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Sparse and irregular computations pose some of the most interesting and challenging problems

in compiler analysis. Such computations often use complicated data structures with irregular data

access patterns that cannot be handled by traditional compiler techniques. This complicates many

steps of an optimizing compiler, from parallelism detection and code transformation to data distri-

bution and organization. On the other hand, as computer architecutures continue to incorporate

more new features, compiler optimizations have come to play a vital role in the delivery of high

performance. In this dissertation, we present compiler analysis techniques for sparse and irregular

computations.

To understand what kinds of compiler techniques can signi�cantly improve the e�ectiveness

of an optimizing compiler, we studied this problem in the context of automatic parallelization of

Fortran programs. By studying a collection of Fortran 77 programs with sparse and irregular data

access patterns, we have identi�ed several important problems that must be tackled. The compiler

analysis of irregular array accesses and the parallelization of irregular reduction loops are the two

most important ones.

We have developed compiler analysis techniques for the two most common irregular array ac-

cesses: single-indexed array accesses and simple indirect array accesses. For single-indexed array

accesses, we use a bounded depth-�rst search method to identify the pattern the index variable fol-

lows as its value changes bewteen array accesses. For simple indirect array accesses, we developed

a demand-driven interprocedural array property analysis technique. We can use this technique to

�nd the property an index array has and use the property information in the analysis of its host

array. Our experiments have demonstrated that a parallelizing compiler incorporated with these

techniques can detect more inherently parallel loops than traditional compilers.

We have studied �ve di�erent possible parallelization methods for irregular reduction loops, all

of which can be applied automatically by a compiler. We compared their ease of use, applicability,

iii



supporting compiler techniques required, run-time resource requirement, and, most importantly,

run-time performance. From our analysis and experiments, we developed a general guideline for

choosing an eÆcient parallel irregular reduction method for given programs and input data sets.
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Chapter 1

INTRODUCTION

1.1 Sparse and Irregular Computation

1.1.1 Sparse Matrix Computation

Most scienti�c computing problems represent a physical system in the form of sparse matrices, which

are matrices whose majority elements are zero. For example, in many computation problems, the

continuous domain of the physical system being modeled is discretized by imposing a grid or a

mesh over the domain. Most computation problems simulate the physical changes at each grid

point based on the inuence of the neighboring elements. The simulation is often equivalent to

solving sets of linear equations whose variables are associated with the grid points. A system of n

linear equations can be represented in a matrix of the form Ax = b, where A is an n�n coeÆcient

matrix, b is a known vector, and x is the unknown solution vector to be computed. Because the

value of a variable depends on only a few other variables that correspond to its neighboring grid

points, most of the coeÆcients in the system of equations are zero; hence the coeÆcient matrices

are sparse matrices.

The storage requirements and computation time of applications dealing with sparse matrices

can be reduced signi�cantly by taking advantage of the presence of many zero elements in the

sparse matrices. Only nonzero elements of a sparse matrix are stored explicitly; only nonzero

elements are operated upon; and, additions or multiplications with zero elements are avoided. The

amount of storage and the number of arithmetic operations are then proportional to the number

of nonzero elements rather than to the number of elements in the matrix. This improvement

does not, however, come without a cost. The cost is an increased complexity in developing sparse
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computation programs.

1.1.2 Why Sparse Matrix Computations Are More Complicated Than Dense

Matrix Computations

Designing and implementing a sparse computation program is complicated because it tries to achieve

three goals [60]:

1. to store only the nonzero elements,

2. to operate only on the nonzero elements, and

3. to preserve sparsity.

Sparse matrices are stored in compact formats to reduce the storage requirements and compu-

tation time. The compact representation must store not only the values of the nonzero elements,

but also the indexing information which speci�es the position of each nonzero element in the regu-

lar matrix. Sparse computation is complicated by the fact that many di�erent schemes of storing

formats have been devised to take advantage of the structure of the sparse matrix or the specialty

of the problem being solved. For example, if a matrix is known to consist of a few diagonals, each

of these diagonals can be stored as a column of a dense matrix, and the o�sets of each diagonal

vector with respect to the main diagonal are stored separately. This diagonal format is illustrated

in Figure 1.1. If the matrix is not regularly structured, then the simple coordinate storage format

can be used. In this scheme, the values of nonzero elements and their row and column indices are

stored in three vectors, as illustrated in Figure 1.2. A third popular format is the compressed row

storage format. As shown in Figure 1.3, the nonzero elements are stored row by row in an array

data(), the column indices for each nonzero element are stored in array column, and the starting

positions of the nonzero elements of each row in data() are stored in array rowptr. In fact, there

are more than �fteen common storage schemes for sparse matrices [66].

The use of compact data structure makes the implementation of sparse matrix computations

more complicated than that of dense matrix computations. For example, the implementation of

sparse matrix addition or multiplication often splits into two parts: the symbolic section, which does

storage allocation or data structure set-up, and the numerical section, which performs the actual
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ip = 1

ix(1:m) = 0

do i=1, n

ic(i) = ip

do jp=ia(i),ia(i+1)-1

j = ja(jp)

jc(ip) = j

ip = ip + 1

ix(j) = i

end do

do jp=ib(i),ib(i+1)-1

j = jb(jp)

if ( ix(j) .neq. i ) then

jc(ip) = j

ip = ip + 1

end if

end do

end do

ic(n+1) = ip

do i=1, n

do ip=ic(i), ic(i+1)-1

x(jc(ip)) = 0

end do

do ip=ia(i), ia(i+1)-1

x(ja(ip)) = an(ip)

end do

do ip=ib(i), ib(i+1)-1

x(jb(ip)) = x(jb(ip))+bn(ip)

end do

do ip=ic(i), ic(i+1)-1

cn(ip)=x(jc(ip))

end do

end do

Figure 1.4: Sparse matrix addition
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numerical addition or multiplication. By contrast, in dense matrix addition or multiplication, we

often have only a simple numerical section. Figure 1.4 shows a code section that implements the

addition of two sparse matrices stored in the compressed row storage format [60]. The �rst loop

calculates how many nonzero elements each row in the summation matrix will have and �nds the

column number for each nonzero element in the summation matrix. The second loop does the

numerical summation. The resulting matrix is also stored in the compressed row storage format.

The goal of preserving sparsity also complicates the design and programming of sparse matrix

computation. A typical example is the handling of �ll-in. A �ll-in refers to an element whose

value is initially zero but later becomes nonzero during computations (like Gauss elimination). The

number of �ll-in's can be reduced by reordering the columns or rows of the sparse matrix before the

computation. Hence, sparse computation algorithms, such as sparse Cholesky factorization, often

employ an extra reordering phase that is not necessary in dense Cholesky factorization. Moreover,

�nding a permutation that minimizes �ll-in is an NP-complete problem [83]. Di�erent heuristic

approaches have been proposed to solve this problem, which further complicate the design and

programming of sparse matrix computation.

1.1.3 Irregular Computation

Depending upon one's point of view, there are di�erent criteria to determine whether an application

or a problem is irregular. In this thesis, we consider an application irregular if it employs indirectly

accessed arrays or pointers to deal with linked lists, trees, or graphs. The data access patterns in

such applications cannot be analyzed by traditional compiler techniques which assume aÆne loop

bound expressions and aÆne array subscript expressions and, therefore, are considered dynamic or

irregular.

Sparse computation is one kind of irregular computation. In a sense, a sparse matrix should not

be thought of as a matrix at all, but rather as a graph. Other examples of irregular computation

problems include: �nite element methods, hierarchical N-body problems, molecular dynamics, etc.

Like sparse computation, eÆcient irregular computation programs tend to be diÆcult to design

and implement.
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1.2 Compiler Analysis and Parallelization of Sparse and

Irregular Applications

1.2.1 Compiler Support

Ever since the �rst compiler in the mid-1950s, compilers have been used to facilitate the development

of eÆcient and sophisticated software at an a�ordable cost. Compilers serve as a connection between

high level languages and machine architectures. Architectural details are hidden from programmers

so that the programmers can focus on designing algorithms rather than worry about mapping

computations to hardware features. Compiler support is especially important in developing eÆcient

sparse and irregular applications for modern computer architectures, where both the algorithms

and the machines are complicated.

Compiler support for sparse and irregular programming can be put into two classes: high level

language level and intermediate representation (IR) level.

1. High level language level

Sparse and irregular applications employ complicated data structures. When the sparse and

irregular data structures are implemented in data types provided by traditional programming

languages, like arrays and pointers of Fortran and C, two problems occur. First, the high

level semantic information about the data structure usually is lost. Compilers have to rely on

expensive and complicated analyses, such as data dependence tests and pointer analyses, to

\uncover" the data structure information in order to generate quality codes. The optimization

of the code generated often su�ers in the absence of powerful IR level support. Second, because

the data types used are very primitive, the programmers have to be aware of the machine

architectures to generate codes with good performance. This not only increases the burden

of programmers, but also makes codes less readable, less exible, and less portable.

A way to improve this is to use new languages or extend the constructs or semantics of existing

programming languages. For example, storage schemes are expressed explicitly so that the

high level semantic information can be preserved. Typical examples are the extension to the

HPF, Vienna Fortran, and Fortran D [31, 75, 78]. As another example, a user can write sparse
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programs in the same way that dense programs are written, and use a compiler to translate

the codes into their sparse versions which use storage schemes speci�ed by the programmer

and chosen automatically by the compiler [12, 46].

2. Intermediate representation level

The goal of support at this level is to develop new or extend traditional compiler analysis

and optimization techniques to better serve sparse and irregular applications. Examples

of analyses and optimizations include constant propagation, dead-code elimination, loop-

invariant code motion, unnecessary bounds-checking elimination, software pipelining, and

data prefetching. These have been proven important in improving program performance.

The dynamic and irregular nature of sparse and irregular programs presents challenges to

applying these techniques. For example, indirectly accessed arrays are frequently used in

sparse and irregular programs, and most traditional compiler techniques can handle only

arrays with aÆne subscripts. Thus, a compiler has to assume the subscript can have any

value and gives up some optimizations. Figure 1.5 illustrates an example of loop-invariant

code motion. Expression x(i) in statement (1) is loop-invariant in loop do j, and the value

of a(x(i)) is never changed during the execution of loop do j. Therefore, the computation of

a(x(i)) � a(x(i)) in statement (2) can be moved to the front of loop do j, as shown in Figure

1.5.(b). This code motion would be wrong if x(i) were ever equal to j such that statement (1)

were ow dependent on statement (2). Traditional techniques assume this dependence and

do not perform the optimization. However, advanced techniques, like those discussed in this

thesis, can be used to replace the x(i) in statement (1) with i+ 1 and make the subscript an

aÆne expression.

The compiler support at this level does not require explicit user or high level language support.

In fact, from the compiler point view, these techniques do not distinguish between dense

and regular applications and sparse and irregular applications. They solve problems that

appear more frequently in sparse and irregular programs than in dense and regular programs.

Nevertheless, these techniques also are useful for analyzing complicated dense and regular

programs. The compiler analysis techniques presented in this thesis fall into this category.
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do k=1, n

x(k) = k+1

end do

do i=1, n

do j=1, i

t = a(x(i)) (1)

a(j) = t*t + a(j) (2)

end do

end do

(a)

do k=1, n

x(k) = k+1

end do

do i=1, n

t = a(x(i)) * a(x(i))

do j=1, i

a(j) = t + a(j)

end do

end do

(b)

Figure 1.5: Loop-invariant code motion

One compiler optimization that is essential nowadays is parallelization, which transforms the

program to exploit the parallel execution functions provided by the underlying machine architecture.

1.2.2 Parallelization of Sparse and Irregular Applications

Sparse and irregular computations usually contain more inherent parallelism than their dense and

regular counterparts, yet are more diÆcult to execute eÆciently on parallel machines [43, 30]. The

low eÆciency is partly due to poor data distribution and task balancing. For example, the normal

data distribution schemes for dense matrices, such as block, cyclic, and a combination of both, are

not suitable for sparse matrices whose structures usually are irregular. Solving these problems with

a compiler has been the focus of many recent studies. Several compile-time or run-time solutions

have been proposed, and great improvements have been achieved [56, 78, 76]. However, the very

�rst question of parallelization (i.e., how to �nd the parallelism) still remains a problem that, to a

large degree, has to be solved manually.

Most sparse and irregular computations have di�erent levels of parallelism. For example, the

sparse Cholesky factorization based on the elimination tree method has three levels of parallelism

[51, 43]. In coarse-grain parallelism, each thread processes all columns in a branch of the elimina-

tion tree. In medium-grain parallelism, each thread updates a single column. And, in �ne-grain

parallelism, each thread does a multiply-add operation on one element in a column.

Current computer architecture exhibits at least three levels of parallel execution functions: clus-

ters, within a cluster, and within a processor. For a sparse and irregular application to be scalable

8



and execute eÆciently, it is important to exploit the di�erent levels of parallelism. Algorithm de-

signers and programmers are good at dealing with high level or coarse grain parallelism. However,

exploiting medium or �ne grain parallelism by hand is tedious and prone to errors and is a job

better left to the compiler.

1.3 DiÆculties in Automatic Parallelization of Sparse and

Irregular Applications

1.3.1 Parallelism Detection

Parallelizing compilers analyze sequential programs to detect inherent parallelism and then use

this information to generate parallel programs. Because the most computationally intensive part

of scienti�c computations is often inside loops, most parallelization techniques focus on loop paral-

lelization.

While determining the semantic validity of executing two sections of a sequential program in

parallel is undecidable [11], the sequential order of statement execution can be relaxed and the

semantics of the original program is retained if the execution order speci�ed by dependence relation

is maintained.

A statement S is dependent on a statement T if, during the program execution, statement

T provides a value that is later used by statement S. This is called ow dependence or true

dependence, and it is the dependence relation that should be maintained in parallelizing functional

and dataow languages.

In imperative languages, a programmer can use and reuse memory locations via accesses to

variables. Therefore, in addition to ow dependences, anti dependences and output dependences

need to be maintained. A statement S is anti-dependent on a statement T if, during the program

execution, statement T reads a variable that is later modi�ed by statement S. A statement S is

output-dependent on a statement T if, during the program execution, statement T writes a variable

that is also later written by statement S. Anti-dependence and output-dependence are arti�cial

dependences. They can be eliminated by introducing new variables without changing the meaning

of the program.
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Array data dependence tests are used in �nding whether a loop can be parallelized. An array

data dependence test checks whether two array accesses (at least one being a write) in two di�er-

ent iterations of the loop may access a common array element. This problem can be formalized

as �nding an integer solution to a dependence system [84], which is a system of equations rep-

resenting array subscript expressions in terms of loop indices and a set of inequalities describing

the boundaries of the loop indices. For dense and regular programs, both the equations and the

bound constraints are often linear and the array data dependence test is equivalent to the integer

programming. During the last ten years, many algorithms (both approximate and exact) have

been proposed for dealing with this NP-Complete problem and have demonstrated good results in

practice [8, 62].

Unfortunately, in sparse and irregular applications, there are many cases when the array sub-

scripts cannot be represented in closed-form expressions in terms of loop indices. In such cases,

the data dependence problem cannot be characterized by the traditional dependence system, and

dependence is assumed. For example, the subscript expression of array a() in statement (1) of

Figure 1.5 is an array element x(i). In the traditional data dependence test framework, x(i) is

considered \unanalyzable" and dependence is assumed.

1.3.2 Parallel Transformation

After inherent parallelism is detected, a compiler then determines which of the parallel parts to

run in parallel and generates the code for the target machine. The irregular and dynamic nature

of sparse and irregular applications also makes it diÆcult to generate eÆcient parallel programs.

For example, at the processor level, due to the overhead of parallel execution, coarse grain

parallelism is preferred to �ne grain parallelism. Loop interchanging is a useful method to change the

granularity of parallel loops [81]. However, loop interchanging is not always legal. Data dependence

information is required to test the validity of loop interchanging. As in the dependence test for

parallelism detection, new techniques are required to analyze irregular memory accesses in sparse

and irregular programs; otherwise, loop interchanging cannot be performed safely.

A compiler also can transform programs to expose more parallelism, such as by eliminating

anti-dependences and output-dependences. For example, array privatization [28, 47, 54, 74] is a
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technique to remove these arti�cial dependences among array accesses. Current array privatization

techniques are based on the common \set-before-use" access pattern of temporary arrays found in

dense and regular programs. In sparse and irregular programs, the \set-before-use" way of using

temporary arrays may cause very large overhead; thus, a \reset-after-use" approach is often taken

instead. New array privatization techniques need to be developed to handle this case.

1.3.3 \Mission Impossible"?

Automatic parallelization has been a useful alternative to manual parallelization for regular/dense

computations [16]. However, automatic parallelization for sparse and irregular problems is not well

understood. Although it is widely believed that automatic detection of parallelism in sparse and

irregular computations is diÆcult or impossible due to the presence of complex subscript array

expressions, there is practically no empirical evidence to support this belief.

In this research, we developed several compiler techniques for analyzing and transforming sparse

and irregular programs. These techniques were identi�ed as important in parallelizing a collection of

sparse and irregular programs. Experimental results showed that it was possible for a parallelizing

compiler to automatically parallelize sparse and irregular programs as well as it could for dense

and regular programs.

1.4 Research Overview

1.4.1 Empirical Study

In order to understand the challenges to analyzing and parallelizing sparse and irregular programs,

we started our research by studying a collection of Fortran programs with irregular data access

patterns.

We used a current parallelizing compiler (Polaris) to parallelize these programs and examined

its output. By studying the loops that should have been parallelized but were not and the loops that

were parallelized but executed poorly on the target machine, we identi�ed several key techniques

that must be studied. They are:

� new ways to detect privatizable arrays,
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� analysis of irregular array accesses,

� elimination of overhead in run-time tests,

� eÆcient parallelization methods for irregular reduction loops, and

� parallelization of premature exit loops.

We then proposed several techniques to solve each of the above problems.

1.4.2 Compiler Analysis of Irregular Array Accesses

Irregular array accesses are array accesses whose array subscripts do not have closed-form expres-

sions in terms of loop indices. As we have discussed above, traditional array analysis and loop

transformation techniques cannot handle irregular array accesses. In our research, we studied, in

detail, two kinds of simple and common cases of irregular array accesses: single-indexed access and

indirect array access. We present techniques to analyze these two cases at compile-time.

An irregular array access is single-indexed in a loop if the array is always subscripted by the

same index variable in the loop. An array reference is indirectly accessed if the subscript of the

array contains another array.

We use di�erent techniques to handle these two di�erent kinds of irregular accesses. For irregular

single-indexed accesses, we use a bounded depth-�rst search method to trace how the values of index

variables are changed between two array accesses. We present techniques that can determine two

useful access patterns: consecutively-written and stack access. For simple indirect array accesses,

we use an interprocedural demand-driven array property analysis method. These two techniques are

simple and e�ective. They take advantage of the fact that, in real programs, irregular array accesses

often follow a few �xed patterns and have detectable properties. We also found it important to use

these two techniques together in analyzing irregular array accesses.

The compile-time analysis of irregular array accesses can enhance other analyses and optimiza-

tions, such as data dependence tests, privatization tests, loop parallelization, loop interchanging,

and eliminations of run-time array bounds-checking.

We present experimental results showing the e�ectiveness of the techniques in �nding more

implicit loop parallelism at compile-time. Nine more loops in �ve real programs were found par-
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allel, and four programs achieved considerable performance improvement after these loops were

parallelized.

1.4.3 Parallelization of Irregular Reduction Loops

Irregular reduction loops appear in the kernels of many sparse and irregular scienti�c computation

programs. We studied and compared �ve di�erent parallelization methods which fall in one of two

classes: iteration domain decomposition methods and data domain decomposition methods.

Irregular reduction loops can take many di�erent forms. In our study, we found iteration domain

decomposition methods were more versatile than data domain decomposition methods and could

easily parallelize di�erent forms of reduction loops. Data domain decomposition methods require

more compiler support to transform nested loops or loops with multiple access patterns.

To compare the e�ectiveness of these methods, we used �ve di�erent applications, three of

which have been previously used by other researchers in their study of irregular reduction loops.

We generated �ve di�erent versions using the �ve di�erent methods for each of the programs and

compared the running performance of these versions.

Our study concludes that there is not a single best way to parallelize irregular reduction loops.

The best strategy depends on the loop pattern, the distribution of input data, and the resource

constraints. We derived some guidelines for method selection.

1.4.4 Organization of Dissertation

This dissertation is organized as follows. Chapter 2 describes the empirical study we did at the

beginning of this research and discusses the key techniques we identi�ed. The following four chapters

detail two of the techniques, namely irregular array access analysis and parallelization of irregular

reduction loops. Chapter 3 discusses analysis of single-indexed array access and Chapter 4 discusses

analysis of indirectly accessed arrays. The e�ectiveness of the techniques presented in these two

chapters is demonstrated in the experiments described in Chapter 5. Chapter 6 discusses �ve

di�erent methods of parallelizing irregular reduction loops and the experiment we used to evaluate

their performance. Finally, Chapter 7 concludes this dissertation and gives several directions for

future work.
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Chapter 2

TECHNIQUES NEEDED FOR

AUTOMATIC PARALLELIZATION

OF SPARSE AND IRREGULAR

FORTRAN PROGRAMS

2.1 Introduction

As shown in Chapter 1, sparse and irregular applications pose new challenges to compiler analysis

and optimization techniques, such as automatic parallelization. To understand the problem, we

began our research by identifying the compiler techniques that were required to automatically

parallelize a collection of scienti�c computation programs with irregular memory access patterns.

We used the Polaris compiler [14] to facilitate our identi�cation.

The Polaris compiler is a research parallelizing compiler developed at the University of Illinois at

Urbana-Champaign. It takes conventional Fortran programs and generates parallel versions of these

programs for shared-memory multiprocessors and scalable machines with a global address space.

The previous work in the Polaris project has demonstrated that signi�cant progress in translating

programs written in conventional languages for parallel computer architectures is possible [14].

To identify the techniques required for parallelizing sparse and irregular programs, �rst we used

Polaris to parallelize our benchmark programs and measured their execution time. Then, we hand-

analyzed the parallelized programs. Through this hand-analysis, we studied whether the loops

detected as sequential by Polaris were, in fact, parallelizable or not, and classi�ed the reasons why

Polaris was not able to parallelize them. We also studied those automatically parallelized loops
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Seq. Exe.
Code Description Origin LOC Time

CHOLESKY Sparse Cholesky factorization HPF-2 1284 323s
EULER Euler equations on a irregular mesh HPF-2 1990 972s
SPLU Sparse LU factorization HPF-2 363 1958s
GCCG Computational uid dynamics Univ of Vienna 407 374s

LANCZOS Eigenvalues of symmetric matrices Univ of Malaga 269 389s
P3M N-body (Particle-mesh method) NCSA 2414 890s

DYFESM Analysis of anisotropic structures PERFECT 7650 25s
BDNA Modular dynamics PERFECT 4896 83s
TRFD Simulation of integral transformation PERFECT 380 47s
TREE Hierarchical N-body Univ. of Hawaii 1533 60s

SparAdd Addition of two sparse matrices Pissanetzky 67 2.40s
ProdMV Prod of a sparse matrix by a col vector Pissanetzky 28 1.28s
ProdVM Prod of a row vector by a sparse matrix Pissanetzky 31 1.07s
SparMul Product of two sparse matrices Pissanetzky 64 3.32s
ProdUB Product of matrices U�T and B Pissanetzky 49 3.72s

Table 2.1: Benchmark codes

that did not execute eÆciently on the target machine. For the studied loops that were inherently

parallel, we hand-transformed them into an eÆcient parallel form. We applied transformations

that could be potentially implemented by a parallelizing compiler. The improved versions were

run on the same machine and their execution times were compared with the originals. In most

of the programs we inspected, we found that our transformations could improve the program

performance by a signi�cant factor. Roughly speaking, the average speedups of these programs

were comparable to the results of previous studies of programs without irregular access patterns

parallelized by Polaris. This strengthened our belief that automatic parallelization can work on

sparse and irregular programs as well as it does on dense and regular programs.

In this chapter, we discuss the techniques we identi�ed. They can be classi�ed as parallelism

detection techniques (Section 2.4, Section 2.5, and Section 2.6) and parallel transformation tech-

niques (Section 2.7 and Section 2.8). Although these techniques were developed with parallelization

in mind, most of them are general analysis techniques that can be used in optimizations beyond

parallelization.

Before we present these techniques, we �rst describe, in the following two sections, the bench-

mark codes we used and the experimental results.
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2.2 The Benchmark Suite

Our benchmark suite consists of a collection of sparse and irregular programs written in Fortran 77.

Table 2.1 lists all the codes [5]. CHOLESKY, EULER and SPLU are from the HPF-2 motivating

application suite [31]. DYFESM, BDNA and TRFD are from the PERFECT benchmark suite

[27]. P3M is a Grand Challenge code from the National Center for Supercomputing Applications

(NCSA). GCCG was developed at the Institute for Software Technology and Parallel Systems at

the University of Vienna. LANCOS was contributed by E. Gutierrez at the University of Malaga,

Spain [5]. And, TREE was written by J. E. Barnes at the Institute of Astronomy, University of

Hawaii [10]. We also used �ve kernel codes that implemented several sparse matrix computation

algorithms given by S. Pissanetzky [60]. These programs were chosen because they had sparse and

irregular data access patterns and they included parallel idioms that were important to full-scale

sparse and irregular applications. The sequential execution times in Table 2.1 were obtained on

the SGI Challenge machine described in the next section.

As usual, the choice of benchmark codes is critical. The techniques and results in this study

are based on the codes in this suite. There is the open question of whether our �ndings carry over

to other programs. To answer this question, besides studying a broader collection of programs,

we need to understand the rationale of the existence of problems our techniques try to solve. Are

they caused by some \fancy coding tricks" used by one or two \smart" programmers? Or are they

the result of some common programming patterns that most programmers follow? For each of

techniques presented in this chapter, we describe not only what it is, but also why it is important.

2.3 Experimental Results

We used Polaris to automatically parallelize the programs in our benchmark suite for SGI Challenge

machines. The parallelized versions were compiled by the native SGI MIPSPro Fortran compiler

7.30 (option -O2) and ran a four-processor SGI Challenge machine (four 200MHz R4400 MIPS

processors, 256MB memory, 16KB instruction cache, 16KB data cache, 4MB second level cache,

and running IRIX64 6.5). In Figure 2.1, the speedups of the Polaris versions are represented by the

white bars and the speedups of the manually improved versions are represented by the black bars.
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Figure 2.1: Experimental results

For �ve of the �fteen programs, namely GCCG, LANCZOS, ProdMV, ProdVM, and ProdUB, the

Polaris parallelized versions had the same speedups as the manual versions; for the remaining ten,

the manually improved versions achieved better performance.

The �ve Polaris parallelized versions achieved the same speedups as their corresponding manual

versions for two di�erent reasons. First, in programs GCCG, LANCZOS, and ProdMV, all the

irregular array accesses appear in the arrays that are read-only in loops, as illustrated in Figure

DO nc = nintci, nintcf

direc2(nc) = bp(nc)*direc1(nc)

- bs(nc)*direc1(lcc(nc,1))

- bw(nc)*direc1(lcc(nc,4))

- bl(nc)*direc1(lcc(nc,5))

END DO

Figure 2.2: Array direc1() is read-only in the loop.
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Parallelism Detection Transformation
New Array Irregular Run-time Irregular Premature
Privatization Array Access Test Reduction Exit Loop

1 CHOLESKY x x x x x

2 EULER

3 SPLU x x x x

6 P3M x

7 DYFESM x

8 BDNA x

9 TRFD x

10 TREE x

11 SparAdd x x

14 SparMul x x

Table 2.2: Compiler techniques required to parallelize the benchmark codes

2.2. Therefore, these irregular accesses did not cause any diÆculties for traditional data dependence

tests. The Polaris versions had the same parallel loops as the manual versions did, and both versions

did the same transformations.

Second, in programs ProdVM and ProdUB, the parallel loops are irregular reduction loops.

These loops were parallelized by Polaris with the replicated copy method. These loops are simple.

When only four processors were used, the replicated copy versions had relatively small overhead

and had better performance than the versions parallelized by other methods, although the latter

might be better if more processors were used. We will elaborate on this in Section 2.7.

Table 2.2 shows the new techniques required or the techniques that need to be improved to

parallelize the other benchmark codes. An `x' in the table means the technique that solves the

problem in the corresponding column is needed for parallelizing the code in the corresponding row.

The techniques are described in the following sections.

The rest of this chapter is organized as follows. Section 2.4 discusses two new methods of

detecting privatizable arrays. Section 2.5 shows that we need compiler analysis for irregular memory

accesses. Section 2.6 gives three methods to improve run-time dependence tests. Section 2.7

discusses irregular reduction. And, Section 2.8 describes how to parallelize premature-exit loops.

The techniques discussed in Sections 2.5 and 2.7 are not detailed because the next four chapters

are dedicated to these topics.
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2.4 New Methods of Detecting Privatizable Arrays

2.4.1 Traditional Array Privatization Techniques

Array privatization is one of the most important transformations for program parallelization [28,

47, 54, 74]. It identi�es arrays that are used as temporary work spaces within a loop iteration,

and then allocates local (private) copies of the arrays for each iteration or thread. By doing this,

it eliminates any cross-iteration anti-dependence or output-dependence caused by the reuse of the

temporary arrays, and potentially exposes more parallelism.

Generally speaking, an array section a[p : q] can be privatized in a loop if there does not exist

an iteration i and an array element a[k] (k 2 [p; q]) such that the de�nition of a[k] in iteration i

can reach any use of a[k] in any iteration j that is later than iteration i. It can be formalized as

follows.

Proposition 2.1 Given a loop with iteration range of 1 to n, let write(i) be the set of array

elements in a[p : q] that are written in iteration i, and useexp(i) be the set of array elements in

a[p : q] that have upwards exposed use in iteration i. Then the array section a[p : q] can be privatized

in the loop if

81 � i < j � n;write(i) \ useexp(j) = ; (1)

To test the condition (1), element-based array dataow analysis [29, 54, 64, 53] is required to

gather ow information for each array element in the section a[p : q]. This approach involves solving

several integer programming problems and is expensive [29, 33].

In practice, a suÆcient condition of (1) is often tested to determine the validity of privatization.

Corollary 2.1 Given a loop with iteration range of 1 to n, let useexp(i) be the set of array elements

in a[p : q] that have upwards exposed use in iteration i. Then the array section a[p : q] can be

privatized in the loop if

81 � i � n; useexp(i) = ; (2)
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To test condition (2), a section-based array dataow analysis is usually suÆcient [33, 34, 74].

The test consists of two steps. First, the section of array elements that each statement can read or

write in one iteration is calculated. Second, the read sections of each statement are subtracted by

the write sections of the statements that dominate the read statement to get the upwards exposed

read sets.

This approach works well in many programs because iteration-based temporary arrays are often

�rst initialized upon entering the iteration and then used through the rest of the iteration. They

follow the \set-before-use" pattern.

Besides the simplicity of calculation, this method has other advantages. First, \copy-in" is not

required. The \copy-in" refers to the operations that copy the values of the global arrays to the

private arrays. If an array is found privatizable by using the test in Proposition 2.1, then the value

of an array element read in the loop may come from outside the loop. Thus, the array values should

be assigned to the private copies before entering the loop. On the other hand, if the array is found

privatizable by using the test in Corollary 2.1, then the values of the private array elements always

come from the same iteration. Hence, copy-in is not necessary. Second, arrays that are found

privatizable by this method can be privatized for each processor instead of for each iteration, and

the iterations assigned to a processor can be executed in any order. If an array is found privatizable

by satisfying condition (1), the array also can be privatized for each processor, but all the iterations

assigned to one processor must be executed in the same order as in the sequential loop.

However, this simple approach sometimes does not always work for sparse and irregular ap-

plications. In sparse and irregular applications, although temporary arrays sometimes follow the

set-before-use pattern, the irregular access pattern often makes it impossible to get the precise

section of array elements that are read or written by one statement in an iteration. For example,

for the array x() in the loop do i in Figure 2.3, it is trivial to know that x[1 : m] is written by

statement (1); but, with no further information about array pos(), we have to assume that any ele-

ment of x() may be read by statement (2). This assumption makes the calculated upwards exposed

read set not empty and, as a result, array x() cannot be privatized by testing condition (2).

There are also cases in sparse and irregular applications where temporary arrays do not follow

the set-before-use pattern. In these cases, although the arrays are privatizable, the upwards exposed
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do i=1, n

do j=1, m

x(j) = .. (1)

end do

do k=1, l

y(i,k) = x(pos(k)) (2)

end do

end do

Figure 2.3: An example of self-covered dominating write

read sets are not empty, and condition (1) must be tested.

We also found that, in sparse and irregular applications, some arrays could be privatized even

though their access patterns did not satisfy condition (1). In these cases, we need to extend the

domain of privatizable arrays.

Here, we present two new techniques that can detect a broader range of privatizable arrays in

sparse and irregular programs than the traditional methods can.

2.4.2 Self-covered Dominating Writes

In this section, we give an array privatization detection technique that tests another suÆcient

condition for (1). This technique does not require the calculation of read sets.

Corollary 2.2 Given a loop with iteration range of 1 through n, condition (1) is true if

1. in each iteration, all the write accesses to array x() happen before any read access to array

x(), and

2. 81 � i < j � n;write(i) � write(j), where write(k) represents the set of array elements

written in iteration k.

Proof

To see why the corollary is correct, notice that because of the �rst condition, the upwards

exposed read set for iteration i can be calculated by using the following equation:

useexp(i) = use(i)� write(i);
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and 81 � i < j � n,

write(i) \ useexp(j)

= write(i) \ (use(j)� write(j))

= write(i) \ use(j)� write(i) \ write(j)

= write(i) \ use(j)� write(i)

= ;

2

In general, to verify the �rst condition in Corollary 2.2, we need to solve an integer programming

problem. However, there are simple cases where the access order can be veri�ed by checking the

dominance relationship between the read statements and the write statements in the loop body.

The biggest advantage of this method is that it does not require the computation of the read

sets nor the upwards exposed sets. Thus, it can be used for loops with read sets that are diÆcult

to compute. For example, for the loop in Figure 2.3, because the write set of array x() is always

x[1 : m], we can easily determine that x() is privatizable without knowing which elements of x()

are read in each iteration.

This method does not compute the read set, nor does it know whether an iteration may read an

array element that has a value coming from outside the loop. Thus, copy-in is generally required for

the privatized arrays to ensure the semantic correctness, unless it can be veri�ed that the smallest

write set covers the domain of the array declared in the program.

2.4.3 Reset-after-use Pattern

In sparse and irregular applications, we found a class of arrays that did not satisfy the condition (1)

and still could be privatized. An example of this kind of privatizable array is shown in Figure 2.4.

In this example, array t() can be privatized in loop do j. Before entering loop do j, the program

initializes the value of t() to 0 in loop do i. In each iteration of loop do j, the elements of t()

that are modi�ed in statement (3) are always reset to 0 in loop do l before the program leaves

the iteration. Because the values of the elements in t() are always 0 when the program enters each
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real t(1:m)

do i=1, m

t(i) = 0 (1)

end do

do j=1, n

k = 0

...

while (..) do

.. = t(..) op express (2)

k = k+1

t(k) = .. (3)

end while

...

do l = 1, k

t(l) = 0 (4)

end do

end do

Figure 2.4: An example of reset-after-use pattern

iteration, a private copy of t() for each iteration with the initial value 0 can be used. Thus, array

t() can be privatized. Because the value of t() read by statement (2) may come from an earlier

iteration of loop do j, condition (1) is not satis�ed and t() is not privatizable according to the

traditional criteria.

There are two reasons that people use temporary work space in this \reset-after-use" way

instead of following the set-before-use pattern. First, the size of t() declared may be very large and

the number of elements that are modi�ed in each iteration may be very small, thereby creating a

high overhead cost to initialize all elements of t() in the beginning of each iteration. Second, in

many sparse and irregular programs, the positions where array t() will be read or written in each

iteration are usually unknown until the array is actually being referenced, such as the range [1 : k]

in the example. It is diÆcult to write initialization statements prior to the references. In such

cases, reset-after-use is simpler than set-before-use and can avoid unnecessary computations. This

programming style reects the dynamic nature of sparse and irregular programs. We found this

access pattern in CHOLESKY and SPLU.

If we de�ne downwards exposed write for an iteration as the set of array elements that is written

in an iteration but not reset to the initial value before the end of the iteration, then an array can be
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privatized if the downwards exposed write is empty for each iteration. By working on the reversed

control ow graph, we can check this condition in a way similar to that of checking condition (2).

In practice, this is more diÆcult because arrays that are reset-after-use are more likely to have

irregular access patterns than the arrays that are set-before-use. To get the write or read sets,

other techniques are often required, such as the analysis of irregular memory accesses described in

the next section or the run-time test methods described in Section 2.6.

2.5 Compiler Analysis of Irregular Memory Access

Traditional loop optimization and array analysis techniques work on DO loops and require array

subscript expressions to be expressed as closed-form expressions in terms of loop indices. In ad-

dition, most methods require the subscript expressions to be linear. However, in most sparse and

irregular programs, array accesses are often irregular.

De�nition 2.1 We de�ne an array access as irregular if

1. no closed-form expression, in terms of the loop indices, for the subscript of the accessed array

is available at compile-time, or

2. the subscript expression of the accessed array contains any unknown function of the loop

indices.

Because current analysis techniques cannot handle irregular array accesses, many code sections

are left unoptimized. This was the most important reason that Polaris found fewer parallel loops

than the manual version in the experiment discussed above. In particular, this was the case for

CHOLESKY, SPLU, P3M, DYFESM, BDNA, TRFD, TREE, SparAdd and SparMul.

For example, as discussed in Section 2.4, array privatization [28, 47, 54, 74] is an important

technique in loop parallelization. In many cases, an array can be privatized if all elements of the

array that are read in one loop iteration are always �rst de�ned in the same iteration. In each

iteration of the outermost loop do k in Fig. 2.5.(a), any element of x() read by statement (3)

in loop do j is de�ned by statements (1) and (2) in the while loop. Therefore, array x() can

be privatized in loop do k. Because there are no cross-iteration dependences, loop do k can be
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do k=1, n

p = 0

i = link(1,k)

while ( i != 0 ) do

p = p + 1

x(p) = y(i) (1)

i = link(i,k)

if ( cond(k,i) ) then

p = p + 1

x(p) = y(i) (2)

end if

i = link(i,k)

end do

do j=1, p

z(k,j) = x(j) (3)

end do

end do

(a)

do i = 1, n

do j = 1, m

x(j) = ..

end do

do k = 1, l

y(i,k) = x(pos(k))

end do

end do

(b)

Figure 2.5: Examples of irregular array accesses

parallelized. Current privatization tests require a closed-form expression of the array subscripts in

terms of the loop indices in order to compute the section of array elements read or written in the

loop. In this example, because there is no such expression for the index variable p, these techniques

can determine only that section [1 : p] of array x() is read in loop do j, but they cannot determine

that the same section is also written in the while loop. Therefore, they fail to privatize x().

A second example is the loop in Figure 2.5.(b), which has the same loop as in Figure 2.3. It

illustrates an indirect array access that cannot be handled by current privatization tests. As dis-

cussed in Section 2.4, traditional techniques cannot determine whether array x() can be privatized

because pos() may have any value if no further knowledge about x() is available. Although we can

privatize x() according to Corollary 2.2, we need to test condition (2) in Section 2.4 if we want

to avoid copy-in. If, by doing global program analysis at compile-time, we know that the value

of elements in pos[1 : l] is within the range [1;m], then we can privatize x() for loop do i and

parallelize loop do i without the need for copy-in.

The array accesses in the above two examples are irregular for two di�erent reasons. The �rst

one is irregular because the array index variable is modi�ed conditionally in the loop and, therefore,

no closed-form expression of the index variable is available. The second one is irregular because of
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the use of an index array.

These two examples also illustrate two kinds of common irregular array accesses: irregular

single-indexed access and simple indirect array access.

De�nition 2.2 The accesses to an array in a given loop are irregular single-indexed if the array

is always subscripted by the same index variable in the loop and the accesses are irregular.

The access of array x() is single-indexed in the while loop in Figure 2.5(a).

De�nition 2.3 An array reference is indirectly accessed if the subscript of the array contains

another array. We call the array itself the \host array", and the array in the subscript the \index

array". An indirect array access is simple if the enclosing loop is a DO loop and the subscript of

the index array is the loop index.

The reference to array x() in loop do k in Fig. 2.5(b) is a simple indirect array access. As a

counter-example, x(pos(k + i)) is not a simple indirect array access.

The arrays we have discussed thus far are single dimensional. In the case of multi-dimensional

arrays, we consider the subscript expressions dimension by dimension.

Although these two kinds of irregular array accesses are more simple than the general cases,

they are the most common forms of irregular array accesses in sparse and irregular programs we

have studied. We have developed compiler techniques to handle these two cases. For irregular

single-indexed accesses, we use a bounded depth-�rst search method to trace how the values of

index variables are changed between two array accesses. In Chapter 3, we present techniques

that can determine two useful access patterns: consecutively-written and stack access. For simple

indirect array accesses, we present, in Chapter 4, an array property analysis method that �nds

the properties of an index array and applies the property information in the analysis of the access

pattern of its host array.
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2.6 Overhead Elimination in Run-time Dependence Tests

2.6.1 What is Run-time Dependence Test?

When static analysis is complex or information that depends on the input data is needed, a run-

time method becomes necessary. Run-time techniques can succeed where compile-time analyses

fail because they have access to data in \real time".

The scheme of using a run-time dependence test is very simple. Suppose a given loop can be

parallelized only when a certain condition is true, and the condition is unable to be veri�ed at

compile-time. The compiler can generate a parallel version and a sequential version of the loop

and guard these two versions by a conditional statement that tests this condition. If, at run-

time, the condition is true, then the parallel version is executed; otherwise, the sequential version

is executed. A more complicated method is to run the parallel version speculatively instead of

waiting for the test results, in the hope that the results will favor the speculation. If the test fails,

the execution of the loop is \rolled back" and the sequential version is executed. To facilitate the

rollback, temporary storage space is needed to save the value of variables that will not be modi�ed

in the loop. Speculative parallelization is useful when the test of the condition takes a considerable

amount of time. To be eÆcient, speculative parallelization should be used heuristically to reduce

the number of false speculations.

2.6.2 Current Run-time Dependence Tests

Depending on how the test conditions are obtained, run-time tests fall into two categories. The �rst

kind of approach is a straightforward extension of compile-time tests [13]. As usual, a compile-time

data dependence test or an array privatization test is performed. If the test is simpli�ed to a set

of conditions that cannot be veri�ed statically, then testing codes are generated to check these

conditions at run-time.

The advantage of this method is that the condition tests usually are simple and the execution

time to perform the tests is often negligible compared with the execution time of the loop body.

However, the e�ectiveness of this approach is limited by the compile-time tests on which the run-

time tests are based. Because a compile-time dependence test usually checks a necessary condition
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do i = 1, n

if ( ... ) then (0)

a(i+m) = ... (1)

else

... = a(i) (2)

end if

end do

(a)

if ( (n-m < 1) or (n+m < 1) ) then

doall i = 1, n

...

end do

else

do i = 1, n

...

end do

end if

(b)

Banerjee's Test:

f(i) = i+m; 1 � i � n) [fmin; fmax] = [1 +m;n+m]

g(i) = i; 1 � i � n) [gmin; gmax] = [1; n]

[1 +m;n+m] \ [1; n] = ;?, n�m < 1 or n+m < 1?

(c)

Figure 2.6: A run-time test that is conservative

of dependence, there are cases where the test assumes dependences that do not exist. For instance,

for the loop in Figure 2.6.(a), Banerjee's test [7] checks whether the range [fmin; fmax] of the

subscript of a() written in statement (1) overlaps the range [gmin; gmax] of the subscript of a()

read in statement (2). If they do not overlap, there is de�nitely no dependence between statement

(1) and statement (2) for loop do i. If they overlap, then there may be dependence. Because

of the use of the symbolic terms m and n, Banerjee's test is not able to compare the ranges at

compile-time. A run-time test can be inserted to test the relationship between n and m, as shown

in Figure 2.6.(b). However, during the real execution of the loop, if only statement (1) is executed

and statement (2) never gets executed because of the if condition in statement (0), then there is

no dependence between statements (1) and (2) even when 1� n � m � n� 1. Obviously, run-time

information is not fully utilized in this approach.

To overcome the shortcomings of the above approach, a second approach can be used that

actually executes an inspector version of the loop, in which the data arrays are replaced with

\shadow arrays" [65]. Accesses to the data arrays are traced by marking the shadow arrays during
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the execution of the inspector loop. The result of the trace is then analyzed to determine whether

the loop can be parallelized. Because the array accesses are actually recorded, this second approach

makes it possible to know with certainty whether there exists any data dependence or not. To

minimize the overhead caused by executing the inspector loop, instead of having a separate inspector

loop, the original loop usually is augmented with shadow arrays and marking codes, and the loop

is executed speculatively in parallel. The execution is rolled back if the trace result indicates a

dependence has been violated because of the parallel execution. This approach is more suitable for

loops with irregular array access patterns.

In its straightforward form, the run-time test method in the second category uses shadow

arrays that have the same size as the data arrays, and checks every read/write operation on the

data array element. This method introduces high overhead on today's machines whose memory

access is signi�cantly slower than its computations.

2.6.3 Overhead Elimination

We found that the overhead of the run-time test in the second category could be considerably

reduced by using some compiler techniques. For example, Figure 2.7 shows a simpli�ed form of a

loop from program CHOLESKY. We want to check whether loop do i can be parallelized. In the

body of the inner loop do j, there are three read references and one write reference to array data().

We could use one mark operation for each reference. There could be four in total for each iteration

of the inner loop. A compile-time value numbering analysis [18, 21, 69] can reveal that the subscript

of the element read in statement (1) is the same as the subscript of the array elements written in

statement (2). Therefore, the array element read in statement (1) and written in statement (2) is

the same one. A dominance analysis can determine that statement (1) dominates statement (2),

which means that the array element written by statement (2) is always read �rst by statement (1)

in the same iteration. Therefore, instead of using one mark operation (\read") in statement (1)

and another one (\write") in statement (2), we can simply use only one mark (\read-�rst-write")

in statement (1). The compile-time analysis would save 25% of the mark operations (from 4 to 3)

at run-time.

The number of mark operations can be further reduced by noticing that the subscript pos(k)+
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do i=k+1, k+nafter(k)

do j=1, ksize-(i-k)

t = data(pos(i)+j-1) (1)

data(pos(i)+j-1) = t - data(pos(k)+i-k)*data(pos(k)+i+j-k-1) (2)

end do

end do

Figure 2.7: The run-time test for this loop can be improved

i � k of the �rst read access in statement (2) is a loop-invariant expression of loop do j. The

mark operation (\read") for array element data(pos(k) + i � k) needs to be performed only once

for each iteration of loop do i. We can move this mark operation to the front of loop do j and

guard it by the condition if (ksize-(i-k)) � 1. Note that it is illegal to move the read access to

data(pos(k)+ i�k) to the front of loop do j without knowing there is no data dependence between

this read reference and the write reference in statement (2). It is legal, however, to move the mark

operation because data(pos(i)+j�1) is always, as discussed above, read �rst during the execution.

Another method to reduce the number of mark operations is mark aggregation. Notice that

statement (1) reads a continuous section of data() and statement (2) reads and writes continuous

sections of data(). Instead of marking the shadow array on every occurrence of a write or a read

access, we can mark a shadow section. For each iteration of loop do i, we can record the type of

access to two array sections (i.e., [pos(i) : pos(i) + ksize� i+ k � 1] and [pos(k) + i� k : pos(k) +

ksize � 1]) rather than to each array element. Although this coarse grain section level approach

may not be as accurate as the element level approach and, thus, will report false dependences, its

low overhead cost justi�es its application in some programs.

In our experiments, we parallelized the loop do 1020 and loop do 1021 of CHOLESKY by using

the run-time test. We compared the overhead cost of run-time test in both the straightforward

version and the version simpli�ed by using the three mark-elimination techniques mentioned above;

we found that the overhead dropped from 120% to 20% of parallel execution time on four processors.

2.7 Parallelization of Irregular Reduction Loops

The core of many sparse/irregular applications is comprised of reductions on array elements, such

as the one shown in Figure 2.8. The operation op is an arithmetic associative operation (e.g., sum,
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do i = 1, n

a(x(i)) = a(x(i)) op expression

end do

Figure 2.8: An example of an irregular reduction loop

product, maximum, and minimum), and expression is an expression that does not contain any

reference to array a(). Because of the use of index array x(), the access pattern of a() in the loop

may be irregular. Therefore, this kind of reduction loop is called an irregular reduction loop.

Most irregular reduction loops can be statically detected and automatically parallelized by a

compiler. Recognizing an irregular reduction loop involves pattern matching on the array subscript

expressions and knowing what kind of operations are associative/communicative. A common way

to parallelize an irregular reduction loop, as used by Polaris [14] and SUIF [37], is replicated copy.

The replicated copy method is easy to for a compiler to apply. The reduction array is replicated

on all the processors. The execution of the parallelized code has three phases. In the initialization

phase, the replicated copies are initialized to the identity of the reduction operation. In the parallel

reduction phase, all processors execute in parallel and each processor computes a portion of the

reduction on its private copy. Then, in the cross reduction phase, the partial reduction results are

combined to the global reduction array. Figure 2.9 shows the parallelized version of the loop in

Figure 2.8 using the replicated copy method.

The disadvantage of this method is that the parallelized code does not scale well with the

number of processors used. The reason is that the execution time of the initialization phase and

the cross processor reduction phase is proportional to the size of the reduction array, and it cannot

be reduced by adding more processors. In practice, the execution time of these two phases often

increases with the number of processors used due to the overhead of parallel execution, such as

false sharing.

There are ways to reduce the overhead. For example, in subroutine eflux of program Euler,

loop do 200 and loop do 300 are two irregular reduction loops with the same reduction array dw(),

and these two loops are next to each other. Therefore, in the parallelized version, we eliminate the

cross processor reduction phase of loop do 200 and the initialization phase of loop do 300. By

doing this, we reduce the parallel execution time of these two loops (four processors) by 29%.

31



/* initialization phase */

doall i = 1, nproc

do j = 1, m

pa(j, i) = reduction_identity

end do

end do

/* parallel reduction phase */

doall i = 1, n

pa(x(i), proc_id) = pa(x(i), proc_id) op expression

end do

/* cross processor reduction phase */

doall i = 1, m

do j = 1, nproc

a(i) = a(i) op pa(i, j)

end do

end do

Figure 2.9: An irregular reduction loop parallelized by using the replicated-copy method

In the manually improved parallel version of EULER, we also parallelized several irregular

reduction loops by using a pre-scheduling method. In this method, the data, namely the reduction

array, is partitioned among the processors and each processor is responsible for updating the array

elements assigned to it. A processor executes only the iterations that will modify the array elements

belonging to the processor. A pre-scheduling phase is used to �nd the scheduling of the iterations.

The major overhead of this method is the pre-scheduling phase. In EULER, loop do 100 in

subroutine eflux, loops do 100 and do 200 in subroutine dflux, and loop do 20 in subroutine

psmoo are irregular reduction loops that share the same access pattern of the reduction arrays. And,

the access pattern does not change during the execution of the program. Hence, the pre-scheduling

needs to be done only once and the schedule can be reused in all instances of these loops. By doing

this, we also reduce the parallel execution time of these loops (four processors) by 24%.

In Chapter 6, we will discuss di�erent parallelization methods for irregular reduction in detail.
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2.8 Parallelization of Premature-exit Loops

A premature-exit loop is a do loop containing a goto or break statement that directs the program

ow out of the loop before all iterations have been executed. Because it is impossible to know

a priori which iterations will (or will not) be executed, a premature-exit loop makes processor

scheduling diÆcult. For example, a loop with sixteen iterations is executed by four processors in

parallel using block scheduling (i.e., processor i executes iterations (i � 1) � 4 + 1 through i � 4).

Suppose the loop terminates at iteration seven, then iterations assigned to processors three and

four should not be executed. The execution result of the loop may be incorrect if processor three

or four modi�es any global memory.

Generally, we can use three methods to parallelize premature-exit loops.

2.8.1 Inspector/Executor

In this approach, an inspector loop is executed at run-time, before the premature-exit loop, to �nd

the range of iterations that should be executed. The inspector can be constructed by using program

slicing techniques [79, 71]. The disadvantage of this approach is that the original loop body may

not be easy to decouple. Even if such a separation is possible, the inspector may contain most of

the computation, which makes performance improvement impossible.

2.8.2 Post/Wait

In this approach, the loop body is divided into two parts separated by a check for premature-exit,

as illustrated in Figure 2.10.(a). The parallelized version of the loop is shown in Figure 2.10.(b).

The processors are scheduled interleavely and are synchronized by using post/wait primitives. Here,

we assume that there is no cross iteration data dependence.

A processor starts executing an iteration by waiting for the post message from the previous

iteration. If the previous iteration (executed by another processor) does not premature-exit, this

processor continues executing part one of the current iteration; otherwise, it sends a post message to

the next iteration, and then quits the loop. After the processor checks the premature-exit condition

for the current iteration, if it �nds that the loop should terminate, then it sets the terminate

variable to true, sends a post message to the next iteration, and quits the loop; otherwise, the loop
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will not exit in this iteration, and the processor sends a post message to the next iteration and

continues executing the rest of the current iteration.

Figure 2.11 illustrates an execution of a premature-exit loop using four processors. In this

example, the loop premature-exits at iteration nine. The earlier the termination check occurs

during the execution of the loop body, the better the performance of parallel execution.

2.8.3 Speculative Execution

In this approach, local copies of the variables that are going to be modi�ed are allocated on

each processor. All processors execute speculatively in parallel and write on their local copies.

The contents of the local copies are committed to the global copy after the loop terminates. To

implement such an execution scheme in software is diÆcult and complicated, in general, due to the

book-keepings and cross-iterations data dependences. This approach works very well, however, in

the special case where the operations on the global variables are associative.

We describe the scheme by using a premature-exit loop found in CHOLESKY as an example.

In this example, shown in Figure 2.12, reduct() is a reduction operation, and we assume four

processors are used. The parallel execution is illustrated in Figure 2.13.

1. The iteration space is divided into m stages.

2. Each stage is divided in blocks with each block assigned to one processor. Processor one gets

the �rst block, processor two gets the second block, and so on. To be concise, we assume that

the iteration space can be evenly divided by the block size.

3. All processors execute in parallel. Each processor starts from stage one and executes the

iterations assigned to it, beginning with the smallest iteration in its block, and then moves

on to the next stage after �nishing the current stage.

4. A global variable last iter records the smallest iteration number currently found in which the

loop will exit. The last iter is initialized to n+ 1 before the loop starts.

5. A global variable last stage records the smallest stage number currently found in which the

loop will exit. The last stage is initialized to m+ 1 before the loop starts.

34



Sequential Version:

do i=1, n

/* computation part 1 */

compute_part_1

/* checking of premature-exit */

if (premature-exit) then goto 10

/* computation part 2 */

compute_part_2

end do

10: ...

(a)

Parallelized Version:

terminate = false

post t(1)

doall i=1, n (interleaved scheduling)

/* sync */

wait t(i)

if (terminate) then

post t(i+1)

quit

end if

/* computation part 1 */

compute_part_1

/* checking of premature-exit */

if (premature-exit) then

terminate = true

post t(i+1)

quit

else

post t(i+1)

end if

/* computation part 2 */

compute_part_2

end do

(b)

Figure 2.10: Post/wait method for parallelizing premature-exit loop
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Figure 2.11: A parallel execution of a premature-exit loop using the post/wait method

a = initvalue

do i = 1, n

if (cond(i)) break

a = reduct(a,i)

end do

Figure 2.12: A premature-exit loop with a reduction operation in the loop body.
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6. A global variable last proc records the id of the processor that executes the iteration termi-

nating the loop.

7. When a processor executes an iteration, it �rst compares the current iteration number with

last iter. If the current iteration number is larger than last iter, then the processor quits

executing the loop and goes to the global reduction phase.

8. If, during the execution of an iteration, a processor checks the terminate condition and �nds

that it is true, then the processor does the following atomically: it compares the current

iteration number with last iter; if the current iteration number is smaller than last iter,

then it sets last iter to the current iteration number, last stage to the current stage number,

and last proc to the current processor id. The processor then quits executing the loop and

goes to the global reduction phase.

9. During the parallel execution phase, processors write their partial reduction results in private

copies. A private copy of the variable x is allocated per stage per processor. We use xi;j to

represent the local copy of variable x for processor j at stage i. The value of all local copies

are initialized to the reduction identity before the loop starts.

10. The global reduction phase starts when all processors exit the parallel reduction phase. The

global reduction phase combines the value from xi;j (1 � i < laststage, 1 � j � 4) and

xlaststage;j ( 1 � j � lastproc).

2.9 Summary

This chapter has shown that, contrary to common belief, parallelizing compilers can be used to

automatically detect the parallelism in sparse and irregular programs. An empirical study of a col-

lection of sparse and irregular codes reported in this chapter shows that several important common

loop patterns exist in sparse and irregular codes. Based on these patterns, automatic parallelism

detection can be applied. Some loops can be parallelized by using existing compiler techniques,

while some others require new methods. The new techniques are identi�ed and discussed. We have

shown that good speedups can be achieved by applying these techniques to our collection of sparse
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and irregular programs.
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Chapter 3

ANALYSIS OF IRREGULAR

SINGLE-INDEXED ARRAY

ACCESS

3.1 Introduction

Many compiler techniques, such as loop parallelization and optimizations, need analysis of array

subscripts to determine whether a transformation is legal. Traditional methods require the array

subscript expressions to be expressed as closed-form expressions of loop indices. Furthermore,

most methods require the subscript expression to be linear. However, in many programs, especially

sparse and irregular programs, closed-form expressions of array subscripts are not available, and

many codes are left unoptimized. Clearly, more powerful methods to analyze array subscripts are

needed.

In this chapter, we introduce the notion of irregular single-indexed array access. An array access

is irregular in a loop if no closed-form expression for the subscript of the array access in terms of

loop indices is available. An array access is single-indexed in a loop if the array is always subscripted

by the same index variable in the loop. An array access is irregular single-indexed in a loop if the

array access is both irregular and single-indexed in the loop . For example, the access of array x()

in the repeat-until loop in Figure 3.1 is an irregular single-indexed access.

We chose to investigate irregular single-indexed array accesses for several reasons. First, in the

programs we have studied, single-indexed array accesses often follow a few patterns. These array

accesses exhibit properties that are useful in compiler optimizations. Second, many irregular array
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i = 1

do k=1, n

p = 0

i = link(i,k)

repeat

p = p + 1

x(p) = y(i) (1)

i = link(i,k)

until ( i == 0 )

do j=1, p

z(k,j) = x(j) (2)

end do

end do

Figure 3.1: An example of a loop with an irregular single-indexed array

accesses are single-indexed. Developing analysis methods for irregular single-indexed array accesses

is a practical approach toward the analysis of general irregular array accesses, which is believed to

be diÆcult. Third, it is easy to check whether an array access is single-indexed. EÆcient algorithms

can be developed to \�lter" single-indexed array accesses out of general irregular array accesses.

In this chapter, we present two important patterns of irregular single-indexed array accesses:

consecutively-written and stack-access. We present the techniques to detect these two patterns

and show how to use the properties that irregular single-indexed array accesses have to enhance

compiler optimizations.

Throughout the rest of this chapter, we will use \irregular single-indexed array access" and

\single-indexed array access" interchangeably.

3.2 Consecutively Written Arrays

An array is consecutively written in a loop if, during the execution of the loop, all the elements

in a contiguous section of the array are written in a non-increasing or a non-decreasing order.

For example, in the repeat-until loop in Figure 3.1, array element x(2) is not written until x(1)

is written, x(3) is not written until x(2) is written, and so on. That is, array x() is written

consecutively in the 1; 2; 3, . . . , order in the loop.

To be concise, we consider only arrays that are consecutively written in the non-decreasing
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order. It is trivial to extend the techniques to handle the non-increasing case and the cases where

the increment (or the decrement) is a constant value other than 1.

3.2.1 Algorithm for Detecting Consecutively Written Arrays

In this section, we present an algorithm that tests whether a single-indexed array is consecutively

written in a loop.

Since we are dealing with irregular array accesses, we must consider not only do loops, but also

other kinds of loops, such as while loops and repeat until loops. In general, we consider natural

loops [2]. A natural loop has a single entry node, called the header. The header dominates all nodes

in the loop. A natural loop can have multiple exits, which are the nodes that lead the control ow

to nodes not belonging to the loop.

Before we present the algorithm, we �rst describe a bounded depth-�rst search (bDFS) method,

which is used several times in this chapter.

The bDFS is shown in Figure 3.2. Like the standard depth-�rst search, a bDFS does a depth-

�rst search on a graph (V;E), where V is the set of vertices and E is the set of edges in the

graph. bDFS uses three auxiliary functions (fbound(), ffailed(), and fproc()) to change its behavior

during the search. The auxiliary functions are de�ned before the search starts. fbound() maps V to

ftrue; falseg. Suppose the current node is n0. If fbound(n0) is true, then, bDFS does not search the

nodes adjacent to n0. The nodes whose fbound() values are true are the boundaries of the search.

ffailed() also maps V to ftrue; falseg. If, for the current node n0, ffailed(n0) is true, then the

whole bDFS terminates with a return value of failed. The nodes whose ffailed() values are true

cause an early termination of the bDFS. fproc() does not have a return value; it does prede�ned

computations for the current node. The running time of bDFS is O(jV j+ jEj).

Now we can show the algorithm that detects consecutively written arrays.

� Input: a loop L with header h and a set of exit nodes ft1; t2; :::; tng, a single-indexed array

x() in the loop, and the index variable p of x().

� Output: the answer to the question whether x() is consecutively written in L.

� Steps:
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bDFS(u)
1 visited[u] := true ;
2 fproc(u) ;
3 if (not fbound(u)) f
4 for each adjacent node v of u f
5 if (ffailed(v))
6 return failed ;
7 if ((not visited[v]) and (bDFS(v) == failed))
8 return failed ;
9 g
10 g
11 return succeeded ;

Before the search starts, visited[] is set to false for all nodes.

Figure 3.2: Bounded depth-�rst search

1. Find all the de�nition statements of p in the loop. If any of them are not of the form

\p = p+ 1", then return NO. Otherwise, put the de�nition statements in a list lst.

2. For each statement n in lst, do a bDFS on the control ow graph from n using the

following auxiliary functions:

fbound(n) =

8><
>:

true; if n is \x() = ::"

false; otherwise

ffailed(n) =

8><
>:

true; if n is \p = p+ 1"

false; otherwise

fproc(n) = NULL

If any of the bDFSs returns failed, then return NO. Otherwise, return Y ES.

The algorithm starts by checking whether the index variable is ever de�ned in any way other

than being increased by 1. If it is, we assume the array is not consecutively written. Step 2 checks

whether in the control ow graph there exists a path from one \p = p + 1" statement to another

\p = p + 1" statement1 and the array x() is not written on the path. If such a path exists, then

there may be \holes" in the section where the array is de�ned and, therefore, the array is not

consecutively written in the section. For example, the array x() is consecutively written in Figure

1These two statements can be the same statement, in which case the path is a circle.
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p = 1

do i=1, n

   if (..) then

      x(p) = ..

      if (..) then

         x(p) =  ..

      end if

      p = p+1

   end if
end do

do i=1, n

   if (..) then

   p = p+1

      x(p) = ..

   end if

end do

if (..)

x(p)=..

p=p+1

do

end do

(a) YES (b) NO

   if (..) then

      if (..) then

         x(p) =  ..

      p = p+1

end do

do

      x(p) = ..

Figure 3.3: Consecutively written or not?

3.3.(a), but is not in Figure 3.3.(b). The algorithm allows an array element to be written multiple

times before the index variable is increased by 1.

The running time of this analysis is O(n+ninc�nassign), where n is the number of statements in

the loop body, ninc is the number of \p=p+1" statements, and nassign is the number of \x(p)=.."

statements. When the analysis �nds x() to be a consecutively written array, each of the bDFS's

performed searched a distinct partition in the control ow graph. The paritions are separated by

the \x(p)=.." statements. When the analysis �nds x() not to be a consecutively written array,

one bDFS has visited O(n) statements, and the previous bDFS's were performed on their own

partitions.

3.2.2 Applications

Dependence Test and Parallelization

Suppose a single-indexed write-only array x() with index variable p is consecutively written in a

loop, where the assignments of p are of the form \p = p+ 1". If there does not exist a path from

one \x() = ::" assignment to another \x() = ::" assignment such that the loop header is on the

path, but there is no \p = p+ 1" statement on the path, then x() does not cause any loop-carried

dependence in the loop. For example, in Figure 3.4, array x() is consecutively written in both loop

do i and loop do j. In loop do i, there is no dependence between di�erent instances of the access

of x(). In loop do j, because statement (2) and statement (1) may write to the same array element
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do i=1, n

x(p) = ..

p = p + 1

end do

do j=1, n

x(p) = .. (1)

p = p + 1

x(p) = .. (2)

end do

Figure 3.4: Data dependence for consecutively written arrays

in two di�erent iterations, there is a loop-carried output dependence between statement (2) and

(1).

This kind of dependence can be detected by using the following method. Here, we assume x()

is write-only and found consecutively written with the method described in the previous section.

1. Using the following auxiliary functions, do a bDFS on the control ow graph from the loop

header, where the value of tag1 is initially set to null:

fbound(n) =

8><
>:

true; if n is \x()=.." or \p = p+ 1"

false; otherwise

ffailed(n) =

8><
>:

true; if tag1 is asgn

false; otherwise

fproc(n) =

8>>>>><
>>>>>:

set tag1 to asgn, if n is \x() = ::"

set tag1 to incr, if n is \p = p+ 1" and tag1 is null

do nothing, otherwise

If tag1 is incr after the bDFS, then there is no dependence; otherwise, goto step 2.

2. Using the same auxiliary functions as in the previous step, do a bDFS on the reversed control

ow graph from the loop header, with tag1 being replaced with tag2. If, after the bDFS,

both tag1 and tag2 are asgn, then there is loop-carried output dependence for x(); otherwise,

there is no such dependence.

In order to parallelize the loop with single-indexed and consecutively written arrays, we also

need to eliminate the ow dependence caused by the index variable. If the index variable is not
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Sequential version:

k = k0

do i = 1, n

while (..) do

a(k) = ..

k = k+1

end while

end do

(a)

54  44   23   ..           89   23   1831   45  62   78   ..            ..   12   43

31   45  62   78   ..            ..   12   43

54  44   23   ..           89   23   18

Private Copy for Processor 1 - pa1()

Original Array  a()

Private Copy for Processor 2 - pa2()

(b)

Parallel version:

pk(1) = 1

pk(2) = 1

parallel do i = 1, n

/* pid is the processor id */

while (..) do

pa(pk(pid), pid) = ..

pk(pid) = pk(pid) + 1

end while

end do

parallel section

do i = 1, pk(1)-1

a(k0+i-1) = pa(i,1)

end do

//

do i = 1, pk(2)-1

a(k0+pk(1)+i-2) = pa(i,2)

end do

end parallel section

k = k0+pk(1)+pk(2)-2

(c)

Figure 3.5: An example of array splitting and merging

used anywhere other than in the array subscript and the increment-by-1 statements, then the array

splitting-and-merging method [49] can be used to parallelize the enclosing loop.

Array splitting and merging consists of three phases. First, a private copy of the consecutively

written array is allocated on each processor. Then, all the processors work on their private copies

from position 1 in parallel. After the computation, each processor knows the number of array

elements of its private copy that are written in the loop; hence, the starting position in the original

array for each processor can be calculated by using the parallel pre�x method. Finally, the private

copies are copied back (merged) to the original array. Figure 3.5 shows an example when two

processors are used.

Privatization Test

As we have illustrated at the beginning of this chapter, with consecutively written array analysis.

We can extend the privatization test to process irregular single-indexed arrays and more general
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loops.

Suppose a single-indexed array x() with index variable p is found consecutively written in a

loop by using the method described in the previous section, we can use the following two steps to

calculate the section of x() written in the loop.

1. Using the following auxiliary functions, do a bDFS on the control ow graph from the loop

header h, where the value of tag1 is initially set to null:

fbound(n) =

8>>>>><
>>>>>:

true; if n is \x() = ::" and tag1 is asgn

true; if n is \p = p+ 1" and tag1 is incr

false; otherwise

ffailed(n) =

8>>>>><
>>>>>:

true; if n is \x() = ::" and tag1 is incr

true; if n is \p = p+ 1" and tag1 is asgn

false; otherwise

fproc(n) =

8>>>>><
>>>>>:

set tag1 to asgn, if n is \x() = ::" and tag1 is null

set tag1 to incr, if n is \p = p+ 1" and tag1 is null

do nothing, otherwise

If the bDFS returns a failed, then set tag1 to null.

2. Using the same auxiliary functions as in the previous step, do a bDFS on the reversed control

ow graph from each of the exit nodes (including the loop header), with tag1 being replaced

with tag2. If any of the bDFSs returns a failed, then set tag2 to null.

3. The section where x() is written in the loop is [lower; upper], where

lower =

8>>>>><
>>>>>:

p0; if tag1 is asn

p0 + 1; if tag1 is incr

unknown; otherwise,
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      p = p+1

      z(p) = ..

   if (..) then

      z(p) = ..

end do

do

10 ...

p = 1

do i=1, n

      y(p) = ..

      p = p+1

      if (..) then

         goto 10

      end if

      y(p) = ..

end do

do

      y(p) = ..

      p = p+1

      if (..) then

         goto 10

      y(p) = ..

end do

p = 1

      z(p) = ..
   else

do i=1, n
   if (..) then
      p = p+1

      z(p) = ..
   end if
end do

(b) [1, unknown](a) [unknown, p]

Figure 3.6: The section of consecutively written array

upper =

8>>>>><
>>>>>:

p; if tag2 is asn

p� 1; if tag2 is incr

unknown; otherwise.

and p0 is the value of p before entering the loop.

For example, the section of x() written in the loop in Figure 3.3.(a) is [1; p � 1]. The section

of z() written in the loop in Figure 3.6.(a) is [unknown; p], and that of y() in Figure 3.6.(b) is

[1; unknown].

Index Array Property Analysis

As described in Chapter 2, the indirectly accessed array is another kind of irregular array. An array

is indirectly accessed if its subscript is another array, such as x() in statement \x(ind(i)) = ::". x()

is called the host array, and ind() is called the index array. Traditional techniques cannot handle

indirectly accessed arrays. However, recent studies [13, 49] have shown that index arrays often have

simple properties which can be used to produce more accurate analysis of host arrays. An array

property analysis method has been developed to check whether an index array has any of these key

properties [50]. We will discuss array property analysis in detail in Chapter 4.

Consecutively written array analysis can be used to �nd the properties an index array has in

array property analysis. For example, two of the key properties are injectivity and closed-form

bounds. An array section is injective if any two di�erent array elements in the section do not have
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do k = 1, n

q = 0

do i = 1, p

if ( x(i) > 0 ) then

q = q + 1

ind(q) = i

end if

end do

do j = 1, q

jj = ind(j)

z(k,jj) = x(jj) * y(jj)

end do

end do

Figure 3.7: An example of a loop with an inner index gathering loop

the same value. An array section has closed-form bounds if the lower bound and upper bound of

the values of array elements in the section can be expressed by closed-form expressions. Detecting

whether an array section has any of the two properties is diÆcult, in general. However, in many

cases, we only need to check whether the array section is de�ned in an index gathering loop, such

as the do i loop in Figure 3.7.

In Figure 3.7, the indices of the positive elements of array x() are gathered in array ind() in

loop do i. After the gathering loop is executed, all the array elements in section ind[1 : q] are

de�ned; the values of the array elements in array section ind[1 : q] are injective; the lower bound

of the values of the array elements in section ind[1 : q] is 1; and, the upper bound is q.

With this information available at compile-time, the compiler is now able to determine that

there is no data dependence in the do j loop, and array ind() can be privatized in the do k loop.

Thus, depending upon the architecture for which the code is generated, the compiler can choose to

parallelize the do k loop only, parallelize the do j loop only, parallelize both, or parallelize the do

k loop and vectorize the do j loop.

An index gathering loop for an index array has the following characteristics:

1. the loop is a do loop,

2. the index array is single-indexed in the loop,

3. the index array is consecutively written in the loop,
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do i = 1, n

p = 1

t(p) = ...

loop

p = p + 1

t(p) = ...

if (...) then

loop

if (p>=1) then

... = t(p)

p = p - 1

end if

end loop

end if

end loop

end do

Figure 3.8: An example of an array stack

4. the right-hand side of any assignment to the index array is the loop index, and

5. one assignment to the index array cannot reach another assignment to the index array without

�rst reaching the do loop header.

The �fth condition above ensures that the same loop index value is not assigned twice to the

elements of the index array. This condition can be veri�ed using a bDFS. After an index gathering

loop, the values assigned to the index array in the loop are injective, and the range of the values

assigned is bounded by the range of the do loop bound.

3.3 Array Stacks

The stack is a very basic data structure. Many programs implement stacks using arrays because it is

both simple and eÆcient. We call stacks implemented in arrays array stacks. Figure 3.8 illustrates

an array stack. In the body of the do i loop, array t() is used as a stack, and variable p is used as

the stack pointer which always points to the top of the stack.
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p = p+ 1 p = p� 1 x(p) = :: :: = x(p) p = Cbottom

p = p+ 1 x(p) = :: :: = x(p) - x(p) = :: -

p = p� 1 - :: = x(p) p = p+1 G -

x(p) = :: - :: = x(p) p = p+ 1 - -

:: = x(p) p = p� 1 - p = p+ 1 p = p+ 1 -

Table 3.1: Order for access of array stacks

3.3.1 Algorithm for Detecting Array Stacks

In this section, we present an algorithm that checks whether a single-indexed array is used as a

stack in a program region. A region [2] is a subset of the control ow graph that includes a header,

which dominates all the other nodes in the region.

To be concise, we consider program regions in which the single index variable p is de�ned only

in one of the following three ways:

1. p := p+ 1,

2. p := p� 1, or

3. p := Cbottom, where Cbottom is invariant in the program region.

We check whether a single-indexed array is used as a stack in a region by determining if the

statements involved in the array operations appear in some particular orders. These orders are

shown in Table 3.1.

The left column and the top row in Table 3.1 give the statements to be checked. If there is a

path in the control ow graph from a statement of the form shown in the left column of the table

to a statement of the form shown in the top row, then the statement in the corresponding central

entry of the table must be on the path. For example, if there is a path from a statement \x(p) = ::"

to another statement \x(p) = ::", then before the control ow researches the second \x(p) = ::"

statement, it must �rst reach a \p = p + 1" statement. A `-' in a table entry means there is no

restriction on what kind of statement must be on the path. The `G' represents an if statement

that is \if (p � Cbottom) then".

Intuitively, we want to ensure the following for an array stack x() with index p: (1) p is �rst set

to Cbottom before it is modi�ed or used in the subscript of x(); (2) the value of p never goes below
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n Sbound(n) Sfailed(n)

p = p+ 1 fx(p) = ::, p = Cbottomg fp = p+ 1, p = p� 1,:: = x(p)g

p = p� 1 fp = p+ 1, G, p = Cbottomg fp = p� 1, x(p) = ::, :: = x(p)g

x(p) = :: fp = p+ 1, :: = x(p), p = Cbottomg fp = p� 1, x(p) = ::g

:: = x(p) fp = p� 1, p = Cbottomg fp = p+ 1, x(p) = ::, :: = x(p)g

Table 3.2: Simpli�ed order for array stacks

Cbottom; and (3) the accesses of the elements of x() follow the \last-written-�rst-read" pattern.

Table 3.1 can be simpli�ed to Table 3.2. Any path originating from a node n of the forms in

the left column of Table 3.2 must �rst reach any node of the forms in Sbound(n) before it reaches

any node of the forms in Sfailed(n).

Next, we present the algorithm to detect array stacks.

� Input: a program region R with header h, a single-indexed array x() in the region, and the

index variable p of x().

� Output: the answer to the question whether x() is used as a stack in R. And, if the answer

is Y ES, the minimum value Cbottom that the index variable p can have in the region.

� Steps:

1. Find all the de�nition statements of p in R. If any are not of a form in the set fp = p+1,

p = p�1, p = Cbottomg (if there are multiple \p = Cbottom" statements, the Cbottom must

be the same), where Cbottom is invariant in R, then return NO. Otherwise, put the

de�nition statements in a list lst. If there are no statements of the form \p = Cbottom",

then �nd all if statements of the form \if (p � Cif ) then". If all Cif 's are the same,

set Cbottom to Cif ; otherwise, return NO. If no such if statement is found, set Cbottom

to unknown.

2. Find all the \x(p) = ::" and \:: = x(p)" statements in R, and add them to lst.

3. For each statement m in lst, do a bDFS on the control ow graph from this statement

using the following auxiliary functions:
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fbound(n) =

8><
>:

true n 2 Sbound(m)

false otherwise

ffailed(n) =

8><
>:

true n 2 Sfailed(m)

false otherwise

fproc(n) = NULL

If any of the bDFSs returns a failed, then return NO. Otherwise, return Y ES and

Cbottom.

3.3.2 Applications

Run-time Array Bound Checking Elimination

Run-time array bound checking is used to detect array bound violations. The compiler inserts

bound checking codes for array references. At run-time, an error is reported if an array subscript

expression equals a value that is not within the declared bounds of the array. Some languages,

such as Pascal, Ada and Java, mandate array bound checking. Array bound checking also is

useful in testing and debugging programs written in other languages. Since most references in

computationally intense loops are to arrays, these checks cause a signi�cant amount of overhead.

When an array is used as a stack in a program region, the amount of array bound checking

for the stack array can be reduced by 50%. Only the upper bound checkings are preserved. The

lower bound checking is performed only once before the header of the program region. Elimination

of unnecessary array bound checking also has been studied by many other researchers, including

Markstein et al [52], Gupta [35], and Kolte and Wolfe [45]. Gupta and Spezialetti [70] proposed

a method to �nd monotonically increasing/decreasing index variables, which also can be used to

eliminate the checking by half. But, their method cannot handle array stacks, which are more

irregular.
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Privatization Test

Array stack analysis also can improve the precision of array privatization tests. Here, we consider

the loop body as a program region. When an array is used as a stack in the body of a loop, the

array elements are always de�ned (\pushed") before being used (\popped") in the region. If Cbottom

is a loop invariant, then di�erent iterations of the loop will reuse the same array elements, and the

value of the array elements never ow from one iteration to the other. Therefore, array stacks in

a loop body can be privatized. For example, the array stack t() in Figure 3.8 can be privatized in

the outermost the do i loop.

Loop Interchanging

Loop interchanging [3, 80] is the single most important loop restructuring transformation. It has

been used to �nd vectorizable loops, to change the granularity of parallelism, and to improve

memory locality. Loop interchanging changes the order of nested loops. It is not always legal to

perform loop interchanging since data dependence cannot be violated. Data dependence tests must

be performed before loop interchanging.

Traditionally, loop interchanging is not possible when array stacks are present because current

data dependence tests cannot handle irregular arrays. However, as in the privatization test, array

stacks cause no loop carried dependences. If the index variables of array stacks are not used in any

statements other than stack access statements, then the data dependence test can safely assume

no dependence between the stack access statements. The loop interchanging test then can ignore

the presence of array stacks and use traditional methods to test other arrays. By using array stack

analysis, we have extended the application domain of loop interchanging.

3.4 Related Work

There are two closely related studies done by two groups of researchers. M.Wolfe [82] and M. Gerlek,

E. Stoltz, and M. Wolfe [32] presented an algorithm to recognize and classify sequence variables in

a loop. Di�erent kinds of sequence variables are linear induction variables, periodic, polynomial,

geometric, monotonic, and wrap-around variables. Their algorithm is based on a demand-driven
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do i = 1, n

if ( .. ) then

x(k) = ..

k = k + 1 (1)

else if ( .. ) then

x(k) = ..

k = k + 1 (2)

end if

end do

Figure 3.9: Both array x() and index k should be analyzed to know that x() is consecutively written.

representation of the Static Single Assignment form [24, 23]. The sequence variables can be detected

and classi�ed in a uni�ed way by �nding strongly connected components of the associated SSA

graph.

R. Gupta and M. Spezialetti [70] have extended the traditional data-ow approach to detect

\monotonic" statements. A statement is monotonic in a loop if, during the execution of the loop,

the statement assigns a monotonically increasing or decreasing sequence of values to a variable.

They also show the application of their analysis in run-time array bound checking, dependence

analysis, and run-time detection of access anomalies.

The major di�erence between both these studies and ours is that we focus on arrays while they

focus on index variables. While both of their methods can recognize the index variable for a con-

secutively written array as a monotonic variable, if the array is de�ned in more than one statement,

then none of them can detect whether the array itself is consecutively written. For example, Gerlek,

Stoltz and Wolfe's method can �nd that the two instances of variable k in statements (1) and (2)

in Figure 3.9 have a strictly increasing sequence of values. Gupta and Spezialetti's method can

classify statements (1) and (2) as monotonic. However, neither can determine whether the access

pattern of the array x() is consecutively written. For array stack analysis, as the index variable

does not have a distinguishable sequence of values, both Gerlek, Stoltz and Wolfe's method and

Gupta and Spezialetti's method treat the index variable as a generally irregular variable. Without

taking the arrays into account in their analysis, they can do little in detecting array stacks.

The authors believe it is often important to consider both index variables and arrays. While

both of the two other methods can recognize a wide class of scalar variables beyond the variables
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used as subscripts of single-indexed arrays in our method, they are not necessarily more powerful

in analyzing the access pattern of the arrays.

3.5 Summary

In this chapter, we introduced the notion of irregular single-indexed array access. We described

two common patterns of irregular single-indexed array accesses (i.e., consecutively written and

stack access) and presented simple and intuitive algorithms to detect these two patterns. More

importantly, we showed that array accesses following these two patterns exhibit very important

properties. We demonstrated how to use these properties to enhance a variety of compiler anal-

ysis and optimization techniques, such as the dependence test, privatization test, array property

analysis, loop interchanging, and array bound checking.

In Chapter 5, we will show that, for three real-life programs, the speedups of the parallelized

versions generated by the Polaris compiler with single-index array access analysis are much better

than those of the versions generated by Polaris without this analysis and those versions generated

by the SGI MISPro Fortran compiler.
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Chapter 4

DEMAND-DRIVEN

INTERPROCEDURAL ARRAY

PROPERTY ANALYSIS

4.1 Introduction

Most loop optimization techniques rely on the analysis of array subscripts. When arrays are

subscripted by index arrays1, current compilers are forced to make conservative assumptions and

give up optimizations or apply run-time methods at the cost of signi�cant execution overhead.

Index arrays are used extensively in sparse computation codes and also appear in some dense and

regular programs. In order to optimize these programs, more aggressive compile-time methods to

analyze the index arrays are desired. Having more precise information on index arrays at compile-

time not only can enable more optimizations and transformations, but also can lead to more eÆcient

run-time methods.

The compile-time analysis of index arrays has been facilitated by two recent developments.

First, recent empirical studies of real programs [13, 49] have shown that the use of index arrays

often follows a few patterns. By identifying these patterns at compile-time, more precise analysis

can be accomplished. Second, recent progress in interprocedural analysis [22, 38, 42, 48], array

data ow analysis [33, 29, 34, 64], and demand-driven approaches [26, 73] have enabled the more

eÆcient and more powerful whole program analysis required by index array analysis.

In this chapter, we present an index array analysis method, called array property analysis. By

1We call the array that appears in the subscripts of other arrays the index array and the indirectly accessed array
the host array.
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performing a whole program analysis, array property analysis can automatically identify whether

an index array possesses one of several key properties. These key properties are used in the analysis

of the subscripts of the host array to produce more accurate analysis results. We discuss these key

properties and show how to use a demand-driven approach to do whole program analysis.

This chapter is organized as follows. Section 4.2 describes the motivations of this work and

de�nes array property analysis. Sections 4.3 and 4.4 detail our demand-driven interprocedural

analysis method. Section 4.5 gives a mechanism that uses a run-time test to verify array properties.

Section 4.6 describes some related work that inspired our analysis. And, Section 4.7 summarizes

the chapter.

4.2 The Problem

4.2.1 Array Property Analysis

The use of index arrays is a major obstacle to accurate array subscript analysis. For example, when

detecting the parallelism of a loop, a dependence test must be conservative in the sense that if it is

possible for two references, one of which is a write, to access the same memory location, then their

original access order must be preserved.

For instance, when examining the following loop, the access order of a() is unknown since the

value of index array b() is unknown. Thus, output dependences have to be assumed.

do i=1, n

a(b(i)) = ...

end do

While it is true that the values of index arrays usually are not available until run-time, often-

times we can get more precise results if global program analysis is performed. In their study of the

Perfect Benchmarks, Blume and Eigenmann found that index arrays usually had some detectable

properties [13]. By knowing these properties, compilers often can avoid making conservative as-

sumptions. Results similar to those of Blume and Eigenmann also were obtained by the authors in

a study of several sparse and irregular programs [49].
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    data()
Host Array

length(1)        length(2)              length(3)           length(4)                          length(n)

    offset(1)            offset(2)        offset(3)                  offset(4)                          offset(n)     offset(n+1)       

(a)

do 200 i = 1, n s1: offset(1) = 1

do 300 j = 1, length(i) do 100 i = 1, n

s3: data(offset(i)+j-1) = .. s2: offset(i+1) = offset(i)+length(i)

end do end do

end do

(b) (c)

Figure 4.1: Example of closed-form distance

In sparse and irregular programs, index arrays are extensively used. However, the use of index

arrays is by no means arbitrary. In fact, it tends to have a few �xed patterns. For example, in

the sparse matrix computations based on the Compressed Column Storage(CCS) or Compressed

Row Storage(CRS) format, the non-zero elements of the matrix are stored in a one-dimensional

host array. The host is divided into several segments, as illustrated in Figure 4.1(a). Each segment

corresponds to a column (in CCS) or a row (in CRS). Two index arrays are used here. Index

array offset() points to the starting position of each segment, and index array length() gives

the length of each segment. Figure 4.1(b) shows a common loop pattern using the offset() and

length() arrays. The loop traverses the host array segment by segment. Figure 4.1(c) shows a

common pattern used to de�ne offset(). It is easy to see that loop do 200 does not carry any

dependences if length(i) � 0 (1 � i � n), because

offset(i) + length(i)� 1 < offset(i+ 1);where 1 � i < n:

This is guaranteed by the fact that

offset(i+ 1)� offset(i) = length(i);where 1 � i � n

which can be derived from Figure 4.1(c).

Given an array, if the di�erence of the values of any two consecutive elements can always be
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represented by a closed-form expression, we say the array has a closed-form distance[17]. For

example, the array offset() in Figure 4.1 has a closed form distance, which is length(). If the

compiler knows an index array has a closed-form distance, then it can use this distance information

in the analysis of the subscript of the host array. Having a closed-form distance is just one of the

�ve properties of index arrays that can be exploited by the compiler. The other four are:

� Injectivity

An array a() is injective if a(i) 6= a(j) when i 6= j.

If the array b() shown in the loop in the second paragraph of this section is injective, then

there is no output dependence due to a(), and the loop can be parallelized.

� Monotonicity

An array a() is monotonically non-decreasing if a(i) � a(j), i < j. It is monotonically

non-increasing if a(i) � a(j), i < j.

The following code shows another common pattern of accessing the host array data() in

Figure 4.1.

do 400 i = 1, n

do 500 j = offset(i), offset(i+1)-1

s4: data(j) = ..

end do

end do

If array offset() is monotonically non-decreasing, then the outer loop can be parallelized.

� Closed-form Value

An array has a closed-form value if all the values of the array elements can be represented by

a closed-form expression at compile-time.

� Closed-form Bound

An array has a closed-form bound if closed-form expression is available at compile-time for

either the lower bound or the upper bound of the values of the elements in this array.
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In order to get more precise results when analyzing the subscripts, we would like to know if

the index arrays have any of the above properties. This can be described as an available property

problem. A property of a variable x is available at a point p if the execution of the program

along any path (not necessarily cycle-free) from the initial node to p guarantees that x has this

property. Although the available property problem is undecidable in general, there are simple

detection algorithms that are suÆcient in most cases.

In real programs, the index arrays are seldom modi�ed once they are de�ned. Based on this

observation, we can take the following approach: when we analyze an indirectly accessed array

reference, we check all the de�nitions of the index arrays that reach the reference. We examine

the program pattern at each de�nition site. If all the de�nition sites imply that the index array

has any of the properties, and none of the statements in between the de�nition sites and the use

site rede�nes any variables that are used to express the property, then we say that the property is

available at the use site. Otherwise, we assume it is not available.

Before we describe our method, there are two other issues to be addressed. First, we must do

the analysis interprocedurally. Index arrays are usually used to store data structure information.

Most real programs read the input data and construct the data structure in one procedure, and

then perform the major numerical computation based on the data structure in another procedure.

This means index arrays are often de�ned in one procedure and used in other procedures. In such

cases, the reaching de�nitions can be found only by doing the analysis interprocedurally.

Second, we want the analysis to be demand-driven. It can be expected that the cost of inter-

procedural array reaching de�nition analysis and property checking can be high. However, only the

arrays that are used as index arrays require this analysis. Thus, instead of checking the property

at all array de�nition sites and propagating the property exhaustively throughout the program, we

choose to apply the analysis on demand. We perform the analysis only when we meet an index

array. And, heuristically, we check only the property that the use site suggests. For example, a use

site like s3 in Figure 4.1 indicates that the distance of offset() is length(). Thus, in this case,

we only need to check the property of closed-form distance.
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a(n) = n*(n-1)/2 property: a(i) = i*(i-1)/2st1

IN()

OUT() query: (st1, a[1:n])

Figure 4.2: A sample query

4.2.2 Dataow Model

Wemodel our demand-driven analysis of the available property as a query propagation problem [26].

A query is a tuple (st; section), where st is a statement and section is an array section2 for the

index array. Given an index array and a property to check, a query (st; section) raises the question

whether the index array elements in section always have the desired property when the control

reaches the point after st. For example, the query (st1; a[1 : n]) in Figure 4.2 asks whether

a(i) = (i� 1) � i=2 for 1 � i � n after statement st1.

A query is propagated along the reverse direction of the control ow until it can be veri�ed to

be true or false. Let

� OUT (S) be the section of index array elements to be examined at statement S,

� GEN(S) be the section of the index array elements that possess the desired property because

of the execution of statement S,

� KILL(S) be the section of the index array elements that are veri�ed not to have the property

because of the execution of S,

� IN(S) be the section of the index array elements that cannot be determined to possess the

property by examining S and, thus, should be checked again at the predecessors of S, and

� DES(S) be the section of index array elements in OUT (S) that are veri�ed not to have the

property because of the execution of S.

2An array section can be represented as either a convex region [72], an abstract data access [6, 58], or a regular
section [41]. Our method is orthogonal to the representation of the array section. Any representation can be used as
long as the aggregation operation in Sect. 4.3.6 is de�ned.
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( a[31:100] = 50 ) ? ( a[1:21] = 50 ) ?

a[1:30] = 50               a[20:100] = 50 

( a[1:100] = 50 ) ?

( a[1:100] = 50 ) ? ( a[1:100] = 50 ) ?

( a[1:21] = 50  and  a[31:100] = 50 ) ?

Figure 4.3: Query sections are unioned

The general dataow equations for the reverse query propagation are

OUT (S) =
[

T is a successor of S

IN(T )

IN(S) = OUT (S)�GEN(S)

DES(S) = OUT (S) \KILL(S)

And, for a property query (st; section), initially, OUT (st) = section and OUT (s) = ; for all

statements s other than st.

When a statement has multiple successors, the query section to be analyzed is the union of the

query sections propagated from its successors. This is important because a property is available at

a point only when it is available at all paths coming to this point. If it cannot be veri�ed along all

branches, it must be checked again at the branch node, as illustrated in Figure 4.3.

If, after the propagation �nishes, we have IN(entry) 6= ;, where entry is the entry statement of

the program, or there exists a statement s such that DES(s) 6= ;, then the answer to the original

query is false. Otherwise the answer is true. IN(entry) 6= ; means that some elements in the

original section are not de�ned along some path from the program entry to statement st; thus, not

all the elements in section have the desired property. As a result, the answer is false in this case.

If, for some statement s, we have DES(s) 6= ;, then some element in the original section has been

found not to have the desired property because of the execution of s. Hence, in either case, the

answer to the query also is false.
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do i=1, n

section

end do

if (..)

do

a = a+1

...

entry

call proc

exit

...

...

section

end

procedure  proc
entry

exit

...

Figure 4.4: An HCG example

4.3 The Method

4.3.1 Program Representation

We represent the program in a hierarchical control graph (HCG), which is similar to the hierarchical

supergraph in [34]. Each statement is represented by a statement node. In addition, each loop is

represented by a loop node, and each procedure is represented by a procedure node. There also is

a section node for each loop body and each procedure body. Each section node has a single entry

node and a single exit node. Due to the nested structure of loops and procedure calls, a hierarchy

is derived among the HCG nodes. There is a directed edge from one node to the other at the same

hierarchical layer if the program control can transfer from one to the other. Figure 4.4 shows an

HCG example. We assume the only loops in the program are do loops, and we deliberately delete

the back edge from the end do node to the do node. Hence, the HCG is a hierarchical directed

acyclic graph.

4.3.2 Overview of The Method

Our method consists of three parts, as shown in Figure 4.5. The QueryGenerator is incorporated

in the data dependence test, the array privatization test, or any other test method that requires

the detailed analysis of index arrays. The QueryGenerator issues a query when the test wants

to verify if an index array has a certain property at a certain point. The QueryGenerator also

speci�es what kind of property to be checked. The QueryChecker accepts the query and then uses

QuerySolver to traverse the program in reverse control ow direction to verify the query. It uses

the PropertyChecker to get the GEN and KILL information. The QueryChecker returns true to

QueryGenerator if it can determine that the property is available; otherwise it returns false.
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Property Checker

true/falsequery

select

Query Checker

Query Solver
check

generated ?
killed ?

Query Generator

Figure 4.5: The components of array property analysis

The QueryGenerator and the PropertyChecker are closely related to the test problem and the

properties being checked. We will show, in Sect.4.4, how to construct these two parts by using an

example. In this section, we focus on the QuerySolver, which is a generic method.

To simplify the discussion, we assume no parameter passing, values are passed by global variables

only, and if constant numbers are passed from one procedure to another, the callee is cloned.

Techniques to handle parameter bounding, array reshaping, and variable aliasing are well known

and can be found in [22, 39, 19, 58].

4.3.3 The Query Solver

The function of QuerySolver is as follows: given a query (nquery; sectionquery) and a root node

nroot that dominates nquery, QuerySolver returns a tuple (anykilled; sectionremain). The anykilled,

which is a boolean, is true if some element in sectionquery might be killed when the program is

executed from nroot to nquery. When anykilled is false, sectionremain gives the array elements that

are neither generated nor killed from nroot to nquery.

Thus, in order to check if the index array elements in sectionquery at node nquery have the

desired property, QueryChecker invokes QuerySolver with the nroot being the entry node of the

whole program. If anykilled is true or anykilled is false but sectionremain is not empty, then we

know the index array does not have the desired property. Otherwise, it has the desired property.

In other words,

QueryChecker(nquery; sectquery)
:
= anykilled ^ (sectremain = ;);

where (anykilled; sectremain) = QuerySolver((nquery; sectquery); entryprog)
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Method: QuerySolver(query; nroot)
Input: 1) a query query = (ninit; sectinit)

2) a root node nroot that dominates ninit
Output: (anykilled; sectremain)
Begin:
1 worklist := ; ;
2 add[((ninit; sectinit); worklist) ;
3 anykilled := false ;
4 while worklist 6= ; do
5 take an element (n; sect) out of the worklist ;
6 if ( n is nroot ) then
7 sectremain := sect ;
8 break ;
9 end if
10 (anykilled; sectremain) := QueryProp(n; sect) ;
11 if ( anykilled ) then break ;
12 if ( sectremain 6= ; ) then
13 for each node m 2 pred(n)
14 add[((m; sectremain); worklist) ;
15 end for
16 end if
17 end while
18 return (anykilled; sectremain) ;
End

Figure 4.6: QuerySolver

The algorithm for QuerySolver is shown in Figure 4.6. A worklist is used, and each element

in the worklist is a query. The algorithm takes a query (n; sect) out of the worklist. The query

(n; sect) asks whether any array element in sect can have the desired property immediately after

the execution of n. This is checked by reverse query propagation QueryProp (which is detailed in

the next section). QueryProp returns a tuple (anykilled; sectremain), whose meaning is similar to

that of QuerySolver. The anykilled is set to true if any elements in sect cannot have the property

when n is executed. In this case, a false answer for the original query can be determined; thus, no

further query is needed and the algorithm returns. This is an early-termination. When anykilled

is false, new queries are constructed from the sectremain and the predecessors of n and are inserted

into the worklist. This process repeats until the worklist becomes empty or the root node is met.

The use of a worklist makes early-termination possible.

The worklist is a priority queue. All the elements, which are queries of the form (node; section),
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Case 2 Case 3 Case 4 Case 5

query

do i=1, n

. . . .

end do

nnode 

query

procedure proc

. . . .

end 

nnode 

new query new query

query

call procnnode 

new query

a(i) = i+j

query

nnode 

new query

Case 1

query

new query

do i=1, n

. . . .

end do

node n

Figure 4.7: The �ve cases

are sorted in the reverse topological (rTop) order of node in the control ow graph. Only the

queries at the head position can be removed from queue. When a query is added to the worklist, it

is inserted in the proper position according to the rTop order. The �rst time, the query with the

smallest rTop order number is inserted into the empty worklist. Then, after a query (node; section)

is taken out, new queries for the predecessors of node will be inserted into the worklist.

At any moment, the queries in the list are ordered such that the query at the head position

always has the smallest rTop number. Any query inserted into the list has a larger rTop number

than the query just removed from the worklist. Hence, it is easy to see that the algorithm visits

the statements in the program according to their rTop order. In other words, a node is not checked

until all its successors have been checked. Thus, the query presented for a node can be composed

from the queries propagated from its successors.

Queries are inserted into the list by using add[(). The general addop(), where op can be either

\ or [, is de�ned as

addop((n; section); worklist)

:
=

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

if there exists a query (n; section0) in the

worklist, then replace (n; section0) with

(n; section op section0);

otherwise,

insert (n; section) into the worklist according

to the rTop order.
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Method: QueryProp(n; section)
Input: A query (n; section)
Output: (anykilled; sectionremain)
Begin:
1 (Kill;Gen) := Summarize(n) ;
2 sectionremain := section�Gen ;
3 anykilled := ((Kill \ section) 6= ;) ;
4 return (anykilled; sectionremain) ;
End

Figure 4.8: A general framework of reverse query propagation QueryProp

4.3.4 Reverse Query Propagation

Conceptually, reverse query propagation QueryProp computes the IN and DES from OUT , GEN

and KILL. Figure 4.8 shows a general framework of QueryProp .

The QueryProp uses Summarize to summarize the e�ect of executing a node. The e�ect of

executing a statement can be represented by the (Kill;Gen) tuple, where Kill is the section of

the array elements that cannot possess the desired property because of the execution of n, and

Gen is the section of array elements that possess the desired property because of the execution of

n. Whether an array element is generated or killed is determined by the PropertyChecker. The

output of QueryProp() is a tuple (anykilled; sectionremain) whose meaning has been described in

Sect.4.3.3.

The Kill and Gen evaluated by the summarization method are often approximate values. There

are several reasons for this. First, the index array may be assigned variables whose values or

relationships with other variables cannot be determined by the compiler; therefore, the section

of the array elements being accessed cannot be represented precisely. Second, the summarization

method works on array sections, but the set operations being used usually are not closed on section

representations. Hence, the results can be only approximated.

In order not to cause incorrect transformations, the approximation must be conservative. Kill

is a MAY approximation and Gen is a MUST approximation. In the worst case, Kill can be the

universal section [�1;1] and Gen can be ;.

In real programs, the e�ect of executing a node may not be able to be derived explicitly, and

the Summary method is not available for all kinds of nodes. Hence, it is not always possible to
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use the general framework in Figure 4.8. Depending on the semantics of the node n, there are �ve

di�erent cases, as illustrated in Figure 4.7:

� Case 1: n is a do loop node,

� Case 2: n is a do statement,

� Case 3: n is a call statement,

� Case 4: n is a procedure head, or

� Case 5: otherwise.

Accordingly, each case is handled by di�erent reverse query propagation methods.

QueryProp
:
=

8>>>>>>>>>>>><
>>>>>>>>>>>>:

QueryPropsimple case 5

QueryPropdo loop case 1

QueryPropdo header case 2

QueryPropproc call case 3

QueryPropproc head case 4

4.3.5 Simple Reverse Query Propagation

In case 5, the node n is a statement other than a do statement, an end do statement, a call

statement, or a procedure head. In this case, the e�ect of executing node n can be derived by

examining n alone. QueryPropsimple uses the same framework as QueryProp in Figure 4.8 with

Summarize being replaced by SummarizeSimpleNode. The SummarizeSimpleNode is also the

interface between the QuerySolver and the PropertyChecker (see Sect.4.4.2).

Example 4.1 In Figure 4.9, statements st1 and st2 are simple assignments of array a(). The

property to be checked is a(i) = i � (i� 1)=2. Hence,

SummarizeSimpleNode(st1) = (Kill = ;; Gen = [n : n])

SummarizeSimpleNode(st2) = (Kill = [1 : 1]; Gen = ;)
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a(n) = n*(n-1)/2

new_section
query

= [1:n-1]

section = [1:n]
query

a(1) = b+c

new_section
query

= φ

section = [1:n]
query

property: a(i) = i*(i-1)/2

st1 st2

Figure 4.9: An example of simple reverse query propagation

Thus, after the propagation, for statement st1 we have:

anykilled = false; sectionremain = [1 : n� 1]:

And, for statement st2 we have:

anykilled = true; sectionremain = ;:

4.3.6 Loop Analysis

Cases 1 and 2 deal with loops. Array dataow analysis is di�erent from scalar analysis because

di�erent array elements might be accessed in di�erent iterations of a loop, while the same set of

scalars are usually accessed in all iterations. To summarize the e�ect of the loops, aggregation

methods such as the one proposed by Gross and Steenkiste[33] (for one dimensional arrays) or by

Gu et al.[34] (for multiple dimensional arrays) are used to aggregate the array access.

Given a section expression, sectioni, which contains the loop index i, let low be the lower

bound of the loop and up be the upper bound of the loop, Aggregatelow�i�up(sectioni) computes

the section spanned by the loop index across the iteration space.

Reverse Query Propagation for Do Loops

In case 1, the initial query comes from outside the loop. Like the simple node case, the framework

in Figure 4.8 can be used. The only di�erence is that we summarize the e�ect of executing the

whole loop rather than a single statement.
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Method: SummarizeLoop(m)
Input: A do loop node m
Output: (Kill;Gen)
Begin:
1 Let n be the node corresponding to the loop

body, and assume i is the loop index ;
2 (Killi; Geni) := SummarizeSection(n) ;
3 Let up be the upper bound of loop m, and low

be the lower bound of loop m ;
4 Kill := Aggregatelow�i�up(Killi) ;
5 temp := Aggregatei+1�j�up(Killj) ;
6 Gen := Aggregatelow�i�up(Geni � temp) ;
7 return (Kill;Gen) ;
End

Figure 4.10: SummarizeLoop

The method SummarizeLoop that summarizes a loop is given in Figure 4.10.

Basically, SummarizeLoop �rst computes the e�ect of executing the loop body, which corre-

sponds to one iteration of the loop. Then, the e�ects are aggregated for the whole loop.

A collection of summarization methods are used here. The loop body is summarized by

SummarizeSection. And, SummarizeSection uses three other methods (i.e., SummarizeSimpleNode,

SummarizeProcedure, and SummarizeLoop) recursively depending on the type of statements

used in the loop body.

SummarizeProcedure summarizes the e�ect of calling a procedure. Without considering the

parameter bounding, SummarizeProcedure can be de�ned as

SummarizeProcedure(n)
:
= SummarizeSection(m);

where m is the section node representing the procedure body of the procedure called by the call

node n.

SummarizeSection is shown in Figure 4.12. It computes the e�ect of executing a section by

reverse propagation of the Kill and Gen set from the exit node to the entry node. It also uses a

worklist similar to the one used in QuerySolver. The elements (n; gen) in the worklist, however,

are not queries here. The gen is the section of array elements that have been generated because of

the execution of the program from the exit of node n to the exit of the section. Another di�erence
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Method: QueryPropdo header(m; sect)
Input: A query (m; sect), where m is a node of

do statement node
Output: (anykilled; sectremain)
Begin:
1 Let n be the section node of the loop body, and

assume n represents the ith iteration of the loop ;
2 (Killi; Geni) := SummarizeSection(n) ;
3 Let up be the upper bound of loop, and low be the

lower bound of loop;
4 if ( sect \ Aggregatelow�j�(i�1)(Killj) 6= ;) then
5 return (true; ;) ;
6 end if
7 sectremain i := sect� Aggregatelow�j�(i�1)(Genj) ;

8 sectremain := Aggregatelow�i�up(sectremain i) ;
9 return (false; sectremain) ;
End

Figure 4.11: QueryPropdo header

is that elements are inserted into the worklist by using add\ instead of add[. The e�ect of a section

also could be computed in the forward direction. We use a backward method here because it is more

eÆcient. It can early-terminate once the kill information is over-approximated to be the universal

section (lines 21-24).

Reverse Query Propagation for Do Loop Headers

In case 2, the initial query comes from one iteration of the loop. The method is a bit more

complicated than the framework in Figure 4.8. Conceptually we do not summarize the whole loop,

but rather the previous iterations of the loop. This gives us the new query section corresponding to

one iteration, which should then be aggregated in order to get the query section for the predecessors

of the loop. The method QueryProploop header is shown in Figure 4.11.
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Method: SummarizeSection(n)
Input: A section node n
Output: (Kill;Gen)
Begin:
1 Let nentry be the entry node of section n, and

let nexit be the exit node of section n.
2 Gen := ; ;
3 Kill := ; ;
4 WorkList := ; ;
5 add\((nexit; ;);Worklist) ;
6 while WorkList 6= ; do
7 take an element (n; gen0) out of the Worklist ;
8 if (n = nentry) then
9 Gen := gen0 ;
10 break ;
11 end if
12 begin case
13 case n is a call statement:
14 (kill; gen) := SummarizeProcedure(n) ;
15 case n is a do node:
16 (kill; gen) := SummarizeLoop(n) ;
17 otherwise:
18 (kill; gen) := SummarizeSimpleNode(n) ;
19 end case
20 if ( n dominates nexit ) Gen := gen0 ;
21 if ( kill = [�1;1] ) then
22 Kill := kill ;
23 break ;
24 end if
25 Kill := Kill [ (kill � gen0) ;
26 for each m 2 pred(n)
27 add\((m; gen

0 [ gen);WorkList) ;
28 end for
29 end while
30 return (Kill;Gen) ;
End

Figure 4.12: SummarizeSection
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section
query

...

exit

entry node 
root

node init
node init node 

root
section

query
QuerySolver((             ,                    ),               )

section
query

node n call proc

procedure proc

end

section

Figure 4.13: Reusing QuerySolver for QueryPropproc call

4.3.7 Interprocedural Analysis

The interprocedural reverse query propagation also involves two cases (i.e. cases 3 and 4 in Figure

4.7).

Reverse Query Propagation for Procedure Calls

In case 3, the node n is a call statement. There are several ways to handle this case. A straight-

forward method is to use the framework in Figure 4.8 directly, with Summarize being replaced

with SummarizeProcedure. With the help of memoization(see Sect.4.3.8), the procedure needs

to be summarized only once. The result can be reused again in later query propagations for this

procedure, if there are any.

Another method is more demand-driven. We can construct a new query problem with the

initial query node being the exit node of the callee and the root node being the entry node of the

caller, as illustrated in Figure 4.13. Then, we can reuse QuerySolver to propagate the query in a

demand-driven way. QuerySolver can early-terminate once any array element in query section is

found not to have the desired property or all of them are found to have the property.

QueryPropproc call(n; section)

:
= QuerySolver((mexit; section);mentry);

where mexit and mentry are the exit node and the

entry node in the body section of the callee,

respectively
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procedure pd

end
...

procedure pa
...

call pd
...

end

procedure pb
...

call pd
...

end

procedure pc
...

call pd
...

end

. . .

query splitting

Figure 4.14: Query splitting

A third method is to combine the previous two. When propagating a query for a procedure

call, we �rst check whether the summarized e�ect is already computed for the procedure. If it is

available, we use the �rst method. Otherwise, we switch to the second one.

So far, we found that the performance of the three (in terms of execution time and precision)

varies with the programs.

Reverse Query Propagation for Procedure Entries

In case 4, the node n is the entry node of a procedure. If n is not the program entry, then the

query will be propagated into the callers of this procedure. The framework in Figure 4.8 cannot be

used. Instead, we use a query splitting method shown in Figure 4.15.

Suppose the property query at the entry node n of a procedure proc is (n; sectquery), and the

call sites of proc are n1; n2; n3; :::, and nm. If n is the program entry, then the array elements in

sectquery are not generated in this program and, as a result, whether they have the desired property

cannot be veri�ed. In this case, QueryPropprochead returns with the anykilled being true, and the

property analysis can terminate with the answer being false. Otherwise, the query is split into m

sub-queries, each of which has a set of initial queries as f(n0; sectquery)jn
0 2 pred(ni)g, as illustrated

in Figure 4.14. The original query has a true result when all the sub-queries terminate with a true

result. Otherwise, the initial query has a false result.
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Method: QueryPropproc head(n; sect)
Input: a query (n; sect)
Output: (anykilled; sectremain)
Begin:
1 if ( n is the program entry ) then
2 return (false; sect) ;
3 end if
4 Let p be the current procedure ;
5 for each call site n of p
6 for each m 2 pred(n)
7 if ( QueryChecker(m; sect) = false ) then
8 return (true; sect) ;
9 end if
10 end for
11 end for
12 return (false; ;) ;
End

Figure 4.15: QueryPropproc head

4.3.8 Memoization

Processing a sequence of k queries requires k separate invocations of QueryChecker, which may

result in the repeated evaluations of the same intermediate queries. Similarly because a procedure

may be called multiple times in a program, the summarization methods also may repeat several

times for the same node. These repeated computations can be avoided by using memoization[1].

When memoization is applied, a procedure records, in a table, values that have previously been

computed. When a memoized procedure is asked to compute a value, it �rst checks the table to see

if the value is already there. If already there, it just returns the value; otherwise, it computes the

new value in the ordinary way and stores the value in the table. In our analysis, the QueryChecker,

the QuerySolver, the QueryProp and the Summarize methods all can be memoized. We choose to

memoize the QueryChecker and the Summarize because they are most likely to be invoked with

the same input repeatedly.

In a loop with indirectly accessed arrays, we found that di�erent host arrays often shared the

same index array and access pattern. For example, when detecting the dependences in the loop in

Figure 4.16, the compiler should check the dependences between a() at s1 and a() at s2, between

two di�erent instances of a() at s1, and between two di�erence instances of b() at s3. Suppose
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s0: ...

do i = 1, n

do j = 1, length(i)

s1: a(offset(i)+j-1) = ...

s2: ... = a(offset(i)+j-1) + ...

s3: b(offset(i)+j-1) = ...

end do

end do

Figure 4.16: Array a() and b() share the same access pattern

the query demands are issued at statement s0. Because the same index array and the same access

pattern is used, the same query will be evaluated three times. If memoization is used, only one

evaluation is needed.

Summarization methods are called independently of the query sections. Memoization tends to

be more e�ective for summarizations than QuerySolver and QueryProp, which depend not only on

the index array and the property to be checked, but also on query sections, which often vary from

instance to instance.

4.3.9 Cost Analysis

Let jN j be the number of HCG nodes and jEj be the number of edges in a program. We assume

jEj = O(jN j) because we are working on structured programs. For a single query, memoizing

the summarization methods requires a storage space of size O(jN j). To determine the time com-

plexity, we consider the number of array section operations (intersection, union, subtraction and

aggregation) and the number of PropertyCheck methods. The latter is O(jN j) as PropertyCheck

is invoked only in SummarizeSimpleNode. PropertyCheck is executed once at most for each

node because of the memoization. The array section operations are performed for each edge in

the query propagation methods and the summarization methods. The number is O(ninlined) for

query propagation methods and O(jN j) for summarization methods, where ninlined is the number

of statement nodes if the program is fully inlined. Hence, the complexity of execution time is

O((Cpc+Cas) � jN j+Cas � ninlined), where Cpc is the cost of a PropertyCheck and Cas is the cost

of an array section operation. Because we make approximations when property check cannot be

performed locally or array sections become complicated, both Cpc and Cas can be considered as
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constants here.

4.4 Examples of Query Generator and Property Checker

Of the three major components of array property analysis, the QueryChecker is a generic method,

while the QueryGenerator and the PropertyChecker are speci�c to the base problem (e.g., depen-

dence tests and privatization tests) and speci�c to the potential property the array is likely to

hold. In this section, we use a data dependence test problem to illustrate how to construct the

QueryGenerator and the PropertyChecker.

4.4.1 Generating Queries

We �rst present a new dependence test called o�set-length test. The o�set-length test is designed

to detect the data dependence in loops where indirectly accessed arrays are present. It is called

the o�set-length test because it can disprove dependences when the index arrays are used as o�set

arrays and length arrays, such as the offset() and the length() in Figure 4.1. The o�set-length

test needs array property analysis to verify the relationship between the o�set arrays and the length

arrays; hence, it also serves as a demand generator.

We consider two array accesses in statements (1) and (2), at least one of which is a write, in

the loop nest in Figure 4.17.

Loops do i1 through do ir are common to statements (1) and (2). Loops do j1 through do jp

are private to statement (1). And, loops do k1 through do kq are private to statement (2). The

loop bounds of loops other than loops do i1 through do it and the subscript functions f() and g()

may contain index arrays.

We test whether there is a loop carried dependence between access (1) and access (2) for loop

do it (i.e., whether there is a dependence with the dependence direction vector (=1;=2; :::;=t�1; 6=t

; �; :::; �)). We assume that the index arrays in the loop nest are arrays of the t outermost loops

only.

We �rst compute both the ranges of values of f(i1; :::; it; �; :::; �) and g(i1; :::; it; �; :::; �) when

i1; i2; :::; it are kept �xed. Because the index arrays are arrays only of the outermost t loops,

the loop indices i1; i2; :::; it and the index arrays can be treated as symbolic terms in the range
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do i1 = 1, m
...
do it = 1, n
...
do ir = ...
do j1 = ...
...
do jp = ...
a(f(i1; i2; :::; it; :::; ir; j1; j2; :::; jp)) (1)

end do
end do
do k1 = ...
...
do kq = ...
a(g(i1; i2; :::; it; :::; ir; k1; k2; :::; kq)) (2)

end do
end do

end do
end do

end do

Figure 4.17: A loop nest

computation. If, except for the index arrays, f() or g() is an aÆne function of the loop indices,

the range can be calculated by substituting the loop indices with their appropriate loop bounds,

as done in Banerjee's test [7]. Otherwise, the ranges are calculated with the method used in some

nonlinear data dependence tests, such as the Range test [15].

Before we continue, let's present the following proposition.

Proposition 4.1 Let R1; R2; :::; Rn and R0
1; R

0
2; :::; R

0
n be two sequences of ranges, where Ri =

[x(i)+ c1; x(i) + y(i)� d1] and R
0
i = [x(i) + c2; x(i) + y(i)� d2] for 1 � i � n; x() and y() are two

arrays; c1 and c2 are non-negative constants; and d1 and d2 are positive constants. If

x(i+ 1) = x(i) + y(i); for 1 � i � n� 1

and

y(i) � 0; for 1 � i � n

then

Ri \Rj = ;;when i 6= j; 1 � i; j � n
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and

Ri \R
0
j = ;;where i 6= j; 1 � i; j � n

Corollary 4.1 For the loop in Figure 4.17, if

1. Condition 1

the range of f(i1; :::; it; �; :::; �) can be presented as

[x(it) + flow ; x(it) + y(it) + fup];

and the range of g(i1; :::; it; �; :::; �) can be presented as

[x(it) + glow ; x(it) + y(it) + gup];

where x() and y() are two index arrays, and

flow = e(i1; :::; it�1) + c1

fup = e(i1; :::; it�1)� d1

glow = e(i1; :::; it�1) + c2

gup = e(i1; :::; it�1)� d2

e(i1; :::; it�1) is an expression of indices i1, i2,...,it�1 and index arrays of the outermost t� 1

loops; c1 and c2 are some non-negative integers; and d1 and d2 are some positive integers,

and

2. Condition 2

we know that index array x() has a closed-form distance y(), and

3. Condition 3

the value of array elements of y() are not negative,
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s0: do i=1, n

do j=2, iblen(i)

do k=1, j-1

...

s1: x(pptr(i)+k-1) = ...

...

end do

end do

...

do j=1, iblen(i)-1

do k=1, j

...

s2: ... = x(iblen(i)+pptr(i)+k-j-1)

...

end do

end do

end do

Figure 4.18: A loop form DYFESM

then there is no loop carried dependence between (1) and (2), between two instances of (1), or

between two instances of (2) for loop do it.

In Corollary 4.1, Condition 1 can be checked locally after the ranges are computed, while

Conditions 2 and 3 need be to veri�ed by array property analysis.

Example 4.2 Figure 4.18 shows a loop nest excerpted from the subroutine SOLXDD of Perfect

Benchmark code DYFESM.

We want to check if there is any loop-carried dependence between statement st1 and statement

st2 for the outermost loop do i.

Here, f(i; j; k) = pptr(i) + k � 1 and g(i; j; k) = iblen(i) + pptr(i) + k � j � 1. By substituting

the loop indices with the loop bounds, we can compute the ranges of f() and g() when i is �xed,

which are [pptr(i); pptr(i)+ iblen(i)�2] and [pptr(i)+1; pptr(i)+ iblen(i)�1], respectively. Hence,

according to Proposition 4.1, if pptr() has a closed-form distance of iblen(), which is non-negative,

then for the outermost loop s0 there is no ow-dependence from s1 to s2, no anti-dependence from

s2 to s1, and no output-dependence from s1 to s1.

Corollary 4.2 For the loop in Figure 4.17, if
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1. Condition 1

the range of f(i1; :::; it; �; :::; �) can be presented as

[x(it) + flow; x(it) + y(it) + fup];

and the range of g(i1; :::; it; �; :::; �) can be presented as

[ min
1�i�it

(x(i) + glow); max
1�i�it

(x(i) + y(i) + gup)];

where x() and y() are two index arrays, and

flow = e(i1; :::; it�1) + c1

fup = e(i1; :::; it�1)� d1

glow = e(i1; :::; it�1) + c2

gup = e(i1; :::; it�1)� d2

e(i1; :::; it�1) is an expression of indices i1, i2,...,it�1 and index arrays of the outermost t� 1

loops, and c1, c2, d1 and d2 are some non-negative integers. And,

2. Condition 2

same as Condition 2 in Corollary 4.1, and

3. Condition 3

same as Condition 3 in Corollary 4.1,

then there is no loop carried dependence between two instances of (1) for loop do it, and there

is no loop carried dependence from (2) to (1) for loop do it.

Example 4.3 Suppose ptr() has a closed form distance of len() which is non-negative in the loop

in Figure 4.19. Then, because of the �rst dimension of x(), there is no loop carried dependence

from s3 to s3, nor from s4 to s3 for loop s0. And, because of the second dimension of x(), there
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s0: do i=1, n

do j=1, len(i)

s1: ij = ptr(i)+j-1

do k=1, i

do l=1, len(k)

s2: kl = ptr(k)+l-1

s3: x(ij,kl) = ...

s4: x(kl,ij) = ...

end do

end do

end do

end do

Figure 4.19: Another loop

is no loop carried dependence from s4 to s4, nor from s3 to s4 for loop s0. Hence, the outermost

loop is parallel.

The o�set-length test can be a stand-alone test or can be integrated with other tests, such as

Banerjee's test and the Range test.

4.4.2 Checking Properties

Given a property to be veri�ed and an assignment statement, the property checker PropertyChecker

checks whether the assignment will cause any array elements to be generated or killed. In Section

3.2.2, we have already shown an example about how to use irregular single-indexed array access

analysis to detect closed-form bounds and injectivity in index gathering loops. In this subsection,

we show how to use a simple pattern matching technique to check the closed-form distance.

Suppose the given property to be veri�ed is

x(i+ 1) = x(i) + y(i); for 1 � i � n� 1:

The PropertyChecker can, as an example, take the following steps to inspect an assignment state-

ment:

1. if the left-hand side (LHS) of the assignment is neither the array x() nor the array y(), then

nothing is generated or killed ;
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t = ...

x(1) = ... do i = 1, n

do i = 2, n x(i) = t

x(i) = x(i-1) + y(i-1) t = t + y(i)

end do end do

(a) (b)

Figure 4.20: Two program patterns for closed-form distance

2. if the LHS is an array element x(i), then the assignment and the other statements in the

surrounding loops are checked to see if they match any of the following two patterns shown

in Figure 4.20. If not, then all elements of x() are killed. Otherwise, x(i) is generated ;

3. in all other cases (this includes the case when the LHS is an array element of y() and the case

when the LHS is an array element of x() but the subscript is not a simple index), all elements

of x() are killed.

In general, the closed-from distance can be detected by using abstract interpretation, such as the

recurrence recognition method proposed by Z. Ammarguellat and W. Harrison[4]. Compared with

abstract interpretation, our pattern matching method is simpli�ed and, thus, conservative. How-

ever, we found this simpli�cation to be very e�ective in practice. For most cases, PropertyChecker

never needs more sophisticated methods to get precise results.

4.5 Using Run-time Test to Check Properties

So far, the methods we have described are purely compile-time techniques. There are, however,

cases where the index arrays are read from input �les and their properties cannot be veri�ed until

run-time.

For example, in the property analysis of array pptr() and iblen() in Example 4.2, it can be

veri�ed at compile-time, by analyzing the code DYFESM, that array pptr() has a closed-form

distance of iblen(). But array iben() is de�ned in a read statement. A run-time test is needed to

check if the values of elements in iblen() are non-negative.

In this section, we describe a scheme to extend array property analysis to incorporate run-time

tests.
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4.5.1 At Compile-time

A global run-time test repository is used to keep a record of the query demands and the run-time

tests generated at compile-time. Each query demand has an entry in the repository. Each entry

has a unique demand id as the lookup key. An entry has a need runtime test tag, which can have

two values. A true means a run-time test is generated and required. A false means no run-time

test is generated or the compile-time analysis has found the query is false and no run-time test is

needed.

When a query demand is generated, the compiler creates an entry in the repository and sets

the need runtime test tag to false.

During array property analysis, if an I/O input statement is met and a run-time test is required,

the compiler generates a run-time test node, inserts the node to the program, inserts a reference

of the node to the repository, and sets the need runtime test tag for the original query demand

to true. Then, array property analysis continues as if the query is veri�ed to be true at the input

statement. If, during the analysis, the query is found to be false, then the compiler sets the

need runtime test tag to false.

After array property analysis, if the property is found to be true and the need runtime test tag

also is true, then the compiler generates two versions of the loop (one optimized and one original)

which are guarded by a test of the run-time test results. If the property is found to be false, then

the repository is looked up to locate all the generated run-time test nodes, which are then removed

from the program.

4.5.2 At Run-time

Like at compile-time, a global run-time test repository also is used at run-time. Each query demand

that requires a run-time test has an entry in the repository. Each entry has the same unique demand

id as in the compile-time repository. A result tag is kept in each entry to save the run-time results.

The tags are set to true when the program starts.

When a run-time test is performed, the run-time test repository is looked up to �nd the entry

with the demand id of the query that requires this run-time test. If the result is false, which means

the property has already been veri�ed as false by some other run-time test, then the run-time test
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is skipped. Otherwise, the run-time test is executed and the result is set to the result tag in the

repository.

When choosing which version to be executed at the site where the query was generated at

compile-time, the repository is looked up again. If the value of the result tag is true, then the

optimized version is executed; otherwise, the unoptimized version is executed.

4.6 Related Work

Two di�erent studies, done by Z. Shen, Z. Y. Li, and P.C. Yew [68] and P. Petersen and D. Padua

[59], have found that index arrays are a signi�cant source of imprecision in dependence testing.

B. Blume and R. Eigenmann studied the Perfect Benchmarks and found detecting index array

properties to be important[13]. The same conclusion is also achieved by the authors in a study of

several sparse/irregular Fortran programs[49].

Our approach of modeling a demand for property checking as a set of queries was inspired by

the work of E. Duesterwald, R. Gupta, and M. So�a [26]. They proposed a general framework

for developing demand-driven interprocedural data ow analyzers. They also show that demand-

driven analysis reduces both time and space requirements when compared with exhaustive analysis

in practice. However, they use an iterative method to propagate the queries and can handle only

scalars. We use a more eÆcient structural analysis and work on arrays. We can do this because we

have a more speci�c problem.

Array data ow analysis has been studied by many researchers, such as [33, 29, 34, 64]. All

of them use exhaustive analysis. The idea of representing array elements by an array section

descriptor and using aggregations to summarize the elements accessed by a loop was �rst proposed

by Callahan and Kennedy[20] and was used in our method to handle arrays in loops. Another

class of array data ow analysis methods uses the framework of data dependence and can provide

�ne-grain instance-wise information[29, 64]. However, this approach is diÆcult to use in whole

program analysis.

Compile-time analysis of index arrays was also studied by K. McKinley[55] and K. Kennedy, K.

McKinley, and C. Tseng [44]. They investigated how user assertions about the index arrays could

be used in dependence tests. The user assertions correspond to the properties in our work. They
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focus on how to use the properties, while we focus on how to get the properties automatically.

Their work complements ours when the properties are undetectable at compile-time.

We found that, in real programs, subscripts of host arrays are usually simple when index arrays

were used. Most of them are of the form p(i) � j, where p(i) is an index array and i and j are

loops indices. The extended SIV tests, such as those described in [55], and our o�set-length test

were usually suÆcient to generate the property queries. For more general problems, W. Pugh and

D. Wonnacott had proposed a nonlinear array dependence analysis method [63]. In their work,

nonlinear expressions (including index arrays) are treated as uninterpreted function symbols, and

a dependence test is represented as a Presburger formula. By simplifying the formula, they can

determine the conditions under which a dependence exits. Not surprisingly, the conditions they

found in their experiments with Perfect Benchmarks corresponded to the properties we described.

Hence, their method can be used in the demand generator for general cases in dependence tests.

4.7 Summary

Many optimization techniques reply on the analysis of array subscripts. Current compilers often

give up optimizations when arrays are subscripted by index arrays and treat the index arrays as

unknown functions at compile-time. However, recent empirical studies of real programs have shown

that index arrays often possess some properties that can be used to derive more precise information

about the enclosing loops. In this chapter, we presented an index array analysis method, called

array property analysis, which veri�es the property of an array by back propagating a property

query along the control ow of the program. This method integrates demand-driven approach,

interprocedural analysis, and array dataow analysis. We also illustrated how to generate the

property query in a data dependence test and how to construct a query checker based on simple

pattern matching.

We have implemented array property analysis in our Polaris parallelizing compiler and measured

its impact in �nding more parallelism. We will show the experimental results in the next chapter.
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Chapter 5

IMPLEMENTATIONS AND

EXPERIMENTS

Compile analysis of irregular memory accesses can enable deeper analysis in many parts of an

optimizing compiler. To evaluate its e�ectiveness, we measured its impact in �nding more implicit

parallelism. In this chapter, we describe the implementation of the irregular single-indexed array

analysis and the implementation of the demand-driven interprocedural array property analysis in

our Polaris parallelizing compiler. We also show the experimental results using �ve programs in

our benchmark suite described in Chapter 2.

5.1 Implementation

5.1.1 Reorganize the Phases in Polaris

Like most compilers, Polaris is organized in phases. The high level structure of Polaris is shown

in Figure 5.1.(a). Except for the inlining and interprocedural constant propagation, all other

phases are intraprocedural. For each program unit, Polaris performs a sequence of analyses and

transformations in order. This structure is good for data locality and, therefore, good for the

eÆciency of Polaris. It also makes debugging Polaris a bit faster and easier.

The structure is not, however, good for array property analysis. As we discussed in Chapter

4, array property analysis must be performed interprocedurally in order to be e�ective for real

programs. Since an interprocedural analysis may need to work on any program unit, we want

all program units to have applied the same set of transformations before the analysis starts. We
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scanner

inlining

interprocedural constant propagation

for each program unit do

program normalization

induction variable substitution

constant propagation

forward substitution

dead code elimination

privatization

reduction recognition

data dependence test

end do

postpass

(a) before

scanner

inlining

interprocedural constant propagation

for each program unit do

program normalization

induction variable substitution

constant propagation

forward substitution

dead code elimination

end do

for each program unit do

privatization

end do

for each program unit do

reduction recognition

end do

for each program unit do

data dependence test

end do

postpass

(b) after

Figure 5.1: Reorganize the phases in Polaris

reorganize the phases in Polaris, after which the high level structure of Polaris looks like Figure

5.1.(b). The \loop distribution" way of reorganization is made possible due to the good modularity

of the phases implemented in Polaris.

We did not remove the inlining phase because most analyses in Polaris were not interprocedural

and they relied on inlining to produce precise results. We used the default auto inlining function in

Polaris, which inlines procedures that contain no I/O statements and whose call-sites are in a loop

and whose number of lines are less than �fty. As not all procedures are inlined, the interprocedural

part of our array property analysis is still required and proved to be useful.
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5.1.2 Array Property Analysis as a Demand-driven Tool

Array property analysis is not a stand alone phase. It is implemented as a independent tool that

can be invoked by demand.

A caller graph and a callee graph that represent the procedural call relationship in the

program being parallelized are constructed before the phase that will use array property analysis.

We assume that, during the phase, the program is not transformed so that the caller graph and

callee graph remain valid during the analysis.

The array property analyses that check di�erent properties are implemented as di�erent sub-

classes of a common PropertySolver class which realizes the property independent QuerySolver

discussed in Section 4.3.3. The subclasses implement the property dependent parts, such as the

PropertyChecker. When an array property is to be checked, an object of one of the subclasses is

created, array sections in the query are passed to the object, and the analysis is invoked by calling

the DdriveSolve() method.

In Polaris, the array property analysis is used in the privatization phase and in the data depen-

dence test phase.

5.1.3 Array Privatization

The original privatization phase was designed by Peng Tu [74]. The method, based on Corollary

2.1 described in Section 2.4, was used to test the validity of privatization. That is, an array is

privatizable if the upward exposed read set of the array in each iteration is empty.

To compute the upward exposed read set, the sets of array elements that are read or written

by each statement are calculated. To make it easier for set operations, a set of array elements

is represented as an array section. To approximate in the safe direction, a read section can be a

superset of its corresponding real read set, and a write section can be a subset of its corresponding

real write set.

In the original design, the array subscripts must be linear expressions and the surrounding

loops must be do loops. The array accesses cannot be irregular; otherwise, the read set has be to

approximated to [�1;1], and the write set has to be approximated to ;.

We extended the computation method for the read/write sections so that it can handle the
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consecutively-accessed arrays and simple indirectly-accessed arrays. The methods described in

Section 3.2.2 are used to get the ranges of the index variables in consecutively-accessed arrays. For

the simple indirectly-accessed arrays, array property analysis is used to verify the bounds of the

index arrays. A set of indirectly-read array elements now can be approximately represented in array

sections. For example, fa(p(i))j1 � i � ng is approximated to a[low : high], where low = min(p(i))

and high = max(p(i)) for (1 � i � n). Although this approximation works for read sets only, it

has proven to be useful in our experiments.

5.1.4 Data Dependence Test

The original data dependence test phase was designed by Bill Blume [17]. A variety of data

dependence tests were implemented as \�lters" which �lter out the non-existed dependence between

two statements. Given a data dependence graph (V;E) where V is the set of statements in a loop

and E is the set of arcs between the statements, each arc represents a data dependence. The data

dependence graph is a multigraph because there may exist more than one data dependence between

two statements. For each arc, the data dependence tests are performed in the order of increasing

complexity.

An important class of tests used is the single subscript test. If the arrays under test are multi-

dimensional, these tests check the subscripts one dimension by one dimension. The tests in this

class that are used by Polaris include: the simple subscript test, the GCD test [8], and the range

test. The simple subscript test removes dependences of the form \a(i)! a(i)". The range test is a

symbolic data dependence test that can identify parallel loops in the presence of certain nonlinear

array subscripts and loop bounds [15].

We extended the range test so that it could function like the o�set-length test discussed in

Section 4.4.1 when the index arrays were used as o�sets and length. We found the range test a

natural place to incorporate the o�set-length test because it also computed the symbolic range of

subscript expressions which were used in the o�set-length test. We also implemented a stand alone

simple o�set-length test that tested the subscripts of the form \a(ptr(i)+j)". It could be used when

the user wanted to avoid the overhead of the extended range test, though it was less general. An

injective test was also added for the case when the subscript was a simple index array like \a(p(i))".
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SingleSubscriptFilter

SimpleSubscriptTestFilter

GCDTestFilter

SimpleoffsetLengthTestFilter (newly added)

InjectiveTestFilter (newly added)

BaseRangeTestFilter (extended)

RangeTestFilter (extended)

DVRangeTestFilter (extended)

Figure 5.2: Hierarchy of extended and newly added data dependence test

The hierarchy of the extended single subscript �lter class is shown in Figure 5.2. All the extended

and newly added tests need property analysis of index arrays.

5.2 Experimental Results

5.2.1 Overview

Table 5.1 shows the �ve programs used in our experiments. TRFD, BDNA and DYFESM are from

the PERFECT Benchmark suite. P3M is a particle-mesh program from NCSA. TREE is a Barnes-

Hut N-body program from the University of Hawaii [10]. The compilation time of the programs

using Polaris is listed in column four. Array property analysis increases the compilation time by

4.5% to 10.9%1. These data were measured on a Sun Enterprise 4250 Server with four 248MHz

UltraSPARC-II processors. The sequential execution time (measured on an SGI Origin2000 with

�fty six 195MHz R10k processors) of these programs is listed in column three.

Table 5.2 shows the results of the analysis. Column two shows the loops with irregular array

accesses that can be analyzed by Polaris now. The loops with a \*" are the newly parallelized loops.

The loops without a \*" are not parallel, but their analysis results are used to help parallelize the

loops with a \*". The properties of the irregular array accesses are listed in columns �ve and eight.

Column nine shows the tests that were used as the query generators in array property analysis.

Column ten shows the percentage of total sequential program execution time (on the Origin2000)

accountable to the loops in column two. And, column eleven shows the percentage of total parallel

program execution time accountable to these loops if the loops are not parallelized (the number

1The data of P3M is for subroutine PP only.
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after the % sign is the number of processors used). One to thirty-two processors were used.

Figure 5.3 shows the speedups of these programs. We compare the speedups of the programs

generated by our Polaris parallelizing compiler, with and without irregular array access analysis,

and the programs compiled using the automatic parallelizer provided by SGI. The experiments were

performed on an SGI Origin2000 machine with 56 195MHz R10000 processors (32KB instruction

case, 32KB data cache, 4MB secondary uni�ed level cache) and 14GB memory running IRIX64

6.5. One to thirty-two processors were used for BDNA and TREE. One to eight processors were

used for P3M. \APO" means using the \-apo" option when compiling the programs. This option

invokes the SGI automatic parallelizer. \Polaris without IAA" means using the Polaris compiler

without irregular array access analysis. \Polaris with IAA" means using the Polaris compiler with

irregular array access analysis. For all �ve codes, the speedups of the versions in which irregular

array access analysis had been used are much better than those of the other versions. As we have

not yet implemented array stack analysis in our Polaris compiler, for TREE we show the results of

manual parallelization.

5.2.2 TRFD

TRFD is a kernel simulating the computational aspects of a two-electron integral transformation

[61].

Loop INTGRL/do 140, which is inherently parallel, occupies about 5% of sequential execution

time. But, if it is not parallelized, it will occupy about 24% of the parallel execution time when

thirty-two processors are used.

A simpli�ed version of loop INTGRL/do 140 is shown in Figure 5.4. It is almost identical

to the loop in Example 4.3. The only di�erence is that the len(i) is replaced with i. When

irregular array access analysis is enabled, the extended range test generates two queries: one checks

whether array ia() has a closed form distance of i, and the other checks whether array ia() has

a closed form value of (i*(i-1))/2, where i is the array index. If any query returns true, then

the dependence is broken.
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Figure 5.3: Speedups: IAA - irregular array access analysis, APO - using the automatic paralleliza-
tion option in the SGI F77 compiler
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do i=1, n

ia(i) = (i*(i-1))/2

end do

call intgrl

subroutine intgrl

do i=1, n <- do 140

do j=1, i

ij = ia(i) + j

do k=1, i

do l=1, k

kl = ia(k)+l

x(ij,kl) = ..

x(kl,ij) = ..

end do

end do

end do

end do

Figure 5.4: Loop INTGRL/do 140 in TRFD

5.2.3 BDNA

BDNA is a molecular dynamics simulation code from the PERFECT benchmark suite [27].

The do 240 loop in subroutine ACTFOR is a loop that computes the interaction of biomolecules

in water. It occupies about 31% of total computation time. The main structure of this loop is

outlined in Figure 5.5

Consecutively written array analysis is used in the do j2 loop to �nd that elements in [1; k]

of ind() are written in this loop. Furthermore, this loop is recognized as an index gathering loop;

thus, the values of the elements in ind[1; k] de�ned in this loop are bounded by [1; i � 1]. This

information is used to privatize array ind() and xdt() in the do i loop, which is then determined

to be parallel.

5.2.4 DYFESM

DYFESM is a two-dimensional �nite element code from the PERFECT benchmark suite [61].

DYFESM uses a compact data structure, similar to the compress column/row storage format for
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do i = 2, n

do j1 = 1, i-1

xdt(j1) = ..

end do

k = 0

do j2 = 1, i-1

if (..) then

k = k+1

ind(k) = j2

end if

end do

do j3 = 1, k

.. = xdt(ind(j3))

end do

end do

Figure 5.5: Loop ACTFOR/do 240 in BDNA

sparse matrices, to store displacements and stresses for nodes in a grid. Almost all the computations

are performed on indirectly accessed arrays. Among the computations, all vector addition loops,

all SAXPY operation loops, all mixed SAXPY and vector inner product operation loops, and a

preconditioning loop in a conjugate gradient algorithm can be found parallel by using the o�set-

length data dependence test.

The loops involved are SOLXDD/do 4, SOLXDD/do 10, SOLXDD/do 30, SOLXDD/do 50 and

HOP/do 20. Loops SOLXDD/do 30, SOLXDD/do 50 and HOP/do 20 have a simple o�set/length

pattern, as shown in Figure 5.6. Loops SOLXDD/do 4 and SOLXDD/do 10 involve subroutine

calls. After procedure inlining, they have a pattern similar to, but more complicated than, the one

shown in Figure 4.18 in Example 4.2.

do iblock = 1, nblock

iloc = pptr(iblock)

do i = 1, iblen(iblock)

= x(iloc+i-1)

x(iloc+i-1) = ..

end do

end do

Figure 5.6: Pattern of some loops in DYFESM

The relationship between pptr() and iblen() can be veri�ed statically since pptr() is de�ned in
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terms of iblen() in subroutine SETHM . iblen() is read from the input �le. We manually inserted

the run-time test code because our implementation cannot generate run-time tests yet.

DYFESM used a tiny input data set and su�ered from the overhead introduced by paralleliza-

tion. The performance of all three versions worsened when multiple processors were used (Figure

5.3.(c)). We also measured its speedups on a slower SGI Challenge machine (four 200MHz R4400

Processors) and got a speedup of 1.6 (four processors) when the extra loops were parallelized (Figure

5.3.(d)).

5.2.5 P3M

P3M is an N-body code that uses the particle-mesh method. This code is from NCSA.

Most of the computation time (about 88% after using vendor provided FFT library) is spent in

subroutine pp and subpp, whose structures are very similar. The core is a three-perfect-loop nest,

which can be parallelized. Before parallelization, several single-indexed arrays in the loop must be

privatized. The outline of the core loops is shown in Figure 5.7. The simpli�ed loop pattern is

similar to that in Figure 5.5. The di�erence is that both x() and ind() are consecutively written

arrays here. Therefore, the consecutively written array analysis is used twice.

5.2.6 Barnes & Hut TREE code

The TREE code [10] is a program that implements the hierarchical N-body method for simulating

the evolution of collisionless systems [9].

The core of the program is a time-centered leap-frog loop, which is inherently sequential. At

each time step, it computes the force on each body and updates the velocities and positions. About

70% of the program execution time is spent in the force calculation loop. Each iteration of the

force calculation loop computes the gravitational force on a single body p using a tree walk method

that is illustrated in Figure 5.8.

In the tree walk code, single-indexed array stack is used as a stack to store tree nodes yet to

be visited. Variable sptr is used as the stack pointer. As discussed in Sect.3.3.2, array stack can

be privatized for the force calculation loop. As there is no other data dependence in the loop, the

loop can be parallelized (i.e., the force calculation of the n bodies can be performed in parallel).
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do i1 = 1, n

do i2 = 1, n

do i3 = 1, n

p = 0

repeat

p = p+1

x(p) = ..

until (..)

k = 0

do j2 = 1, p

if (..) then

k = k+1

ind(k) = j2

end if

end do

do j3 = 1, k

.. = x(ind(j3))

end do

end do

end do

end do

Figure 5.7: Pattern of loop in subroutine pp and subpp in P3M

sptr = 1

stack(sptr) = root

while (sptr .gt. 0) do

q = stack(sptr)

sptr = sptr - 1

if (q is a body) then

process body-body interaction

elseif (q is far enough from p) then

process body-cell interaction

else

do k = 1, nsubc

if (subp(q,k) .ne. null) then

sptr = sptr + 1

stack(sptr) = subp(q,k)

end if

end do

end if

end while

Figure 5.8: Kernel while loop in TREE
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Chapter 6

PARALLELIZATION OF

IRREGULAR REDUCTION LOOPS

ON SHARED MEMORY

MACHINES

6.1 Introduction

Irregular reductions refer to reduction operations on some elements of an array within a loop, where

the access pattern of the array in the loop may be irregular. The following loop shows a basic form

of the irregular reduction.

integer pos(1:n)

real data(1:m)

do i=1, n

data(pos(i)) = data(pos(i)) + expr (1)

end do

In this loop, the value of array data() is modi�ed by an addition, which is a reduction operation in

statement (1). Here, we assume that the expression expr does not contain any references to array

data(). The array pos() speci�es which element of array data() to be modi�ed in each iteration.

The access pattern of data() in this loop may be irregular, depending on the value of pos().

Irregular reduction loops are frequently found in the kernel of many large scienti�c and engi-

neering applications. In order to speedup the execution of these applications by parallelization,

the irregular reduction loops must be written in or transformed to a form that can be executed
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eÆciently on target parallel machines. Several researchers have previously proposed di�erent meth-

ods for parallel irregular reductions and demonstrated their e�ectiveness in their own experimental

settings.

The goal of the work described in this chapter is to search for the \best" parallel irregular

reduction method. We compare, in a uniform framework, �ve di�erent parallel irregular reduction

methods on shared memory machines. The methods considered can be applied automatically

by a parallelizing compiler. We compared the applicability, the resource requirement, and the

performance of these methods. To measure the performance, we conducted an experiment using

�ve di�erent applications with each application implemented by using each of the �ve di�erent

methods.

The rest of the chapter is organized as follows. In Section 6.2, we describe the �ve di�erent

methods in detail and the diÆculties in applying them automatically. In Section 6.3, we explain

our experimental results and compare the performance. And, we present our conclusion in Section

6.4.

6.2 Parallelization Methods

6.2.1 Program Patterns

Irregular reduction loops can take forms other than the simple one shown at the beginning of

this chapter. Depending on computation problems being solved and data structures being used,

irregular reduction loops often �t one of the �ve program patterns shown in Figure 6.1:

1. single loop with one access pattern,

2. two loops perfectly nested with one access pattern,

3. single loop with two access patterns,

4. two loops perfectly nested with two access patterns, and

5. two loops not perfectly nested with two access patterns.
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do i=1, n

data(pos(i)) = data(pos(i)) + expr

end do

(1)

do i=1, n

do j=low(i), up(i)

data(pos(i,j)) = data(pos(i,j)) + expr

end do

end do

(2)

do i=1, n

data(pos1(i)) = data(pos1(i)) + expr1

data(pos2(i)) = data(pos2(i)) + expr2

end do

(3)

do i=1, n

do j=low(i), up(i)

data(pos1(i,j)) = data(pos1(i,j)) + expr1

data(pos2(i,j)) = data(pos2(i,j)) + expr2

end do

end do

(4)

do i=1, n

do j=low(i), up(i)

data(pos1(i,j)) = data(pos1(i,j)) + expr1

end do

data(pos2(i)) = data(pos2(i)) + expr2

end do

(5)

Figure 6.1: Five common program patterns for irregular reduction loops

6.2.2 Data Domain and Iteration Domain

An execution of an irregular reduction loop involves two domains, namely data domain and iteration

domain. The data domain is associated with the ranges of the subscripts of reduction arrays in

the loop, and the iteration domain is associated with the iteration space. Take, for example, the

simple loop at the beginning of this chapter. The data domain is [1 : m] and the iteration domain

is [1 : n]. In the case of multiple-nested loops where the iteration space is multi-dimensional, we

coalesce the iteration space into one-dimension [81]. If the reduction array has multiple dimensions,

we can linearize the subscripts and get a one-dimensional data domain. This linearization of arrays

is, however, rarely needed in practice. All the multi-dimensional reduction arrays we found had

loop variant subscripts in only one dimension, such as the array md() in the following loop.

do i=1, n

md(1,pos(i)) = md(1,pos(i)) + ...

md(2,pos(i)) = md(2,pos(i)) + ...

end do

Notice that md() can be treated as two one-dimensional arrays (i.e., md1()and md2()), and the

loop can be transformed into

do i=1,n

md1(pos(i)) = md1(pos(i)) + ...

md2(pos(i)) = md2(pos(i)) + ...

end do
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provided that array md() is always used in this way throughout the whole program.

The access patterns of reduction arrays in irregular reduction loops can be illustrated by using

access pattern images. Suppose the iteration domain is [1 : n] and the data domain is [1 : m]. The

access pattern image is a n�m grid. The color of a node in the grid can be either white or black.

A node at position (i; j) is black if and only if the j-th element of the reduction array is modi�ed in

the i-th iteration. Otherwise, it is white. Figure 6.2.(a) shows the access pattern image for array

data() in the loop in the same �gure.

When a reduction loop has several reduction statements or several reduction arrays, we can

choose to use one access pattern image for each reduction statement or reduction array, or combine

some of them. The access pattern image in Figure 6.2.(a) shows the access pattern for both

statements (1) and (2) in the loop. There are at most two black nodes in each row because, in each

iteration, at most two elements of array data() are modi�ed. Rows seven and seventeen have only

one black node because pos1(7) = pos2(7) and pos1(17) = pos2(17).

Parallelization methods for irregular reduction loops can be put into two categories: iteration

domain decomposition methods and data domain decomposition methods.

6.2.3 Iteration Domain Decomposition Methods

Iteration domain decomposition methods divide the iteration space into several groups, with each

group being assigned to one processor, as illustrated in Figure 6.2.(b). In this chapter, we discuss

three parallel irregular reduction methods that fall into this category. They di�erentiate in how

they avoid updating the same reduction array element by two di�erent processors at the same time.

Critical section method

In this method, illustrated in Figure 6.3.(a), the accesses and updates of reduction array elements

are enclosed by a lock/unlock pair. This method ensures that one processor does not enter the

critical section if another processor is updating the same array element.

The critical section method is a simple and general method. Of all the parallelization methods,

it requires the fewest modi�cations to the original program. It is especially useful when the irregular

reduction loop has subroutine calls and complicated control ows.
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do i=1, n

end do

   expr = compute(i)                         (0)
   data(pos1(i)) = data(pos1(i)) + expr      (1)
   data(pos2(i)) = data(pos2(i)) - expr      (2)

Figure 6.2: Data domain vs. iteration domain
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There are two kinds of overhead involved in using the critical section method: lock/unlock

cost and lock waiting cost. The lock/unlock cost is high if no fast synchronization mechanism is

available. The lock waiting cost depends on the granularity of the critical section and the number

of conicts, which varies with the distribution of input data.

An approach that may improve the performance of the critical section method is statement

splitting. Suppose the compute(i) in Figure 6.3.(a) is a function call that takes a considerable

amount of execution time. By splitting the reduction statement into two statements and hoisting

the compute(i) out of the critical section, as shown in Figure 6.3.(b), we can overlap the executions

of the expensive function calls in iterations assigned to di�erent processors and thereby reduce the

total execution time.

Another approach that may improve the performance is elimination of locks. For example, the

two critical sections in the loop in Figure 6.3.(c) can be merged into one critical section, as shown in

Figure 6.3.(d), thereby reducing the lock/unlock cost. The elimination of locks is especially useful

in the parallel reduction loops generated automatically by compilers. This approach, however, may

increase the lock waiting cost. Therefore, its impact on the total execution time depends on the

access patterns, which are usually determined by the input data. P. Diniz and M. Rinard proposed

a dynamic feedback method [25] that alternately performs sampling phases and production phases.

Their method chooses the best version of the critical sections for the production phase based on

the measurement of overhead cost in the sampling phase.

Replicated copy method

In this method, each processor uses a private copy of the whole reduction array. The parallelized

code has three phases. All the private copies are initialized to the reduction identity in the �rst

phase. In the second phase, all processors execute the reduction operation on their private copies

in parallel. The last phase does the cross-processor reduction. Figure 6.4.(a) illustrates the three

phases.

The biggest advantage of this method is that there are no synchronization points in the codes,

except for the barriers at the end of each phase. Therefore, each phase is fully parallel. The second

phase scales well when the number of processors used increases.
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integer pos(1:n)

real data(1:m)

lock mylock(1:m)

doall i=1, n

lock(mylock(pos(i)))

data(pos(i)) = data(pos(i)) + compute(i)

unlock(mylock(pos(i))

end do

(a)

integer pos(1:n)

real data(1:m)

lock mylock(1:m)

doall i=1, n

expr = compute(i)

lock(mylock(pos(i)))

data(pos(i)) = data(pos(i)) + expr

unlock(mylock(pos(i))

end do

(b)

integer pos(1:n)

real data1(1:m)

real data2(1:m)

lock mylock(1:m)

doall i=1, n

lock(mylock(pos(i)))

data1(pos(i)) = data1(pos(i)) + expr

unlock(mylock(pos(i))

lock(mylock(pos(i)))

data2(pos(i)) = data2(pos(i)) - expr

unlock(mylock(pos(i))

end do

(c)

integer pos(1:n)

real data1(1:m)

real data2(1:m)

lock mylock(1:m)

doall i=1, n

lock(mylock(pos(i)))

data1(pos(i)) = data1(pos(i)) + expr

data2(pos(i)) = data2(pos(i)) - expr

unlock(mylock(pos(i))

end do

(d)

Figure 6.3: Critical section method

integer pos(1:n)

real data(1:m)

real priv_data(1:m,1:num_of_proc)

// phase 1

doall i = 1, num_of_proc

do j = 1, m

priv_data(j,i) = 0

end do

end do

// phase 2

doall i = 1, n

priv_data(pos(i), proc_id)

= priv_data(pos(i), proc_id) + expr

end do

// phase 3

doall i = 1, m

do j = 1, num_of_proc

data(i) = data(i) + priv_data(i,j)

end do

end do

(a)

do i=1, n

data(pos1(i)) = data(pos1(i)) + expr1(i)

end do

do i=1, n

data(pos2(i)) = data(pos2(i)) + expr2(i)

end do

(b)

do i=1, n

data(pos1(i)) = data(pos1(i)) + expr1(i)

data(pos2(i)) = data(pos2(i)) + expr2(i)

end do

(c)

Figure 6.4: Replicated copy method
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The replicated copy method also is simple to implement. In fact, some research parallelizing

compilers, such as Polaris [14] and SUIF [37], use this method to automatically parallelize irregular

reduction loops.

The biggest disadvantage of this approach is having to keep multiple copies of the whole reduc-

tion array. This not only increases the memory requirement, but also makes the execution time of

the �rst initialization phase and the last cross-processor reduction phase proportional to the size

of the reduction array. The �rst phase and the last phase become the bottleneck of performance

when the size of the reduction array is big and a large number of processors are used. In practice,

because of the parallelization overhead, the execution time of the two phases usually increases as

the number of processors being used increases.

Figure 6.4.(b) shows a case where the replicated copy method can be optimized. In this case,

two consecutive loops have the same iteration space and work on the same reduction array. Instead

of applying the replicated copy method to each of the two loops, we can �rst fuse the two loops

into one loop, as the one shown in Figure 6.4.(c), and then use the replicated copy method on the

fused loop. In this way, we eliminate one cross-processor reduction phase and one initialization

phase, and thereby reduce the total execution time.

Reduction table method

In this method, each processor employs a private storage that is used as a table. The number

of entries in the tables is independent of the size of the reduction array. Each entry in the table

has two �elds: index and value. We use table(i):entry(j):index and table(i):entry(j):value to

represent the index �eld and value �eld in the j-th entry of processor i's private table, respectively.

The table(i):entry(j):value stores the partial reduction result for the table(i):entry(j):index-th

array element computed by processor i.

Similar to the replicated copy method, the reduction table method has three phases, illustrated

in Figure 6.6. In the �rst phase, all entries in the reduction tables are initialized to the reduction

identity. In the second phase, all processors execute the reduction operation in parallel. When a

reduction is to be performed, the reduction table is looked up to �nd an entry whose index �led

has the same value as the array index or, if no such entry exists, an empty entry. This lookup
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process can be implemented by using a hash function. If the entry is available, then the reduction

operation is performed on the value �eld of the entry. If the entry is not available, which means

the table is full, the reduction operation is performed directly on the shared reduction array in a

critical section. In the third phase, all entries that are not empty are ushed out to the shared

array in critical sections.

Figure 6.5 shows an example of two processors executing a irregular reduction loop using reduc-

tion tables. Processor one executes iterations 1 through 4, and processor two executes iterations 5

through 8.

The reduction table method is a hybrid of the critical section method and the replicated copy

method. Like the critical section method, it ensures the atomic operation on global shared variables;

and, like the replicated copy method, each processor can accumulate its partial reduction result for

some array elements before updating the shared copy. The reduction table method does not have to

keep private copies of the whole reduction array. It can be set to be proportional to the reciprocal

of the number of processors used so that the total size of the extra private memory is �xed. This

method trades the cost of hash table calculations and the cost of critical section methods with the

cost of memory operations and memory storage.

6.2.4 Data Domain Decomposition Method

The data domain decomposition method, as illustrated in Figure 6.2.(c), divides the data domain

into several partitions and assigns one partition to each processor. A processor is responsible for

updating the reduction array elements within its assigned partition.

The data domain decomposition method is similar to the owner-computes rule used in dis-

tributed memory programming. A processor `owns' the array elements within the group assigned

to it. Once the ownership is set, the next step is to determine which iterations to be executed on

each processor. There are two possible ways to solve this scheduling problem: on-the-y scheduling

and pre-scheduling.
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pos(i)  3   5   3   7   8   8   3   8

  i     1   2   3   4   5   6   7   8

hash(x)   4   5   3   2

   x      3   5   7   8

1 / 0

3 / 0

4 3 expr(7)

5 / 0

2 8 expr(5)+expr(6)+expr(8) 

valueindex

reduction table for processor 2

   data(pos(i)) = data(pos(i)) + expr(i)
end do

do i=1, 8

reduction table for processor 1

1 / 0

2 / 0

3 7 expr(4)

4 3 expr(1)+expr(3)

5 5 expr(2)

index value

Figure 6.5: Two processors executing an irregu-
lar reduction loop by using the reduction table
method.

// phase 1

doall i=1, num_of_proc

do j=1, table_size

table(i).entry(j).index = NULL

table(i).entry(j).value = 0

end do

end do

// phase 2

doall i=1, n

j = hash(pos(i))

index = table(proc_id).entry(j).index

if (index == pos(i)) then

table(proc_id).entry(j).value =

table(proc_id).entry(j).value + expr

else if (index == NULL) then

table(proc_id).entry(j).value = data(pos(i))

table(proc_id).entry(j).index = pos(i)

else

lock(my_lock(pos(i))

data(pos(i)) = data(pos(i)) + expr

unlock(my_lock(pos(i))

end if

end do

// phase 3

doall i=1, num_of_proc

do j=1, table_size

k = table(i).entry(j).index

if ( k != NULL ) then

lock(my_lock(k))

data(k) =

data(k) + table(i).entry(j).value

unlock(my_lock(k))

end if

end do

end do

Figure 6.6: Reduction table method
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On-the-y scheduling method

In this method, each processor traverses all the iterations and checks whether it owns the reduction

array element referenced in the current iteration. If true, the processor executes the operation;

otherwise, it skips the operation. Figure 6.7.(a) shows the most simple case of using this method.

In this case, the loop contains only one statement, which is a reduction statement.

In the general case where the loop body contains multiple reduction statements and multiple

access patterns, the program slicing method is used to �nd statements that are in the same slice

with each of the reduction statements [79, 71]. All statements in the same slice are then guarded by

the same ownership checking. Statements that are in multiple slices are guarded by the conjunction

of their corresponding ownership checkings1. For example, in the reduction loop in Figure 6.7.(b),

statements (1) and (4) are found in the same slice; statements (2) and (5) are in the same slice;

and statement (3) is in both slices. Figure 6.7.(c) shows the parallel version. Another approach

is to distribute the loop into several loops with each loop containing one slice in the original loop

body.

The on-the-y scheduling method is easy to understand. It also is easy to use when the reduction

loop is simple. The transformation becomes complicated, however, when the loop body contains

multiple access patterns, and therefore, multiple slices. The use of if branches also complicates the

instruction scheduling for the backend compiler, and is a primary performance limiter for processors

with pipelined functional units. Another disadvantage of the on-the-y scheduling method is that

each processor has to go through the whole iteration space and test ownership in every iteration.

It is ineÆcient when the iteration domain is large.

Pre-scheduling method

The pre-scheduling method has two phases: the scheduling phase and the execution phase, as shown

in Figure 6.8.(a). In the scheduling phase, the sets of iterations that modify the reduction array

elements owned by each processor are collected and put into schedule lists. In the execution phase,

all processors execute in parallel, with each processor executing the iterations on its own schedule

list.

1In some cases, it would be more eÆcient to replicate the computation instead of using an if branch because, in
some architectures, the penalty of branch misprediction is more costly than computation.
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Sequential Version:

do i=1, n

data(pos(i)) = data(pos(i)) + expr

end do

Parallel Version:

doall i=1, number_of_processors

do j=1, n

if (own(pos(j),i)) then

data(pos(j)) = data(pos(j)) + expr

end if

end do

end do

(a)

do i=1, n

t1 = a(i)**2 (1)

t2 = b(i)**2 (2)

t3 = c(i)**2 (3)

data(pos1(i)) = data(pos1(i)) + t1 + t3 (4)

data(pos2(i)) = data(pos2(i)) + t2 + t3 (5)

end do

(b)

doall p=1, number_of_processors

do i=1, n

if (own(pos1(j),i) or own(pos2(j),i)) then

t3 = c(i)**2

end if

if (own(pos1(j),i)) then

t1 = a(i)**2

data(pos1(j)) = data(pos1(j)) + t1 + t3

end if

if (own(pos2(j),i)) then

t2 = b(i)**2

data(pos2(j)) = data(pos2(j)) + t1 + t3

end if

end do

end do

(c)

Figure 6.7: On-the-y scheduling method
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pre_schedule(pos, schedule_list)

doall i=1, number_of_processors

do j in the schedule_list(i)

data(pos(j)) = data(pos(j)) + expr

end do

end do

(a)

integer start(1:number_of_processors)

integer count(1:number_of_processors)

integer list(1:n)

doall i=1, number_of_processors

k = start(i)

do j=1, count(i)

data(pos(k)) = data(pos(k)) + expr

k = list(k)

end do

end do

(b)

nump = number_of_processors

start(1:nump) = 0

count(1:nump) = 0

prev(1:nump) = 0

p_start(1:nump,1:nump) = 0

p_count(1:nump,1:nump) = 0

p_end(1:nump,1:nump) = 0

doall i=1, n

p = owner(pos(i))

c = p_count(p,proc_id)

if ( c == 0 ) then

p_start(p,proc_id) = i

else

list(p_end(p,proc_id)) = i

end if

p_end(p,proc_id) = i

p_count(p,proc_id) = c+1

end do

doall i=1, nump

do j=1, nump

if (p_start(i,j) != 0) then

if (start(i) == 0) then

start(i) = p_start(i,j)

else

list(prev(i)) = p_start(i,j)

end if

prev(i) = p_end(i,j)

end if

count(i) = count(i) + p_count(i,j)

end do

end do

(c)

Figure 6.8: Pre-scheduling method
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Here, we present a method to construct the scheduling lists, which is based on the loop index

prefetching technique proposed by E. Gutierrez, O. Plata, and E. L. Zapata [36]. In this method,

the scheduling lists are represented by three arrays: list(), start(), and count(). The list()

is an array used as a linked list that stores the scheduled iteration numbers for all processors.

start(p) gives the �rst iteration to be executed by the p-th processor. And, count(p) is the

number of iterations to be executed by the p-th processor. An example of the execution phase that

uses these three arrays is shown in Figure 6.8.(b).

The pre-scheduling phase is shown in Figure 6.8.(c). This phase has three steps, all of which are

fully parallel. In the �rst step, the schedule list and the partial schedule lists used by each processor

are initialized. In the second phase, all processors work in parallel to construct the partial schedule

lists. And, in the last step, the partial schedule lists are combined to form the �nal schedule list.

The asymptotic execution time of the pre-scheduling phase is O(n
p
+ p), where n is the size of the

iteration domain and p is the number of processors used.

In many cases where the dynamic nature of the problem changes slowly, the array pos() does

not change for several invocations of the reduction loop. In these cases, the same schedule list can

be reused, and, therefore, the cost of the pre-scheduling phase is amortized.

The execution phase has good data locality if block partitioning is used to decompose the data

domain. Load balancing, however, can be a problem if the partition is made without considering

the distribution of the reduction array. For example, for the partition in Figure 6.2.(c), processor

4 executes only four iterations, while processor 2 has to execute �fteen iterations. H. Han and

C. W. Tseng suggest that the recursive coordinate bisection (RCB) algorithm be used to partition

data domain in this case [40].

The pre-scheduling method also is complicated by another issue: multiple reductions. Consider

the irregular reduction loop in Figure 6.2. Suppose the data domain is partitioned as shown in

Figure 6.2.(c). Then, both statements (1) and (2) can be executed by processor 1 in iteration 9, by

processor 2 in iteration 7, 12 and 17, and by processor 3 in iteration 4. For other cases, however,

statement (1) or (2) can be executed by only one processor. For example, although both processors

1 and 2 will execute iteration 1, statement (1) in iteration 1 should be executed only by processor

1 and not by processor 2. And, statement (2) should be executed only by processor 2 and not
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by processor 1 because data(2), which is modi�ed in statement (1), is owned by processor 1, and

data(5), which is modi�ed in statement (2), is owned by processor 2.

There are three ways to solve this problem. The �rst one is to put ownership checkings before

statement (1) and before statement (2). An iteration is in a processor's schedule list if the processor

owns the array element modi�ed by either statement (1) or (2) in that iteration. In the execution

phase, a processor will skip statement (1) or (2) according to the result of its ownership checking.

As in the on-the-y scheduling method, the use of if branches here hampers the performance of

the loop body. Another method is to use three schedule lists for each processor: one for iterations

in which statement (1) should be executed; another for iterations in which statement (2) should

be executed; and, yet another for iterations in which both statements should be executed. The

shortcoming of this method is that the number of schedule lists increases exponentially with the

number of reductions in the loop body. The last method is to distribute the loop. This is not

always legal and it works well only when the loop body can be easily sliced. Whatever method

is used, the overhead of redundant computation cannot be avoided. For example, the instance of

statement (0) in iteration 1 is executed twice, once by processor 1 and once by processor 2.

Parallelizing multiple nested reduction loops by using the pre-scheduling method also is com-

plicated because the iteration domain becomes multi-dimensional in this case. One way to handle

this problem is to coalesce the multiple nested loops into a single level loop. Imperfectly nested

loops are �rst transformed to perfectly nested loops by using loop distribution or statement sinking

[81].

The pre-scheduling method should not be confused with the inspector/executor model used on

distributed memory machines, which was pioneered by the CHAOS runtime system [67]. Their

approach is an iteration domain decomposition method. The inspector identi�es the nonlocal data

needed by each processor and generates a communication schedule. The executor gathers nonlocal

data to local bu�ers using the communication schedule, performs the computation on the local

bu�ers, and then scatters the results to other processors. In our pre-scheduling method, no data

gathering or scattering is needed. Computation is always performed on the \local" data.
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Memory Requirement Execution Time

Critical Section O(m) Best: (Ccal + Clock)�
n
p

for lock variables Worst: (Ccal + Clock)� n

Replicated Copy O(m� p) (Cinit + Cmerge)�m+ Ccal �
n
p

for replicated copies

Reduction Table O(nentry � p) Best: (Cinit + Cmerge)� nentry + (Ccal + Ctab)�
n
p

for reduction tables Worst: Cinit � nentry + Cmerge � nentry � p+ Ccal � n

On-the-y None Best: Cchk � n+ Ccal �
n
p

Scheduling Worst: Cchk � n+ Ccal � n

Pre-scheduling O(n+ 2p) Best: Vsched
nreuse

+ Ccal �
n
p

for schedule lists Worst: Vsched
nreuse

+ Ccal � n

Table 6.1: Memory requirements and execution times of the �ve parallel irregular reduction methods

6.2.5 Performance Analysis

In this subsection, we discuss the theoretical performance of each parallel irregular reduction

method. To be concise, we consider only the loop pattern (1) in Figure 6.1.

We assume the size of iteration domain is n, the size of data domain is m, and the execution

time of the loop body is Ccal. As a result, the execution time of the sequential version is Ccal � n.

Table 6.1 shows the memory requirements and the execution times of each method. We assume

p processors are used. In Table 6.1, Clock is the cost of a pair of lock/unlock operations; Cinit is the

cost of setting the value of a reduction array element to the reduction identity; Cmerge is the cost of

adding the partial sum of a reduction array element computed by one processor to the global copy

of the reduction array; nentry is the number of entries in a reduction table; Ctab is the cost of the

reduction table lookup operation; Cchk is the cost of checking the ownership of a reduction array

element; Vsched is the cost of pre-scheduling cost whose asymptotic execution time is O(n
p
+ p); and

nreuse is the number of times a schedule is reused in the pre-scheduling method.

The on-the-y-scheduling requires no extra memory space. The size of memory space used

in the pre-scheduling method is proportional to the size of the iteration domain. For the critical

section method and replicated copy method, the size is proportional to the size of the data domain.

For the reduction table method, as well as the replicated copy method, the size is proportional to

the number of processors used. In most real programs, the replicated copy method requires the

largest amount of memory space among all the methods.
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Except for the replicated copy method, we presented the best and worst possible execution times

for each method. The reason is that, except for the replicated copy method, the actual execution

time of the methods we discussed depend on the distribution of the index arrays. Also note that

other e�ects, such as cache behavior, have not been taken into account as we assume a perfect

memory system.

The execution time in Table 6.1 should be read carefully. Comparing the best or worst execution

time of two methods is not useful because, given an input data set, two methods seldom can both

achieve their own best or worst execution time. The best and worst times are listed here so that

we can see the dominating factor in the execution time.

Ideally, we would like to compare the average execution time of these methods. Such a quanti-

tative comparison also is not useful, however, unless we know the distribution of the characteristics

of the input data commonly used in the real world. There is no perfect answer. In our work,

we took another approach. We took several programs and the associated data from some other

researchers who had studied the irregular reduction problem, parallelized these problems using the

�ve di�erent methods, and then compared the execution times on a parallel machine. The conclu-

sion of our study is based on our experiments. Despite all its caveats, our experiments gave us an

important qualitative view of which method was better under which condition. The experiments

are discussed in the next section.

6.3 Experiments

6.3.1 Experimental Setting

We evaluated the �ve di�erent parallel irregular reduction methods on a SGI Origin2000 using one

to thirty-two MIPS R10000 processors (195MHz, 32KB instruction cache, 32KB data cache, 4MB

2nd cache, 14GB memory, IRIX64 6.5).

All programs were written in FORTRAN 77 with SGI multi-processor directives inserted. The

default �rst touch policy was used for the memory placement scheme. The programs were compiled

using SGI MIPSPro F77 compiler (version 7.3.1.m) with `-mp' and `-O2' options.

We tested �ve di�erent applications that have irregular reduction cores. Each application �ts
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Size of Size of Iteration Used
Data Iteration / Data in

Data Set Domain Domain Ratio Description Source Test

50k 50,000 500,000 100 Randomly generated by Randomly SIR
a linear congruential generated
generator

5k 5,000 500,000 10 Randomly generated by Randomly SIR
a linear congruential generated
generator

BCSSTK30 28,914 1,036,208 36 BCS structural engineering Harwell-Boeing SIR,
matrix (large eigenvalue collection VetMat
problem)

PSMIGR3 3,140 543,162 173 Inter-country migration Harwell-Boeing SIR,
(doubly stochastic) collection VecMat

891rs 891,900 7,831,490 9 Irregular mesh generated University of EULER
by EULER (sorted) Malaga

891 891,900 7,831,490 9 Irregular mesh generated University of EULER
by EULER (colored) Malaga

1161rs 1,161,981 10,163,580 9 Irregular mesh generated University of EULER
by EULER (sorted) Malaga

1161 1,161,981 10,163,580 9 Irregular mesh generated University of EULER
by EULER (colored) Malaga

NBF100 32,000 3,200,000 100 Mesh generated by NBF University of NBF
Maryland

NBF50 32,000 1,600,000 50 Mesh generated by NBF University of NBF
Maryland

SF10 7,294 52,216 7 Unstructured 3D �nite Carnegie Mellon Spark98
element model University

SF5 30,169 220,546 7 Unstructured 3D �nite Carnegie Mellon Spark98
element model University

Table 6.2: Test data sets

one of the program patterns described in Section 6.2.1. All �ve parallel irregular reduction methods

are tested for each application.

The input data sets used in the tests are listed in Table 6.2. At least two of them were used

for each application. The property of each input data set is described in the following subsections

when the programs that use the data sets are explained.

The block partitioning method was used in both the iteration domain decomposition and the

data domain decomposition, as shown in Figure 6.2.(b) and (c). We measured the number of

iterations executed by each processor and found the load was even among all processors.

For the reduction table method, the number of entries in a reduction table was set to 4096. The

hash function was hash(k) = k mod 4096.
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6.3.2 Simple Irregular Reduction (SIR)

This program is a straightforward implementation of the simple irregular reduction loop of pattern

(a) in Section 6.2.1. The kernel of this program is shown in Figure 6.9. The comput() is a function

call, the execution time (granularity) of which can be controlled by an input parameter. In our

experiments, we chose the parameters to be 2, 10, and 20, which corresponded to the granularity

of 0.7 micro-seconds, 4.8 micro-seconds, and 18.5 micro-seconds, respectively. Four input data sets,

namely 50k, 5k, BCSSTK30, and PSMIGR3, were used in this test.

Data set: 50k

Data set 50k is generated by a linear congruential generator. The values of pos() are randomly

distributed in the range of 1 to 50,000. The access pattern image of data set 50k in the simple

irregular reduction loop is shown in Figure 6.14.(50k). This access pattern image should not be

confused with the structure image of the sparse matrix. The size of the access pattern image shown

is not proportional to the sizes of the iteration domain and data domain. And, there is only one

black node in each row, as one iteration accesses only one element of data().

The experimental results are shown in Figure 6.15. Sub�gure (a1) compares the execution time

of the �ve parallel irregular reduction methods when the granularity is 0.7 micro-seconds. The

di�erent execution time for one to thirty-two processors are listed from the left to the right. The

horizontal line marks the execution time of the sequential version of the program. Sub�gure (b1)

shows the breakdown of execution time for each method. The three parts (from bottom to top) in

each bar of the replicated copy method represent the three phases in this method. The three parts

in each bar of the reduction table method also represent the three phases in the reduction table

method. The lower part in each bar of the pre-scheduling method is for the scheduling phase, and

the upper part is for the execution phase. Sub�gures (a2)/(b2) and (a3)/(b3) are the corresponding

results for the cases when the granularity is 4.8 micro-seconds and 18.5 micro-seconds, respectively.

The replicated copy method is the best in all tested cases. However, the cost of the �rst and

third phases actually increases with the number of processors used and dominates the execution

time when 32 processors are used and the granularity of loop body is small, as shown in sub�gure

(b1).
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The performance of the critical section method and the reduction table method are almost the

same. This is due to the fact that data set 50k has very low data locality and many lock contentions

occurred during the execution.

Both the pre-scheduling phase and the execution phase of the pre-scheduling method scale very

well. This method and the on-the-y scheduling method have the second and third best performance

in this test, respectively.

All methods perform equally well when the granularity of loop body is large, as shown in Figure

6.15.(a3).

Data set: 5k

Data set 5k is generated by the same linear congruential generator that generates data set 50k. In

5k, values of pos() are randomly distributed in the range of 1 to 5,000. The access pattern image

is shown in Figure 6.14.(5k).

The experimental results are shown in Figure 6.16. The most obvious di�erence between the

result of this test and that of the 50k is that the performance of the reduction table method is

much better in this test, although the distribution of the data in both data sets is almost the same.

The reason is simple: the size of the data domain for data set 5k is 5,000, which is very close to

the number entries (4,096) in the reduction table. In this case, the reduction table works almost

the same as the replicated copy method.

Data set: BCSSTK30

BCSSTK30 is a sparse matrix from the Harwell-Boeing collection. Most of the nonzero elements

are near the diagonal of the matrix. BCSSTK30 is stored in the sorted compressed row storage

(SCRS) format. When a sparse matrix is stored in the SCRS format, all the nonzero elements of

the matrix are stored in a one-dimensional data array row by row, from top to bottom. And, within

a row, the nonzero elements are stored one by one, from left to right. Here, we use matdata(1 : n)

to denote the one-dimensional data array, where n is the number of nonzero elements in the sparse

matrix. The SCRS format is a special form of the compressed row storage (CRS) format, in which

no order is assumed between the elements within a row of the sparse matrix stored in the matdata()
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array.

In this test, the loop traverses all elements of matdata(1 : n) from matdata(1) to matdata(n).

pos(i) gives the column number of element matdata(i). Figure 6.14.(BCSSTK30) shows the image

of the access pattern of data() in the simple irregular reduction loop.

The experimental results are shown in Figure 6.17. In this test, the performance of the critical

section method is much better than those in the previous two tests. It is even better than the two

data domain decomposition methods in most cases. As shown in Figure 6.14.(BCSSTK30), the

access pattern has good data locality. Very few lock contentions are expected. The reduction table

method also performs well for the same reason.

Data set: PSMIGR3

PSMIGR3 is another sparse matrix for the Harwell-Boeing collection. It is also stored in the SCRS

format, and the loop traverses all its nonzero elements. The access pattern image is shown in Figure

6.14.(PSMIGR3).

The experimental results are shown in Figure 6.18. As the property of this data set is similar

to that of data set 5k, the behaviors of all the methods are similar to those in the test using data

set 5k.

6.3.3 VecMat

VecMat implements a multiplication of a full row vector and a sparse matrix stored in the CRS

format. The product is stored in another full row vector.

The reduction kernel is shown in Figure 6.10. The loop do i scans the n rows of the matrix.

The loop do j scans all the nonzero elements of each row. The multiplier vec(i) is common to

all elements in row i of the matrix. The results of the partial inner products are accumulated in

c(pos(j)). This program �ts pattern (2) in Section 6.2.1. The two nested loops are coalesced when

the pre-scheduling method is used.

Two data sets, namely BCSSTK30 and PSMIGR3, are used. The access pattern images are

shown in Figure 6.14.(BCSSTK30) and (PSMIGR3). The experimental results are shown in Figure

6.19 and Figure 6.20, respectively.
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do i=1, n

value = comput(i)

data(pos(i)) = data(pos(i)) + value

end do

Figure 6.9: Simple irregular reduction

do i=1, n

do j=ptr(i), ptr(i+1)-1

c(pos(j)) = c(pos(j)) + vec(i)*mat(j)

end do

end do

Figure 6.10: VecMat

do i=1,numEdges

n1 = edge(1,i)

n2 = edge(2,i)

r1 = func1(i,n1,n2)

r2 = func2(i,n1,n2)

vd(1,n1) = vd(1,n1) + r1

vd(2,n1) = vd(2,n1) + r2

vd(3,n1) = vd(3,n1) + r3

vd(1,n2) = vd(1,n2) - r1

vd(2,n2) = vd(2,n2) - r2

vd(3,n2) = vd(3,n2) - r3

enddo

Figure 6.11: Kernel of EULER

do i = 1, natoms

do p = 1, inb(i)

j = partners(p, i)

force = ((x(i) - x(j)) ** (-6)) / 1000

f(i) = f(i) + force (1)

f(j) = f(j) - force (2)

end do

end do

Figure 6.12: NBF

do i=1, nodes

Anext = matrixptr(i)

Alast = matrixptr(i+1)

sum1=k(1,1,Anext)*v(1,i)+k(2,1,Anext)*v(2,i)+k(3,1,Anext)*v(3,i)

sum2=k(1,2,Anext)*v(1,i)+k(2,2,Anext)*v(2,i)+k(3,2,Anext)*v(3,i)

sum3=k(1,3,Anext)*v(1,i)+k(2,3,Anext)*v(2,i)+k(3,3,Anext)*v(3,i)

do j=Anext+1, Alast-1

col = matrixcol(j)

sum1=sum1+k(1,1,j)*v(1,col)+k(2,1,j)*v(2,col)+k(3,1,j)*v(3,col)

sum2=sum2+k(1,2,j)*v(1,col)+k(2,2,j)*v(2,col)+k(3,2,j)*v(3,col)

sum3=sum3+k(1,3,j)*v(1,col)+k(2,3,j)*v(2,col)+k(3,3,j)*v(3,col)

tmp1=k(1,1,j)*v(1,i)+k(1,2,j)*v(2,i)+k(1,3,j)*v(3,i)

tmp2=k(2,1,j)*v(1,i)+k(2,2,j)*v(2,i)+k(2,3,j)*v(3,i)

tmp3=k(3,1,j)*v(1,i)+k(3,2,j)*v(2,i)+k(3,3,j)*v(3,i)

w(1,col) = w(1,col)+tmp1

w(2,col) = w(2,col)+tmp2

w(3,col) = w(3,col)+tmp3

end do

w(1,i) = w(1,i)+sum1

w(2,i) = w(2,i)+sum2

w(3,i) = w(3,i)+sum3

end do

Figure 6.13: Spark98
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The granularity of the inner loop body is very small: about 0.08 micro-seconds. Therefore,

the overhead of the parallel methods becomes signi�cant. For both data sets, when fewer than

four processors are used, none of the �ve parallel versions have shorter execution times than the

sequential version. In BCSSTK30, the parallel versions, except for the one for on-the-y schedul-

ing, �nally outperform the sequential version when thirty-two processors are used. In PSMIGR3,

however, only the replicated copy version does better than the sequential version when thirty-two

processors are used.

This experiment also demonstrates the worst scenario for the on-the-y scheduling method:

the overhead introduced by on-the-y ownership checking is larger than the execution time of the

original computation itself. Since each processor sweeps through all iterations, the total execution

time will not go down by using multiple processors.

Similar to the test case of SIR, the good data locality in data set BCSSTK30 makes the critical

section method perform better in BCSSTK30 than in PSMIGR3.

6.3.4 EULER

EULER, from the HPF-2 motivating application suite, solves the di�erential EULER equations on

irregular meshes. The code used in this experiment is a simpli�ed version used in [36]. The kernel,

shown in Figure 6.11, is a loop that computes physical magnitudes over the mesh edges, each of

which is de�ned by two nodes. The reduction array vd() is a two-dimensional array which can be

treated as three one-dimensional arrays. There are two access patterns of the reduction array in

the loop: one de�ned by edge(1,:) and the other de�ned by edge(2,:). Three scheduling lists

are used in the pre-scheduling method. The reduction loop �ts pattern (3) in Section 6.2.1.

The performance is tested on two irregular meshes, one with 891,900 nodes and one with

1,161,981 nodes. Both meshes were generated by the original EULER code. The nodes of the

input mesh are considered as particles, and the edges are the neighboring interactions between

them. Both meshes have a connectivity (number of edges/number of nodes) of 8. Two versions

of each mesh were used: colored and sorted. We use 891 and 1161 to represent the two colored

versions, and 891rs and 1161rs to represent the two sorted versions. The sorted version has higher

data locality than the colored version. The access pattern images shown in Figure 6.14.(891rs),

123



(1161rs), (891), and (1161) illustrate the di�erence.

The experimental results are shown in Figures 6.21, 6.22, 6.23 and 6.24. The di�erence in size

between the two meshes does not make much di�erence in the relative performance of the �ve

methods. This can be seen by comparing Figures 6.21/6.22 with Figures 6.23/6.24. The data

locality makes the largest di�erence. First, in the sorted version, the critical section method and

reduction table method are among the best, especially when sixteen or thirty-two processors are

used. In the colored version, they are the worst. Second, for both data sets, the execution time of

the sequential colored version is almost �ve times as long as that of the sequential sorted version.

As in the VectMat test, the small granularity of the loop body in the sorted version leads to a

speedup of 1 in the on-the-y scheduling method.

6.3.5 NBF

NBF, provided by H. Han and C. W. Tseng [40], is a kernel abstracted from the GROMOS molecular

dynamics benchmark [77]. In NBF, each molecule has a list of partners. NBF uses two nested loops

shown in Figure 6.12. The outer loop iterates each molecule, and the inner loop goes over each

partner of this molecule. The program �ts pattern (4) in Section 6.2.1.

In the pre-scheduling method, the loop nest was �rst distributed into two loop nests, one with

statement (1) and the other with statement (2), and the latter then was coalesced into a single

level loop, as shown below.

do i = 1, natoms

do p = 1, inb(i)

j = partners(p,i)

force = ((x(i) - x(j)) ** (-6)) / 1000

f(i) = f(i) - force

end do

end do

do k = 1, all

i = geti(k)

p = getp(k)

j = partners(p,i)

force = ((x(i) - x(j)) ** (-6)) /1000

f(j) = f(j) - force

end do

In the above loop do k, array geti() and array getp() are used to store loop indices i and j in
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the original loop. Also note that the above loop do i is not an irregular reduction loop, which can

be parallelized easily.

We use two data sets, one with 100 partners for each molecule and the other with 50 partners

for each molecule. Both have a total of 32000 molecules. Given the parameters, NBF generated

these two data sets automatically. The access pattern images are shown in Figure 6.14.(NBF50)

and (NBF100).

The experimental results are shown in Figures 6.25 and 6.26. The replicated copy method has

the best performance among the �ve parallel reduction methods in both tests.

In both tests, the cost of the pre-scheduling phase of the pre-scheduling method is so large that

the pre-scheduling method has the worst performance in almost all test cases. The exceptions are

the tests using 16 and 32 processors with data set NBF50, where the pre-scheduling method has

the second worst performance.

The di�erence between the two results is that, in the test using the data set NBF50, the

performance of the critical section method and the reduction table method are better than those

in the test using the data set NBF100. The reason is that the access of the NBF50 has better data

locality than the access of the NBF100.

6.3.6 Spark98

Spark98 is a collection of sparse matrix-vector product kernels for shared memory and message

passing machines [57]. It was built as a tool for understanding the performance of irregular codes

on di�erent parallel systems. It consists of �ve versions of a sparse matrix-vector multiplication

program: one sequential version, two shared memory versions, one message passing version, and

one hybrid shared memory and message passing version. One of the shared memory versions uses

the critical section method, and the other uses the replicated copy method. The original codes were

written in C. We rewrote the sequential version in FORTRAN 77 and parallelized it using the �ve

di�erent methods discussed in this chapter.

Spark98 uses two input data sets. The two meshes, called sf10 and sf5, were two unstructured

three-dimensional �nite element models of the earth underneath the San Fernando Valley. Each

mesh is represented by a sti�ness matrix, which contains a 3� 3 submatrix for each pair of nodes
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connected by each edge of the mesh (including self-edges). The sti�ness matrix has the dimension

3n� 3n if the mesh has n nodes. The sti�ness matrix is stored in a symmetric CRS format.

The reduction loop of Spark98 is shown in Figure 6.13. The sparse matrix-vector product

computation involves irregular reductions because Spark98 exploits symmetry and stores only the

upper part of the sti�ness matrix. This loop �ts pattern (5) in Section 6.2.1. We distribute the loop

into two loops before applying the pre-scheduling method. The access pattern images are shown in

Figure 6.14.(SF10) and (SF5).

The experimental results are shown in Figures 6.27 and 6.28. Because both sf10 and sf5 have

good data locality, the critical section method and reduction table method are the two best ones.

For the replicated copy method, the cost of the initialization phase and the cross-processor

reduction phase is so high that the replicated copy method has the worst performance when six-

teen or thirty-two processors were used. Both data set SF10 and data set SF5 have an iteration

domain/data domain ratio of 7, which is the smallest of all the data sets used in the experiments.

Everything else being equal, the smaller the iteration domain/data domain ratio, the higher the

overhead cost of the initialization phase and the cross-processor reduction phase. The same situ-

ation also was observed in the test of EULER with data sets 891rs and 1161rs, which have good

data locality and a low iteration domain/data domain ratio of 9.

6.3.7 Summary of Experiments

The results of the experiments can be summarized as follows:

1. The program model has an inuence on how easy it is to apply the parallelization methods,

but it usually causes little di�erence in the relative performance of the di�erent parallelization

methods.

2. The access pattern and the distribution of the reduction array a�ects the relative performance.

3. The critical section method and the reduction table method have very good performance

when the access pattern has good data locality and few lock contentions are met. And, in our

test, we found both methods performed equally well in this case, although the critical section

method is simpler to implement than the reduction table method.
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4. The replicated copy method has good performance in most cases. In our experiment, we

found the cost of the initialization phase and the cross-processor reduction phase increased

as more processors were used. The performance decreases when the iteration domain / data

domain ratio is small.

5. The reduction table method may have performance similar to the replicated copy method

when the table size is almost as large as the reduction array.

6. The speedups of the on-the-y scheduling method increased as the number of processors used

increased from two to eight. The speedups attened when more processors were used because

of the non-scalable overhead of real-time checking.

7. When the data domain is partitioned in block, the pre-scheduling method has good data

locality, and the execution phase usually has good performance and scales very well with the

number of processors used. The pre-scheduling method is a good choice if the schedule can

be reused.
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Figure 6.15: Simple: 50k
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Figure 6.16: Simple: 5k
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Figure 6.17: Simple: BCSSTK30
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Figure 6.18: Simple: PSMIGR3

132



 1  2  4  8 16 32
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Processors

E
xe

cu
tio

n 
T

im
e 

(S
ec

on
ds

)

VecMat:BCSSTK30

critical section     
replicated copy      
reduction table      
pre−scheduling       
on−the−fly scheduling

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

           critical section      replicated copy     reduction table     pre−scheduling    on−the−fly scheduling

E
xe

ct
io

n 
T

im
e 

(s
ec

on
ds

)

VecMat:BCSSTK30

(b)

Figure 6.19: VecMat: BCSSTK30
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Figure 6.20: VecMat: PSMIGR3
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Figure 6.21: EULER: 891rs
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Figure 6.22: EULER: 891
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Figure 6.23: EULER: 1161rs
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Figure 6.24: EULER: 1161
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Figure 6.25: NBF: 100
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Figure 6.26: NBF: 50
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6.4 Conclusion

Irregular reduction loops appear frequently in many sparse and irregular programs. An irregular

reduction loop can be parallelized by using di�erent methods. In this chapter, we described �ve

di�erent methods that can be applied automatically by a parallelizing compiler. We addressed

the diÆculties of using these methods, and compared the performance of the �ve methods in

experiments with �ve di�erent applications.

We found that there does not exist one single best parallel irregular reduction method. An

ideal solution would be for the compiler to be capable of applying all the methods and choosing one

according to the pattern of the loop, the characteristic of the input data, the resource restriction,

and the performance requirements.

Our experiments did, however, reveal some heuristic guidelines for choosing a parallelization

method.

The �ve methods can be put into two classes: the iteration domain decomposition methods and

the data domain decomposition methods. In general, the iteration domain decomposition methods

(i.e., critical section method, replicated copy method, and reduction table method) are versatile and

easier for a compiler to apply automatically. The data domain decomposition methods (i.e., on-the-

y-scheduling method and pre-scheduling method) work for simple loops with simple loop bodies,

but require the support of other compiler techniques, (e.g., loop distribution, loop coalescing, or

program slicing) to handle more complicated cases, such as nested loops and loops with multiple

irregular access patterns.

Among the three iteration domain decomposition methods, the critical section method is the

most general one. It is a good choice when the reduction loop involves subroutine calls. The repli-

cated copy performs well in most cases. Its overhead (in both memory requirement and execution

time) becomes large when a large number of processors (thirty-two in our experiments) are used.

When the access pattern has good locality, the critical section method and the reduction table

method have good and scalable performance. A possible solution is to always use the reduction

table method to parallelize the loop at compile-time, and dynamically set the size of the reduction

table at run-time according to the characteristic of the input data. For example, when the size of

the data domain is small, the size of the reduction table should be set to the size of the data domain
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so that the reduction table method performs similarly to the replicated copy method. When the

access pattern has good locality and the size of the data domain is large, the size of the reduction

table should be set to the size of the data domain divided by the number of processor used in order

to take advantage of the locality and avoid the overheads.

If memory restriction is the major concern, then the on-the-y-scheduling method is the best

since it requires no extra memory space. However, its performance is mediocre and it does not scale

well. The replicated copy method should be avoided when the size of the data domain is large or if

many processors are to be used because the amount of extra memory space required is proportional

to the product of the size of the data domain and the number of processors used.

If the access pattern of the reduction array remains constant during several invocations of the

reduction loop or several reduction loops share the same access pattern, and the reduction loop

contains at most two di�erent access patterns, then the pre-scheduling method is the best. The

execution phase can have very good data locality and scales very well with the number of processors

used.
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Chapter 7

CONCLUSIONS AND FUTURE

WORK

7.1 Conclusion

In this dissertation, we have discussed our e�orts to develop compiler analysis techniques for sparse

and irregular applications, with a focus on automatic parallelization.

We �rst tried to understand the diÆculties in applying traditional compiler analysis techniques

and parallelization techniques to sparse and irregular applications. By studying a collection of

FORTRAN 77 programs with sparse and irregular data access patterns, we have identi�ed several

important issues that must be addressed. They are: new ways to detect privatizable arrays, analysis

of irregular array accesses, overhead elimination of run-time tests, methods for eÆcient parallel

irregular reductions, and parallelization of premature exit loops. For each of the problems, we also

briey discussed its compiler solutions. In the empirical study, we found that the techniques we

proposed improved the e�ectiveness of parallelizing compilers.

Among the key issues identi�ed, the two most important ones are the compiler analysis of

irregular array accesses and the parallelization of irregular reduction loops. In the rest of this

dissertation, we described, in detail, our e�orts to solve these two problems.

We have developed compiler analysis techniques for the two most common irregular array ac-

cesses: single-indexed array accesses and simple indirect array accesses.

For single-indexed array accesses, we used a simple bounded depth-�rst search method to check

how the value of the index variable changes between the array accesses. We can verify two kinds

of common access patterns: consecutively-written access and array stack access. We also described
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how to use this pattern information to enhance compiler optimizations, such as array privatization,

elimination of array bounds checking, and data dependence tests.

For simple indirect array access, we developed an array property analysis technique. This

technique can be used to �nd index array property information which can, in turn, be used in the

analysis of its host array. In order to make this method eÆcient and useful for real programs, we

have designed it to be interprocedural and demand-driven.

We have implemented these two techniques in Polaris, a parallelizing compiler developed at

the University of Illinois at Urbana-Champaign. We also extended the original data dependence

tests and the array privatization tests implemented in Polaris so that they could use our techniques

on demand. Our experiments with �ve programs have demonstrated that a parallelizing compiler

enhanced with these techniques can detect more inherently parallel loops than traditional compilers,

especially in sparse and irregular applications.

We have studied �ve di�erent possible parallelization methods for irregular reduction loops, all

of which can be applied automatically by a compiler. We compared their ease of use, applicability,

supporting compiler techniques required, run-time resource requirements and, most importantly,

run-time performance. Not surprisingly, there does not exist one single best method. Our analysis

and experiments revealed a general guideline of choosing a parallel irregular reduction method that

satis�es given requirements.

7.2 Future Work

Our work revealed that there is much room for improvement.

7.2.1 Further Study of Irregular Applications

The importance of the key techniques we identi�ed is based on the empirical study we did as the �rst

step of a program collection. The e�ectiveness of the techniques we have developed and implemented

are also demonstrated through experiments with �ve programs from the same program collection.

Although we tried to use programs from di�erent disciplines, they are by no means comprehensive.

It would be desirable to extend our study to other application codes.

A particularly interesting direction is to study C/C++ programs. In our work, we studied
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FORTRAN programs in which the basic data type was the array. Our techniques work well for

FORTRAN codes because they take advantage of the common program patterns people follow when

they use arrays to represent complicated and irregular data structures. In C/C++ programs, we

face a di�erent, yet well-known problem: pointer analyses. There already has been much research

done in this area. We believe it would be bene�cial to follow the same philosophy we used in our

work: study real programs and �nd the common program patterns.

7.2.2 Integrated Compile-time and Run-time Optimization

In Section 4.5, we briey described a mechanism to generate test codes at compile-time and to

use run-time tests to verify array properties. In Section 6.4, we also mentioned using run-time

feedback to dynamically adjust the size of reduction tables in irregular reduction loops. When an

optimization that is input dependent needs to be performed, a run-time method is required.

Using run-time methods does not mean less work for compilers. On the contrary, to use run-

time methods e�ectively and eÆciently, one needs strong compiler support. For example, in Section

2.6, we described several compile-time techniques to reduce the overhead of run-time tests. The

technique to hoist loop invariant test codes is only meaningful in the context of the run-time test.

Optimizing compiler-generated run-time test codes pose new challenges to compiler techniques.

Currently, we know very little about how to integrate compile-time optimizations and run-

time optimizations. It should be a very interesting research topic. Just as compiler optimization

provides a higher level of abstraction to the programmers than direct code generation does, run-time

optimization will provide an even higher level of abstraction and will further liberate programmers.
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