complex, it is possible to develop the neces-
sary symbolic analysis technology. These patterns and pos-
sible symbolic analysis techniques are described in more
detail in [5].

In most of the Perfect Benchmarks programs, we have
found this analysis to be necessary across subroutine calls.
We need interprocedural analysis for two reasons. First, a
compiler without interprocedural analysis capabilities has
to make conservative assumptions about control flow and
data dependences in calling and called subroutines, which
often prevents it from recognizing parallel loops. Second,
there may be variables whose values determine the exis-
tence of dependences, and these values may be passed as
arguments from other subroutines where they are defined.
Again, this prevents parallelization. The compiler we used
in our experiments relies on inlining [23], which replaces
call statements with the text of the called subroutines. This
has worked well in a few programs, but we have found that
other programs would need more advanced interproce-
dural analysis capabilities than we had available. For ex-
ample, the analysis would have to work across subroutine
boundaries where arrays passed as parameters are declared
with different shapes in the calling and called routines.

All of the transformations and analyses that we per-
formed in our experiments were done in the presence of in-
terprocedural analysis. That is, if we needed to know the
value of a constant not defined locally, we inspected other
subroutines. If we needed to know how data were used and
defined in a call tree initiated from a particular loop, we
analyzed the called subroutine.

2.5.2 Data-Dependence Analysis
We have found that many array reference patterns in the
important loop nests are relatively simple combinations of
the loop variables of the enclosing loops. Nevertheless,
these patterns often cannot be investigated by current data-
dependence tests, mainly because the coefficients of the
index variables are symbolic expressions. Advanced sym-
bolic analysis techniques are needed to propagate relations
between variables from the definitions of these variables to
the loops that are considered for parallelization. Further-
more, data-dependence tests need to be extended to allow
symbolic terms in their mathematical expressions instead of
just numeric constants.

One challenge for data dependence tests was encountered
in TRFD. The terms generated by the induction variable of

the triangular loops described in Section 2.3 are quadratic
and, thus, cannot be understood by tests for linear sub-
scripts. For the reader of the original program, it is obvious
that the arrays indexed by the induction variable are de-
pendence-free because the induction variable assumes a
steadily increasing sequence of values. This knowledge is
lost when substituting the induction variable. An approach
could be to flag this situation in the induction variable sub-
stitution pass and enhance the dependence test to under-
stand this flag. Alternatively, a nonlinear test could be de-
vised [4]. Of further difficulty is the fact that the subscript
contains symbolic values whose relation to other terms de-
termines whether the loop is independent. Symbolic analy-
sis techniques are important in this situation. Failing to
parallelize this loop in TRFD would result in a program
slowdown of a factor of 13.

Program DYFESM is another example that could take
advantage of new data dependence tests. Subscripted-
subscript patterns inhibit the detection of independent
loops. However, symbolic analysis can determine that the
access patterns formed by the subscript arrays are
nonoverlapping regions, each having a different length. The
program initialization routine needs to be investigated to
determine the values given to the subscript arrays, which
are read-only from then on. A starting point for realizing
such compiler capabilities could be the symbolic range
propagation techniques described in [6]. Without recog-
nizing that these loops are independent, only inner loops
could be parallelized, resulting in a program slowdown of a
factor of three.

2.5.3 Run-Time Analysis Techniques
The described analysis may be complex or even undeci-
dable at compile time. In these situations it may be useful to
insert run-time tests that choose between a fully parallel
and a serialized loop nest, depending on whether the val-
ues of the variables produce a dependence in the loop.

For example, in many loops within OCEAN (covering 65
percent of the serial execution of the program), the sub-
scripting expressions and loop bounds contain variables
and a linear combination of loop indices, which makes
compile-time dependence analysis difficult. All of the ar-
rays used in these loops are singly dimensioned, but the
subscript expressions used involve the loop indices of all
the loops in the nest. The subscript expressions are such
that they can be considered a linearization of a three-
dimensional array into a single dimension. One difficulty in
analyzing this situation is that, in different executions of the
same loop nest, the innermost loop sometimes corresponds
to the rightmost dimension of the three-dimensional array
and sometimes to the leftmost dimension.

In one experiment, we implemented a test, which we call
the linearization test, that checked whether the array was
being used in this linearized manner. This involved check-
ing whether each successive inner dimension indexed en-
tirely within the next outer dimension. If this is the case,
then, there are no dependences on the references to those
arrays. The result of this experiment is the loop shown in
Table 9. A more detailed description of the test can be
found in [20].

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

We have found that interprocedural symbolic analysis
techniques also would enable the compiler to prove that
the loops in Table 9 are dependence-free. Since the run-
time test described above does not introduce significant
overhead, the resulting performance would look similar
to the one shown in Table 9. Thus, the linearization test
could be applied either interprocedurally at compile time,
or intraprocedurally with run-time tests. The trade-off
between these two methods is doing a more complex
compile time analysis, versus introducing a small execu-
tion overhead for the run-time test and generating code
that is more difficult to read.

3 OPTIMIZATION SUMMARIES OF THE PERFECT
BENCHMARKS CODES

In the previous section, we described transformation tech-
niques that were applicable to several codes in our program
suite. This section will summarize these transformations for
each code and note additional individual changes that were
made to the programs. For each code, we will briefly dis-
cuss the expected difficulties for automating the transfor-
mations. Our experiments did not include the program
SPICE. SPICE has been discussed in a related project, which
found run-time parallelization techniques to be applicable
to the irregular structure of this code [34].

The short descriptions of the problems being solved in
the Perfect Benchmarks are taken from [30]. Detailed opti-
mization reports can be found in individual technical re-
ports available from the University of Illinois.6 A more
thorough discussion of the automatic parallelization done
by both KAP/Cedar and VAST is in [3]. Both restructurers
were similar in terms of the resulting code and performance.

3.1 ADM
“ADM is a three-dimensional fluid flow code that simulates
pollutant concentration and deposition patterns in lakeshore
environments by solving the complete system of hydrody-
namic equations. The advection-diffusion equation for the
transport, diffusion, and deposition of pollutants is also in-
cluded in the model [30]” The program code is 6,104 lines of
Fortran77 code and consists of 97 subroutines. The execution
time is spread evenly throughout the program; 90 percent of
the execution time is spent in 23 subroutines. Almost all of
these subroutines contain three or fewer loop nests, all of
which are important. Because of this, 90 percent of the

6. CSRD Technical Report Series, Dept. of Computer Science, 1304 W.
Springfield Ave., Urbana, IL 61801.

program’s execution time is spread across 31 loop nests.
Thus, a large number of loops need to be parallelized to get
significant program speedups. However, 11 of these 31 im-
portant loop nests contain subroutine calls. Almost all of
these calls are made to subroutines containing important
loop nests.

KAP was unable to improve ADM significantly because
of many subroutine call statements and the small iteration
counts of the parallel loops. For the six most important loop
nests, iteration counts ranged from one to 16, and four of
them were singly nested. For other parallelizable loop
nests, the iteration counts were 13-15 or 64. Most of these
loops were singly nested. KAP/Cedar strip-mined all sin-
gly nested parallel loops without checking the profitability,
which introduced more overhead than performance gain.
The best speedup that KAP was able to get was 1.65. Even
by manually parallelizing the loops without call statements,
we were unable to get speedups much greater than two.

The full manual optimization of ADM led to a speedup of
10.1 on Cedar. All of the most time-consuming loop nests in
this code were transformed into concurrent loops. The main
transformations applied to gain outer concurrent loops were
array privatization and reduction parallelization. To auto-
mate these transformations, a compiler would have to recog-
nize definition/use patterns interprocedurally. Parts of ar-
rays that are read-only would have to be separated from pri-
vatizable read-write parts. Another issue is the recognition of
the low iteration counts of certain loops in order to disable
their high-overhead parallel execution. Several such iteration
counts depend on input data in ADM, which necessitates the
application of techniques, such as run-time analysis or the
coalescing of several nested parallel loops.

3.2 ARC2D
“ARC2D was developed at NASA/Ames and run on a
Cray X-MP. It is a robust, general-purpose, implicit finite-
difference code for analyzing fluid flow problems. It solves
the Euler equations. ARC2D can be used for steady and
unsteady flows, but only for inviscid flows [30].” The code
contains 4,000 lines of Fortran77 in 74 subroutines.

ARC2D shows the best speedup from automatic paral-
lelization on both FX/8 (8.7) and Cedar (13.5). There are
about 30 loop nests that need to be parallelized well for
good overall performance. KAP parallelizes all loop nests.
Loop interchange was important in several cases.

The additional improvements that were applied manu-
ally include balanced stripmining methods, finding outer
parallel loops, and localizing scalar data accesses which

TABLE 9
PERFORMANCE IMPACT OF A RUN-TIME DATA-DEPENDENCE TEST IN THE OCEAN PROGRAM

PROGRAM-
subroutine/loop

total loop execution
time in seconds

Twithout/Tbest Twithout/Tbest

Tbest Twithout for loop for program
OCEAN-ftrvmt/109 89.3 1376.9 15.4 7.3
OCEAN-csr/20 10.5 172.0 16.4 1.9
OCEAN-ftrvmt/116 10.8 99.5 9.2 1.5
OCEAN-acac/30 3.3 92.5 28.0 1.5
OCEAN-acac/40 4.0 79.0 19.8 1.4
OCEAN-scsc/30 2.3 59.3 25.8 1.3
OCEAN-rcs/20 3.4 57.7 17.0 1.3

EIGENMANN ET AL.: ON THE AUTOMATIC PARALLELIZATION OF THE PERFECT BENCHMARKS 17

refer to global memory. These improvements resulted in
substantially improved speedups of 10.6 for the FX/8 and
20.8 for the Cedar machine.

The key to automating these transformations is expected
to be array privatization, which is needed to find the outer
parallel loops. The necessary definition/use analysis re-
quires advanced techniques for interprocedural propaga-
tion of symbolic values, relations, and conditions under
which relations hold. Similar symbolic analysis steps will
be necessary to find whether the privatized arrays are ac-
cessed outside the loop.7

3.3 BDNA
“BDNA makes use of the BIOMOL package for performing
molecular dynamics simulations of biomolecules in water.
This package aims at an understanding of the hydration,
structure, and dynamics of nucleic acids and, more broadly,
the role of water in the operation of biological systems [30].”
The code contains 4,000 lines of Fortran77 in 76 subroutines.

BDNA gains insignificant speedup from automatic par-
allelization by KAP (1.9). VAST does somewhat better on this
code on the Alliant FX/8 machine because it could parallelize
simple reduction operations better than KAP. There are two
loop nests that dominate the computation. KAP could vec-
torize only the innermost loops of these nests, whereas
VAST generated vector-concurrent versions.

Both loop nests could be manually parallelized at the
outermost level with a resulting speedup of 5.6 and 8.5 for
the FX/8 and Cedar machines, respectively. The first loop
(actfor/240) was parallel after privatizing many scalar and
array variables. The other loop nest (actfor/500) was paral-
lel after dealing with several reduction operations. It is in-
teresting to notice that, on the FX/8 architecture, the best
performance of the actfor/500 nest resulted from vector-
concurrent execution of the strip-mined inner loop (loop
350) as opposed to full vectorization of this loop and run-
ning the outer loop concurrently. This is due to the large
amount of loop-private data, which exceeds the cache ca-
pacity. This is the only significant code pattern seen in the
Perfect Benchmarks suite, where stripmining (or
“blocking”) for cache locality is of benefit on the FX/8 ar-
chitecture. In the Cedar variant of BDNA, this is no longer
an issue because the inner loop is strip-mined for cluster
parallelism, while the outer loop is spread across Cedar.
The computational part of BDNA speeds up by a factor of
13 as a result of the manual transformations. However, the
overall speedup is 8.5 because of an input/output loop
(Restar/15), which becomes a significant serial bottleneck
and takes 30 percent of the parallel execution time.

The most difficult step in automating these transforma-
tions is expected to be the definition-use analysis for priva-
tizable arrays. In one case, the content of an index array
needs to be analyzed in order to privatize.

3.4 DYFESM
“DYFESM is a two-dimensional finite element code for the
analysis of symmetric anisotropic structures. An explicit
leap-frog temporal method with substructuring is used to

7. This is not necessarily a requirement for parallelization, but can sim-
plify the generated code.

solve for the displacements and stresses, along with the
velocities and accelerations at each time step [30].” The
code contains 7,600 lines of Fortran77 in 113 subroutines.

Automatic parallelization by KAP yielded a speedup of
four on the Alliant FX/8 over the unoptimized code. This is
the third-best performance in the automatic column. How-
ever, this is only 1.2 times the performance of the vector-
only code. On the Alliant, the performance achieved by
VAST is only about 2.5 because of the overhead introduced
by the more aggressive parallelization of reduction opera-
tions. DYFESM has very small data sets, which is one of the
impediments to good performance. It is also the reason for
the automatically parallelized version on Cedar yielding a
speedup of only 2.2. The compiler we used does not distin-
guish small loops that are below the benefit threshold for
parallel execution. On the FX/8 machine, this is a less sig-
nificant problem, because the startup of a parallel loop is
comparatively fast. On Cedar, the loop startup latency is
more significant, leading to greater performance degradation.

Manual improvements include the replacement of a ma-
trix multiplication8 by a library routine, and the transfor-
mation of many of the outer loops into concurrent form; for
one loop (mxmult/10), a critical section was created to co-
ordinate parallel reduction operations (see Section 2.2).
Furthermore, arrays were privatized to some of the outer,
now concurrent loops. The resulting improved speedups
are 10.3 and 11.4 for FX/8 and Cedar, respectively.

A major difficulty in automating the transformations is
the analysis of subscripted subscripts. DYFESM accesses
arrays through table arrays in all its computation. The con-
tent of some of these subscript arrays can be derived from
the program text. In other cases, such as the major loops
mxmult/10 and formr0/20, the patterns probably can not
be investigated at compile time.

3.5 FLO52
“FLO52 is two-dimensional code that provides an analysis
of the transonic inviscid flow past an airfoil by solving the
unsteady Euler equations [30].” The code contains 2,000
lines of Fortran77 in 64 subroutines.

KAP produced the best speedup numbers of any Perfect
Benchmarks program for FLO52 running on the FX/8 (9.0).
The speedup of FLO52 on Cedar produced by KAP was
second best (5.5, behind the speedup of ARC2D). The rea-
son for these numbers is that most of the loops in FLO52 are
simple, with relatively straightforward indexing patterns
and no subroutine calls. The most basic dependence analy-
sis can determine that these loops are parallel. Three of the
most important loops contained a number of inner loops,
for which KAP tried to find the optimal configuration in
terms of distributing and interchanging them. Given ap-
propriate compiler options that extended the length of the
search, KAP was able to find the best configuration.

The manual efforts to optimize FLO52 centered on par-
allelizing outer loops in three cases (psmoo/40, psmoo/80,
and step/20); fusing two of the loops (psmoo/40 and
psmoo/80); privatization; turning off recurrence recogni-
tion; and improving scheduling for several parallel loops,

8. This was not done automatically by our compilers. However, the tech-
nology is well known and is not covered in this paper.

18 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

as explained in Sections 2.2 and 2.4. KAP had not parallel-
ized these outer loops because of an internal error in the
interface between two compiler passes. The speedups after
the manual effort for FX/8 and Cedar are 14.6 and 15.3,
respectively.

The recurrence recognition in KAP had to be turned off
to reduce overhead. Reasons for this are described in Sec-
tion 2.2. The loop fusion used in psmoo/40 and psmoo/80
was straightforward, except that some data written be-
tween the two loops had to be privatized and redundantly
computed to enable the fusion.

The privatization done within FLO52 was for both arrays
and scalars. There were many instances in which a global
scalar was read-only in a loop. The Cedar architecture has
the capability to prefetch vector loads from global memory.
However, the prefetch unit is not used for scalars; therefore,
it can be advantageous to copy a global scalar to a location
in each cluster, and use it from there within a cross-cluster
parallel loop. It was necessary to collect all references to an
array within a loop nest and then piece together the ranges
in which it was referenced, in order to ensure that the con-
dition for privatization was met. There was also a case (in
psmoo) in which an array could be fully distributed to the
clusters for the duration of a single loop. One quarter of the
array was copied to each cluster COMMON area in each itera-
tion of an sdoall loop. The region was then copied back to
the proper global location at the end of the iteration.

Finally, some scheduling improvement was due to the
balanced stripmining technique, described in Section 2.4.1.
We expect that the transformations we applied to FLO52
will be straightforward to implement in an automatic
translator.

3.6 MDG
“MDG is a molecular dynamics model for 343 water mole-
cules in the liquid state at room temperature and pressure.
The code uses the Matsuoka-Clementi-Yoshimine configu-
ration interaction potential for rigid water-water interac-
tions and extends it to include the effects of intramolecular
vibration. MDG can be used to predict a wide variety of
static and dynamic properties of liquid water [30].” The
code contains 1,200 lines of Fortran77 in 51 subroutines.

MDG has no speedup from automatic parallelization.
None of the major loops in this code were parallelized, be-
cause KAP detected data dependences.

The two most time-consuming loops (interf/1000 and
poteng/2000) were transformed manually into parallel
loops mainly by privatizing some arrays and recognizing
reductions that can be done in parallel. Other transforma-
tions done were localizing read-only scalar accesses
(interf/1000), eliminating induction variables (interf/1000,
poteng/2000), loop coalescing, and removing storage-
related dependences (predic/1000), and parallelizing a loop
that wasn’t detected as independent by KAP (correc/1000).
These changes resulted in drastic improvements of 7.3 for
the FX/8, and 20.6 for the Cedar machine.

The primary challenge in parallelizing MDG automati-
cally is to detect all privatizable variables. In Section 2.1, we
have described these patterns, which require advanced
symbolic analysis techniques.

3.7 MG3D
“MG3D is a seismic migration code used to investigate the
geological structure of the Earth [30].” The code contains
2,800 lines of Fortran77 in 64 subroutines.

KAP parallelized most loop nests not containing subrou-
tine calls or input/output statements, except for those loops
within certain routines (cpass, cpassm, rpass, and rpassm)
that contain potential dependences. KAP left those loops se-
rial since their parallelization depends on the run-time values
of certain variables. There was an insignificant speedup of 1.5
for the FX/8 machine, and even a slowdown to 0.9 for Cedar.

The manual effort required extensive interprocedural
analysis, array privatization, and parallel accumulation to
parallelize the major loop (migrat/200); recognition that a
temporary file can be placed in memory; dead code elimi-
nation; and symbolic subscript analysis to vectorize loops
in the FFT routines (cpass, cpassm, rpass, and rpassm).
The resulting performance numbers were among the best
ones for the entire suite: 13.3 for the FX/8, and 48.8 for the
Cedar machine.

MG3D, as a benchmark code, has some properties that
may become important for an advanced compiler, but which
are likely to be different in a real code. First, MG3D uses two
temporary files, whose I/O operations can be eliminated by
replacing them with memory operations. Unfortunately, the
original code does not delete these files at the end; thus, this
transformation cannot be performed without changing the
effect of the program (because there is the possibility that the
file will be used later). However, this optimization was ap-
plied in our hand experiments, enabling the outermost loops
to be parallel. Second, part of the data set for MG3D is gener-
ated in the code and is rather artificial, so that an advanced
compiler could recognize the values (e.g., through constant
propagation) and perform further optimizations. This was
not exploited in our experiments.

3.8 OCEAN
“OCEAN solves the dynamical equations of a two-
dimensional Boussinesq fluid layer. The code is needed in
order to study the chaotic behavior of free-slip Rayleigh-
Benard convection [30].” The code contains 3,400 lines of
Fortran77 in 70 subroutines.

KAP was able to parallelize only inner loops and trivial
perfectly nested loops. The most important loops in the
code (covering 65 percent of the serial execution) were not
parallelized by KAP due to the form of the subscript ex-
pressions and the use of scalar variables as expression coef-
ficients and loop bounds. On the FX/8 machine, this re-
sulted in a slight speedup of 1.4, whereas it resulted in a
slowdown to 0.7 on Cedar.

VAST was able to parallelize an extra level in the same
nests where KAP could parallelize only the innermost level.
VAST accomplished this by setting a logical variable hold-
ing a condition that is true when the loop is dependence-
free. The loop was made parallel and the logical variable
then controlled the issue of await and advance around the
loop body. In some nests, several dependence conditions
were evaluated and tests were made for all of them inside
the parallel loop to determine whether to issue the awaits
and advances.

EIGENMANN ET AL.: ON THE AUTOMATIC PARALLELIZATION OF THE PERFECT BENCHMARKS 19

Our manual optimization effort improved the OCEAN
speedups to 8.9 on FX/8, and 16.7 on Cedar. As with many
other applications, the key was to parallelize many of the
outer loops. To do this, we worked on three types of loops.
The first type was a group of loops using variables as coef-
ficients in the subscript and loop bound expressions. This
group required a run-time dependence test inserted prior to
the loop, which chose between a serial and a parallel ver-
sion of the loop, and, in one case, the coalescing of a trian-
gular loop nest into a singly nested XDOALL, as described in
Section 2.4.2. The second type was a group of loops which
required interprocedural analysis to parallelize the loops.
The third type was two small, simple, and often-used loops,
whose number of iterations varied widely. We generated
multiple optimization versions of these loops, such that
cluster and cross-cluster parallelism was exploited only
when the number of iterations was large enough.

One issue with implementing these techniques is to de-
termine when it is of benefit to apply multiversion loops
and when the overhead offsets the benefit. It seems clear
that advanced symbolic analysis techniques that work in-
terprocedurally can significantly reduce the work necessary
to detect parallelism at run-time. However, further work is
necessary to determine the extent to which this is possible.

3.9 QCD
“QCD is a quantum chromodynamics (QCD) code that uses a
Monte-Carlo technique to update the complex 3 × 3 matrices
that represent the action of the gluons. Since the code ignores
the effect of dynamical fermions, it may be considered a
pure-gauge model in the quenched approximation [30].” The
code contains 2,300 lines of Fortran77 in 69 subroutines.

KAP was able to parallelize only minor, inner-most loops
in QCD, stripmining them to be SDOALL/CDOALL/vector. For
most of these loops, the low iteration count prevented more
than one processor from being used, since 32 iterations are
applied to the vector instruction first. KAP failed to parallel-
ize most loops due to the large number of subroutine calls
throughout the loops in the program. The resulting speedup
was insignificant.

VAST performed well in loop observ/2 by recognizing
multiple summation statements (a series of statements like
TOT(1) = TOT(1) + �), putting them in a synchronized
region, and pulling out all extraneous calculations from the
parallel loop. VAST also was able to strip-mine a dotproduct
reduction in loops projec/2 and projec/4.

We had to analyze QCD interprocedurally in order to
parallelize its outer loops. A simple tool allowed us to make
a summary of interface variables that are read and written
within each called routine, including all inner routines.
Data dependence analysis based on this summary, in con-
junction with induction variable analysis, allowed us to
parallelize most of the outer loops in the program. Once
again we duplicated subroutines to choose a good trans-
formation for each different calling context.

Subroutine pranf contains a random number generator
producing a dependence cycle that could not be eliminated.
This dependence serialized approximately half the execu-
tion of the program. In our best-performing program vari-
ant, we ignored this dependence, thus effectively replacing

the random number generator with a parallel variant. This
changed some of the program output and, in fact, the built-
in verification test reported “invalid”. Only knowledge of
the application allows us to determine that the program is
behaving correctly. These improvements resulted in a
speedup of 20.8 on the Cedar machine. A variant without
replacing the random number generator yielded a speedup
of only 1.8.

3.10 SPEC77
“SPEC77 is a global spectral model for simulating atmos-
pheric flow. The code was originally developed at the Na-
tional Meteorological Center (NMC). Only the forecast mod-
ule of the NMC code is used in the benchmarking [30].” The
code contains 3,900 lines of Fortran77 in 99 subroutines.

KAP was unable to transform most major loops due to
the large number of subroutine calls in this program. Typi-
cally, KAP could parallelize nothing beyond innermost
loops, yielding a speedup of 2.4 on both machines.

Our manual experiments improved these numbers for
the FX/8 and Cedar machines to 10.2 and 15.7, respectively.
Some advanced manual transformations were done to the
code, including converting COMPLEX arrays to double-
sized REAL arrays, eliminating subroutine parameters, re-
placing algorithms, and replacing multiple calls to a sub-
routine with a single call. However, the transformations
that produced the greatest reduction in execution times
were the simplest ones, all of which are important for other
codes as well. They include the parallelization of loops with
subroutine calls, array privatization, and parallelized ac-
cumulation. Other transformations were of importance in
individual loops, such as advanced loop interchanging, and
the fusion of loops with different loop bounds.

The most critical transformation to automate is the paral-
lelization of a search routine. This routine uses the last found
position as a starting point for the next search, which causes a
data dependence that is difficult to break. However, it seems
possible to develop advanced compiler techniques to recog-
nize whether in the given situation, this dependence can be
ignored. Serializing this dependence would slow down the
best version of the code by a factor of about 2.5.

All the analysis techniques we have already described
are important for this code as well. In addition, the initiali-
zation of SAVEd variables had to be recognized and moved
out of parallel loops, or synchronized. Interprocedural
analysis techniques include the propagation of maximum
variable values.

We applied sequential optimizations to SPEC77 prior
to its parallelization. The major change was to replace
the formatted read of an input file with an unformatted
read. Again, this is a questionably automatable technique
for which the compiler may make suggestions to the
user, at best. Replacing the formatted I/O by unformat-
ted I/O improves the best performance of the code by a
factor of two.

3.11 TRACK
“TRACK is a missile tracking code used to determine the
course of a set of an unknown number of targets, such as
rocket boosters, from observations of the targets taken by

20 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

sensors at regular time intervals. The targets may be launched
from a number of different sites [30].” The code contains
4,300 lines of Fortran77 in 66 subroutines.

KAP and VAST were unable to speed up this code. From
an application viewpoint, the problem consists of a number
of independent tasks that track missiles, which would seem
highly parallelizable. The serious data dependences that
effectively serialize this code stem from storage manage-
ment functions that are called from all tracking tasks.

Correspondingly, the most important manual transfor-
mation was to allow these storage management functions to
be called in parallel. To adhere to the sequential semantics
of the code, sort functions had to be inserted to rearrange
the order of storage allocation. This transformation is diffi-
cult to automate, though not impossible.

Another important transformation was to parallelize
loops containing return statements. In general, when no
data dependences exist in such loops, they can be paral-
lelized as long as we can guarantee that no changes to
global data occur due to iterations of the parallel loop
which would not have executed in the serial version of
the program.

One typical reason for having return statements in a
loop is to return an error code which signals a fatal error,
causing the program to abort. This is the case in TRACK.
Interprocedural flow analysis could determine that when-
ever such a return statement is executed, the program
later executes a stop statement without making use of any
of the variables modified within the loop, and, therefore,
any iterations which get executed in the parallel loop, but
not the serial loop, would have no important effect. This
allows such a loop to be parallelized. In TRACK, we were
even able to move the error condition test and the return
statement out of such loops, then parallelize the loops
without concern for unwanted side-effects.

There were some performance-limiting factors which we
could not eliminate. A significant number of loops contain
read and write statements and these become a serial bot-
tleneck once the computational loops have been parallel-
ized. There is also a lack of vectorizable statements. So, in
this program, concurrent execution cannot make use of
vector instructions.

Our efforts yielded a speedup of 4.0 and 5.2 for the FX/8
and Cedar, respectively.

3.12 TRFD
“TRFD is a kernel simulating the computational aspects of
a two-electron integral transformation and part of the
HONDO quantum mechanical package. The evaluation of
these types of integral transformations is a necessary first
step in computing correlated wave functions and is used
in determinations of molecular electronic structure [30].”
The code contains 500 lines of Fortran77 in 42 subroutines.

KAP, again, could parallelize only inner or perfectly-
nested loops within TRFD. It was able to parallelize the
inner loop of intgrl/140 by placing await/advance syn-
chronization around the assignment of a value into an ar-
ray, which was indexed by a subscripted array. This re-
sulted in a modest speedup of 2.2 on the FX/8, but a per-
formance degradation to 0.5 on Cedar.

VAST, again, was able to parallelize one level beyond
KAP in the innermost loops by calculating the condition for
the presence of a dependence and then synchronizing around
that dependence, if it occurs at run-time. VAST expanded a
scalar within intgrl/140 in the same situation where KAP
privatized the scalar to produce a slightly simpler code. This
did not affect the performance significantly, however.

The manual optimization of this program resulted
in a drastic speedup improvement: 16.0 for the FX/8,
and 43.2 for the Cedar machine. The manual transfor-
mations for TRFD include generalized induction vari-
able analysis (GIV) for computing the value of an in-
duction variable within a triangular loop nest and ar-
ray privatization. The loop intgrl/140 was parallelized
at the outermost level after we determined that the
form of initialization of the subscripting array made
subscripted-subscript access parallelizable.

We described this situation in an earlier paper [11].

4 EARLY RESULTS OF A NEW GENERATION
PARALLELIZING COMPILER

The objective of this paper was to show new transforma-
tions that can improve future parallelizing compilers. We
have already completed the first version of such a compiler,
called Polaris, that incorporates some of these techniques.
In this section, we present early results that demonstrate
Polaris’ success and areas for potential improvement. The
specific transformations and their implementations are not
discussed in this paper. We refer interested readers to [36],
[7], [5], and [29], which describe the details of the algo-
rithms used. The sole purpose of this section is to give some
evidence that the automation of the hand transformations
outlined in this paper is a feasible goal, and to point out
problems that may be hard to solve.

Table 10 lists the Perfect Benchmarks and indicates, for
each program, whether Polaris is able to recognize all the
significant parallel loops in Tables 3 through 9. As shown in
Table 10, Polaris can recognize all significant parallel loops
in about half of the programs. For the remaining programs,
we indicate which issues need to be resolved in order to
succeed in the parallelization. For details on these issues,
the reader is referred to the description of the individual
codes in Section 3.

Table 10 shows that significant progress in automatic
parallelization is possible with the techniques described in
this paper. Only two of the Perfect Benchmarks could be
parallelized successfully when we began our project. Now,
there is success with almost 50 percent of the codes. In
some cases, we have already succeeded in solving “hard”
problems, such as the analysis of subscripted subscripts in
BDNA and the symbolic comparison of guarded array sec-
tions in MDG. Other difficult issues are left open for future
research. Some of these issues appear tractable as compiler
technology evolves and as increasing computer speeds en-
able time-consuming compilation algorithms. An example
of this is the analysis of subscripted subscripts in DYFESM.
Other issues may seem resolvable only after the programmer
becomes more involved in an interactive compilation sce-
nario. An example of this is the random number generator in

EIGENMANN ET AL.: ON THE AUTOMATIC PARALLELIZATION OF THE PERFECT BENCHMARKS 21

QCD, which can be replaced by a parallel algorithm (this
changes the sequential semantics of the program, however,
and can be authorized only by the user).

An important remaining question is whether the tech-
niques derived from the experiments with the Perfect
Benchmarks on the Cedar machine will carry over to new
machines and programs. In order to investigate this, we
added to Polaris the capability of generating code for the
SGI Challenge machines and tested many additional pro-
grams taken from other suites, such as the SPEC95 bench-
marks and two “Grand Challenge Applications.”

Fig. 4 compares the resulting speedups obtained by Po-
laris with those of SGI’s PFA compiler. It shows 16 bench-
mark programs, from three different sources. From the Per-
fect Benchmark suite, we used ARC2D, BDNA, FLO52,
MDG, OCEAN, and TRFD. From the SPEC95 benchmarks,
we chose APPLU, APPSP, HYDRO2D, SU2COR, SWIM,
TFFT2, TOMCATV, and WAVE5. From applications in use
by computational scientists at NCSA,9 we chose CMHOG
and CLOUD3D.

The programs were executed on an eight-processor SGI
Challenge with 150 MHz R4400 processors, located at NCSA.
Fig. 4 shows that Polaris delivers, in many cases, substan-
tially better speedups than PFA. For a few of the programs,
there is little speedup, and, in one case, there is a slowdown.
We have studied and discussed the reasons for this in [2]. We
found that Polaris is significantly more successful in identi-
fying parallel loops. However, in the programs, where PFA
identifies the important parallel loops equally well, its addi-
tional techniques for improving the parallel code make a dif-
ference. These transformations include loop interchanging,
unrolling, and fusion. When applied to the right loops, they
can improve performance by decreasing overhead, enhanc-
ing locality, and facilitating the detection of instruction-level
parallelism. However, sometimes these optimizations are
applied over-aggressively and cause a negative effect. This is
the case on applu and tomcatv.

9. National Center for Supercomputing Applications

5 CONCLUSIONS

We have described the transformations that we applied
to the Perfect Benchmarks programs in order to gain sig-
nificant parallel performance. We have noted the ex-
pected challenges in automating these techniques in a
parallelizing compiler. Among the most important tech-
niques that we have found are array privatization, par-
allel reductions, generalized induction variable recogni-
tion, and symbolic or run-time data-dependence tests.
All techniques need powerful interprocedural analysis
capabilities.

We have drawn several conclusions from this work.

5.1 Real Programs Are Parallelizable
In the suite of programs we have examined, we found that,
without exception, significant performance improvements
can be gained by transforming the programs into parallel
form. Most transformations are simple and do not require
algorithm change. This is an important basis for all further
findings, since it refutes claims that ordinary application
programs are not amenable to parallel computing.

TABLE 10
SUCCESS AND UNSOLVED PROBLEMS IN THE AUTOMATIC PARALLELIZATION OF THE PERFECT BENCHMARKS

ACHIEVED BY A PROTOTYPE OF THE POLARIS PARALLELIZING COMPILER

program successfully parallelized
 (• = fully)

($ = partially)

open problems

ADM (1) Interprocedural array section analysis, using
run-time knowledge.

ARC2D •
BDNA •
DYFESM (1) Analysis of subscripted subscripts

FLO52 •
MDG •
MG3D Converting temporary file I/O to temporary data

structures.
OCEAN

$
(1) Loop coalescing. Improved range analysis

QCD Substitution of a random-number algorithm.
SPEC77 Substitution of a search algorithm.
SPICE (1) Analysis of subscripted subsctripts and irregular

control flow.
TRACK Parallelization of memory allocation algorithms.
TRFD •

(1)
These issues are being addressed in ongoing Polaris work [2], [7].

Fig. 4. Speedup comparison between the SGI PFA compiler and Polaris.

22 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

5.2 The Study of Real Programs Is of Crucial
Importance for Compiler Research

We have taken an approach to compiler design that is in
stark contrast to other methods. Rather than implementing
new compiler capabilities and then assessing their merit,
we have optimized real programs by hand and described
the transformations that make a difference. Our results
show that this approach can be very successful. We have
identified several new transformation techniques that im-
prove the performance of our programs significantly. The
resulting compiler proves to be powerful not only on the
originally studied program suite, but also on new programs
and new machines.

5.3 Finding Parallelism Is Important for Success on
All Multiprocessors

The techniques we found are important for all types of par-
allel architectures. We have mainly considered transforma-
tions that can identify and generate parallel loops. The
transformation of such loops is necessary for successful
parallel implementation of any program on any parallel
machine. Although our work has been done in the context
of the Cedar shared-memory machine, its applicability goes
much beyond Cedar to both present and future multiproc-
essors. Early results of a new compiler that incorporates the
proposed techniques show substantial performance gains
over state-of-the art compilers on an SGI Challenge ma-
chine. Similar results were reported on a Cray T3D machine
[31] and a Sun multiprocessor [14].

5.4 Privatization May Make Data Distribution Less
Important

Much recent work on programming techniques for distrib-
uted-memory machines has focused on data-distribution
techniques. In our study, we have not found such tech-
niques to be of significant importance. Instead, privatiza-
tion techniques, which provide a natural way of placing
data with the referencing processors, may deserve more
consideration. If large amounts of data are privatized, less
needs to be shared, and less needs to be distributed.

5.5 These Techniques Apply to Other Programs
The more our work with the Perfect Benchmarks applies
to other programs, the more important it turns out to be.
When testing its applicability to additional programs,
not in the Perfect suite, we have found that the new
techniques do apply. In fact, in many cases, we have not
been able to improve the Polaris-optimized code manu-
ally. Nevertheless, our future work will include studies
with even more realistic applications, such as programs
found among the “Grand Challenge” applications and
the SPEChpc96 benchmarks [9].

5.6 Parallelizing Compilers Can Be Improved
Significantly

Perhaps the most important conclusion for the field of our
direct interest is that this work has given strong indication
that substantially more powerful parallelizing compilers can
be built. We believe this is very significant because there ap-
pears to be a growing belief that this is not possible. Some
people have even used our previous work as evidence that,

despite many years of compiler research and development,
commercial parallelizers are very limited in their effective-
ness on real programs. That conclusion was premature on
their part, because our work now indicates that there is po-
tential for much improvement of automatic parallelization.

ACKNOWLEDGMENTS

This work was supported by U.S. Army contract #DABT63-
95-C-0097 and the U.S. Department of Energy under grant
#DOE DE-FG02-85ER25001. This work is not necessarily rep-
resentative of the positions or policies of the U.S. Army or the
U.S. Government. Some of the experiments described in this
paper were done by Greg Jaxon and Zhiyuan Li while they
were members of our research group at CSRD. Their contri-
butions were essential for the success of this project.

REFERENCES

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Reading, Mass.: Addison-Wesley, 1986.

[2] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Law-
rence, J. Lee, D. Padua, Y. Paek, W. Pottenger, L. Rauchwerger, and
P. Tu, “Advanced Program Restructuring for High-Performance
Computers with Polaris,” Technical Report 1473, Univ. of Illinois at
Urbana-Champaign, Center for Supercomputing Research & De-
velopment, http://polaris.cs.uiuc.edu/ tech_reports.html, Jan. 1996.

[3] W. Blume and R. Eigenmann, “Performance Analysis of Parallel-
izing Compilers on the Perfect Benchmarks Programs,”. IEEE
Trans. Parallel and Distributed Systems, vol. 3, no. 6, pp. 643–656,
Nov. 1992.

[4] W. Blume and R. Eigenmann, “The Range Test: A Dependence
Test for Symbolic, Non-linear Expressions,” Proc. Supercomputing
‘94, pp. 528–537, Washington D.C., Nov. 1994.

[5] W. Blume and R. Eigenmann, “An Overview of Symbolic Analy-
sis Techniques Needed for the Effective Parallelization of the Per-
fect Benchmarks,” Proc. 1994 Int’l Conf. Parallel Processing, vol. II,
pp. 233–238, Aug. 1994.

[6] W. Blume and R. Eigenmann, “Symbolic Range Propagation,”
Proc. Ninth Int’l Parallel Processing Symp., pp. 357–363, Apr. 1995.

[7] W. Blume, R. Eigenmann, J. Hoeflinger, D. Padua, P. Petersen, L.
Rauchwerger, and P. Tu, “Automatic Detection of Parallelism: A
Grand Challenge for High-Performance Computing,” IEEE Paral-
lel and Distributed Technology, vol. 2, no. 3, pp. 37–47, Fall 1994.

[8] U. Banerjee, R. Eigenmann, A. Nicolau, and D. Padua, “Automatic
Program Parallelization,” Proc. IEEE, vol. 81, no. 2, pp. 211–243, Feb.
1993.

[9] R. Eigenmann and S. Hassanzadeh, “Benchmarking with Real
Industrial Applications: The SPEC High-Performance Group,”
IEEE Computational Science & Engineering, vol. 3, no. 1, pp. 18–23,
Spring 1996.

[10] R. Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li, and D. Padua,
“Restructuring Fortran Programs for Cedar,” Concurrency: Practice
and Experience, vol. 5, no. 7, pp. 553–573, Oct. 1993.

[11] R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua, “Experience in
the Automatic Parallelization of Four Perfect-Benchmark Pro-
grams,” Lecture Notes in Computer Science, no. 589, pp. 65–83, Aug.
1991.

[12] R. Eigenmann, “Toward a Methodology of Optimizing Programs
for High-Performance Computers,” Proc. Int’l Conf. Supercomput-
ing 1993, pp. 27–36, Tokyo, July 20-22, 1993.

[13] R. Eigenmann and P. McClaughry, “Practical Tools for Optimiz-
ing Parallel Programs,” Proc. 1993 Simulation Multiconference High-
Performance Computing Symp., Arlington, Va., Mar. 27-Apr. 1,
1993.

[14] R. Eigenmann, I. Park, and M.J. Voss, “Are Parallel Workstations
the Right Target for Parallelizing Compilers?” Proc. Ninth Work-
shop Languages and Compilers for Parallel Computing, Aug. 1996.

[15] High Performance Fortran Forum, “High Performance Fortran
Language Specification, Version 1.0,” technical report, Rice Univ.,
Houston, Texas, May 1993.

EIGENMANN ET AL.: ON THE AUTOMATIC PARALLELIZATION OF THE PERFECT BENCHMARKS 23

[16] K. Gallivan, W. Jalby, S. Turner, A. Veidenbaum, and H. Wijshoff,
“Preliminary Basic Performance Analysis of the Cedar Multiproc-
essor Memory Systems,” Proc. Int’l Conf. Parallel Processing 1991,
vol. I, pp. 71–75, St. Charles, Ill., Aug. 12-16, 1991.

[17] G. Goff, K. Kennedy, and C.-W. Tseng, “Practical Dependence
Testing,” Proc. ACM SIGPLAN ‘91 Conf. Programming Language
Design and Implementation, pp. 15–29, June 1991.

[18] M. Gupta, S. Midkiff, E. Schoenberg, B. Seshadri, D. Shields, K.Y.
Wang, M.M. Ching, and T. Ngo, “An HPF Compiler for the IBM
SP-2,” Proc. Supercomputing’95, San Diego, Calif., 1995.

[19] J. Hoeflinger, “Coalescing Triangular Loops,” Technical Report 1364,
Univ. of Illinois at Urbana-Champaign, Center for Supercomputing
Research & Development, Jan. 1992.

[20] J. Hoeflinger, “Run-Time Dependence Testing by Integer Se-
quence Analysis,” Technical Report 1194, Univ. of Illinois at Ur-
bana-Champaign, Center for Supercomputing Research & Devel-
opment, Jan. 1992.

[21] M. Haghighat and C. Polychronopoulos, “Symbolic Dependence
Analysis for High-Performance Parallelizing Compilers,” Parallel
and Distributed Computing: Advances in Languages and Compilers for
Parallel Processing, pp. 310–330. Cambridge, Mass.: MIT Press,
1991.

[22] M. Haghighat and C. Polychronopoulos, “Symbolic Analysis: A
Basis for Parallelization, Optimization, and Scheduling of Pro-
grams,” Proc. Sixth Workshop Languages and Compilers for Parallel
Computing, Aug. 1993.

[23] C.A. Huson, “An In-Line Subroutine Expander for Parafrase,”
master’s thesis, Univ. of Illinois at Urbana-Champaign, Dept. of
Computer Science, Dec. 1982.

[24] D. Kuck, P. Budnik, S.-C. Chen, E. Davis Jr., J. Han, P. Kraska, D.
Lawrie, Y. Muraoka, R. Strebendt, and R. Towle, “Measurements
of Parallelism in Ordinary FORTRAN Programs,” Computer, vol. 7,
no. 1, pp. 37–46, Jan., 1974.

[25] D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C.-Q. Zhu, A. Vei-
denbaum, J. Konicek, P. Yew, K. Gallivan, W. Jalby, H. Wijshoff,
R. Bramley, U.M. Yang, P. Emrath, D. Padua, R. Eigenmann, J.
Hoeflinger, G. Jaxon, Z. Li, T. Murphy, J. Andrews, and S. Turner,
“The Cedar System and an Initial Performance Study,” Proc. 20th
Int’l Symp. Computer Architecture, pp. 213–224, San Diego, Calif.,
May 16-19, 1993.

[26] Z. Li, “Array Privatization for Parallel Execution of Loops,” Proc.
Int’l Conf. Supercomputing 1992, pp. 313–322, 1992.

[27] D.E. Maydan, S.P. Amarasinghe, and M.S. Lam, “Data Depend-
ence and Data-Flow Analysis of Arrays,” Proc. Fifth Workshop
Languages and Compilers for Parallel Computing, Aug. 1992.

[28] D. Maydan, J. Hennessy, and M. Lam, “Efficient and Exact Data
Dependence Analysis,” SIGPLAN Notices: Proc. ACM SIGPLAN 91
Conf. Programming Language Design and Implementation, pp. 1–14,
Toronto, June 26-28. ACM Press, 1991.

[29] B. Pottenger and R. Eigenmann, “Idiom Recognition in the Polaris
Parallelizing Compiler,” Proc. Int’l Conf. Supercomputing 1995,
pp. 444–448, 1995.

[30] L. Pointer, “Perfect: Performance Evaluation for Cost-Effective
Transformations Report 2,” Technical Report 964, Univ. of Illinois
at Urbana-Champaign, Center for Supercomputing Research &
Development, Mar. 1990.

[31] Y. Paek and D. Padua, “Automatic Parallelization for Noncoher-
ent Cache Multiprocessors,” Proc. Ninth Workshop Languages and
Compilers for Parallel Computers, Aug. 1996.

[32] W. Pugh, “A Practical Algorithm for Exact Array Dependence
Analysis,” Comm. ACM, vol. 35, no. 8, pp. 102–114, Aug. 1992.

[33] L. Rauchwerger, N.M. Amato, and D.A. Padua, “Run-Time Meth-
ods for Parallelizing Partially Parallel Loops,” Proc. Int’l Conf. Su-
percomputing 1995, Barcelona, Spain, 1995.

[34] L. Rauchwerger and D.A. Padua, “Parallelizing WHILE Loops for
Multiprocessor Systems,” Proc. Ninth Int’l Parallel Processing Symp.,
Apr. 1995.

[35] J.P. Singh and J.L. Hennessy, “An Empirical Investigation of the
Effectiveness and Limitations of Automatic Parallelization,” Proc.
Int’l Symp. Shared Memory Multiprocessing, Tokyo, Apr. 1991.

[36] P. Tu and D. Padua, “Automatic Array Privatization,” Proc. Sixth
Workshop Languages and Compilers for Parallel Computing, Port-
land, Ore. Lecture Notes in Computer Science, vol. 768, pp. 500–
521, Aug. 12-14, 1993.

[37] M. Wolfe, “Beyond Induction Variables,” Proc. ACM SIGPLAN’92
Conf. Programming Language Design and Implementation, pp. 162–
174, 1992.

Rudolf Eigenmann received his PhD in 1988
from ETH Zurich, Switzerland. From 1988-1995,
he was a member of the research staff at the
Center for Supercomputing Research and De-
velopment (CSRD) and an adjunct faculty mem-
ber of the Departments of Computer Science
and Electrical and Computer Engineering, Uni-
versity of Illinois at Urbana-Champaign. In 1995,
he joined the faculty at the School of Electrical
and Computer Engineering at Purdue University.
Dr. Eigenmann has worked in the areas of com-

pilers, languages, and high-performance computer architectures. He
currently serves as the chairman of the High-Performance Group of the
Standard Performance Evaluation Corporation (SPEC) and as a member
of the editorial board of IEEE Computational Science and Engineering.
He is a member of the IEEE.

Jay Hoeflinger received his BS in computer
science in 1974 and his MS in computer science
in 1977 from the University of Illinois at Urbana-
Champaign. He is currently working on a PhD in
computer science at the University of Illinois. He
was a member of the Compiler Group at the
Center for Supercomputing Research and De-
velopment starting in 1985, working on the Ce-
dar Fortran compiler. He now works as a senior
software engineer supporting the Polaris project.

David Padua received his PhD degree from the
University of Illinois at Urbana-Champaign in
1980. In 1985, he returned to the University of
Illinois where, from 1990-1993, he was the asso-
ciate director for software at the Center for Su-
percomputing Research and Development, and
is now a professor in the science laboratory. Dr.
Padua has published extensively on different
aspects of parallel computing, including machine
organization, parallel programming languages
and tools, and parallelizing compilers. His cur-

rent research focuses on the experimental analysis of parallelizing
compilers and on the development of the techniques needed to make
these compilers more effective. In 1992, he received the Xerox Award
for Faculty Research. His paper with Dr. Peng Tu received the Best
Paper Award from the ACM International Conference on Supercom-
puting in 1995. He is a coorganizer of the Workshops on Languages
and Compilers for Parallel Computing, which have been held annually
for the past nine years. Dr. Padua served as program committee
chairman of the 1990 and 1995 ACM Symposia on Principles and
Practice of Parallel Programming. He was also program cochairman of
the 1990 International Conference on Parallel Processing. He is an
editor of the International Journal of Parallel Programming and serves on
the editorial board of the Journal of Parallel and Distributed Computing,
and the Journal of Programming Languages. From 1992-1996, he was
an editor of the IEEE Transactions on Parallel and Distributed Systems.
He is a member of the ACM and a senior member of the IEEE.

