
Compiler Techniques for E�ective Communication on

Distributed-Memory Multiprocessors

Angeles G. Navarro Yunheung Paeky Emilio L. Zapata David Paduay

Dept of Computer Architecture, Univ. of M�alaga, Spain

fangeles,ezapatag@ac.uma.es

y Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign
fy-paek,paduag@cs.uiuc.edu

Abstract

The Polaris restructurer transforms conventional For-

tran programs into parallel form for various types of mul-

tiprocessor systems. This paper presents the results of a

study on strategies to improve the e�ectiveness of Polaris'

techniques for distributed-memory multiprocessors. Our

study, which is based on the hand analysis of MDG and

TRFD from the Perfect Benchmarks and TOMCATV and

SWIM from SPEC benchmarks, identi�ed three techniques

that are important for improving communication optimiza-

tion. Their application produces almost perfect speedups

for the four programs on the Cray T3D.

1 Introduction

The problem of compiling for distributed memory
multiprocessors has been studied extensively in recent
years [2, 4, 5]. One of the many projects on this sub-
ject centers around Polaris [1], a parallelizing com-
piler which automatically transforms sequential For-
tran 77 programs into parallel form without program-
mer intervention. Unlike most other approaches, the
techniques currently implemented in Polaris pay little
attention to data distribution across processors. In
fact, Polaris applies a simple data distribution strat-
egy which block-distributes all shared data objects in
the parallel programs regardless of their access pat-
terns. The lack of data distribution strategies is com-
pensated by the use of advanced techniques for pri-
vatization and communication optimization and for
work distribution [3]. These techniques have proven
quite e�ective on a collection of codes from the Per-
fect and SPEC Benchmarks when the target machine
is the Cray T3D.

Despite these good results, there is still much room
for improvement. This paper presents the results of a
study on additional techniques needed to improve the
e�ectiveness of Polaris for distributed-memory mul-

tiprocessors. Our study, which is based on the hand
analysis of the four programs, TOMCATV and SWIM
from SPEC benchmarks and MDG and TRFD from
the Perfect Benchmarks, identi�es three new tech-
niques important to improving Polaris' e�ectiveness.

2 Automatic Parallelization

When generating code for distributed-memory ma-
chines with a global address space, Polaris applies �ve
passes: a parallelism detection stage, a work partition-

ing stage, a data privatization stage, a data distribu-

tion stage, and a data localization stage. A more de-
tailed description can be found in [3].

Starting with a conventional Fortran77 program,
Polaris generates a parallel version for a global address
space machine. The target code has a Single Program
Multiple Data (SPMD) form. Barriers and locks are
used to control explicitly the ow of execution of pro-
cessors in the SPMD code. Program variables are de-
clared explicitly as either private or shared. Shared
arrays can be distributed by BLOCK and CYCLIC di-
rectives. PUT/GET operations are used to allow the
processors asynchronous access to any data object in
the system.

In the �rst phase of the transformation procedure,
Polaris detects parallelism from the input program [1].
In the second phase, Polaris tries to distribute par-
allel work evenly while ignoring data distributions.
In the third phase, Polaris analyzes the data regions
that each individual processor will access and iden-
ti�es the private data. In the fourth phase, Po-
laris declares all non-privatized arrays as shared and
BLOCK-distributed across the target machine. Then, in
the �fth phase, Polaris inserts PUT/GET operations
(polaris put and polaris get routines) to localize
the non-local accesses to these shared arrays by fol-
lowing the shared data copying scheme [3]. In this

scheme, shared memory is used as a repository of val-
ues for private memory.

3 Additional Optimization Techniques

As mentioned in Section 1, we have found that
the techniques enumerated in Section 2 produce good
speedups on the Cray T3D for the collection of pro-
grams we have evaluated. In fact, a previous study [3]
showed that data privatization substantially increases
the probability that the processors fetch their data
from local memory, thus reducing the overall com-
munication overhead. Furthermore, data privatization
presents additional bene�ts in the T3D by providing
more chances for processors to use data caches for their
computations. The reason is that, in this machine,
shared data are not cached even when they reside in
local memory.

Through the hand analysis reported in [6], we iden-
ti�ed some additional optimizations that are needed
to further improve performance. Strategies to reduce
the number of PUT/GET operations, which are based
on the cross-loop access region analysis, are discussed
in Section 3.1. A second optimization is to improve
data locality by distributing arrays according to the
data access pattern in a program. In Section 3.2, we
discuss one data access pattern commonly encountered
in an important class of scienti�c applications; we also
present an automatic data distribution technique that
minimizes the communication costs and memory re-
quirements for these applications.

3.1 Communication Overhead

Because the communication optimization algorithm
currently implemented in Polaris is relatively simple,
the communication overhead is sometimes unnecessar-
ily large and scalability is hindered. In the next two
subsections we analyze where this overhead arises and
propose additional techniques based on access region
analysis to reduce the overhead.

3.1.1 Placing Communication Operations

In the shared data copying scheme, it is crucial
to avoid consuming an excessive amount of space
for private data. Also, it is important to mini-
mize communication overhead by reducing the calls
to polaris put/get primitives. In this scheme, the
copy-level is a loop nest level at which the elements of
the shared array are copied by using these primitives.
There is an obvious trade-o� between time and space
when choosing the copy-level. Currently, Polaris usu-
ally chooses the innermost copy-level since this copy-
level allows us to exploit the data pipelining technique
if the implementation of the polaris put/get rou-
tines is non-blocking.

In real cases, we have found that it is often better to
perform copy operations at outer copy levels. There-
fore, the strategy we propose here is to use access re-
gion analysis to gather the elements of each shared
array accessed at all inner levels of nesting, and to
perform copy operations at the outermost loop level
possible. Although this strategy may consume more
space for private data, there are several advantages to
copying at the outermost levels: the amount of private
memory needed for each processor decreases with the
number of processors; the memory required to allo-
cate private data can be managed using dynamic allo-
cations functions; and, saving space is less important
than optimizing time in general cases.

3.1.2 Redundant PUT/GET Elimination

The parallel programs generated by Polaris con-
tain many redundant PUT/GETs due to the lack
of a cross-loop analysis for the shared data copying
scheme. The scheme currently implemented in Po-
laris generates polaris put/get calls for each indi-
vidual loop nest. The elimination improved the exe-
cution times and scalability of studied programs, as we
will discuss with real programs in Section 4. In order
to eliminate redundant PUT/GETs, we need to ex-
tend the access region analysis to a set of consecutive
loops. Based on the cross-loop access region analysis,
we try to determine the upwards-exposed regions and
downwards-exposed regions for the shared arrays in the
set of loops.

3.2 HALO Access Pattern

Data distribution is an important issue in the code
generation for distributed memory multiprocessors.
As discussed in Section 2, the current Polaris data dis-
tribution strategy is access-pattern-insensitive in that
it simply chooses BLOCK distribution regardless of the
data access patterns in a program. For very regular
programs, however, previous work suggests that other
data distribution policies improve performance. These
strategies could be implemented in the data distribu-
tion stage in the Polaris transformation procedure to
complement data privatization and localization tech-
niques in Polaris.

In our studies, we focused on the regular data access
pattern in a loop where all the subscript expressions
for the array of interest are of the form: X(I � K),
where I is the loop index and K is an arbitrary con-
stant. We call this type of access pattern the HALO

access pattern. The HALO access pattern is similar to
a new data distribution pattern, called SHADOW region,
which is included in one of the approved extensions of
the new speci�cation of High Performance Fortran.

We have found that the current strategy of Polaris
causes excessive communication for arrays with that
kind of access pattern. These communications can-
not be eliminated by the techniques presented in Sec-
tion 3.1. The proposed algorithm identi�es when an
array X has the HALO access pattern and is given a
new distribution type HALO to denote this access pat-
tern. The other arrays will still have the BLOCK distri-
bution.

Whether the distribution type is HALO or BLOCK,
both types of arrays are declared as shared and are
block-distributed with the directive BLOCK in the data
distribution stage. However, in the data localization
stage, we allocate arrays with the HALO distribution to
private memory of processors additional private space,
called the halo area and the frontier area. To de�ne
the halo area and the frontier area, we refer to the
example in Figure 1, which shows the HALO data dis-
tribution for array X.

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

0x

X
Frontier Area

Halo Area x2

x3x1

k1 k2

Shared Halo Area

size_block

Figure 1: Halo Area and Frontier Area for array X

with four processors

In the parallel code, for the array X with HALO dis-
tribution, we can hoist the PUT/GET operations out
of the loop where X is accessed to copy the initial in-
put and the �nal result for the loop computation. In
addition, we now need extra operations, create halo

and update halo, which are described as follows:

Create halo performs a polaris get operation to
copy the initial value to the halo area of proces-
sors from the portion of the shared array corre-
sponding to the halo area, called the shared halo

area. This create halo operation involves the com-
munication between neighboring processors.

Update halo deals with the intermediate results
generated during the loop execution. The changes
in the frontier area of processors during the cur-
rent iteration t of the loop must be copied to the
halo area of their neighboring processors before
starting the next iteration t + 1. This operation
involves two steps: �rst, all the frontier areas
of the processors are written back to the corre-
sponding shared halo area simultaneously; then,
the processors update their halo area by copying
the corresponding shared halo area.

The halo area and shared halo area can be generalized
for multidimensional data arrays, where Polaris must
build a halo area and a shared halo area for each di-
mension, and manage each as we have explained for
one-dimensional arrays.

4 Case Studies

All the results presented in this section are based
on experiments on the T3D, one of the commer-
cial distributed-memorymachines that Polaris targets.
The T3D is a scalable machine with special hardware
and software features to support a global address space
e�ciently.

The programs we have studied were parallelized
automatically �rst with Polaris and manually later.
The automatic versions were obtained from the trans-
formation procedure described in Section 2. The
speedups and e�ciencies shown here have been cal-
culated versus the sequential execution time. Based
on the performance analysis of the automatic versions,
we developed the optimization techniques discussed in
Section 3, and applied the techniques to generate the
manual versions.

Figure 2 shows the speedup comparisons from 1 to
64 processors, using the automatic and manual ver-
sions of TOMCATV, TRFD, SWIM, and MDG.

4.1 TOMCATV

The computational kernel of TOMCATV is the
MAIN do140 loop. This loop is a multiply-nested serial
loop with several inner loops parallelized by Polaris.
Polaris generates PUT/GET calls around the inner
parallel loops. Cross-loop analysis revealed that there
are redundant copy operations in this automatic ver-
sion. We, therefore, manually applied the techniques
discussed in section 3.1.2. We detected that two im-
portant arrays used in the MAIN do140 loop have the
HALO access pattern. Therefore, we applied the tech-
nique described in Section 3.2 to further reduce the
communication overhead. If we consider only the loop
MAIN do140, we get superior e�ciency of 98% for 32
processors and 95% for 64 processors. As shown in
Figure 2 the manual version improves the speedups
by approximately a factor of two.

4.2 TRFD

TRFD is another good example of the importance
of access-pattern-sensitive data distribution strategies.
Polaris does not exploit locality of data on loop iter-
ations due to its lack of a more complete data dis-
tribution stage. We identi�ed array X as the most
important array in TRFD. By using access pattern
information, the columns of X can be privatized. Also,

we found that the shared data copying scheme chooses
a fourth level of the nested loops as a copy-level for
the array X to generate PUT/GETs. By hoisting the
PUT/GET operations out of the innermost loop nests,
the manual version tried to minimize the communica-
tion overhead resulting from the copying operations.
Using all of these tactics we can achieve a speedup
of 30 on 32 processors and 55 on 64 processors for
the whole program. These results show, as other re-
searchers have indicated, the importance of the access-
pattern-sensitive data distribution strategies to com-
plement the data privatization and localization tech-
niques in Polaris.

4.3 SWIM

SWIM contains an outermost serial loop that calls
four subroutines. All these subroutines have the same
loop nest structure and the same access pattern to
data arrays. The major loop nests in SWIM are all
doubly-nested and Polaris parallelizes all these loops,
thus generating PUT/GETs for each loop nest. Sim-
ilar to TOMCATV, the major overhead of SWIM in
the automatic version of Polaris comes from redundant
PUT/GET operations between consecutive loops that
access the same data region. We found that these re-
dundant operations could be eliminated by cross-loop
analysis. Also, in SWIM, most arrays are found to
have the HALO area patterns. Based on all these
analyses of this program, we manually transformed
the original SWIM to a parallel form for the T3D and
we achieved a linear speedup for the whole program
and a global e�ciency of 98% for 32 processors and
96% for 64 processors.

4.4 MDG

In MDG we achieved superlinear speedups (on
fewer than 16 processors), or almost the linear
speedups. As can be seen in Figure 2, we were un-
able to develop a manual version based on conven-
tional data distribution techniques that outperformed
the automatic version. One reason is that MDG has
irregular data access patterns and a single static dis-
tribution cannot be determined to satisfy all the data
access patterns in the program. Also, there are fre-
quent requirements for reduction operations which re-
quires expensive global communication. As a result,
we conclude that, in codes that need frequent global
data sharing or that contain irregular data access pat-
terns, the shared data copying scheme can be a better
solution than more elaborate data distribution algo-
rithms. In Figure 2, the manual version shows slightly
better scalability in the speedup curves on more than
32 processors. This is made possible by the techniques

for reduction of communication overhead discussed in
Section 3.1.

1 2 4 8 16 32 64
of PEs

1

2

4

8

16

32

64

S
pe

ed
up

s

OPTIMIZED TOMCATV
OPTIMIZED TRFD
OPTIMIZED SWIM
OPTIMIZED MDG
POLARIS TOMCATV
POLARIS TRFD
POLARIS SWIM
POLARIS MDG

Figure 2: Performance comparison

5 Summary and Conclusions

In this paper, we analyzed several optimization is-
sues for Polaris and outlined some new techniques to
overcome limitations of the original techniques in Po-
laris. To measure the impact of these new techniques,
we applied them manually in some benchmarks. We
reached e�ciencies of 98% for SWIM, 99% for compu-
tational kernel of TOMCATV (i.e., scorning the reading
�le), 93% for TRFD, and 84% for MDG for 32 processors
on the T3D. Through our study, we concluded that if a
few simple data distribution and communication tech-
niques are combined with the compiling techniques in
Polaris, it is possible to automatically generate the
parallel code for the distributed memory multiproces-
sors and to obtain good parallel performance.

References

[1] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoe-
inger, T. Lawrence, J. Lee, D. Padua, Y. Paek, W. Pot-
tenger, L. Rauchwerger, P. Tu, \Parallel Programming
with Polaris", IEEE Computer, pp. 78-82, Dec. 1996

[2] S. Hiranandani, K.Kennedy, and C. Tseng. Compiler
Optimizations for FORTRAN D on MIMD Distributed-
Memory Machines. Proc. of Supercomputing'91, 1991.

[3] Y. Paek, D. Padua, \Compiling for Scalable Multiproces-
sors with Polaris", To appear in Parallel Processing Let-

ters, World Scienti�c Publishing, UK, 1997

[4] B. Chapman, P. Mehrota, H. Moritsch, H. Zima, Dynamic
Data Distributions in Vienna Fortran, Supercomputing '93

Proceedings, 1993

[5] J. Li and M. Chen. Compiling Communication-E�cient
Programs forMassively ParallelMachines. Journal of Par-
allel and Dsitributed Computing, 2(3):361-376, 1991.

[6] A. G. Navarro, Y. Paek, E.L. Zapata, D. Padua, \Perfor-
mance Analysis for Polaris on Distributed Memory Mul-
tiprocessors", 3rd Workshop on Automatic Data Layout
and Performance Prediction, Barcelona, Spain, Jan. 1997.

