Compile-time Based Performance Prediction*

Calin Cascaval, Luiz DeRose, David A. Padua, and Daniel A. Reed

Department of Computer Science
University of Illinois at Urbana-Champaign
{cascaval,derose,padua,reed}@cs.uiuc.edu

Abstract. In this paper we present results we obtained using a compiler
to predict performance of scientific codes. The compiler, Polaris [3], is
both the primary tool for estimating the performance of a range of codes,
and the beneficiary of the results obtained from predicting the program
behavior at compile time. We show that a simple compile-time model,
augmented with profiling data obtained using very light instrumentation,
can be accurate within 20% (on average) of the measured performance
for codes using both dense and sparse computational methods.

1 Introduction

In this paper we present the compiler-related part of the Delphi project whose
goal is to predict performance of codes when executed on multiprocessor and
distributed platforms. The project will integrate several components, such as
compilers, resource managers, dynamic instrumentation tools, and performance
prediction and visualization tools, into a unique environment targeted for high
performance computing.

The part of the project presented in this paper focuses on compiler tech-
niques for performance prediction of parallel codes and machines. By using these
techniques, a compiler becomes a useful tool to support machine design and pro-
gram tuning either by itself or as part of performance visualization tools, such as
SvPablo [8]. Furthermore, accurate compile-time performance prediction tech-
niques are of crucial importance for the compiler itself to select the best possible
transformations during the code optimization pass.

Powerful techniques for performance prediction are quite important due to
the difficulties programmers and compilers encounter in achieving peak perfor-
mance on high-end machines. The complexity is exacerbated in new architec-
tures, which have multi-level memory hierarchies and exploit speculative exe-
cution, making the achievement of a large fraction of the peak performance of
these systems even harder.

* This work is supported in part by Army contract DABT63-95-C-0097; Army contract
N66001-97-C-8532; NSF contract MIP-9619351; and a Partnership Award from IBM.
This work is not necessarily representative of the positions or policies of the Army
or Government.

One of the main challenges we face is to find a general methodology that
allows the performance prediction of arbitrary codes, including irregular appli-
cations, for any arbitrary input data. In this paper, we describe a simple strategy
for performance prediction that we have implemented in the Polaris source-to-
source translator [3]. The strategy leads to symbolic expressions generated by the
compiler for each loop of the program being analyzed. These expressions inte-
grate the prediction of CPU execution time and the prediction of cache behavior
and can make use of both compile-time and profiling information.

Examples of optimizing transformations that should be controlled by per-
formance prediction results are: parallelization of loops based on the tradeoff
between the amount of work in the loop and the overhead of running the loop
in parallel; loop interchange, a classical loop optimization that affects data lo-
cality and parallelism overhead in non-obvious ways. Even a gross estimate of
the performance of a program segment can enable the compiler to decide if the
optimizing transformation is beneficial.

Our work is performed at the high level language representation, which allows
us to keep the models simple and relatively hardware independent. We have
validated our performance prediction models on sequential programs using the
SPEC95 benchmarks and some sparse matrix codes on the SGI’s R10000 and
Sun’s UltraSparc IIi processors. It was quite surprising to see how well our simple
strategy worked for our test cases.

The remainder of this paper is organized as follows. In Sect. 2 we describe
our compiler-driven prediction model. In Sect. 3 we present the experimental
results. In Sect. 4 we discuss related work, and we conclude in Sect. 5.

2 Compiler Driven Prediction

In the approach described in this paper, the compiler extracts information from
the source code and generates symbolic expressions representing the execution
time of different program segments. For the cases where we do not have compile-
time information, either run-time profiling [6] provides the necessary data or
simple approximations [1] can be used.

The target computer can be an existing machine or a proposed architecture.
Although for many users the total execution time will be the main figure of
interest, we believe that other values, such as number of cache misses, can be
used profitably to drive compiler transformations. Along the same lines, for
architectures with multiple heterogeneous processors, such as FlexRAM [16],
compile-time performance prediction can be used to decide where to execute the
code: in the main processor which has a larger, slower cache and less bandwidth
to the main memory, or in the Processor-In-Memory (PIM) which has a smaller
but faster cache and it is implemented in the memory chip.

In Fig. 1, we present an overview of the prediction environment. In this en-
vironment, the compiler analyzes the source code and synthesizes the symbolic
expressions representing performance data from the application. It also instru-
ments the code to extract profiling information. The code can be run with differ-

ent data sets to extract the profiling data used as parameters for the performance
expressions. The compiler uses the profiling data to evaluate the performance ex-
pressions — although, symbolic expressions comparisons are also possible, which
in turn will be used to control program optimizations. In our environment, since
Polaris is a source-to-source parallelizing compiler, the optimized program will
be an optimized and parallelized Fortran source. Also, the profiling data can
be used along with hardware costs to resolve the symbolic expressions and the
results displayed using a performance visualization tool.

FORTRAN —— compiler directed prediction and optimization
Source | T performance visuaization

POLARIS | .| Instrumented f o - e
source Profiling I Machine I
basic operations Information L _ Parameters /1
costs Tt Ha -
Native Compiler |
cache misses ¥
estimation | Evauated | 1 Peformance !
Executable Run r- ’”@/mbclic expressionsr ~ - > Pred|ct|or1rV|?uaI|zat| on ,
o X oot o !
é
Optimized Input
program &gs/

Fig. 1. Compiler-based prediction environment

We present first the machine model supported by our performance prediction
model, then the targeted application domain and, finally, the prediction model
itself.

2.1 Models

Machine Model The architecture supported by our prediction model assumes
one or more CPUs that execute code stored in memory. The processor could
be a simple in-order single issue architecture or a more complex, multiple issue
out-of-order processor. The memory consists of a hierarchy of memory levels
(caches), each having different characteristics.

Program Model The type of applications to be evaluated in this project are
scientific Fortran programs. The codes used in our experiments include dense
matrix computations from the SPEC{p95 benchmark suite [18], and sparse ma-
trix codes from SpLib, a library of sparse functions for linear algebra [4].

Since we want to handle a wide range of codes, our compiler must be able
to handle programs with complex control flow, such as imperfectly nested loops,

loops with early exits and conditionals, and while loops. We are willing to trade
some prediction accuracy for the ability to handle efficiently any program struc-
ture. The approach that we have taken, detailed in the following section, is to
have several models that we can apply depending on the amount of compile-time
information available. In case we do not have enough compile-time information,
run-time profiling can be used to obtain the necessary data.

Performance Prediction Model The performance prediction model uses an-
alytical and experimental information. The compiler synthesizes performance
expressions and instruments the code to extract values unknown at compile-
time. The total execution time is decomposed as follows:

Tiotat = Topu + TvveMm + Tcomm +11j0 (1)

where T py is the computation time spent by the processor itself, Ty, g is the
time spent accessing the memory hierarchy, Tcoa s is the interprocess/thread
communication time, and 77,0 is the time spent doing I/O. We consider (1) to
be a reasonable decomposition that allows us to concentrate on each subsystem
(CPU, memory, I/O) and work with simpler models for each.

We shall detail the how we estimate Topy and Ty gy separately after we
describe some of the common features. Each term in (1) consists of a symbolic
expression, i.e., a mathematical formula expressed in terms of program input
values and perhaps some profiling information, such as branch frequencies. The
expressions also involve parameters representing characteristics of the target
machine and are a function of the source code and input data. To factor in the
data sets, the compiler will place very light instrumentation in the program,
and the user or the prediction environment will run the program such that it
can collect information on the input data, and substitute it in the symbolic
expressions.

For example, the loop in Fig. 2 performs a sparse matrix vector multiplication
(Y = A X X)) and the matrix A is stored in compressed sparse row storage (row
i is stored in consecutive locations of A beginning at ia(i) and the column of
the element stored in A(k) is ja(k)). Since the number of iterations of loop L2
depends on the input data, the compiler will not be able to estimate how many
times statement S2 is executed without information on the input data. To obtain
this information, the compiler will add instrumentation after loop L2 to compute
the number of iterations, place a symbolic variable for the number of iterations
in the prediction formula, and let the dynamic phase compute the actual value
that depends on the data set. This interaction is illustrated by the path marked
with solid arrows in Fig. 1.

2.2 Compile-time Prediction

In the static phase of the prediction, the compiler goes through the Abstract Syn-
tax Tree (AST) of the program and collects information about operations. Recall
that all our evaluations are done at source code level. The compiler combines

L1 doi=1,m

S1 Y(i) = 0.0d0
L2 do k = ia(i), ia(i+1)-1
S2 Y(i) =Y(1) + Ak) * X(ja(k))
end do
end do

Fig. 2. Sparse matrix vector multiplication

this information in symbolic expressions for statements, loops, and routines, de-
pending on the level at which we want to predict performance. The compiler
also places instrumentation statements for the dynamic phase wherever it does
not have enough information, such as loop bounds, branch frequencies, etc.

Basic Operations The sub-model for Tepy in (1) estimates the time spent by
the processor doing computation. It counts the number of operations executing
in the CPU’s functional units, including load and store operations assuming no
cache misses. In addition, it considers as basic operations intrinsic functions, such
as SQRT (many current processors have functional units that execute square
root operations) or trigonometric functions, as well as function calls and loop
overheads.

To reduce the number of independent variables in the symbolic expressions,
operations may be grouped together based on the operation type and the data
size on which they operate. For example, we group together single precision ad-
dition and multiplication since, on most current architectures, these instructions
have similar latencies being executed in the same or identical functional units.
We distinguish between multiplication and division since the division operation
usually has longer latency than other operations. However, the grouping is not
fixed so that we can accommodate other architectures with different designs.
Tcpu can be expressed as:

#groups
Tepu = CycleTime X Z (ki x Cy), (2)

)

where k; are symbolic expressions representing the number of operations in group
i, and C; represents the hardware cost for the operations in group ¢. The hard-
ware costs C; can be obtained either from the processor’s manual and design
specifications, or by using microbenchmarking [21]. The latter is usually the
most convenient way to get the values associated with intrinsic functions and
loop overheads.

Using simple symbolic arithmetic, these expressions are combined to generate
the cost of operation in each statement. The expressions corresponding to the
statements are then combined and augmented with coefficients obtained from
the dynamic phase (e.g., loop bounds and branch frequencies), to produce cost

expressions for several levels of granularity in the program (blocks of statements,
loops, procedures) until a unique expression is generated for the entire program.

Although this is a very simple strategy, it has proven reasonably accurate
when no compiler optimizations are applied, as can be seen in the experimental
results presented in Sect. 3. Dependence graph information could be used to
improve prediction accuracy on modern processors that exploit instruction level
parallelism (ILP).

In order to accurately predict the performance for optimized codes we have
to apply, or at least approximate, the optimizations performed by the native
compiler in our restructurer. We have chosen to approximate these optimizations
by using the following heuristics applied at high level source code:

— Eliminate loop invariants. This is a simple optimization applied by all opti-
mizing compilers and it can be done at high level.

— Consider only the floating point operations. This is based on the observation
that, in scientific codes, the useful computation is done in floating point,
and in optimized code integer operations are used mostly for control flow
and index computation and are usually removed from the innermost loops.
We do take into account the control flow in the form of loop overheads.

— Ignore all memory accesses that are not array references. The reason for this
heuristic is that scalar references occur relatively infrequently in scientific
codes and, if they do, current architectures often have enough registers to
buffer them.

— Qverlap operations. For multiple issue architectures with multiple functional
units, we must allow operations in different categories to overlap execution.
For example, on the R10000 processor, there can be 6 instructions issued
in one cycle: 2 integer operations, 2 floating point operations, 1 memory
operation and 1 branch.

Using these approximations we obtain a lower bound on the processor’s execution
time.

Memory Hierarchy Model The term Thsgps in (1) estimates the time spent
accessing memory locations in the memory hierarchy. As we mentioned before,
when estimating the the execution time of basic operations we assume all mem-
ory references are cache hits in the first level cache. However, many accesses are
not served from the first level cache, in part because applications have data sets
much larger than the cache.

Ty EMm can be expressed as follows:

#levels
Tyeym = CycleTime x Y (M; x Cj), (3)

K2

where M; represents the number of accesses that miss in the i*" level of the
memory hierarchy, and C; represents the penalty (in machine cycles) for a miss in

the it" level of the memory hierarchy. C; is computed using microbenchmarking,
as in [19].

The compiler computes the number of array references in each statement and
aggregates the values across blocks of statements, loops, and procedures. We do
not include scalar references in this version of the model because, as mentioned
above, we assume that the register files and the first level caches in most current
processors are large enough to hold the majority of scalars. We propose two
models to estimate the number of cache misses, which are used according to how
much compile-time information is available.

Stack Distances Model. This model is based on the stack histogram obtained
from a stack processing algorithm [5, 17] and requires accurate data dependence
distance information [2]. The stack processing algorithm works on a program
trace, where the elements in the trace can be memory locations, cache lines or
virtual pages, and builds a stack as follows: for each element in the trace, check if
the element is present in the stack. If it is, store the distance from the top of the
stack where the element was found (the stack distance) and move the element on
the top of the stack. If the element is not found, store co as the stack distance and
push the element on the top of the stack. The stack histogram is the distribution
of the number of references at different stack distances. Stack algorithms have
been used to simulate memory and cache behavior of programs [15, 17, 23-25].

We have devised a compile-time algorithm to compute the stack histogram.
The compiler will label each data dependence arc (including input dependences)
with the number of distinct memory locations accessed between the source and
the sink of the dependence. The dependence with the minimum label will give
the stack distance § for the reference that is the sink of the data dependence
arc. We also compute the number of times a static reference is accessed, As. The
number of cache misses for the cache at level ¢ with cache size S; is computed
using the formula:

M=) As (4)

In order to take into account spatial locality, we adjust the number of accesses
when the dependence between two references that could potentially share a cache
line satisfies the sharing conditions [5].

Indirect Accesses Model. When data dependence vectors are not available, we
must approximate the number of cache lines that are spanned by the array refer-
ences using other methods. This situation occurs mostly when indirect accesses
are present in the code; therefore, we call this model the indirect accesses model,
although it can be applied to any loop. In this model, we obtain the number of
misses by multiplying each array reference A; with the array element size e;,
and dividing the sum by the number of bytes for each block size in the memory

hierarchy. Thus, M; can be expressed as:

M; = (Z A; x ej)/BlockSize; (5)
J

When indirect accesses are involved, we need to apply a correction to the esti-
mation since there could be many accesses to the same element. For example,
many of the accesses to array X in statement S2 in Fig. 2 can map to the same
element, depending on the value of the array element ja(k). Therefore, we ap-
proximate the number of accesses with the minimum between the number of
accesses and the size of the array. If the size is not known at compile time, the
compiler can obtain it by run-time profiling.

For both models, the expressions are computed symbolically and we use
profiling data to replace the parameters that depend on the input data set.

2.3 Putting it All Together

The static phase of the prediction is completed when the compiler instruments
the code with the symbolic expressions for performance estimation. In the next
phase, dynamic prediction, we compile the instrumented code using a native
compiler and run the code in order to gather the run-time profiling data. Note
that to obtain profiling data, the code need not run on the architecture for which
we are predicting performance, therefore, the prediction model is not constrained
by the existence of the architecture.

After the dynamic phase is completed, results are merged with the architec-
tural parameters determined through microbenchmarking (or supplied by the
user in case the architecture under study is not available) and can be used to
guide compiler optimizations, and/or to be displayed using a performance pre-
diction visualization tool, as mentioned at the beginning of this section.

3 Experimental Results

We have implemented the prediction model using the Polaris source-to-source
restructurer [3]. Polaris contains implementations of most of the classical opti-
mizations. It also has a dependence analysis pass that computes distance vectors
whenever possible. We are using Polaris to analyze codes from the SPEC{p95
benchmarks [18] and the Indiana University SpLib package, which is part of the
Linear System Analyzer [4].

In Table 1 we present a summary of the loops analyzed and estimated by
Polaris for the SPEC{p95 benchmarks. For each benchmark, in the first two
columns, we show the total number of loops that are present in the program and
the number of loops that do not containing I/O, thus the loops that we considered
in this paper. The next columns show the distribution of the estimated loops
based on the amount of compile-time information available. “Full” means that
Polaris was able to compute the data dependence distance vectors for all array
references in the loop. “Partial”, means that while all the dependence distances

were computed, some of the dependences have non-constant distances. For both
these cases we can apply the stack distances model to predict the number of
cache misses. For the second case we assume that accesses take place at the
minimum distance. “Missing” represents the case in which Polaris could not
compute the dependence distances for all the array references, and therefore
the indirect accesses model is the only strategy that can be applied to predict
performance. “Profiling” is the case in which the compiler needs run-time data
due to unknown branch frequencies. For multiply nested loops, each loop of the

Benchmark Total Estimated Compile-time Information

Loops Loops Full Partial Missing Profiled
APPLU 168 149 137 8 0 4
APSI 298 231 175 29 7 20
HYDRO2D 165 158 124 15 6 13
MGRID 57 47 46 0 1 0
SU2COR 117 82 56 11 1 14
SWIM 24 24 24 0 0 0
TOMCATV 16 12 11 1 0 0
TURB3D 70 60 40 2 13 5
WAVES5 362 334 223 51 19 41
Total 1277 1097 836 117 47 97
Percentage 85.90% 76.21% 10.67% 4.28% 8.84%

Table 1. Compile-time Stack Distances Accuracy

nest counts in only one category. For example, if the innermost loop of a doubly
nested loop can be analyzed precisely, but the outermost can not, the innermost
loop will be counted in the “full” column, and the outermost will be counted in
the “missing” column. Both loops are part of the total and estimated loops.

To validate our model, we have conducted experiments on the MIPS R10000
processor and the UltraSparc I1i processor. The R10k processor is a 4 issue out-
of-order superscalar architecture, with 32 KB on-chip L1 cache and 1 MB-4 MB
off-chip L2 cache. In one cycle, the R10K can execute up to two integer instruc-
tions, two floating point instruction, one memory operation and one branch.
Both caches are two way set-associative. The UltraSparc is a 4 issue in-order
superscalar processor. It can execute up to two integer, two floating point, one
memory and one branch operation per cycle. The caches, both the 16 KB on-chip
L1 cache and the 256 KB off-chip L2 cache, are direct mapped.

In the following figures we present the prediction accuracy of our strategy.
The accuracy is computed as the predicted execution time divided by the mea-
sured execution time. For cache predictions the accuracy is computed as the
predicted number of misses divided by the actual number of misses measured
using hardware counters. Thus, in both cases, the closer to 100%, the better the
prediction.

In Fig. 3 we present the accuracy of predictions using the indirect accesses
model for unoptimized loops in the SpLib package. Each bar in the graphs repre-
sents the performance accuracy for one of the following data sets: a sparse matrix
of 1128 x 1128 with 13360 non-zero elements (the left bar in each group), and
a 20284 x 20284 sparse matrix with 452752 non-zero elements (the right bar in
each group). Figure 3(a) displays prediction accuracy for the L1 cache with re-
spect to actual cache misses measured using the hardware counters on the R10k
processor. The accuracy is within 25% for most of the loops. The loop dol in
subroutine LUSOLT shows somewhat less accuracy, due the fact that our model
does not account for conflict misses. Figure 3(b) shows execution time predic-
tion accuracy. The accuracy of the prediction remains within 25% for most of
the loops. The results for the optimized codes are somewhat worse, especially
for the small data set. We attribute this to interloop reuse, which our indirect
accesses model does not capture.

150

Accuracy (%) relative to hdw. counters

acy () relative to measure

Accur:

B 1128 data set
[20284 data set 250

W TCPU
[TMEM

0
do100 dol do2 dol do3 dol do2 do100 dol do2 dol do3 do1 do2
BMUX LusoLT SCALA UNSCALA BMUX LusoLT SCALA UNSCALA

(a) L1 cache prediction using the in- (b) Execution time prediction using

direct accesses model. Each bar rep- the indirect accesses model. For each

resents a different data size. loop the two bars represent different
data sets.

Fig. 3. Prediction accuracy for loops in SpLib for two input data sets on the R10k

To predict the execution time for the SPEC{p95 benchmarks we have used
the following strategy: for all the loops that we can estimate (loops that do
not contain I/0) we use the compiler to estimate the number of operations and
then use (2) to obtain Tepy. We also estimate the number of cache misses, for
both levels of cache, using both the stack distances model and the indirect ac-
cesses model. If the stack distances model cannot be applied because not enough
compile-time information is available, we apply the indirect accesses model. We
convert the number of misses into execution time using (3). To get the overall
figures for the benchmarks, we multiply the predicted execution time for each

loop by the number of times it is executed, and then sum these times to get the
execution time. We compute the actual execution time similarly, using measured
execution times for each loop.

In Fig. 4 we present the cache estimation accuracy for both levels of cache
on the R10000 processor for a set of loops in the TOMCATYV benchmark. The
left bars (black) represent the actual number of cache misses measured using
hardware counters, while the right bars (white), represent the predicted number
of cache misses. The prediction is very accurate for most of the cases. The two
exceptions, the prediction for loop do100 in the L1 cache does not capture all
the inter-array conflict misses; and the prediction for loop do60 in the L2 cache
does not capture some of the spatial locality. However, as we shall see in Fig. 5,
it will not affect adversely the overall execution time.

j— T 15 T T T T
W Actual] N Actual
[Predicted 1 Predicted

Number of cache misses
@ IS
T

Number of cache misses

~
T

1 n 1 N
do120 do130 do60. do80. do100 do120 do130 do60 do80.

(a) L1 cache (b) L2 cache

Fig. 4. Cache prediction accuracy for the TOMCATYV benchmark on the R10k

We present results for codes optimized using the default level of optimization
for the native compiler, which is O3 for the SparcWorks Fortran compiler and O2
for the MipsPro Fortran compiler. In Fig. 5 we present prediction accuracy for
the SPEC95fp benchmarks. For each benchmark we show two bars, one which
uses the indirect memory access estimation model (left), and the other one which
uses the stack distances model (right). The two sections of each bar represent
the percentage of CPU execution time and the percentage of memory hierarchy
access time, respectively.

The results in Fig. 5(a) show prediction accuracy for the R10k processor.
The indirect accesses model does not perform well in these codes since it does
not account for much of the reuse present in dense computations. The stack
distances model prediction (right bars) is, for most of the benchmarks within
20% of the actual execution time. The three exceptions, HYDRO2D, SU2COR

15
1=

W TCPU
3 TMEM-1A
1 TMEM-SD

5]
I
15

180] 177176 177 A 180

140 144

37‘ 100 ’_‘ ’_‘

Accuracy (%) relative to measured execution time

0 o
applu apsi hydod mgrid su2cor swim tomcav tub3d waves applu apsi hydrozd mgrid su2cor swim tomcav tub3d waveS

(a) MIPS R10000 (b) UltraSparc IIi

Fig. 5. Execution time prediction accuracy for the SPEC{p95 benchmarks. The left
bars show results using the indirect access model, while the right bars show accuracy
using the stack distances model

and WAVED exhibit interloop reuse and our compile time model does not capture
it at the present time. However, we have used a run-time implementation of the
stack distances model to quantify the amount of interloop reuse, and with that
method the prediction accuracy was 142% for HYDRO2D, 108% for SU2COR
and 110% for WAVE5. With those figures, the average prediction error for the
entire set of benchmarks is 14%.

The chart in Fig. 5(b) displays results for the UltraSparc processor. For this
processor we tend to under-predict the execution time, the average prediction
error being 27%. One reason is that both levels of cache on this processor are
direct mapped. Since our compiler model works for fully associative caches, there
are many conflict misses that we do not capture. However, there are methods
such as the one presented in [15], that allow approximating the number of cache
misses for a set associative cache from the number of misses for a fully associative
cache. Again, using the run-time implementation of the stack distances model,
the average prediction error for the entire set of benchmarks on the processor
drops to 20%.

4 Related Work

The need for good tools to estimate the application performance has been, and
continues to be, high on the desire list of many application developers and com-
piler writers. While most of the performance prediction estimates have relied on
simulations, there have been a few attempts to predict performance at compile
time, mostly for applications running on multiprocessor systems. We summarize

a few of these attempts, and explain how our work makes use of those results
and how our work contrasts with some of the other methods.

Saavedra et al. [19-21] has done extensive work in the area of performance
prediction for uniprocessors. In [21], the authors present the microbenchmarking
concept to measure architectural parameters. We use the same microbenchmark-
ing approach to estimate operation costs (including intrinsic functions) and cache
latencies. In [20], they present an abstract machine model that characterizes the
architecture and the compiler. Their early model does not consider memory hi-
erarchy effects. They do consider such effects in [19], but not using compile-time
prediction. Their estimation of the number of cache misses relies on the mea-
surements for the SPEC92 benchmarks presented in [13].

Sarkar [22] presents a counter-based approach to determine the average exe-
cution time and the variance in execution time for programs. His approach relies
on a program database to collect information about execution frequencies of basic
blocks. However, in estimating the execution time of the program, he assumes
known basic block costs. We could use the same control flow based method to
count frequencies of execution for the basic blocks, including their optimizations
to minimize the number of counters; however we also would need to compute
the basic block costs, and the memory hierarchy penalties. We could create the
program database from our symbolic expressions.

Fahringer [9-11] describes P37, a performance estimation tool. He uses the
Vienna Fortran Compilation System as an interactive parallelizing compiler,
and the WeightFinder and P3T tools to feedback performance information to
both the compiler and the programmer. While our goals are similar, the works
differ in the approach taken. Fahringer uses pattern matching benchmarking
based on a library of kernels to estimate execution time. A program is parsed to
detect existing kernels and pre-measured run-times for the discovered kernels are
accumulated to yield the overall execution time. The prediction relies heavily on
the quality and completeness of the kernel library. To estimate cache behavior
the author classifies the array accesses with respect to cache reuse. An estimated
upper bound of the number of cache lines accessed inside a loop is computed.
Misses for loops can be aggregated for predicting procedures and entire programs.

We cannot readily compare the accuracies of the two methods, as Fahringer
presents experimental results for HPF programs only and, therefore, uses mes-
sage passing, while our work is targeted to programs running on shared memory
machines.

Ghosh et al. [14] have introduced the Cache Miss Equations (CMEs) as a
mathematical framework that precisely represents cache misses in a loop nest.
They count the cache misses in a code segment by analyzing the number of solu-
tions present for a system of linear Diophantine equations extracted from reuse
vectors, where each solution corresponds to a potential cache miss. Although
solving these linear systems is difficult, the authors claim that mathematical
techniques for manipulating the equations allow them to relatively easily com-
pute and/or reduce the number of possible solutions without solving the equa-
tions.

One of the first attempts to use profiling information in order to improve com-
piler optimizations was trace scheduling for very long instruction word (VLIW)
processors [7,12], which uses profile data to optimize execution of the most
probable code execution paths. More recently, Chang et al. [6] have developed
an optimizing compiler that uses profiling information to assist classic code op-
timizations. The compiler contains two new components, an execution profiler
and a profile-based code optimizer. The execution profiler inserts probes into
the input program, executes the input program for several inputs, accumulates
profile information, and supplies this information to the optimizer. The profile-
based code optimizer uses the profile information to expose new optimization
opportunities that are not visible to traditional global optimization methods.

5 Conclusions

The prediction environment presented in this paper integrates a compiler de-
rived model with run-time instrumentation to estimate performance for sci-
entific codes. We have presented the compiler-driven performance prediction
model, which although very simple, is able to predict performance of codes in
the SPEC{p95 benchmark suite with 20% error margin on complex architec-
tures. This model can also be extended to shared multiprocessor codes because
our compiler is a parallelizing source-to-source translator.

We use the results of the compiler-driven performance prediction in two ways.
First, the compiler can use the performance prediction results to guide optimiza-
tions. Examples are deciding if a parallel loop is worth running in parallel based
on the sequential execution time and the overhead to run the loop in parallel.
Second, the performance prediction results can be displayed using performance
visualization tools and the performance data can be related back to the high
level source code based on information provided by the compiler.

References

[1] T. Ball and J. R. Larus. Branch prediction for free. In Proceedings of the ACM
SIGPLAN Conference on Programming Languages Design and Implementation
’93, pages 300-313, 1993.

[2] U. Banerjee. Dependence analysis. Kluwer Academic Publishers, 1997.

[3] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee,
D. Padua, Y. Paek, W. Pottenger, L. Rauchwerger, and P. Tu. Parallel Program-
ming with Polaris. IEEE Computer, December 1996.

[4] R. Bramley, D. Gannon, T. Stuckey, J. Villacis, J. Balasubramanian, E. Akman,
F. Breg, S. Diwan, and M. Govindaraju. The Linear System Analyzer, chapter
PSEs. IEEE, 1998.

[6] C. Cascaval and D. A. Padua. Compile-time cache misses estimation using stack
distances. In preparation.

[6] P. P. Chang, S. A. Mahlke, and W.-M. W. Hwu. Using profile information to
assist classic compiler code optimizations. Software Practice and FExperience,
21(12):1301-1321, December 1991.

7]

8]

[15]

[16]

[17]

R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth, and P. K. Rodman.
A VLIW architecture for a trace scheduling compiler. In Proceedings of ASPLOS
11, pages 180-192, Palo Alto, CA, October 1987.

L. DeRose, Y. Zhang, and D. A. Reed. SvPablo: A multi-language performance
analysis system. In 10th International Conference on Computer Performance
Evaluation - Modelling Techniques and Tools - Performance Tools’98, pages 352—
355, Palma de Mallorca, Spain, September 1998.

T. Fahringer. Evaluation of benchmark performance estimation for parallel For-
tran programs on massively parallel SIMD and MIMD computers. In IEEE Pro-
ceedings of the 2nd Euromicro Workshop on Parallel and Distributed Processing,
Malaga, Spain, January 1994.

T. Fahringer. Automatic Performance Prediction of Parallel Programs. Kluwer
Academic Press, 1996.

T. Fahringer. Estimating cache performance for sequential and data parallel pro-
grams. Technical Report TR 97-9, Institute for Software Technology and Parallel
Systems, Univ. of Vienna, Vienna, Austria, October 1997.

J. A. Fisher. Trace scheduling: A technique for global microcode compaction.
IEEFE Transactions on Computers, C(30):478-490, July 1981.

J. D. Gee, M. D. Hill, and A. J. Smith. Cache performance of the SPEC92
benchmark suite. In Proceedings of the IEEE Micro, pages 17-27, August 1993.
S. Ghosh, M. Martonosi, and S. Malik. Precise Miss Analysis for Program Trans-
formations with Caches of Arbitrary Associativity. In Proceedings of ASPLOS
VIII, San Jose, CA, October 1998.

M. D. Hill and A. J. Smith. Evaluating associativity in cpu caches. IEEE Trans-
actions on Computers, 38(12):1612-1630, December 1989.

Y. Kang, M. Huang, S.-M. Yoo, Z. Ge, D. Keen, V. Lam, P. Pattnaik, and J. Tor-
rellas. FlexRAM: Toward an advanced intelligent memory system. In Interna-
tional Conference on Computer Design (ICCD), October 1999.

R. L. Mattson, J. Gecsei, D. Slutz, and 1. Traiger. Evaluation techniques for
storage hierarchies. IBM Systems Journal, 9(2), 1970.

J. Reilly. SPEC95 Products and Benchmarks. SPEC Newsletter, September 1995.
R. Saavedra and A. Smith. Measuring cache and tlb performance and their effect
on benchmark run times. IEEE Transactions on Computers, 44(10):1223-1235,
October 1995.

R. H. Saavedra-Barrera and A. J. Smith. Analysis of benchmark characteristics
and benchmark performance prediction. Technical Report CSD 92-715, Computer
Science Division, UC Berkeley, 1992.

R. H. Saavedra-Barrera, A. J. Smith, and E. Miya. Machine characterization based
on an abstract high-level language machine. [EEFE Transactions on Computers,
38(12):1659-1679, December 1989.

V. Sarkar. Determining average program execution times and their variance.
In Proceedings of the ACM SIGPLAN Conference on Programming Languages
Design and Implementation ’89, pages 298-312, Portland, Oregon, July 1989.

R. A. Sugumar and S. G. Abraham. Set-associative cache simulation using gen-
eralized binomial trees. ACM Trans. Comp. Sys., 13(1), 1995.

J. G. Thompson and A. J. Smith. Efficient (stack) algorithms for analysis of
write-back and sector memories. ACM Transactions on Computer Systems, 7(1),
1989.

W.-H. Wang and J.-L. Baer. Efficient trace-driven simulation methods for cache
performance analysis. ACM Transactions on Computer Systems, 9(3), 1991.

