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Abstract
This work identifies practical compiling techniques for

scalable shared memory machines. For this, we have fo-
cused on experimental studies using a real machine and
representative codes. In the experiments, we transformed
conventional codes to shared memory codes using several
existing techniques and ran the output on the target machine
to evaluate those techniques and to identify where improve-
ment is needed. Based on the analysis of the results, we
developed a few new techniques, and experimented again
on the target machine to measure the effectiveness of each
one. The results reported in this paper were quite positive,
lending useful information to future research on compiler
optimizations for existing SSM machines.

1 Introduction
For the past decade, compiler techniques for NUMA ma-
chines have been studied extensively, mainly in the con-
text of the well-known Fortran extensions, such as HPF and
Vienna Fortran. The best understood techniques for these
compilers targetmessage passing models[9]. In this con-
text, Send/Receive primitives are generated to access re-
mote data. There has been active research on compiler tech-
niques for determining the best data/work partitioning and
for generating efficient Send/Receive operations because
these tasks are a tremendous burden for the user.

During the last few years, it has become evident that
high-end NUMA architectures are converging towardsscal-
able shared memorymachines [8, 16, 17], which provide
programmers and compilers with more attractive features
than traditional message passing machines. In this paper,
we discuss a compiler strategy for SSM machines that cap-
italizes on their salient features.

One of our goals in this project is to study how effec-
tively parallel machines could be programmed when all par-
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allel constructs are generated by the compiler from conven-
tional codes. We believe it is crucial that the experimental
evaluation of any compiler study be based on a real machine
and real codes. Thus, an important part of this paper is the
experimental evaluation of the effectiveness of the transla-
tor using six scientific benchmark codes.

Section 2 describes the techniques we used to generate
parallel code for SSM machines. Section 3 shows our ex-
perimental results on the Cray T3D.

2 Techniques Tested in This Work

The techniques we have tested in this work can be classi-
fied largely into three groups: parallelism detection, parallel
thread generation, and communication overhead reduction.
They are briefly described in this section.

2.1 Detection of Parallelism

Finding parallelism in the source code is the key ingredi-
ent of successful compilers for all types of multiprocessors.
This section describes the techniques we used to tackle the
problem of finding parallelism.

2.1.1 Reduction and Induction Variables

In our work, induction and reduction variables are recog-
nized and eliminated before any other technique for par-
allelism detection is applied. To handle these variables in
this work, we used the existing techniques [14]. Figure 1
shows how the induction variableD(M) is replaced by loop
indices.

SUBROUTINE SUB(M,N)
REAL M(100)
M = 0
DO I = 1, N

DO J = 1, I
M = M + 1
D(M) = � � �

ENDDO
ENDDO
DO K = 1, N
� � � = D(K)

ENDDO

)

SUBROUTINE SUB(M,N)
REAL M(100)
M = 0
DO I = 1, N

DO J = 1, I
D(M+J+(I*I-I)/2) = � � �

ENDDO
ENDDO
M = M+N+(N*N-N)/2
DO K = 1, N
� � � = D(K)

ENDDO

Figure 1. Induction variable substitution
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2.1.2 Privatization Based on Array Access Analysis

In scientific programs, arrays used as temporary storage of-
ten cause memory-related dependences, which usually can
be eliminated byarray privatization. Furthermore, array
privatization can help reduce communication costs in SSM
machines by placing data into local memory.

In the initial phase of our work, we used the technique
developed by Tu [18]. But, we soon found it necessary to
find another technique to enable the generation of efficient
parallel code for SSM machines in some important cases. In
our search for a better technique, we observed that the most
important ingredient for the success of array privatization is
the accuracy ofarray accessanalysis. This is, of course,
also true for many existing compiler techniques.

The accuracy of array access analysis relies mostly on
thearray region descriptor(ARD) used to summarize the
array locations accessed within a section of code. In [13],
we discussed the limitations of existing ARDs, which moti-
vated us to develop a new descriptor, called thelinear mem-
ory access descriptor(LMAD).

In the LMAD, accessing an array is viewed as traversing
a linear memory space. For example, in the code

REAL A(N-1,N)
DO J = 1, M

DO I = 0, K
� � � A(2*I+J,J+3) � � �

ENDDO
ENDDO

the two-dimensional array access is, in reality, the traver-
sal in a linear memory space starting from thebase ad-
dress� (= the memory location forA(1,4) ) all the way
to �+2�K+(M�1)�N (= the location forA(2*K+M,M+3) ).
From this example, it can be seen that memory traversals
are driven by the loop indicesI andJ . In the LMAD, the
memory access driven by a single loop index is character-
ized by astride/spanpair. The stride is the distance in the
number of array elements between accesses generated by
consecutive values of the index. In the above example, the
stride for indexI is 2 because the access moves across two
elements ofA on each iteration ofI . Similarly, we can see
the stride forJ is N. The span is the total element-length
which the access traverses when the index iterates its entire
range. Again in the example, the span for indexI is 2�K,
which is the entire distance traversed between iterations 0
andK for a fixed value ofJ . Similarly, the span ofJ is cal-
culated to (M�1)�N for the iteration ofJ from 1 up toM.

The LMAD is the collection of stride/span pairs of all in-
dices involved in the array access and the base offset, which

has the general form:A
stridei1 ;stridei2;���;strideid
spani1 ; spani2 ;���; spanid

+ � , as-
suming the access to arrayA is driven byd loop indices,
i1, i2, � � �, id. Here,� is set to the offset of the first ac-
cess from the beginning of the array. As can be seen in
the above example, a single stride/span pair for a loop in-
dex (e.g., f1,2�Kg for I andfN,(M�1)�Ng for J ) character-
izes the independent access pattern generated by the index

iteration. Thus, the LMAD defines the overall pattern of
the access driven by all indices. The LMAD summarizing
the overall access in the example would beA1;N

2K;(M�1)N+3N.
The accesses in Figure 1 can be likewise summarized as:

D1
N�1+0 for the region read in the loop, and
D1;I

I�1;(N2�N)=2+M for the region written.

From the LMAD for the write, we can see the memory
traversal structure: starting from� = M, the assignment
statement visitsI elements of arrayD consecutively with
stride 1 and jumps the elements with strideI to the el-
ement right next to them until it reaches the element at
address�+N

2+N

2 . Despite the apparent complexity of sub-
script expressions, this write access is actually a simple
stream of accesses in memory from the elementD(M) to
D(M+(N*N+N)/2) with stride 1, which can be summa-
rized with a simpler LMAD:D1

(N2+N)=2+M. Using this sim-
pler one, we can compare the write region with the read
region for privatization and, additionally by provingM=0,
declare arrayDprivate toSUB.

In our experiments, we used the LMAD in array access
analysis for array privatization, and found that the LMAD
indeed helped improve the effectiveness of the technique.

2.1.3 Dependence Analysis

After eliminating memory-related dependences with priva-
tization, we tested dependences in the loops to determine
whether the loops were parallel. Most subscript expressions
occurring in scientific programs are simple. Thus, primitive
dependence tests are usually efficient and accurate at dis-
proving dependence in practice. For this reason, to find par-
allel loops with those simpleaccess patterns, theEquality
testandGCD testwere first applied in our work. Then, for
more complex loops, we applied theRegion test[7, 12]. To
find parallelism in a loop, the Region test summarizes the
regions of array accesses within the loop, and intersects the
regions to determine cross-iteration dependences between
the regions. Such region summaries for the Region test are
represented with the LMAD.

To handle the situations where insufficient information
exists to carry out the dependence testing at compile time,
the Region Test enables the generation of constraints for
run-time dependence testing. For example, consider the
loop intraf 1000 in Figure 2.a. The array elements ac-
cessed in the loop are:

1, 2, 3,N, N+1, N+2, 2N, � � �, M+2�N, M, M+1, M+2.
To disprove cross-iteration dependences for the loop, we
must show that there is no overlap between array accesses
on different iterations of the loop. From this sequence, it
is clear that no overlap exists ifN > 2. Because the value
N is not known, the constraint cannot be proven at compile
time. However, using the Region test, a parallel loop can
be generated forintraf 1000 under the constraint,N > 2,
for run-time testing.
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Although parallelizing loops under run-time constraints
is not a new idea [2], little research has been done on how
to efficiently collect the predicates from the program. The
LMAD representation facilitated gathering the predicates.
In this example, to generate the LMAD for the accesses
to arrayF, first notice that the accesses are driven by two
indices: I and an implicit index, sayI 0, to represent+1

and+2 in the loop. As discussed in Section 2.1.2, the ac-
cesses driven by indicesI 0 and I can be characterized by
two stride/span pairs:f1,2g for I 0 andfN,M-1g for I , from
which we build the LMADF1;N

2;M�1 + 0. From the LMAD,
we extract a necessary condition for parallelization, namely:

N > 2 _ 1 > M� 1,
which is obtained by simply comparing the stride of one
pair with the span of the other pair. We call this thenon-
overlap constraint. Inside the loop,1 > M � 1 is clearly
false, resulting inN > 2 as the non-overlap constraint for
this loop.

DO I = 1, M, N
� � �

F(I) = F(I) � � �
F(I+2) = F(I+2) � � �
F(I+1) = F(I+1) � � �

ENDDO

(a) intraf 1000 from mdg

DO J = 1, (M-1+N)/N, 1
DO I = 1, K, 1
� � � = D(1-M+I*M+(J-1)*N)
D(1-M+I*M+(J-1)*N) = � � �

ENDDO
ENDDO

(b) ftrvmt 103 from ocean

DO I = 0, 2**(M-M/2)-1, 1
DO J = 1, 2**(M/2), 1

Y(J+2*I*2**(M/2)) = � � �
Y(J+2**(M/2)+2*I*2**(M/2)) = � � �

ENDDO
ENDDO

(c) cfftz #2 from tfft2

Figure 2. Abbreviated versions of loops from our testing
codes in the Perfect and NASA benchmark suites. The no-
tation intraf 1000 stands for the loop with label1000
within the subroutineintraf . All the loops are obtained
after interprocedural value propagation, induction variable
substitution, and forward substitution. In particular, inlin-
ing is applied to obtaincfftz #2.

Likewise, we can calculate the LMAD for the accesses
of the loopftrvmt 103 in Figure 2.b:

DM;N

(K�1)M;(bM�1+N
N c�1)N

+0.

Using this descriptor, we generate the following necessary
condition for parallelization:

(K� 1) � M < N _ (bM�1+N

N
c � 1) � N < M,

which is to be tested at run-time for overlap checking.
Parallelizing this loop and other similar loops inocean ,
such asftrvmt 106 , ftrvmt 108 , ftrvmt 109 , is im-
portant because they are very time-critical loops. Some
loops (e.g.,ftrvmt 109 ) provide enough information forM
andN to statically prove the non-overlap constraint so that
they can be parallelized without run-time tests. This exam-
ple also shows the importance ofsymbolic range analysis
techniques[2]. In fact, with powerful analysis techniques, it
is possible to disprove dependence at compile time by show-
ing that the condition above is always true even though the

current implementation of the Region test can not yet per-
form such an accurate symbolic analysis.

The simplification operations on the LMAD help dis-
prove dependence in loops with very complex subscript ex-
pressions. The subscripts in Figure 2.c show complex ac-
cess patterns that can be simplified. This access pattern is
typically found in FFT applications: arrayaccesses with the
strides of powers of two. No existing symbolic range anal-
ysis technique can handle this pattern due to its complex
subscript expressions. To handle this, the Region test first
summarizes the accesses for the references as follows:

Y1;2cc�1;2M+1�2c+0 and Y1;2cc�1;2M+1�2c+c

for c = 2M=2. The similarity of these accesses be-
comes more evident in the LMAD forms: both accesses
are interleavedand have the same stride/span pairs only
with different base addresses. This similarity allows their
LMADs to be aggregated into a single LMAD form:
Y1;2c
2c�1;2(M+1)�2c

+0, which, as shown in Section 2.1.2, is

futher simplified intoY12(M+1)�1+0. From this simplified
access description, it is straightforward to disprove depen-
dence on arrayY.

For dependence analysis, we initially used theRange
test[2, 3], a symbolic extension of Triangular Banerjee’s In-
equalities test. But, we soon discovered several cases, such
as those illustrated in Figure 2, where the test was not ef-
fective. The Region test was developed to improve on the
accuracy of the Range test.

2.2 Generation of Parallel Threads

Once parallel loops were identified in the source code, a
shared-memory program was generated as the target paral-
lel code. Since only loop-level parallelism was exploited in
our work, the parallel loops were the only sections of the
target code run across parallel threads. For parallel threads,
iterations of a parallel loop were stripmined by using the
following simple strategy: (1) if several loops in a loop nest
were parallel, then the outermost loop was parallelized; (2)
if the loop nesting structure was square, a block schedule
of iterations was chosen for it; and, (3) if the structure was
triangular, a cyclic schedule of iterations was chosen. Serial
sections were executed by a designated single thread.

For efficient parallel programming on SSM machines,
many commercial and academic shared-memory lan-
guages [4, 5, 11] have been developed recently and imple-
mented in existing machines. They contain several con-
structs that were not supported in languages [6] originally
designed for message-passing machines. First, they include
Put/Get statements [5, 9, 11] or assignment statements op-
erating on a global (or shared) memory space. These state-
ments are provided to controlasynchronous communication
at the software-level because the SSM machine supports
fast asynchronous communication directly in hardware for
efficient global memory operations. Second, they include
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synchronization statements because synchronization is es-
sential to ensure memory coherency when processors ac-
cess shared memory asynchronously and to control the flow
of execution of parallel threads in the target code. Third,
they usually provide a mechanism to allow the programmer
to explicitly choose memory classes between private data
and shared data. For shared data, they provide data distri-
bution directives similar to those in Fortran D and Vienna
Fortran because their shared memory is actually built on
top of physically distributed memory. Our target code is
designed to provide all these programming constructs.

2.3 Communication Optimizations

As discussed above, data objects in our target parallel
code are either private or shared. Using privatization, some
data objects in the source code are declared as private in
the target code. All non-private objects are, by default, de-
clared as shared. Unless all objects are private in our shared-
memory program, parallel threads need to communicate to
access shared data distributed across the machine. In this
work, therefore, our efforts for communication optimiza-
tion focus on shared arrays accessed in parallel loops.

Asynchronous communication in the SSM machine pro-
vides a very efficient way to transfer a large data block
between processors. The basic concept of our technique
is simple: all shared array accesses within a loop are re-
placed with private accesses by copying at loop entries all
elements of the shared arrays used within the loop into pri-
vate memory, and by copying at loop exits the updated re-
sults in private memory to the original shared arrays. By
using this copy-in/copy-out strategy [12], we can take ad-
vantage of low-latency high-throughput block data transfer
when we copy data between private memory and shared
memory. In our target code, Put/Get statements are used
to asynchronously transfer data blocks in the machine.

As discussed in [10], the communication patterns in
a parallel program greatly influence communication over-
head. We classify the patterns into three types:local, fron-
tier, andglobalcommunications.

2.3.1 Local Communications

We say a program section, such as a subroutine or a loop,
haslocal communicationsto mean it has arrays that can be
distributed such that most of their references can be local
to each processor, thereby minimizing the need of commu-
nication caused by the arrays in that program section. Fig-
ure 3 shows a typical example of local communications in
a loop nest. Suppose theJ -loop is parallel and arrayX is
declared as shared and block-distributed. That is, subar-
rays ofX, each withb�Mconsecutive elements, are allocated
to every processor’s private memory. Then, to match the
block data distribution, the compiler would stripmine the
loop with block schedule; thereby, allowing all the work to
be be done on private arrayX0 only with no communication.

REAL X(N*M)
� � �

DO J = 0, N-1
� � � = X(1+J*M)
DO I = 2, M

� � � = X(I+J*M)
X(I+J*M) = � � �

ENDDO
ENDDO

source sequential code

<initialize X0 >
DO J = J0, J 0+b-1

� � � = X0 (1+(J-J 0 )*M)
DO I = 2, M

� � � = X0 (I+(J-J 0 )*M)
X0 (I+(J-J 0 )*M) = � � �

ENDDO
ENDDO
<update X>

target parallel code

p k0p np

... ...

b

X(1) X(NM)X(1+J’M)

X’ X’X’

X

communication pattern

Figure 3. Source code and its target code in SPMD form,
and the illustration of a data distribution for the array for
processorspk ’s: White boxes represent the shared array
sections accessed by processors in the loop, and gray boxes
represent their private counterparts where processors work.

Once private references are substituted for shared ones
in the loop, Put/Get statements are generated to copy-in/out
data between the private and shared arrays. The analysis
of array access patterns in loops plays an essential role in
the generation of Put/Get statements because the efficiency
of Put/Get operations hinges on the accuracy of the analy-
sis that summarizes the array regions to be copied at loop
boundaries. We summarize the array regionsaccessed in
the parallel loop after stripmining in the same way that we
did for finding parallelism in Section 2.1. For instance, in
Figure 3, the read regions for two references toX are sum-
marized and simplified [13] to generate the array region of
X in theGETstatement as follows:

X(1+J’M:(J’+b)M:1)
+

X

X
X X

1, M
M-2,(b-1)M

M
(b-1)M

1, M
M-1,(b-1)M

1
bM

aggregate
coalesce

+J’M+1

+J’M

+J’M +J’M

The region ofX0 can be computed by simply shifting the
lower limit of X region to 1. Then,initialize X0 is imple-
mented with a Get statement to move a single data block:

GET(X(1+J 0 *M:(J 0+b)*M:1),X 0 (1:b*M:1)) .
ForupdateX, we used the LMAD representing the write

access toX: X 1;M
M�2;(b�1)M+J 0M+1, which has two stride/span

pairs. The region cannot be transferred with a singlePUT
operation because Put/Get operations are implemented to
transfer blocks of data with constant strides one at a time.
Thus, we need to convert one of the pairs into an enclosing
loop in which a vector ofM-1 elements is transferred with
stride 1 on every iteration, which results in:

DO J = 0, b-1
PUT(X(2+(J+J 0 )*M:M+(J+J 0 )M:1),X 0 (2+J*M:M+J*M:1))

ENDDO

for updateX. Notice that the number of iterations is com-
puted from the second pair, and the size and stride of the
vector are from both pairs.
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2.3.2 Frontier Communications

In real programs, a loop often contains an array whose ref-
erences are only of the form:i � c, wherei is a loop index
andc can be arbitrary constants, as shown in Figure 4. In
the example, arrayX is accessed only with three references
of the forms:X(I-C1) , X(I) , andX(I+C2) . This pat-
tern of array references results in another communication
pattern, which we callfrontier communications, when the
code is compiled and run in parallel on SSM machines.

DO J = 1, M
DO I = C1, N-C2

� � � = Y(I-C1)+Y(I)
+Y(I+C2)

ENDDO
DO I = C1, N-C2

Y(I) = � � �
ENDDO

ENDDO

source sequential code

<initialize Y0 >
DO J = 1, M

DO I = I 0+1, I 0+b
� � � = Y0(I-I 0 )+Y 0 (I-I 0+C1)

+Y0 (I-I 0+C1+C2)
ENDDO
DO I = I 0+1, I 0+b

Y0 (I-I 0+C1) = � � �
ENDDO
<update shadow>

ENDDO
<update Y>

target parallel code

kp

p k-1 k+1p

... ...
Y

Y’

Y’ Y’

shadow region}}

C1 C2

b

out-frontier region

in-frontier region

communication pattern

Figure 4. Frontier communication pattern:Y is a shared
array, andY0 is a private array that contains the region of
Y accessed in theJ-loop. Dark areas inY0 represent out-
frontier regions and gray areas represent in-frontier regions.
Gray areas inY represent shadow regions.

Suppose the two inner loops in Figure 4 are both par-
allel whereas theJ -loop is serial. If the inner loops are
block-scheduled, neighboring processors have overlapped
access regions (calledshadow regions); thus, they need to
communicate to keep their neighbors updated on the results
of every iteration ofJ . The standard data distribution type
that handles frontier communications is theshadowdis-
tribution [6]. In the shadow distribution, an array is first
block-distributed so as to allocate a private array to each
processor. Extra consecutive private space, which we call
out-frontierregion (OFR), is allocated for the elements that
are shared by neighboring processors. Thein-frontier re-
gion (IFR) refers to the elements within the local block that
are to be moved to neighboring processors after they are up-
dated. The shadow distribution for arrayY would be written
as follows (borrowing the syntax of HPF2.0):

DISTRIBUTE(BLOCK), SHADOW(C1:C2) :: Y .
To generate Put/Get, we first summarize access regions

the same way we did in Section 2.3.1. Ininitialization, the
initial values of all portions of the shared array correspond-
ing to a private array are transferred by Get statements. In

this example, we need a single Get for initializingY0:
GET(Y(I 0+1-C1:I 0+b+C2:1),Y 0 (1: b+C1+C2:1)) .

The update shadowoperation deals with the intermediate
results generated during the loop execution. These results
are stored in the frontier areas. In Figure 4, the change in
the IFR of processors during the current iteration of the loop
J must be copied to the OFR of their neighbors before start-
ing the next iteration. This operation involves two steps, as
illustrated in Figure 4. First, all IFRs are written back to
the corresponding shadow regions simultaneously. Then, all
OFRs are updated with the new results in shadow regions.
These two steps must be separated by an explicit barrier
to ensure that all writes to shadow regions will complete
before any processor tries to read the region. Forupdate
shadow, we generate the following sequence of statements:

PUT(Y(I 0+1:I 0+C2), Y’(1+C1:C1+C2))
PUT(Y(I 0+b+1-C1:I 0+b), Y’(1+ b: b+C1))
barrier synchronization
GET(Y(I 0+1-C1:I 0 ), Y’(1:C1:1))
GET(Y(I 0+b+1:I 0+b+C2), Y’(C1+ b+1:C1+ b+C2)).

A similar procedure is followed when changes take place in
the OFR during the loop execution.

When the loop execution ends, the final results in pri-
vate arrays areput to the shared regions, as shown in Sec-
tion 2.3.1. ForupdateY above, we would generate

PUT(Y(I 0+1+C2:I 0 +b-C1:1),Y 0 (1+C1+C2: b:1)).

2.3.3 Global Communications

We say a loop or subroutine containsglobal communica-
tions if it has shared data that needs to be accessed by all
processors, thereby requiring data movement under the in-
tervention of the processors. The typical data transfer oper-
ations for global communications arebroadcast, reduction,
andgather/scatteroperations. In programs involving irreg-
ular or dynamic dataaccess patterns and where the majority
of data tend to be frequently transferred between processors,
we have seen that simple block distributioncan be relatively
efficient when it is used with those global data transfer op-
erations. One reason is that array accesses in scientific pro-
grams are usually contiguous and, thus, block distribution
increases the chances of finding a long data block in fewer
remote memory modules. Another reason is that the cal-
culation of the target location of the data transfer can be
simplified when arrays are distributed in contiguous blocks.

3 Experiments with Benchmarks

In this section, we report the case studies in which six
benchmark codes are transformed to the target parallel code
written in Craft [4], a native Cray shared-memory lan-
guage, and executed on a Cray T3D system, which con-
sists of processor elements based on DEC 21064 64-bit�-
processor. Each processor contains 1 level on-chip 8 KB
direct-mapped data cache and 64 MB local memory.

For these studies, two different parallel versions were
generated as targets for each code, as shown in Table 1
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where the techniques used for each version are compared.
Version 1 was generated using thePolaris compiler [3] at
Illinois,where most of the techniques discussed in Section 2
are implementedy. Version 2 was manually generated by
researchers at Malaga [1], based on their past work on data
distribution for message passing codes.

optimizations version 1 version 2

parallelism privatization w/ LMAD, by hand analysis
GCD/equality/region test

loop scheduling cyclic,block cyclic,block
communications N/A local,frontier,global
data distribution block block,cyclic,shadow,

block-cyclic,replicate

Table 1. Comparison of the major optimization strate-
gies used in the two versions of parallel target codes.

We found that the techniques for finding parallelism (see
Section 2.1) were effective for the six codes; almost the
same loops were identified as parallel in both versions. In
particular, the loops with complexaccess patterns, such as
cfftz #1/2/3 , intraf 1000 , andpredic 1000 , can be
parallelized by the Region test even though they were orig-
inally serialized by the Range test. Also, in both versions,
the same loop scheduling strategies (see Section 2.2) were
applied.

The only major difference between the two versions was
in the distribution of shared arrays and the generation of
Put/Get. In Version 1, the compiler block-distributes all
shared arrays, and Put/Get generation is intra-loop based;
that is, given parallel loops, it analyzes the shared array re-
gions accessed in individual loops, and generates Put/Get
statements aroundeach loop independently. In Version 2,
communication patterns (see Section 2.3) in the codes were
manually analyzed. The analysis results were used to de-
termine the most appropriate data distribution strategies for
shared arrays and to generate Put/Get statements accord-
ingly. Therefore, we conclude that by comparing the op-
timization strategies of these two versions for each code,
we can estimate the impact of data distribution and explicit
communication control on the T3D.

BDNA: The bdna code uses the BIOMOL package to
perform molecular dynamic simulations of biomolecules in
water. The major routine in the program is theactfor
subroutine, which consumes 96% of the total program exe-
cution time. To parallelize the major loops inactfor , Po-
laris applied privatization (foractfor 240 ) and reduction
variable substitution (foractfor 240/320/500/700 ). In
particular, the Polaris dependent test parallelized all the im-

yIn fact, because the LMAD was not fully implemented when this ex-
periment was conducted, some hand transformations additionally had to be
applied to the loops where more accurate LMAD-based array analysis was
necessary. Its implementation was recently completed [7, 13].

portant loops in the subroutine. Array privatization and re-
duction recognition techniques in Polaris were quite effec-
tive for bdna because they privatized a large number of
arrays and scalars, which eliminate substantial communica-
tion overhead. All these factors made it possible to main-
tain good scalability on up to 64 processors, as shown in
Figure 5.
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Figure 5. Executions of the sequentialactfor routine
in bdna code and its parallel code generated by Polaris and
by hand. The accurate speedup result for Version 2 was
unavailable on 64 processors.

The main effort in Version 2 was to optimize commu-
nication by finding a suitable data distribution. By hand
analysis, we found that for arraysFX, FY, FZ, FSX, FSY,
FSZ, TX, TY andTZ, cyclic distribution is better because
the arrays are accessed within the triangular loops, and for
the arraysFSX, FSY, andFSZ, which are aligned as four el-
ement blocks with the other, a block-cyclic(4) distribution
was suitable.

MDG: The mdg code is a driver for molecular dynamic
simulation of flexible water molecules in the liquid state at
room temperature and pressure. The computations inin-
terf subroutineare controlled by a parallel triangular nest-
ing: interf 1000 -interf 1100 . Thus, a cyclic schedule
of iterations in this nesting was used to balance the work-
load. With this cyclic loop scheduling,interf 1000 ac-
cesses sixteen arrays in total. In addition, ten arrays out of
the sixteen cause memory-related cross-loop dependences,
preventing the compiler from parallelizing this most time-
critical loop in mdg. The superlinear speedups on up to
16 processors are ascribed to the privatization and reduc-
tion recognition techniques that privatized the ten arrays,
which not only greatly contributed to reducing communica-
tion overhead in the loop, but also parallelized it, along with
other major loops such aspoteng 2000 andintraf 1000 .

In Version 2,FX, FY andFZ were distributed with the
BLOCK-CYCLIC distribution type, which resulted in bet-
ter scalability on more than 16 processors. However, we
reached a point of diminishing returns beyond 16 proces-
sors. One reason is thatinterf 1000 has global commu-
nication for reduction variables. In particular, the impact of
reductions in small blocks of those three arrays are impor-
tant because they can eat up to 27% of theinterf execu-
tion time (or equivalently 21% of themdg execution time)
on 64 processors.
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Figure 6. Executions of the sequentialmdg code and its
parallel code generated by Polaris and by hand

SWIM: The swim code is a benchmark program from
shalow , a weather prediction program based on the dy-
namics of finite-difference models of the shallow-water
equations. Figure 7 shows that the current implementation
of Polaris can generate a quite efficient parallel code for
swim . Overall, of the six programs,swim has the best
scalability on up to 64 processors for two main reasons.
First, 99.9% of sequential coverage is parallelized by Po-
laris. Second, its major loops do not have global communi-
cations, which is usually a main cause of scalability degra-
dation on a large number of processors.
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Figure 7. Executions of the sequentialswim code and its
parallel code generated by Polaris and by hand

The major routines contain doubly-nested parallel loops.
Their loopsaccess shadow regions, and their communica-
tion patterns are frontier communications. Therefore, their
communication overhead can be reduced by the technique
described in Section 2.3.2. In Version 2, a two-dimensional
SHADOW distribution was chosen and the frontier com-
munications in these subroutines were exploited, which al-
lowed almost linear speedups in Version 2, even on 64 pro-
cessors, as shown in Figure 7. In contrast, the current imple-
mentation of Polaris does not handle these communications
and only exploits one dimensional parallelism, as stated ear-
lier. This explains the increased performance gap between
Version 1 and Version 2 on larger numbers of processors.

TFFT2: Thetfft2 code is an FFT program from NASA
which performs real-to-complex, complex-to-complex, and
complex-to-real FFTs. The repeated subroutine calls inside
loops form a deeply nested loop structure. Polaris, using
the dependence analysis based on the LMAD, parallelized
more than 95% of sequential coverage oftfft2 , which
enabled the speedups of the parallel code, as shown in Fig-
ure 8. In particular, array privatization was highly effective
for the two major loops,cfftz #1 andcfftz #3. Loops in

tfft 120 and three subroutinestransa/b/c have global
communications for reductions and matrix transposition.
This is a serious limitation for speedups of the parallel code
because these loopsaccount for about 14% of sequential
execution. The results in Figure 8 confirmed this analytical
conclusion. Also, we found that 5.2% of sequential time is
spent in the loops that have frontier communications.
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Figure 8. Executions of the sequentialtfft2 code and
its parallel code generated by Polaris and by hand

Despite these difficulties oftfft2 , we have achieved
reasonable scalability in Version 2. We found this is mainly
due to the selection of aBLOCK CYCLIC data distribution,
which gets local computation for the 77% of sequential cov-
erage and provides the opportunity to exploit parallelism
without communications. Also in Version 2, the perfor-
mance improved further in several ways. First, the fron-
tier communications were exploited. Second, three rou-
tines, transa/b/c , were manually optimized by using
tiling [15] to exploit the small 8KB on-chip cache in the
T3D. Third, arrayS, defined in therandp subroutine, was
replicated for removing communication caused by it.

TOMCATV: The tomcatv code is a program that uses
finite difference approximation for a fluid dynamics simu-
lation. Frontier communications are the major communica-
tion pattern of the loopmain 140 , which is the computa-
tional kernel oftomcatv , accounting for more than 93%
of the sequential execution time.

As shown in Figure 9, the scalability of the speedups of
Version 1 is limited because, similar to the case ofswim ,
Polaris currently cannot specialize in the optimization of
frontier communications. The significant improvement of
the speedups for Version 2 was made by exploiting shadow
distribution, and frontier communications for the rows of
arraysX andY.

 Parallel Code(Ver 1)

 Parallel Code(Ver 2)

 Sequential Code

N
u

m
b

e
r 

o
f 

P
ro

c
e

s
s
o

rs

Execution Time (sec)

1

2

4

8

16

32

64

| | | | | | | | | |

|
|

|
|

|
|

0 150 300 450 600 750 900 1050 1200 1350 1500

Figure 9. Executions of the sequentialtomcatv code
and its parallel code generated by Polaris and by hand
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Further improvement was made in Version 2 with ad-
ditional strategies. First, we exploited the data replica-
tion strategy for data distribution for other arrays, such as
RXMand RYMwhich are small and are used as reduction
variables. Also, in the first loop nested insidemain 140

we chosemain 50 as parallel instead of the outer loop
main 60. By doing this, the arraysX, Y, RX, andRYwere
accessed in parallel by rows during the whole execution.

TRFD: The trfd is a quantum mechanics kernel where
the major time-consuming subroutineolda accounts for
90% of the total sequential execution time.

Array privatization is a very crucial technique for op-
timization of the major loops,olda 100/300 . In partic-
ular, Polaris successfully handled non-affine subscript ex-
pressions to parallelize these loops, as discussed in Sec-
tion 2.1.
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Figure 10. Executions of the sequentialtrfd code and
its parallel code generated by Polaris and by hand

In Version 2, the work arrayX was partitioned into
three matrices, (X(I00), X(I20), X(I30) ), and a vec-
tor (X(I10) ). One key aspect was thatX(I20) andX(I10)

andX(I00) were replicated on each processor to avoid any
communications. The dimensions of these matrices and
vectors are very small compared withX(I30) , the main
matrix in trfd . So the only matrix that was distributed
across processors in Version 2 isX(I30) . Choosing a
BLOCK CYCLIC data distribution for it improved the per-
formance of Version 1 by approximately 50%, as illustrated
in Figure 10.

4 Conclusion

In this paper, we presented experimental results that pro-
vide some promise that it would be possible for the compiler
to automatically generate parallel code for SSM machines
with relatively simple techniques, while still producing rea-
sonable speedups for some actual applications on real ma-
chines.

In this work, the comparison with manual optimizations
showed that data distribution or other communication mini-
mization issues are still important for the T3D, but also that
these techniques are not necessarily too sophisticated. With
only a few extra techniques, such as reduction of commu-
nication overhead by recognizing communication patterns
and the array access pattern analysis, we manually achieved
nearly ideal speedups for several applications.
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