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Abstract

MATmarks is an extension of the MATLAB tool that
enables shared memory programming on a network of
workstations by adding a small set of commands. In
this paper we �rst give a high-level overview of the
MATmarks system. Then we present the commands
we had to add on to MATLAB. Next we dwell on
implementation details; �nally we present the perfor-
mance gains we achieved by using the system.

1 Introduction

Many researchers use domain speci�c languages
(DSL) to solve problems in their area of expertise.
These languages have several characteristics that
make them more convenient than general purpose
programming languages. DSLs allow the program-
mer to focus on the problem at hand rather than deal
with memory management or other idiosyncrasies of
general purpose languages. However, most DSLs are
not designed with eÆciency and performance in mind
and are not eÆciently implemented.

In this paper we describe MATmarks , a shared
memory extension to the MATLAB [10] environment
which allows the user to write programs that run on
multiple processors and machines. MATLAB is a ma-
trix manipulation language and environment. Popu-
lar among scientists, it is very easy to learn and use,
and it has an extensive collection of libraries that im-
plement the most common linear algebra operations.

MATmarks provides an environment in which the
user can run several MATLAB interpreters in par-

allel, and a set of primitives that allow the user to
program using the SPMD (Single Program Multiple
Data) programming model [4].
While interpreted execution is inherently slow,

MATmarks can be used to write, debug and tune
a shared memory parallel program. This program
can then be optimized with more conventional meth-
ods, such as compilation and vectorization, to obtain
near-FORTRAN performance [5].
MATmarks is based on the Treadmarks [1] virtual

distributed shared memory system. Treadmarks pro-
vides a shared memory view for processes running
on a network of workstations. It has a minimal set of
primitives that allow users to program using a shared
memory paradigm, transparent of the fact that dif-
ferent processes run as distinct processes on a collec-
tion of machines. MATmarks extends this behavior
to MATLAB interpreters.
The rest of this paper is organized as follows: sec-

tion 2 presents the MATmarks environment; section
3 describes the MATmarks extension language; sec-
tion 4 describes implementation details; in section 5
we show our experimental results; we conclude with
a discussion on related work and future directions.

2 The MATmarks Environ-

ment

MATmarks is a natural extension of MATLAB; it in-
tegrates the behavior of the underlying virtual shared
memory system, Treadmarks. Like in Treadmarks,
the basic tool for enabling parallelism is the ability
of the programmer to declare regions of memory as
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Figure 1: The MATmarks System

shared, i.e., showing the same value to all participat-
ing processes. However, unlike in Treadmarks, decla-
ration of shared variables is entirely dynamic. Di�er-
ent processes involved in the same computation can
start sharing a variable at di�erent points in the pro-
gram. A subset of processes can share a variable, and
this subset can change in time.

MATmarks allows the programmer to use the
SPMD (Single ProgramMultiple Data) programming
paradigm [4]. All processes execute the same pro-
gram, but individual processors can perform speci�c
actions based on their identity. This logical view is
enabled in MATmarks by the process identi�cation
commands.

Figure 1 shows the architecture of the MATmarks

system. The common user interface ties together a
set of MATLAB interpreters, each extended with the
Treadmarks library.

The user interface (Figure 2) has two roles. First
it starts all the MATLAB interpreters on the de-
sired machines and bootstraps the Treadmarks con-

nections between them. Next, as the system reaches a
stable state, it helps distribute the user's input to the
member processes and gathers partial results from
the machines.

The user interface is available in three distinct 
a-
vors. First, a simple command line based interface,
used mostly for debugging. There are also two graph-
ical user interfaces (GUIs), one based on the Tk/Tcl
toolkit [13] and the other on Java [2].

Both GUIs allow the user to send commands to in-
dividual processes or to all processes simultaneously.
For example, the GUI in Figure 2 has a text entry
window for each process k1 , an entry window for
sending global commands k2 , and a text window k3
to display the results for each process.

The GUI is also responsible for starting up all
MATLAB slave processes. The processes are inde-
pendent until the user presses the Init button k4 ,
which connects the processes using the Treadmarks
library.

The MATLAB interpreters run on several ma-
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Figure 2: The MATmarks Tk/Tcl based User Interface

chines. They are not changed in any way; the
MATmarks system consists only of dynamic libraries
added to the interpreters' search path. One of these
libraries contains the Treadmarks system.
Treadmarks uses data replication to implement the

illusion of shared memory. Unlike most hardware-
based shared memory systems, Treadmarks is not se-
quentially consistent [9]. Instead it implements a lazy
release consistency model [8] in order to minimize the
number of messages exchanged through the network.
What this means in practice is that good care must be
taken not to allow data races in the programs because
unexpected behavior will certainly result. Data races
can be avoided using the synchronization primitives
provided by MATmarks .

3 The MATmarks Extension

Language

To facilitate parallel processing, we extended MAT-
LAB with a set of commands. To keep the system
simple, we tried to keep the number of these com-
mands as small as possible. They can be ordered

into the following categories:

Initialization and termination commands:

MMK Init and MMK exit are used to initialize
and terminate the MATmarks system. The
initialization implies connecting several separate
MATLAB interpreters and initializing the
underlying TreadMarks layer.

Commands for process synchronization:

MMK Barrier, MMK Lock and MMK Unlock. These
commands behave exactly like their Treadmarks
counterparts [1]. MMK Barrier provides a
global point of synchronization, while MMK Lock

and MMK Unlock provide the critical section
semantics.

Commands for process identi�cation:

MMK proc id and MMK nprocs. Again, these
commands behave like the Tmk proc id

and Tmk nprocs variables in Treadmarks;
MMK nprocs returns the number of inter-
preters in the MATmarks group of processes;
MMK proc id returns the process number of
the current interpreter, numbered from 0 to

3



MMK nprocs -1.

Commands for declaring shared variables:

The MMK Share command, when executed by
an interpreter, declares a variable to be shared;
If any interpreter in the MATmarks process
group changes the value of a shared variable
the changed value will be propagated to all
interpreters that have declared it shared.

The following example exposes the behavior of
MMK Share:

* interp 1 * * interp 2 *

>MMK Share ('a', 45); >MMK Share ('a', 45);

>a = 1001; >

>MMK Barrier; >MMK Barrier;

>a >a

a = 1001 a = 1001

Here, two interpreters share the value of the vari-
able a. When the variable is �rst initialized, the
variable in each interpreter contains the value given
in the initialization statement, i.e. MMK Share. The
value of a is synchronized at the �rst lock or barrier,
conforming to the lazy release consistency model im-
plemented by Treadmarks.

MATmarks does not attempt to implement scop-
ing. All shared variables have to be at top level. This
is a deliberate design choice aimed to keep the system
simple.

As mentioned in Section 2, the declaration of
shared variables is entirely dynamic, i.e. not all pro-
cesses need to declare a shared variable at the same
time. However, care must be taken to avoid un-
expected behavior that might arise from a variable
being local in one process and shared in all others.
We do not consider this as good parallel program-
ming style, and we would recommend avoiding shar-
ing variables inconsistently across processes.

4 Implementation

This section explains the details of the MATmarks

implementation. To integrate MATLAB with Tread-
marks, we had to

� reconcile Treadmarks' page-based shared mem-
ory system with MATLAB's variables;

� maintain a global symbol table for shared vari-
ables; and

� �nd a way for MATLAB to handle variable shar-
ing transparently.

In Treadmarks, a collection of processes runs on a
set of workstations. The Treadmarks layer manages
the memory to provide a shared view for all the pro-
cesses. Treadmarks' shared memory system is page
based. The unit of sharing is page with the size de-
termined by the operating system (usually 4KB). To
avoid excessive copying of pages, Treadmarks uses a
multiple-writer protocol based on page \di�s" - min-
imizing traÆc at additional CPU expense.

To �nd out when a segment of memory has been
referenced, Treadmarks unsets write permission to
the shared memory pages, forcing page faults when
they are referenced. When the page fault is captured,
Treadmarks makes a copy of the original page to be
able to build a \di�" later. When the consistency al-
gorithm determines the need for reconciliation, di�s
are built for the pages that have been changed. The
di�s are used to update the shared pages on di�erent
processes.

The shared memory pages occupy the same address
in all processes. To initialize shared memory, Tread-
marks uses the Tmk distribute() function. This
function copies a bu�er from a certain address on one
machine to the same address on all other processes.

Shared memory in MATmarks is variable based,
and variables in MATLAB are dynamic. Therefore
an additional level of indirection is necessary: the
addresses of shared variables have to be redistributed
to all Treadmarks processes.

The addresses of all shared variables are main-
tained by MATmarks in a symbol table indepen-
dent of MATLAB itself. To access the shared sym-
bol table, a process has to acquire a lock. The
symbol table is redistributed immediately by using
the Tmk distribute() function if any changes were
made. Tmk distribute() is not subject to the lazy
release consistency model, but acts instantly, there-
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fore guaranteeing consistency of the symbol table
across processes by the time the lock is released.

When MATLAB allocates a shared variable,
MATmarks intercepts the call to the memory alloca-
tion functions and masquerades as a memory alloca-
tor. In reality MATmarks checks whether the shared
variable in question has already been allocated by an-
other process. If so, the address of the already allo-
cated shared variable is returned. If the variable has
not been allocated by anyone else then a new shared
memory location is allocated using the Tmk alloc()

utility function, and the shared symbol table is mod-
i�ed and redistributed accordingly.

To make all this work transparently through MAT-
LAB, we spoofed the interpreter by redirecting its
memory allocation functions. Thus MATLAB is
oblivious whether a variable is shared or not; it treats
all its variables the same way. When MATLAB ref-
erences shared variables, the Treadmarks page fault
system handles them transparently.

5 Experimental Results

5.1 Benchmarks

All our benchmarks are parallel versions of simple
MATLAB programs. Each of them are 100 lines or
less in length.

Our �rst benchmark, MM, is a simple blocked par-
allel matrix multiplication routine. We chose a ma-
trix size of 60x60 primarily to achieve a running time
that could be measured reasonably accurately. Par-
allelism is achieved by breaking up the result matrix
into column strips of appropriate sizes (e.g. 30x60
each for two processors) with each processor respon-
sible to calculate its own strip.

MM VECT is a slightly modi�ed version of MM:
we replaced scalar MATLAB code with vector code
(i.e. vector expressions in the style of FORTRAN
90). Since MATLAB uses optimized BLAS routines
to perform vector operations, the speed gains were
impressive. To keep execution time in the same or-
der of magnitude we had to increase matrix sizes to
500x500.

We used the MM and MM VECT benchmarks to

gauge the e�ect of system load on the performance
of MATmarks . Synchronization between processes
is minimal (in fact it is only necessary to collate the
partial results into the �nal result).
The third benchmark, JACOBI, is an implementa-

tion the Jacobi relaxation method, used in this case to
solve a two-dimensional elliptic PDE. Starting from
the original serial code we set out to achieve paral-
lel speedup with a minimal number of changes in the
code. The workspace (a 50x50 matrix) is divided into
equal slices, one for each processor. After each re-
laxation step the processors synchronize (and update
their copy of the workspace) at a barrier. We took
care to distribute the barriers such that each proces-
sor gets an approximately equal chance to \host" a
barrier.
We rewrote JACOBI into JACOBI OPT to gauge

the impact of the absolute amount of network traf-
�c on performance. We re-implemented the Jacobi
relaxation algorithm by sharing and exchanging only
the border zones between the di�erent slices of the
workspace. Thus the amount of network traÆc in
bytes decreases, whereas the amount of messages
stays approximately the same.
The last benchmark, SIEVE, is a parallelized im-

plementation of Eratosthenes' sieve for computing
primes. In this version of the algorithm �rst a ref-

erence list of primes are computed serially by proces-
sor 0, and then the sieve uses this list to �nd other
primes. The sieve itself is divided among the proces-
sors in such a fashion as to equalize the workload.
This entails di�erent array sizes for each processor,
since the work needed to establish whether a number
is a prime depends on the magnitude of that number.

5.2 Machine Setup

Our machine setup is as follows. We have a four-
processor SUN Enterprise server at our disposal,
and four single-processor Ultra 5 workstations. The
server has a 1 MB of L2 cache per processor and a
512 MB RAM. The workstations have only 64 MB of
RAM, and only 256 KB of L2 cache, but they operate
at a slightly higher clock speed. All workstations are
connected to the server through a 100 Mbit Ethernet
connection. Each of the workstations is on the desk-
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top of a member in our group; the server is used by
about 30 people.

5.3 Discussion

In this section we discuss the performance and scal-
ing issues, and how our experiments are setup to ad-
dress them. We have identi�ed the following poten-
tial problems:

� shared memory management/coherence mainte-
nance overhead;

� scaling;

� synchronization overhead;

� network latency

We attempted to measure the coherence mainte-
nance overhead by replacing the MATmarks primi-
tives with a hardware shared memory implementa-
tion, which relies on coherent caches. The results
are presented in Figure 3, and they show that Tread-
Marks' virtual shared memory coherence overhead is
negligible compared to the native hardware shared
memory.

The scalability of our system is proven by the par-
allel speedup curves shown in Figure 4. Each graph
plots the speedup curve for one of the benchmarks
for up to 8 processors. While all the benchmarks
scale with the added number of processors, there are
several interesting issues for each benchmark that we
discuss next.

Since we ran our experiments on a set of work-
stations with di�erent capabilities (as it is expected
in a real world environment), we encountered large
variations in the individual processors' computation
times even in the same experiment. This variation
shows up as unevenness in the speedup curves. The
MM benchmark shows a near-linear speedup and a
relatively small variance across processors. There
were no real surprises in this benchmark: communi-
cation requirements are almost inexistent (two barri-
ers). The overall performance is low because of the
MATLAB interpreter's overhead.

The MM VECT benchmark also shows a linear
speedup, but there are wild variations in proces-
sor performance. We attribute this principally to
the fact that the processors had unequal amounts of
L2 cache available. The problem involves accessing

8� 250000� (1 +
2

nprocs
) bytes of data per proces-

sor (where nprocs is the number of processors on the
job). Whether the computation �ts into the L2 cache
or not depends on the individual processors. The pro-
cessors with large amounts of cache show consistently
better performance than the rest.

Both JACOBI benchmarks show remarkably simi-
lar behavior and speedup. We expected better perfor-
mance from the optimized version of the benchmark
because it transmits a smaller number of bytes over
the network; the similar behavior of the benchmarks
suggests that it is the number of messages, not their
sizes, which reduces the eÆciency of the algorithm.
Therefore it is the network latency and not the band-
width that has a bigger impact on performance. To
prove this point we plan to perform two more exper-
iments: �rst, run a chaotic relaxation version of the
JACOBI benchmark; second, run the benchmarks on
a network that is slower but has the same latency.

The JACOBI benchmark provided an interesting
insight in the synchronization behavior of Tread-
Marks. Our �rst version of the algorithm used only
one barrier which was executed by processor 0. This
made that processor (one of the faster ones) to consis-
tently give the worst execution times, showing that
there is a relatively large penalty for handling the
synchronization. We changed the code to distribute
the barrier, so that at each iteration another proces-
sor hosts the barrier. This \optimization" improves
the performance of the overall algorithm.

The SIEVE benchmark shows an unexpected be-
havior of improving eÆciency as the number of pro-
cessors increases. This is not due to any feature of
MATmarks but to the algorithm itself, which tends
to perform a smaller number of redundant divisibility
checks when the workspace is more divided.
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Figure 3: Runtimes for MATmarks vs. hardware shared memory

6 Related Work

As MATLAB has become more popular, many re-
searchers have tried to develop systems that run in
parallel. Most of the e�orts [5, 14, 3] have focused on
translating MATLAB programs into other high level
languages, such as Fortran, Fortran 90, C, and C++.
Some of these projects used parallelizing compilers
to generate parallel codes; others employed already
parallelized runtime libraries.

While the translation into other languages and the
generation of executables may have its advantages,
we consider that it defeats the purpose of MATLAB
itself as a simple, rapid prototyping language.

Several other approaches are more similar to
MATmarks [11, 7] in that they are extending MAT-
LAB with sets of commands to run processes in paral-
lel. However, both approaches cited above are based
upon message passing systems, MultiMATLAB on
MPI [6], and ParallelToolbox on PVM. We claim

that the shared memory programming model used
by MATmarks is much simpler to use than the one
based on message passing. As opposed to the MPI
approach, a MATLAB program doesn't need to be
entirely rewritten to be parallelized - a much easier
iterative approach will do instead.

7 Conclusions

MATmarks is simple, portable and reliable. It o�ers
faster execution on a network of workstations while
preserving the advantage of an interactive environ-
ment. The changes to the MATLAB environment
are minimal.

Performance results show that linear speedup can
be achieved on a moderate number of workstations.
While transforming a serial program into a shared
memory parallel one is much easier than writing
a message-based parallel program, for good perfor-
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Figure 4: Parallel speedup curves for the �ve benchmarks on up to 8 processors

mance one needs to be more careful coding a parallel
algorithm. More research is needed to pin down the
factors that limit parallel speedups (like in the case
of the JACOBI benchmarks). We plan to repeat our
experiments on a low-latency interconnect, such as
Myrinet [12].

The MATmarks approach allows for incremental
development of a parallel program, e.g. parallelizing
the most time consuming loops �rst while leaving the
rest of the program unchanged. Future work might
involve developing debugging techniques for parallel
interpreted applications.

Previous work has shown that MATLAB execution
speed can be improved by one, or even two, orders of
magnitude by compilation. The next logical step is
therefore to integrate MATmarks with a MATLAB
compiler, such as FALCON [5], to obtain even better

performance.
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