
Compiler Analysis of Irregular Memory Accesses

Yuan Lin
Department of Computer Science

University of Illinois at Urbana-Champaign

yuanlin@uiuc.edu

David Padua
Department of Computer Science

University of Illinois at Urbana-Champaign

padua@uiuc.edu

ABSTRACT
Irregular array accesses are array accesses whose array sub-
scripts do not have closed-form expressions in terms of loop
indices. Traditional array analysis and loop transformation
techniques cannot handle irregular array accesses. In this
paper, we study two kinds of simple and common cases
of irregular array accesses: single-indexed access and indi-
rect array access. We present techniques to analyze these
two cases at compile-time, and we provide experimental re-
sults showing the e�ectiveness of these techniques in �nding
more implicit loop parallelism at compile-time and improved
speedups.

1. INTRODUCTION
High-level language analysis and optimization techniques
have been used to detect parallelism, privatize data, enhance
locality, and reduce communication costs. Most traditional
methods operate on do loops and require that array sub-
script expressions inside the loops contain only loop indices
and loop invariants. In addition, most methods require the
subscript expressions to be aÆne. However, many important
scienti�c programs contain irregular array accesses. We de-
�ne an array access as irregular if no closed-form expression,
in terms of the loop indices, for the subscript of the accessed
array is available at compile-time. Because current analy-
sis techniques cannot handle irregular array accesses, many
codes are left unoptimized.

Consider, for example, array privatization [12, 19, 23, 30],
an important technique for loop parallelization. An array
can be privatized if, within a given iteration, its elements are
always assigned before they are read. Thus, in each iteration
of the outermost loop do k in Fig. 1(a), any element of x()
read at statement (3) in loop do j is de�ned at statements
(1) and (2) in the while loop. Therefore, array x() can be
privatized for loop do k. Because there is no dependence,
loop do k can be parallelized. However, because current
privatization tests require a closed-form expression in order
to compute the section of array elements read or written

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI 2000, Vancouver, British Columbia, Canada
Copyright 2000 ACM 1-58113-199-2/00/0006 ..$5.00

do k = 1, n do i = 1, n

do i = 1, n

 p = 0

 p = p+1
 x(p) = y(i)
 i = link(i,k)
 if (cond(k,i)) then
 p = p+1

 end if
 end do
 do j = 1,p

 end do
end do

(a)

 p = 1
 t(p) = ..
 loop
 p = p+1
 t(p) = ..
 if (..) then
 loop

 .. = t(p)
 p = p-1
 end if
 end loop

 end loop
end loop
 (b)

 do j = 1, m

 end do
 do k = 1, p

 end do
end do

 (c)

 i = link(1,k)
 while (i != 0) do

 end if

 if (p>=1) then

 x(j) = ..

 y(i,k) = x(pos(k))

 (1)

 x(p) = y(i) (2)

 dz(k,j) = x(j) (3)

Figure 1: Examples of Irregular Array Accesses

in a loop and because, in this example, there is no such
expression for p, these techniques can only determine that
section [1 : p] of x() is read in loop do j. They cannot
determine that the same section also is written in the while
loop and, therefore, fail to privatize x().

A second example is presented in Fig. 1(c). In loop do k,
array x() is indirectly accessed via another array pos(). If it
could be detected at compile-time that the values in pos[1 :
p] are inside the interval [1; m], then the compiler would be
able to privatize x() for loop do i and parallelize the loop.

User assertions [24, 18] and run-time tests [32, 27, 26] have
been proposed as alternatives to static analysis for irregular
memory accesses. However, information useful for a com-
piler may not be of interest to a programmer. Inserting
assertions is a tedious job and can lead to errors that are
diÆcult to detect. A possible strategy is to use run-time
analysis methods. However, these methods introduce over-
head that is not always negligible and also increase the code
size, since the unoptimized version must also be available in
case the tests fail. While user assertions and run-time tests
are useful and important, compile-time analysis is clearly
preferable and therefore should be used whenever possible.

In this paper, we present techniques to analyze irregular
array accesses and show how to use the results of the analysis
to enhance compiler optimizations. We study two classes of
irregular array accesses.

1. Irregular single-indexed access: The accesses of an ar-
ray in a given loop are single-indexed if the array is
always subscripted by a single variable and that vari-
able is the same throughout the loop. Array x() is
single-indexed in the while loop in Fig. 1(a) and in
the loop do i in Fig. 1(b).

2. Simple indirect array access: An array is indirectly-
accessed if it is subscripted by an array element. We
call the array itself the \host array", and the array
in the subscript the \index array". An indirect array
access is simple if the innermost enclosing loop is a do
loop, say L, and the subscript of the index array is the
loop index of loop L. The reference to array x() in
loop do k in Fig. 1(c) is a simple indirect array access.

These two classes of irregular array accesses were chosen
because they arise frequently in scienti�c codes.

This paper makes the following contributions:

1. It presents examples showing that compile-time analy-
sis of irregular array accesses can enhance other analy-
ses and optimizations, such as data dependence tests,
privatization tests, and loop parallelization.

2. It presents two compile-time techniques to analyze the
two common cases of irregular array accesses just dis-
cussed. These two techniques are simple and e�ec-
tive. They take advantage of the fact that, in real
programs, irregular array accesses often follow a few
�xed patterns and have detectable properties. We also
demonstrate the importance of using these two tech-
niques together in analyzing irregular array accesses.
For irregular single-indexed access, a bounded depth-
�rst search method is used to trace the evolution of in-
dex variables between two array accesses. Two classes
of index evolutions can be identi�ed: consecutively-
written and stack access. For simple indirect array
access, an array property analysis method is used. It
performs interprocedural array dataow analysis fol-
lowing a demand-driven approach.

3. It describes the implementation of the techniques in
a research compiler and presents experimental results
showing the e�ectiveness of the techniques in detect-
ing loop parallelism at compile-time. Thanks to the
new techniques, nine loops in �ve real programs that
could not be handled by the traditional methods were
found parallel. And, because of the parallelization of
these loops, the performance of four of the programs
improved signi�cantly.

The rest of this paper is organized as follows. Sections 2 and
3 present the techniques to analyze single-indexed array ac-
cesses and indirect array accesses, respectively. Section 4
describes how to use the two techniques together. Section
5 discusses the implementation and experimental results.
Section 6 concludes the paper. Related work is mentioned
throughout the paper.

bDFS(u)
1 visited[u] := true ;
2 fproc(u) ;
3 if (not fbound(u)) f
4 for each adjacent node v of u f
5 if (ffailed(v))
6 return failed ;
7 if ((not visited[v]) and (bDFS(v) == failed))
8 return failed ;
9 g
10 g
11 return succeeded ;
Before the search starts, visited[] is set to false for all nodes.

Figure 2: Bounded depth-�rst search

2. IRREGULAR SINGLE-INDEXED ARRAY
ACCESSES

This section presents a brief description of a method to an-
alyze irregular single-indexed array accesses. A detailed de-
scription can be found in [22].

In irregular single-indexed array accesses, the index variable
may have di�erent values at di�erent points of the body of
a loop. For example, in Fig. 1(a), the index variable p has
di�erent values at statements (1) and (2) which are within
the body of the while loop. It is important to examine how
the value of an index variable changes between consecutive
accesses to an array reference subscripted by the variable.

Within a loop, the changes can be monotonic or non-monotonic.
In the monotonic case, such as p in the while loop in Fig. 1(a),
the location of array elements accessed increase or decrease
during execution. No such order exists in the non-monotonic
case, such as p in the body of loop do i in Fig. 1(b). For the
monotonic case, we want to determine whether this array is
consecutively written. In the non-monotonic case, we want
to determine whether this array is used as a stack.

2.1 Bounded Depth-first Search
We �rst describe a bounded depth-�rst search (bDFS) al-
gorithm that will be used later used to build the analysis
algorithm for irregular single-indexed arrays. The bDFS al-
gorithm, shown in Fig.2, does a depth-�rst search on a con-
trol ow graph (V;E), where V is the set of vertices and E
is the set of edges in the graph. It uses two functions to con-
trol the search. These two functions, fbound() and ffailed(),
are de�ned before the search starts. fbound() maps V onto
(true; false). Suppose the current node is n0 during the
search. If fbound(n0) is true, then bDFS does not search the
nodes adjacent to n0. The nodes whose fbound() values are
true are the boundaries of the search. ffailed() also maps V
onto (true; false). If, for the current node n0, ffailed(n0) is
true, then the whole bDFS terminates with a return value
of failed. The nodes whose ffailed() values are true cause
an early termination of the bDFS.

2.2 Consecutively Written Array Accesses
An array is consecutively written in a loop if, during the
execution of the loop, all the elements in a contiguous section

of the array are written in increasing or decreasing order1.
For example, in the while loop in Fig. 1(a), array element
x(2) is not written until x(1) is written, x(3) is not written
until x(2) is written, and so on. That is, x() is consecutively
written in the 1-2-3- : : : order.

The knowledge that an array is consecutively written in a
loop can be used to enhance many analyses and optimiza-
tions, such as array privatization tests and data dependence
tests [22]. For the array privatization example in Fig. 1(a),
the \consecutively written" property is very important be-
cause it guarantees that the writes cover the reads in the
same iteration.

To determine whether a single-indexed array x() with in-
dex variable p is consecutively written in a loop, we �rst
check whether p is ever de�ned in any way other than being
increased by 1 in the loop. If so, we assume the array is
not consecutively written. Then we check, by performing
bDFSs starting from each of the \p = p+ 1" statements on
the control ow graph of the loop, whether there exists a
path from one \p = p+1" statement to another \p = p+1"
statement and the array x() is not written on the path. If
such a path exists, then there may be \holes" in the section
where the array is de�ned and, therefore, the array is not
consecutively written in the section. To accomplish this, the
bDFS algorithm can be used with fbound(n) set to true only
when n refers to x and ffailed(n) set to true only when n is
of the form \p = p+ 1".

Wolfe et al [31, 13] have presented an algorithm to recognize
and classify sequence variables in a loop. R. Gupta and
M. Spezialetti [28] have extended the traditional data-ow
approach to detect \monotonic" statements. While both
of these methods can recognize the index variable p in the
while loop in Fig. 1(a) as a monotonic variable, none of them
can determine that the array x() is consecutively written
in the while loop. The reason is that these methods are
not designed to study the e�ect of index variables on array
accesses. Both methods can recognize a wider class of scalar
variables than our method, but so far we have not found any
case where this extra power improves array access analysis.

2.3 Stack Access
Many programs implement stacks using arrays because it is
both simple and eÆcient. We call stacks implemented in
arrays array stacks. Figure 1(b) illustrates an array stack.
In the body of loop do i, array t() is used as a stack and p
is the index of the top of the stack.

The knowledge that an array is an array stack can be used
to improve many optimizations. Again, consider array pri-
vatization. When an array is used as a stack in the body
of a loop, the array elements are always de�ned (\pushed")
before being used (\popped") in the loop. Di�erent itera-
tions of the loop will reuse the same array elements, but the
value of the array elements never ows from one iteration
to the other if the stack pointer is always reset to the same
position at the beginning of each iteration. Therefore, array
stacks in a loop body can be privatized. For example, in

1To be concise, we discuss only the increasing case in this
paper.

 data()

length(1) length(2) length(3)

offset(1) offset(2) offset(3) offset(n) offset(n+1)

length(n)

offset(4)

length(4)
(a)

do 200 i=1, n offset(1)=1
do 300 j=1, length(i) do 100 i=1, n

data(offset(i)+j-1)=.. offset(i+1)=offset(i)+length(i)
end do end do

end do
(b) (c)

Figure 3: Example of closed-form distance

Fig. 1(b), array t() can be privatized in loop do i. In [22],
we also describe how to use the stack access information
to improve run-time array bounds-checking elimination and
loop interchanging.

To identify stack accesses, the algorithm looks for program
regions in which the single index variable p is de�ned in
only one of the following three ways: 1) p := p + 1; 2)
p := p � 1; 3) p := Cbottom, where Cbottom is a constant in
the program region. The algorithm checks whether a single-
indexed array is used as a stack in the region by checking
whether any path originating from statements in the left
column of Table 1 reaches a statement in the set Sbound(n)
before it reaches a statement in the set Sfailed(n). This can
be done by performing bDFSs on the control ow graph
of the program region. Intuitively, the order in Table 1
ensures that for an array stack x() with index p, p is �rst
set to Cbottom before it is modi�ed or used in the subscript
of x(), the value of p never goes below Cbottom, and that the
access of elements of x() follows the \last-written-�rst-read"
pattern.

3. INDIRECT ARRAY ACCESSES
In their study of the Perfect Benchmarks, Blume and Eigen-
mann found that index arrays often have some properties [7]
that can be detected statically and that enable program
parallelization. Similar results also were obtained by the au-
thors in a study of several sparse and irregular programs [21].
By identifying these properties, compilers can avoid making
conservative assumptions in the analyses of indirect array
accesses.

For example, in the Compressed Column Storage (CCS) for-
mat for sparse matrices, the non-zero elements of a sparse
matrix are stored in a one-dimensional host array. The
host array is divided into several segments, as illustrated
in Fig. 3(a). Each segment corresponds to a column. The
starting position and the length of each segment are given by
index arrays offset() and length(), respectively. Figure
3(b) shows a common loop pattern accessing the elements
in the matrix. The loop traverses the host array segment by
segment. Figure 3(c) shows a common pattern used to de-
�ne offset(). Loop do 200 does not carry any dependences
if length(i) � 0 because

offset(i) + length(i)� 1 < offset(i+ 1);where 1 � i < n;

which can be derived from the loop in Fig. 3(c).

n Sbound(n) Sfailed(n)

p = p+ 1 fx(p) = ::, p = Cbottomg fp = p+ 1, p = p� 1,:: = x(p)g
p = p� 1 fp = p+ 1, G, p = Cbottomg fp = p� 1, x(p) = ::, :: = x(p)g
x(p) = :: fp = p+ 1, :: = x(p), p = Cbottomg fp = p� 1, x(p) = ::g
:: = x(p) fp = p� 1, p = Cbottomg fp = p+ 1, x(p) = ::, :: = x(p)g

Table 1: Order for Array Stacks

Given an array, if the di�erence of the values of any two con-
secutive elements can always be represented by a closed-form
expression, we say the array has a closed-form distance [5].
The other properties of index arrays that can be used by
compilers are injectivity, monotonicity, having a closed-form
value, and having a closed-form bound. An array a() is injec-
tive if a(i) 6= a(j) when i 6= j. An array a() is monotonically
non-decreasing (non-increasing) if a(i) � a(j) (a(i) � a(j)),
i < j. An array has a closed-form value if all the values of the
array elements can be represented by a closed-form expres-
sion in terms of array indices and constants at compile-time.
An array has a closed-form bound if a closed-form expres-
sion is available at compile-time for either the lower bound
or the upper bound of the array elements' values.

To determine whether an index array has one of the proper-
ties listed above, it is necessary to check all the de�nitions
of the index array reaching an indirectly accessed array ref-
erence. If the program patterns at all the de�nition sites
imply that the index array has the property being studied,
and none of the statements in between the de�nition sites
and the use site rede�nes any variables that are used to ex-
press the property, then we say that the property is available
at the use site. Otherwise, it is assumed that the property
is not available.

Our strategy is to perform a demand-driven interprocedu-
ral array property analysis to solve the available property
problem. The analysis is done interprocedurally because,
in most real programs, index arrays often are de�ned in
one procedure and used in other procedures. The analysis
is demand-driven because the cost of interprocedural array
reaching de�nition analysis and property checking is high.
The compiler performs the analysis only when it meets an
index array and it checks only the property that the use site
suggests. For example, in Fig. 3, the compiler would check
only the property of having a closed-form distance for the
use site s3.

3.1 Dataflow Model for Query Propagation
We model our demand-driven analysis of the available prop-
erty as a query propagation problem [11]. A query is a tuple
(st; section), where st is a statement or a basic block and
section is an array section2 for the index array. Given an in-
dex array and a property to be checked, a query (st; section)
raises the question whether the elements of the index array
in section always have the desired property when the control
reaches the point after st.

2An array section can be represented as a convex region [29],
an abstract data access [2, 25], or a regular section [17].
Our method is orthogonal to the representation of the ar-
ray section. Any representation can be used as long as the
aggregation operation used in Sect. 3.2.5 is de�ned.

A query is propagated in the reverse direction of the con-
trol ow until it can be veri�ed to be true or false. Let
OUT (S) be the section of index array elements to be exam-
ined at statement or basic block S, GEN(S) be the section
of index array elements possessing the desired property be-
cause of the execution of S, KILL(S) be the section of the
index array elements veri�ed not to have the property be-
cause of the execution of S, and IN(S) be the section of the
index array elements that cannot be veri�ed to possess the
property by examining S and, thus, should be checked again
at the predecessors of S. The general dataow equations for
the reverse query propagation are

OUT (S) =
[

T is a successor of S

IN(T);

IN(S) = OUT (S) �GEN(S)

For a query (st; section), initially, OUT (st) = section and
OUT (s) = ; for any statement or basic block s other than st.
If, after the propagation �nishes, we have IN(entry) 6= ;,
where entry is the entry node of the program control ow
graph, or there exists a statement or basic block s such that
OUT (s) \ KILL(s) 6= ;, then the answer to the original
query is false. Otherwise the answer is true.

Our approach of modeling a demand for property checking
as a set of queries was inspired by the work of E. Duester-
wald et al. [11]. They proposed a general framework for de-
veloping demand-driven interprocedural data ow analyzers.
They use an iterative method to propagate the queries and
can handle only scalars. We use a structural analysis and
work on arrays, which is possible because available property
is a speci�c distributive dataow problem.

3.2 Demand-driven Interprocedural Array
Property Analysis

3.2.1 Overview
We represent the program in a hierarchical control graph
(HCG), which is similar to the hierarchical supergraph [15].
Each statement, loop, and procedure is represented by a
node, respectively. There also is a section node for each
loop body and each procedure body. Each section node
has a single entry node and a single exit node. We assume
that the only loops in the program are do loops, and we
deliberately delete the back edges in the control ow graph.
Hence, the HCG is directed acyclic. We also assume no pa-
rameter passing, values are passed by global variables only,
and if constant numbers are passed from one procedure to
another, the callee is cloned. Techniques to handle parame-
ter bounding, array reshaping, and variable aliasing are well
known and can be found in [10, 16, 9, 25].

Property Checker

true/falsequery

select

Query Checker

check

generated ?
killed ?

Query Generator

 Query Solver

Figure 4: The components of array property analy-
sis

Method: QuerySolver(query;nroot)
Input: 1) a query query = (ninit; sectinit)

2) a root node nroot that dominates ninit
Output: (anykilled; sectremain)
Begin:
1 worklist := ; ;
2 add[((ninit ; sectinit); worklist) ;
3 anykilled := false ;
4 while worklist 6= ; do
5 remove an element (n; sect) from the worklist ;
6 if (n is nroot) then
7 sectremain := sect ;
8 break ;
9 end if
10 (anykilled; sectremain) := QueryProp(n; sect) ;
11 if (anykilled) then break ;
12 if (sectremain 6= ;) then
13 for each node m 2 pred(n)
14 add[((m; sectremain); worklist) ;
15 end for
16 end if
17 end while
18 return (anykilled; sectremain) ;
End

Figure 5: QuerySolver

Our demand-driven interprocedural analysis method con-
sists of three parts, as shown in Fig. 4. The DemandGener-
ator, which is incorporated in the analysis methods, issues
a query when the analysis needs to verify whether an in-
dex array has a certain property at a certain point. The
QueryChecker accepts the query and then uses QuerySolver
to traverse the program in the reverse direction of the con-
trol ow to verify the query. It uses the PropertyChecker to
get the GEN and KILL information.

3.2.2 QuerySolver
The major component of QueryChecker is QuerySolver, which
returns a tuple (anykilled; sectionremain) when given a query
(nquery; sectionquery) and a root node nroot that dominates
nquery. The anykilled, which is a boolean, is true if the
property of some element in sectionquery might be killed
when the program is executed from nroot to nquery. When
anykilled is false, sectionremain gives the array elements
whose properties are neither generated nor killed from nroot
to nquery. In order to check if the index array elements
in sectionquery at node nquery have the desired property,
QueryChecker invokes QuerySolver with the nroot being
the entry node of the whole program. If anykilled is true
or if anykilled is false but sectionremain is not empty, then
we assume that the index array does not have the desired
property. Otherwise, it has the desired property.

Method: QueryProp(n; section)
Input: A query (n; section)
Output: (anykilled; sectionremain)
Begin:
1 (Kill;Gen) := Summarize(n) ;
2 sectionremain := section�Gen ;
3 anykilled := ((Kill \ section) 6= ;) ;
4 return (anykilled; sectionremain) ;
End

Figure 6: A general framework of reverse query
propagation QueryProp

Figure 5 shows the algorithm for QuerySolver. A worklist
whose elements are queries is used. The algorithm takes a
query (n; sect) out of the worklist. The query (n; sect) asks
whether any array element in sect can have the desired prop-
erty immediately after the execution of n. This is checked
by reverse query propagation QueryProp. QueryProp re-
turns a tuple (anykilled; sectremain), which has a meaning
that is similar to the tuple returned by QuerySolver. The
anykilled is set to true if the property of one or more el-
ements in sect is killed when n is executed. In this case,
the answer to the original query is false; thus, no further
analysis is needed and the algorithm returns. This is an
early-termination. When anykilled is false, new queries are
constructed from the sectremain and the predecessors of n
and are inserted into the worklist. This process repeats until
the worklist becomes empty or the root node is met. The
use of a worklist makes early-termination possible.

The worklist is a priority queue. All the elements are sorted
in reverse topological order(rTop) of its node in the control
ow graph (which, as stated above, is a DAG). Therefore, a
node is not checked until all its successors have been checked.
This ensures that the query presented to a node is composed
of the queries propagated by its successors.

Queries are inserted into the list by using add[(). The op-
eration addop(), where op can be either \ or [, is de�ned
as follows: if there exists a query (n; section0) in the work-
list, then replace (n; section0) with (n; section op section0);
otherwise, insert (n; section) into the worklist according to
the rTop order.

3.2.3 Reverse Query Propagation
Conceptually, reverse query propagation QueryProp com-
putes IN (sectionremain) from OUT (section), GEN and
KILL. Figure 6 shows a general framework of QueryProp.

Conceptually, reverse query propagation QueryProp com-
putes IN from OUT , GEN and KILL. Figure 6 shows
a general framework of QueryProp. The QueryProp uses
Summarize to summarize the e�ect of executing a node.
The e�ect of executing a statement can be represented by
the (Kill; Gen) tuple.

The Kill and Gen evaluated by the summarization method
are often approximate values. There are two reasons for
this. First, the index array may be assigned variables whose
values or relationships with other variables cannot be de-
termined by the compiler; therefore, the section of the ar-
ray elements being accessed cannot be represented precisely.

new
query

query

do i=1, n

. . . .

end don

new
query

query

do i=1, n

. . . .

end do

n new
query

query

call procn

new
query

query

procedure proc

. . . .

end

n new
query

a(i) = i+j

query

n

Case 1 Case 2 Case 3 Case 4 Case 5

Figure 7: The �ve cases: 1) n is a do node, 2) n is
a do statement, 3) n is a call statement, 4) n is a
procedure head, and 5) otherwise.

property:

a(i) = i*(i-1)/2
a(n) = n*(n-1)/2

section = [1:n]
query

a(1) = b+c

section = [1:n]
query

new_section
query

= φ

st1

new_section
query

= [1:n-1]

st2

Figure 8: An example of simple reverse query prop-
agation

Second, the summarization method works on array sections,
but the set operations being used usually are not closed on
the most popular section representations. Hence, the results
can be only approximated. In order not to cause incorrect
transformations, the approximation must be conservative.
Kill is a MAY approximation and Gen is a MUST approx-
imation. In the worst case, Kill can be the universal section
[�1;1] and Gen can be ;.

The Summary method can only be applied to statements or
basic blocks. In fact, there are �ve di�erent classes of node,
as illustrated in Figure 7. Each case has to be handled by a
di�erent reverse query propagation method as described in
the next three Subsections.

3.2.4 Simple Reverse Query Propagation
In case 5, the node n is a statement other than a do state-
ment, a do node, a call statement, or a procedure head. In
this case, the e�ect of executing node n can be derived by
examining n alone. QueryPropsimple uses the same frame-
work as QueryProp in Figure 6 with Summarize being re-
placed by SummarizeSimpleNode, which also is the inter-
face between theQuerySolver and the PropertyChecker (see
Sect.3.2.8).

Example 1. In Figure 8, statements st1 and st2 are sim-
ple assignments of array a(). The property to be checked is
a(i) = i � (i� 1)=2. Hence,

SummarizeSimpleNode(st1) = (Kill = ;; Gen = [n : n])
SummarizeSimpleNode(st2) = (Kill = [1 : 1]; Gen = ;)

Thus, after the propagation, for statement st1 we have:

anykilled = false; sectionremain = [1 : n� 1]:

And, for statement st2 we have:

anykilled = true; sectionremain = ;:

Method: SummarizeProgSection(n)
Input: A section node n
Output: (Kill;Gen)
Begin:
1 Let nentry be the entry node of section n, and

let nexit be the exit node of section n.
2 Gen := ; ;
3 Kill := ; ;
4 WorkList := ; ;
5 add\((nexit; ;);Worklist) ;
6 while WorkList 6= ; do
7 take an element (n; gen0) out of the Worklist ;
8 if (n = nentry) then
9 Gen := gen0 ;
10 break ;
11 end if
12 begin case
13 case n is a call statement:
14 (kill; gen) := SummarizeProcedure(n) ;
15 case n is a do node:
16 (kill; gen) := SummarizeLoop(n) ;
17 otherwise:
18 (kill; gen) := SummarizeSimpleNode(n) ;
19 end case
20 if (n dominates nexit) Gen := gen0 ;
21 if (kill = [�1;1]) then
22 Kill := kill ;
23 break ;
24 end if
25 Kill := Kill [(kill � gen0) ;
26 for each m 2 pred(n)
27 add\((m; gen0 [gen);WorkList) ;
28 end for
29 end while
30 return (Kill;Gen) ;
End

Figure 9: SummarizeProgSection

3.2.5 Loop Analysis
Cases 1 and 2 deal with loops. Array dataow analysis is dif-
ferent from scalar analysis because di�erent array elements
might be accessed in di�erent iterations of a loop, while
the same set of scalars are usually accessed in all iterations.
To summarize the e�ect of the loops, aggregation methods
such as those proposed by Gross and Steenkiste [14] (for
one dimensional arrays) and by Gu et al. [15] (for multi-
ple dimensional arrays) can be used to aggregate the array
access.

Given an array section, sectioni, expressed in terms of in-
dex i, aggregatelow�i�up(sectioni) computes the section ob-
tained by aggregating sectioni with i ranging from low to
up.

In case 1, the initial query comes from outside the loop.
Like the simple node case, the framework in Figure 6 can be
used. The only di�erence is that we summarize the e�ect
of executing the whole loop rather than a single statement.
Let (Killi; Geni) be the e�ect of executing the loop body,
up be the upper bound of loop m, and low be the lower
bound of loop m. Then,

Kill = Aggregatelow�i�up(Killi)

Gen = Aggregatelow�i�up(Geni � Aggregatei+1�j�up(Killj))

Method: QueryPropdo header(m; sect)
Input: A query (m; sect), where m is a node of

do statement node
Output: (anykilled; sectremain)
Begin:
1 Let n be the section node of the loop body, and

assume n represents the ith iteration of the loop ;
2 (Killi;Geni) := SummarizeProgSection(n) ;
3 Let up be the upper bound of loop, and low be the

lower bound of loop;
4 if (sect \ Aggregatelow�j�(i�1)(Killj) 6= ;) then
5 return (true; ;) ;
6 end if
7 sectremain i := sect�Aggregatelow�j�(i�1)(Genj) ;
8 sectremain := Aggregatelow�i�up(sectremain i) ;
9 return (false; sectremain) ;
End

Figure 10: QueryPropdo header

When Kill and Gen are computed, the dataow equations
can be applied.

(Killi; Geni) is computed by using the SummarizeProgSection
method shown in Fig. 9. It computes the e�ect of executing
a section by reverse propagation of the Kill and Gen set
from the exit node to the entry node. It also uses a work-
list similar to the one used in QuerySolver. The elements
(n; gen) in the worklist, however, are not queries here. The
gen is the section of array elements that have been gener-
ated because of the execution of the program from the exit
of node n to the exit of the section. Another di�erence is
that elements are inserted into the worklist by using add\
instead of add[. The e�ect of a section also could be com-
puted in the forward direction. We use a backward method
here because it is more eÆcient. It can early-terminate once
the kill information is over-approximated to be the universal
section (lines 21-24).

SummarizeProgSection uses SummarizeSimpleNode, Sum-
marizeProcedure, and SummarizeLoop recursively depend-
ing on the type of statements used in the loop body [20].
SummarizeProcedure summarizes the e�ect of calling a pro-
cedure. Without considering parameter boundings, Summa-
rizeProcedure can be computed by using SummarizeProgSec-
tion on the body of the procedure being called.

In case 2, the initial query comes from one iteration of the
loop, say iteration I. The method is somewhat more com-
plicated than the framework of Figure 6. When the loop
header is found, a summarization is made of iterations pre-
ceding iteration I. It is used to compute the new query
section corresponding to one iteration, which should then
be aggregated in order to get the query section for the pre-
decessors of the loop. The method QueryProploop header is
shown in Figure 10.

3.2.6 Interprocedural Analysis
The interprocedural reverse query propagation also involves
two cases (i.e., cases 3 and 4 in Figure 7).

In case 3, the node n is a call statement. We construct a
new query problem with the initial query node being the exit
node of the callee and the root node being the entry node

section
query

node
root

entry

exit

node
root

node init

section
query

procedure proc

section
query

end

section
QuerySolver((,),)node

init

call procn ...

Figure 11: Reusing QuerySolver for QueryPropproc call

end

procedure pa procedure pb

end

procedure pc

end
call pd

procedure pd

end

query splitting

call pdcall pd

Figure 12: Query splitting

of the caller, as illustrated in Figure 11. A QuerySolver is
used to propagate the query. The QuerySolver will early-
terminate when any array element in query section is found
not to have the desired property or all of them are found
to have the property. Note in this case, the QuerySolver
always terminates when the header of the callee is reached.

In case 4, the node n is the header of a procedure. If n is
not the program entry, then the query will be propagated
into the callers of this procedure. We use a query splitting
method illustrated in Figure 12.

Suppose the property query at the entry node n of a pro-
cedure proc is (n; sectquery), and the call sites of proc are
n1; n2; n3; :::, and nm. If n is the program entry, then the ar-
ray elements in sectquery are not generated in this program
and. As a result, if sectquery is not ;, the property analy-
sis terminate with the answer being false. If n is not the
program entry, the query is split into m sub-queries, each
of which has a set of initial queries as f(n0; sectquery)jn

0 2
pred(ni)g. The original query has a true result when all the
sub-queries terminate with a true result. Otherwise, the
initial query has a false result.

Of the three major components of array property analysis,
the QueryChecker is a generic method, while the Query-
Generator and the PropertyChecker are speci�c to the base
problem, such as dependence tests or privatization tests, and
speci�c to the potential property the array is likely to hold.
In the next two sub-sections, we use a data dependence test
problem to illustrate how to construct a QueryGenerator

and a PropertyChecker.

3.2.7 Generating Demands
A new dependence test, called the o�set-length test [20],
has been designed to disprove data dependences in loops
where indirectly accessed arrays are present and the index
arrays are used as o�set arrays and length arrays, such as
the offset() and the length() in Fig. 3. The o�set-length
test needs array property analysis to verify the relationship
between the o�set arrays and the length arrays. Therefore,
the o�set-length test serves as a query generator.

We test whether a data dependence exists between two array
accesses a(f()) and a(g()) with a dependence direction vec-

s0: do i=1, n
do j=2, iblen(i)

do k=1, j-1
s1: x(pptr(i)+k-1) = ...

end do
end do
do j=1, iblen(i)-1

do k=1, j
s2: ... = x(iblen(i)+pptr(i)+k-j-1)

end do
end do

end do

Figure 13: A loop form DYFESM

tor (=1;=2; :::;=t�1; 6=t; �; :::; �)) in a loop nest. We assume
that the index arrays in the loop nest (including arrays in
the loop bounds) are arrays whose subscripts are expressions
of the indices of the t outermost loop.

We �rst compute the ranges of values of f(i1; :::; it; �; :::; �)
and g(i1; :::; it; �; :::; �) when i1; i2; :::; it are kept �xed. Be-
cause the index arrays are arrays of only the outermost t
loops, the loop indices i1; i2; :::; it and the index arrays can
be treated as symbolic terms in the range computation. If,
except for the index arrays, f() or g() is an aÆne function of
the loop indices, the range can be calculated by substituting
the loop indices with their appropriate loop bounds, as with
Banerjee's test [3]. Otherwise, the ranges can be calculated
with the method used in some nonlinear data dependence
tests, such as the range test [8].

If the ranges of f(i1; :::; it; �; :::; �) and g(i1; :::; it; �; :::; �) can
be represented as [x(it) + flow ; x(it) + y(it) + fup] and
[x(it) + glow ; x(it) + y(it) + gup], respectively, where x()
and y() are two index arrays, and

flow = e(i1; :::; it�1) + c1, fup = e(i1; :::; it�1)� d1,
glow = e(i1; :::; it�1) + c2, gup = e(i1; :::; it�1)� d2,

e(i1; :::; it�1) is an expression of indices i1, i2,...,it�1 and
index arrays of the outermost t � 1 loops, and c1 and c2
are some non-negative integers, d1 and d2 are some posi-
tive integers, then there is no loop carried dependence be-
tween the two array accesses if index array x() has a closed-
form distance y() and the values of y() are non-negative.
Intuitively, there is no dependence because the range of
f(i1; :::; it; �; :::; �) does not overlap with the ranges of f(i1; :::;
it � k; �; :::; �) and g(i1; ::::; it � k; �; :::; �) for k > 0.

Example 2. Figure 13 shows a loop nest excerpted from

the subroutine SOLXDD of Perfect Benchmark code DYFESM.

We want to check if there is any loop-carried dependence
between statement st1 and statement st2 for the outermost
loop do i.

Here, f(i; j; k) = pptr(i) + k � 1 and g(i; j; k) = iblen(i) +
pptr(i) + k � j � 1. By substituting the loop indices with
the loop bounds, we can compute the ranges of f() and g()
when i is �xed, which are [pptr(i); pptr(i)+ iblen(i)�2] and
[pptr(i) + 1; pptr(i) + iblen(i) � 1], respectively. If pptr()
has a closed-form distance of iblen(), which is non-negative,
then for the outermost loop s0 there is no ow-dependence
from s1 to s2, no anti-dependence from s2 to s1, and no
output-dependence from s1 to s1.

3.2.8 Checking Properties
Given a property to be veri�ed and an assignment state-
ment, the property checker PropertyChecker checks whether
the assignment will cause any array elements to be gener-
ated or killed. In this subsection, we show how to use a
simple pattern matching technique to check the closed-form
distance.

Suppose the given property to be veri�ed is
x(i+ 1) = x(i) + y(i), for 1 � i � n� 1.

The PropertyChecker can take the following steps to in-
spect an assignment statement.

1. If the left-hand side (LHS) of the assignment is nei-
ther the array x() nor the array y(), then nothing is
generated or killed.

2. If the LHS is an array element x(i), then the assign-
ment and the other statements in the surrounding loops
are checked to see if they match any of the following
two patterns shown below. If not, then all elements of
x() are killed. Otherwise, x(i) is generated.

t = ...
x(1)=... do i=1, n
do i=2, n x(i) = t

x(i)=x(i-1)+y(i-1) t=t+y(i)
end do end do

(a) (b)

3. Otherwise (this includes the case when the LHS is an
array element of y() and the case when the LHS is an
array element of x() but the subscript is not a simple
index), all elements of x() are killed.

In general, the closed-form distance can be detected by using
abstract interpretation, such as the recurrence recognition
method proposed by Z. Ammarguellat and W. Harrison [1].
Compared with abstract interpretation, our pattern match-
ing method is simpler and, thus, conservative. However, we
found our method to be very e�ective in practice.

4. USING IRREGULAR SINGLE-INDEXED
ARRAY ACCESS ANALYSIS TO CHECK
PROPERTIES

Array property analysis uses PropChecker to examine the
reaching de�nition sites and determine whether an array has
the properties in the query. Constructing the PropChecker
is facilitated by the fact that, in real programs, index ar-
rays that have compiler-detectable properties usually have
a few �xed de�nition patterns. Oftentimes, simple pattern
matching methods like the ones presented in the previous
section suÆce. On the other hand, the analysis is compli-
cated by the fact that the accesses of index arrays in the
de�nition loops are usually irregular and, therefore, tradi-
tional array analysis methods cannot be used. The irregu-
lar single-indexed array access analysis method discussed in
Sect. 2 can be used to deal with this case.

Two useful key properties of index arrays are injectivity and
having closed-form bounds. Detecting whether an array sec-
tion has any of the two properties is diÆcult in general.

do k = 1, n
q = 0
do i = 1, p

if (x(i) > 0) then
q = q + 1
ind(q) = i

end if
end do
do j = 1, q

jj = ind(j)
z(k,jj) = x(jj) * y(jj)

end do
end do

Figure 14: An example of a loop with an inner index
gathering loop

However, in many cases, we only need to check whether the
array section is de�ned in an index gathering loop, such as
the loop do i in Fig. 14. In this example, the indices of the
positive elements of array x() are gathered in array ind().
After the gathering loop is executed, all the array elements
in section x[1 : q] are de�ned, the values of the array ele-
ments in array section x[1 : q] are injective, and the lower
bound of the values of the array elements in section x[1 : q]
is 1 and the upper bound is p.

With this information available at compile-time, the com-
piler now is able to determine that there is no data depen-
dence in loop do j and array ind() can be privatized in loop
do k. Thus, the compiler can choose either to parallelize
loop do k only, parallelize loop do j only, parallelize both,
or parallelize loop do k and vectorize loop do j, depending
upon the architecture on which the code runs.

An index gathering loop for an index array has the following
characteristics: 1) the loop is a do loop, 2) the index array is
single-indexed in the loop, 3)the index array is consecutively
written in the loop, 4) the right-hand-side of any assignment
of the index array is the loop index, and 5) one assignment
of the index array cannot reach another assignment of the
index array without �rst reaching the do loop header. The
fourth condition above ensures that the same loop index
value is not assigned twice to the elements of the index array.
This condition can be veri�ed by using a bDFS.

After an index gathering loop, the values assigned to the in-
dex array in the loop are injective, and the range of the val-
ues assigned is bounded by the range of the do loop bound.

5. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

Compile-time analysis of irregular memory accesses can en-
able deeper analysis in many parts of an optimizing com-
piler. To evaluate its e�ectiveness, we measured its impact
in �nding more implicit parallelism. In this section, we de-
scribe the implementation of the irregular single-indexed ar-
ray analysis and the implementation of the demand-driven
interprocedural array property analysis in the Polaris paral-
lelizing compiler [6]. We also show the impact of our tech-
niques on the parallelization of �ve benchmark programs.

5.1 Implementation
5.1.1 Reorganization of the Phases in Polaris

scanner ;
inlining ;
interprocedural constant
propagation ;
for each program unit do

program normalization ;
induction variable sub-
stitution ;
constant propagation ;
forward substitution ;
dead code elimination ;
privatization ;
reduction recognition ;
data dependence test ;

end do
postpass ;

(a) before

scanner ;
inlining ;
interprocedural constant
propagation ;
for each program unit do

program normalization ;
induction variable sub-
stitution ;
constant propagation ;
forward substitution ;
dead code elimination ;

end do
for each program unit do

privatization ;
end do
for each program unit do

reduction recognition ;
end do
for each program unit do

data dependence test ;
end do
postpass

(b) after

Figure 15: Reorganization of the phases in Polaris

The high-level structure of the original Polaris compiler is
shown in Figure 15(a). Except for the inlining and interpro-
cedural constant propagation, all other phases are intrapro-
cedural. For each program unit, Polaris performs a sequence
of analyses and transformations in order. This structure is
good for data locality and, therefore, good for the eÆciency
of Polaris. This organization is not appropriate for inter-
procedural array property analysis. It is better to apply
the same set of transformations to all program units before
the analysis starts. We, therefore, reorganize the phases in
Polaris as shown in Figure 15(b). This \loop distribution"
reorganization is possible because of the modularity of the
phases implemented in Polaris.

We did not remove the inlining phase because most analyses
in Polaris were not interprocedural and relied on inlining to
produce precise results. We used the default auto inlining
function in Polaris, which inlines procedures that contain no
I/O statements and contain less than �fty lines of code. Be-
cause not all procedures are inlined, the interprocedural part
of our array property analysis is still required and proved to
be useful.

5.1.2 Single-indexed Array Access Analysis
Single-indexed array access analysis was implemented in two
di�erent places. One was in the array privatization phase to
�nd consecutively-written arrays and the ranges of the array
elements being written. The other was in the PropetyChecker
part to detect the properties of injectivity and having closed-
form bounds.

5.1.3 Array Property Analysis as a Demand-driven
Tool

Array property analysis is not a stand-alone phase. It is
implemented as an independent tool that can be invoked on
demand.

The array property analyses that check di�erent proper-
ties are implemented as di�erent subclasses of a common
PropertySolver class which realizes the property indepen-
dentQuerySolver discussed in Section 3.2.2. The subclasses

implement the property dependent parts, such as the Prop-
ertyChecker. When an array property is to be checked, an
object of one of the subclasses is created, array sections in
the query are passed to the object, and then the analysis is
invoked.

In Polaris, the array property analysis is used in the priva-
tization phase and in the data dependence test phase.

5.1.4 Array Privatization
The privatization phase in Polaris privatizes arrays whose
upward exposed read sets in each iteration are empty [30].
To compute the upward exposed read set, the sets of array
elements that are read or written by each statement are
calculated. A set of array elements is represented as an
array section. To approximate in the safe direction, a read
section can be a superset of its corresponding real read set,
and a write section can be a subset of its corresponding real
write set.

In the original design, the array subscripts must be linear
expressions and the surrounding loops must be do loops.
The array accesses cannot be irregular; otherwise, the read
set has be to approximated to [�1;1], and the write set
to ;.

We extended the computation method for the read/write
sections so that it can handle the consecutively-accessed ar-
rays and simple indirectly-accessed arrays. The methods
described in [22] are used to get the ranges of the index
variables in consecutively-accessed arrays. For the simple
indirectly-accessed arrays, array property analysis is used
to verify the bounds of the index arrays. A set of indirectly-
read array elements now can be approximately represented
in array sections. For example, fa(p(i))j1 � i � ng is ap-
proximated to a[low : high], where low = min(p(i)) and
high = max(p(i)) for (1 � i � n). Although this approxi-
mation works for read sets only, it has proven to be useful
in our experiments.

5.1.5 Data Dependence Test
An important data dependence test used in Polaris is the
range test [8], which is a symbolic data dependence test
that can identify parallel loops in the presence of certain
nonlinear array subscripts and loop bounds.

We extended the range test so that it could function like
the o�set-length test (discussed in Section 3.2.7) when the
index arrays were used as o�sets and length. We found the
range test a natural place to incorporate the o�set-length
test because it also computed the symbolic range of sub-
script expressions which were used in the o�set-length test.
We also implemented a stand-alone simple o�set-length test
that tested the subscripts of the form \a(ptr(i)+j)". It could
be used when the user wanted to avoid the overhead of the
extended range test, though it was less general. An injec-
tive test was also added for the case when the subscript was
a simple index array like \a(p(i))". All the extended and
newly added tests need property analysis of index arrays.

5.2 Experimental Results
Table 2 shows the �ve programs used in our experiments.
TRFD, BDNA and DYFESM are from the Perfect Bench-

mark suite. P3M is a particle-mesh program from NCSA.
TREE is a Barnes-Hut N-body program from the Univer-
sity of Hawaii [4]. The compilation time of the programs
using Polaris is listed in column four. The array property
analysis increases the compilation time by 4.5% to 10.9%3.
These data were measured on a Sun Enterprise 4250 Server
with four 248MHz UltraSPARC-II processors. The sequen-
tial execution time of these programs (measured on an SGI
Origin2000 with �fty-six 195MHz R10k processors) is listed
in column three.

Table 3 shows the analysis results. Column two shows the
loops with irregular array accesses that can be analyzed by
Polaris now. The loops with a *" are the newly parallelized
loops. The loops without a *" are not parallelized, but their
analysis results are used to help parallelize the loops with a
*". The properties of the irregular array accesses are listed
in columns �ve and eight. Column nine shows the tests that
were used as the query generators in the array property anal-
ysis. Column ten shows the percentage of total sequential
program execution time (on the Origin2000) accountable to
the loops in column two. And, column eleven shows the per-
centage of total parallel program execution time accountable
to these loops if the loops were not parallelized (the number
after the % sign is the number of processors used). One to
thirty-two processors were used.

Figure 16 shows the speedups of these programs. We com-
pare the speedups of the programs parallelized by Polaris,
with and without irregular array access analysis, and the
programs compiled using the automatic parallelizer provided
by SGI. DYFESM used a tiny input data set and su�ered
from the overhead introduced by parallelization. The perfor-
mance of all three versions worsened when multiple proces-
sors were used (Fig. 16(e)). We also measured speedups on
a slower SGI Challenge machine (four 200MHz R4400 Pro-
cessors), and got a speedup of 1.6 (four processors) when
the extra loops were parallelized (Fig. 16(f)). Loop INT-
GRL/do 140 in TRFD accounted for only 5% of the total
sequential execution time. However, parallelizing it still in-
creased the speedups from �ve to six when 16 processors
were used (Fig. 16(a)). For BDNA, P3M and TREE, the
speedups improved signi�cantly.

6. CONCLUSION
Irregular array accesses are array accesses that do not have
closed-form expressions of array subscripts. Traditional loop
and array analysis methods cannot handle irregular array ac-
cesses, and many codes are left unoptimized. In this paper,
we presented simple and e�ective techniques to analyze two
common cases of irregular accesses: irregular single-indexed
accesses and simple indirect array accesses. We also showed
how to use the results of these analyses to enhance other
analyses and optimizations. We demonstrated their e�ec-
tiveness by measuring their impact in �nding more implicit
loop parallelism. Nine more loops in �ve programs were
found parallel, and the speedups of four programs increased
considerably after these loops were parallelized.

The techniques we presented are not silver bullets. They
are based on the observation that, in real programs, irregular

3The data of P3M is for subroutine PP only.

Sequential Program Polaris Execution Time (Sun 4250)
Lines Execution Time Whole Array Property

of Codes (SGI Origin2000) Program Analysis %
TRFD 380 4.4s 181.3s 8.1s 4.5%

DYFESM 7650 3.2s 302.3s 19.4s 6.4%
BDNA 4896 9.7s 465.7s 31.2s 6.7%
P3M� 2414 355.8s 73.1s 8.0s 10.9%
TREE 1553 8.3s 25.7 1.71 6.7%

Table 2: Compilation time using Polaris. The fourth column shows the whole program compilation time.
The �fth column is the time spent in array property analysis.

Single-indexed Access Indirectly Array Access
Program Loops Array Index Property Host Index Property Test %seq %par

TRFD INTGRL/do 140* - - - x ia CFV DD 5% 24%32

DYFESM SOLXDD/do 4* - - - xdd, z pptr, CFD DD 20% 7%8

SOLXDD/do 10* r, y iblen
SOLXDD/do 30* z
SOLXDD/do 50* xdd
HOP/do 20* xdplus,

xplus, xd
BDNA ACTFOR/do 240* - - - xdt ind CFB PRIV 32% 63%32

ACTFOR/do 236 ind l CW - - - - - -
P3M PP/do 100* - - - x0, ind0 jpr CFB PRIV 74% 76%8

r2, ind
PP/goto 10 ind0, x0 np0 CW - - - - - -
PP/do 50 ind0, x0 np0 CW
PP/do 57 jpr npr CW

TREE ACCEL/do 10* stack sptr STACK - - - - 90% 90%32

Table 3: Programs used in our experiment. CW - consecutively written, STACK - stack access, CFV -
closed-form value, CFB - closed-form bound, CFD - closed-form distance, PRIV - privatization test, DD -
data dependence test.

array access often follows a few �xed patterns and have good
properties. These techniques can be used together with user
assertions and run-time tests to provide complete support to
optimize codes with irregular memory accesses.

Acknowledgments We wish to thank the anonymous referees

for their many useful comments and suggestions. This work is sup-

ported in part by Army contract DABT63-95-C-0097; Army contract

N66001-97-C-8532; NSF contract NSF ACI98-70687; and a Partner-

ship Award from IBM. This work is not necessarily representative of

the positions or policies of the Army or Government. This work also

was partially supported by National Computational Science Alliance

and utilized the NCSA SGI Origin2000.

7. REFERENCES
[1] Z. Ammarguellat and W. L. Harrison, III. Automatic

recognition of induction variables and recurrence relations by
abstract interpretation. In PLDI '90, pages 283{295, NY, June
1990.

[2] V. Balasundaram and K. Kennedy. A technique for
summarizing data access and its use in parallelism-enhancing
transformations. In PLDI'89, pages 41{53, Portland, OR, June
1989.

[3] U. Banerjee. Data dependence in ordinary programs. Master's
thesis, Dept. of Computer Science, University of Illinois at
Urbana-Champaign, November 1976. Report No. 76-837.

[4] J. Barnes. ftp://hubble.ifa.hawaii.edu/pub/barnes/treecode/.
Technical report, Institute for Astronomy, University of Hawaii,
1994.

[5] W. Blume. Symbolic analysis techniques for e�ective
automatic parallelization. PhD thesis, University of Illinois at
Urbana-Champaign, June 1995.

[6] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeinger,
T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger,
L. Rauchwerger, and P. Tu. Parallel programming with polaris.
IEEE Computer, 29(12):78{82, December 1996.

[7] W. Blume and R. Eigenmann. An overview of symbolic analysis
techniques needed for the e�ective parallelization of the perfect
benchmarks. In Proceedings of the 23rd International
Conference on Parallel Processing. Volume 2: Software, pages
233{238, Boca Raton, FL, August 1994. CRC Press.

[8] W. Blume and R. Eigenmann. The range test: A dependence
test for symbolic, non-linear expressions. In Proceedings of the
Conference on Supercomputing, pages 528{537, Los Alamitos,
November 1994. IEEE Computer Society Press.

[9] D. Callahan and K. Kennedy. Analysis of interprocedural side
e�ects in a parallel programming environment. Journal of
Parallel and Distributed Computing, 5(5):517{550, October
1988.

[10] B. Creusillet and F. Irigoin. Interprocedural array region
analysis. In Proceedings of the 8th International Workshop on
Languages and Compilers for Parallel Computing (LCPC'95),
volume 103 of Lecture Notes in Computer Science, pages
46{60. Ohio State University, Colombus (Ohio), August 1996.

[11] E. Duesterwald, R. Gupta, and M. So�a. A practical framework
for demand-driven interprocedural data ow analysis. ACM
Transactions on Programming Languages and Systems,
19(6):992{1030, November 1997.

[12] P. Feautrier. Array expansion. In Proceedings of the Second
International Conference on Supercomputing, St. Malo,
France, July 1988.

[13] M. Gerlek, E. Stoltz, and M. Wolfe. Beyond induction
variables: Detecting and classifying sequences using a
demand-driven SSA form. ACM Transactions on Programming
Languages and Systems, 17(1):85{122, January 1995.

[14] T. Gross and P. Steenkiste. Structured dataow analysis for
arrays and its use in an optimizing compiler. Software Practice
and Experience, 20(2):133{155, February 1990.

1 2 4 8 16 32
0

1

2

3

4

5

6

7

Number of Processors

Sp
ee

du
ps

TRFD

APO
Polaris without IAA
Polaris with IAA

(a)

1 2 4 8 16 32
0

1

2

3

4

5

Number of Processors

Sp
ee

du
ps

BDNA

APO
Polaris without IAA
Polaris with IAA

(b)

1 2 4 8 16 32
0

1

2

3

4

5

6

7

Number of Processors

Sp
ee

du
ps

TREE

APO
Polaris without IAA
Polaris with IAA

(c)

1 2 4 8
0

0.5

1

1.5

2

2.5

Number of Processors

Sp
ee

du
ps

P3M

APO
Polaris without IAA
Polaris with IAA

(d)

1 2 4 8
0

0.5

1

1.5

2

Number of Processors

Sp
ee

du
ps

DYFESM

APO
Polaris without IAA
Polaris with IAA

(e)

1 2 3 4
0

0.5

1

1.5

2

Number of Processors

Sp
ee

du
ps

DYFESM (R4400)

Polaris without IAA
Polaris with IAA

(f)

Figure 16: Speedups: IAA - irregular array access analysis, APO - using the automatic parallelization option
in the SGI F77 compiler

[15] J. Gu, Z. Li, and G. Lee. Symbolic array dataow analysis for
array privatization and program parallelization. In Proceedings
of the 1995 Supercomputing Conference, San Diego, CA,
1995.

[16] M. Hall, S. Amarasinghe, B. Murphy, S. Liao, and M. Lam.
Detecting coarse-grain parallelism using an interprocedural
parallelizing compiler. In Proceedings of the 1995
Supercomputing Conference, San Diego, CA, 1995.

[17] P. Havlak. Interprocedural Symbolic analysis. PhD thesis, Rice
University, May 1994.

[18] K. Kennedy, K. S. McKinley, and C.-W. Tseng. Analysis and
transformation in the ParaScope Editor. In Proceedings of the
1991 ACM International Conference on Supercomputing,
pages 433{447, Cologne, Germany, June 1991.

[19] Z. Li. Array privatization for parallel execution of loops. In
Proceedings of 1992 International Conference on
Supercomputing, DC, pages 313{322, 1992.

[20] Y. Lin. Compiler analysis of sparse and irregular
computations. PhD thesis, University of Illinois at
Urbana-Champaign, May 2000.

[21] Y. Lin and D. Padua. On the automatic parallelization of
sparse and irregular fortran programs. In Proc. of 4th
Workshop on Languages, Compilers, and Run-time Systems
for Scalable Computers (LCR'98), volume 1511 of Lecture
Notes in Computer Science, pages 41{56. Springer-Verlag,
Pittsburgh, PA, 1998.

[22] Y. Lin and D. Padua. Analysis of irregular single-indexed array
accesses and its applications in compiler optimizations. In
Proceedings of the 9th International Conference on Compiler
Construction, Berlin, March 2000.

[23] D. Maydan, S. Amarasinghe, and M. Lam. Array-data ow
analysis and its use in array privatization. In Proceedings of
the Twentieth Annual ACM Symposium on Principles of
Programming Languages, Charleston, South Carolina, pages
2{15, January 1993.

[24] K. McKinley. Dependence analysis of arrays subscripted by
index arrays. Technical Report TR91-162, Dept. of Computer
Science, Rice University, June 1991.

[25] Y. Paek, J. Hoeinger, and D. Padua. Simpli�cation of array
access patterns for compiler optimizations. In PLDI'98, pages
60{71, Montreal, Canada, June 1998.

[26] L. Rauchwerger. Run-time parallelization: a framework for
parallel computation. PhD thesis, University of Illinois at
Urbana-Champaign, 1995.

[27] J. H. Saltz, R. Mirchandaney, and K. Crowley. Run-time
parallelization and scheduling of loops. IEEE Transactions on
Computers, 40(5):603{612, May 1991.

[28] M. Spezialetti and R. Gupta. Loop monotonic statements.
IEEE Transactions on Software Engineering, 21(6):497{505,
June 1995.

[29] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of
call statements. In Proceedings of the SIGPLAN'86
Symposium on Compiler Construction, pages 176{185, Palo
Alto, CA, July 1986.

[30] P. Tu and D. Padua. Automatic array privatization. In
Proceedings of the 6th International Workshop on Languages
and Compilers for Parallel Computing, Lecture Notes in
Computer Science, pages 500{521. Springer-Verlag, August
12{14, 1993.

[31] M. Wolfe. Beyond induction variables. In PLDI'92, pages
162{174, July 1992.

[32] C.-Q. Zhu and P.-C. Yew. A synchronization scheme and its
applications for large multiprocessor systems. In International
Conference on Distributed Computing Systems, pages
486{493, 1985.

