Outline of a Roadmap for Compiler Technology

David A. Padua
University of Dlinois at Urbana-Champaign

Compiler technology has been a major subfield of
computer science ever since the first compilers were
developed in the late 1950s. Compilers made possible the
development of today’s efficient and sophisticated soft-
ware at an affordable cost, thus playing a crucial role in
popularizing computers. Although we have learned much
over 40 years about compiler development tools, inter-
nal compiler organization, parsing techniques, and opti-
mization algorithms, sustained progress in computer us-
ability and performance will require much more research
in this area.

What drives compiler technology?

High-level languages and machine architectures define
the character of the compiler technology that connects
them. New architectural features usually lead to new
compiler algorithms, whose objective is to improve the
performance of high-level language programs without
introducing machine-dependent constructs that tend to
hinder readability and portability. For example, com-
piler algorithms for register allocation allow high-level
language programs to profit from multiple CPU
registers.

Parallelism, in all its forms, is another important ex-
ample of architectural features exploited via compiler al-
gorithms. Techniques like trace scheduling, software
pipelining, and their derivatives were developed and are
universally applied to exploit (or to exploit more effec-
tively) the functional unit parallelism available on prac-
tically all current machines. Parallelism is today one of

FALL 1996

the main concerns in computer architecture. In fact,
widespread opinion holds that most computers of the fu-
ture, from PCs to the most powerful machines, will be
parallel. For this reason, coarse-grain parallelism detec-
tion, locality enhancement, and communication opti-
mization will be central concerns of compiler technol-
ogy in the foreseeable future.

The main characteristics of the most popular pro-
gramming languages have evolved quite slowly since the
late 1950s. A Fortran or Algol 60 programmer of that
time would be familiar with many of today’s program-
ming constructs. The evolution of the widely accepted
general-purpose languages probably will remain slow.
Certainly, a paradigm shift—for example, to functional
or logic programming—is unlikely. Nevertheless, pro-
gramming languages will evolve, and two major forces
driving this evolution will be parallel computing and
problem-solving environments. New constructs for par-
allelism are already available for most parallel computers,
and standard parallel extensions will most likely appear
soon. Many application packages and problem-solving
environments include some form of programming lan-
guage for flexibility. Embedded languages will become
even more common. They will include interfaces to pow-
erful preexisting modules and will incorporate domain-
specific language constructs and intrinsic data types. Al-
ready numerous examples of languages are embedded in
problem-solving packages, including the languages of
computer algebra packages, the Matlab language, and
Java (if we categorize Web browsers as problem-solving
environments).

1070-9924/96/$5.00 © 1996 IEEE 65

TAK’NGSTOCK:THEMEESSAYS#»&‘A‘0‘00000000‘00‘0000000‘05000000000‘00000000000000000000000000’0000000000

Compiler technology challenges

Much work lies ahead in compiler technology to con-
tinue improving the translation of conventional lan-
guages for uniprocessors and to support progress in ma-
chine architecture and programming language design.
We will need a concerted effort involving algorithm de-
velopment, evaluation, and implementation strategies to
develop Fortran 90 and C++ compilers of quality equal to
some previous Fortran compilers. Also, progress in com-
piling functional and logic programming languages
should continue. These studies widen our understand-
ing of language and compiler technology. At the same
time, we will need sophisticated new algorithms enabling
the accurate global program analysis necessary to gen-
erate efficient code from very high level constructs that
are typical of embedded languages, and to effectively
compile the code for highly parallel computers.

T’ll briefly discuss a few important specific challenges in
compiler technology.

A public-domain compiler infrastructure

We sorely need a high-quality, robust compiler infra-
structure to improve the quality of compiler technology
research and to accelerate computing progress in gen-
eral. In fact, an important factor limiting experimental
compiler research has been the lack of a public-domain
infrastructure in which researchers could easily incorpo-
rate new translation algorithms and evaluate them in the
context of a complete compiler. Fortunately it appears
that this situation will soon be remedied. Several federal
government agencies, led by DARPA, plan to initiate de-
velopment of such a compiler infrastructure.

A related issue is the need for extensive, realistic
benchmark collections. The Perfect and SPEC bench-
marks and a few others have been widely used and very
helpful in the past few years. However, we need collec-
tions that are more extensive in the number of codes,
computational requirements, and dimensions of codes.

' Effective compiler algorithms for parallel computers

66

The general area of compilers for parallel machines
has two subtopics. One is the translation of conventional
languages, such as Fortran and C++, for parallel execu-
tion (also called parallelization). The second is the com-
pilation of explicitly parallel languages. Compiler tech-
niques for explicitly parallel languages are needed not
only to translate programs with user-specified parallelism
but also to build the back end of parallelizers.

Although much progress has been made in the trans-
lation of conventional languages, much work remains.
Accurate analysis algorithms to detect parallelism are an
important parallelizer component, as are algorithms such
as those for data layout selection, locality enhancement,
and communication optimization. Progress in these
analysis and translation techniques is important because

~ explicitly specifying all relevant parallelism in a program

and coding for efficient communication often increase
software development costs, which are already too high.

We also need new compiler algorithms for explicitly
parallel programming languages—some to deal with re-
source allocation and overhead and others to allow ap-
plication of traditional optimizations to parallel lan-
guages. This is a largely unexplored subject, with many
open problems. Unfortunately, the lack of standard par-
allel programming languages and parallel program
benchmarks impedes the development of a solid experi-
mental foundation in this area.

Compiler techniques for data-structure manipulation
Most compiler algorithms operate on control struc-
tures. However, manipulating data structures is very im-
portant in some cases. For example, array distribution
across modules in a distributed-memory machine, and
array layout on different classes of machines, may
strongly affect performance. Past research has studied
automatic selection of data structures to represent ob-
jects in the SE'TL language, and several ongoing pro-
jects are studying techniques to automatically select the
data structure to represent sparse arrays. This issue will
most likely gain greater attention as new languages em-
bedded in problem-solving envirohments are developed.

Increased compiler efficiency

Fast compilation has always been a goal and will in-
crease in importance as new machines and languages in-
troduce more complex translation processes. Major areas
of study include techniques that postpone part of the
compilation until execution in order to decrease response
time, and compiler algorithms that execute in parallel.

Adaptive code generation strategies

Compiler developers are increasingly using runtime in-
formation to speed up program execution. For example,
branch frequency information has been used to improve
the quality of code generated for multifunctional paral-
lelism. Also, some experimental compilers generate code
that determines at execution time how to distribute data
or whether a loop is parallel. These two strategies illus-
trate an increasingly important general approach that
might be called “adaptive compiling” or “runtime code
transformation.” 4

David A. Padua is a professor of computer science at the Univer-
sity of Wlinots. He is a principal investigator in the Polaris project,
working to create an optimizing compiler that nutomatically puts
conventional Fortran programs into pavailel form. Readers can
contact Padua at the University of Illinois at Urbana-Champaign,
3318 Digital Computer Laboratory, 1304 W, Springfield Ave.,
Urbana, IL 61801; e~mail, padua@csrd.uiuc.edu.

IEEE COMPUTATIONAL SCIENCE & ENGINEERING

