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Abstract. Many compiler techniques usually require analysis of ar-
ray subscripts to determine whether a transformation is legal. Tradi-
tional methods require the array subscript expressions to be expressed
as closed-form expressions of loop indices. Most methods even require
the subscript expressions to be linear. However, in many programs, es-
pecially sparse/irregular programs, closed-form expressions of array sub-
scripts are not available, and many codes are left unoptimized. More
powerful methods to analyze array subscripts are desired. Arrays with
no closed-form expressions available are called irregular arrays. In real
programs, many irregular arrays are single-indexed (i.e. the arrays are al-
ways subscripted by a single index variable). In this paper, we presented a
technique to analyze the irregular single-indexed arrays. We showed that
single-indexed arrays often have very good properties that can be used in
compiler analysis. We discussed how to use these properties to enhance
loop parallelization, loop interchanging, and array bounds-checking elim-
ination. We also demonstrated the application of these techniques in
three real-life programs to exploit more implicit parallelism.

1 Introduction

Many compiler techniques, such as parallelization, loop interchanging and array
bounds-checking elimination, usually require analysis of array subscripts to de-
termine whether a transformation is legal. Traditional methods require the array
subscript expressions to be expressed as closed-form expressions of loop indices.
Most methods even require the subscript expression to be linear. However, in
many programs, especially sparse/irregular programs, closed-form expressions of
array subscripts are not available, and many codes are left unoptimized. Clearly,
more powerful methods to analyze array subscripts are desired.

For example, array privatization[9, 13, 17, 19] is an important technique in
loop parallelization. An array can be privatized if any array element that is
read in one iteration of the loop is always �rst de�ned in the same iteration. For
example, in the outermost loop loop do k in Fig.1, array x() is �rst de�ned in the
repeat-until loop, and then is read in loop do j. It is easy to see that any element
of x() read in statement (2) is �rst de�ned in statement (1) in the same iteration
of loop do k. Therefore, array x() can be privatized for loop do k. Because there
is no dependence, loop do k can be parallelized. In this example, no closed-form



do k=1, n

p = 0

i = link(i,k)

repeat

p = p + 1

x(p) = y(i) (1)

i = link(i,k)

until ( i == 0 )

do j=1, p

z(k,j) = x(j) (2)

end do

end do

Fig. 1. An example of a loop with an irreular single-indexed array

expression for index variable p can be derived. Current privatization tests can
handle only do loops and require a closed-form expression of the array subscripts
in order to compute the section of array elements read or written in the loop. In
this example, these techniques can determine that section [1 : p] of array x() is
read in the loop do j, but they cannot determine that the same section is also
written in the repeat-until loop. Therefore, they would fail to privatize x().

In this paper, we introduce the notion of the irregular single-indexed array.
An array is irregular in a loop if no closed-form expression for the subscript of
the array is available. An array is single-indexed in a loop if the array is always
subscripted by the same index variable when it is accessed in the loop. An array
is irregular single-indexed in a loop if the array is both irregular and single-
indexed in the loop . For example, the array x() in the repeat-until loop in Fig.1
is an irregular single-indexed array.

We chose to investigate irregular single-indexed arrays for several reasons.
First, the use of single-indexed arrays often follow a few patterns. Single-index
arrays that follow these patterns exhibit very good properties that can be used in
compiler optimizations. Second, many irregular arrays are single-indexed. Devel-
oping analysis methods for irregular single-indexed arrays is a practical approach
toward the analysis of general irregular arrays, which is believed to be diÆcult.
Third, it is easy to check whether an array is single-indexed. EÆcient algorithms
can be developed to \�lter" single-indexed arrays out of general irregular arrays.

In this paper, we present two important access patterns of irregular single-
indexed arrays: consecutively-written and stack-access. We present the tech-
niques to detect these two patterns and show how to use the properties that
irregular single-indexed arrays in these patterns have to enhance compiler opti-
mizations.

Throughout the test of this paper, \single-indexed array" means \irregular
single-indexed array".



2 Consecutively Written Arrays

An array is consecutively written in a loop if, during the execution of the loop,
all the elements in a contiguous section of the array are written one by one
in an increasing or decreasing order. For example, in the repeat-until loop in
Fig.1, array element x(2) is not written until x(1) is written, x(3) is not written
until x(2) is written, and so on. That is, x() is consecutively written in the
1,2,3,. . . order.

We describe how to detect consecutively written arrays in Sect.2.1, and we
show how to use the properties of consecutively written arrays in compiler opti-
mizations in Sect.2.2. To be concise, in this paper, we consider only arrays that
are consecutively written in increasing order. It is trivial to extend the techniques
we present to handle decreasing cases as well.

2.1 Algorithm for Detecting Consecutively Written Arrays

In this section, we present an algorithm that tests whether a single-indexed array
is consecutively written in a loop, and if so, gives the section where the array
elements are written.

Since we are dealing with irregular arrays, we must consider not only do
loops, but also other kinds of loops, such as while loops and repeat until loops.
In general, we consider natural loops[1]. A natural loop has a single entry node,
called the header. The header dominates all nodes in the loop. A nature loop
can have multiple exits, which are the nodes that lead the control ow to nodes
not belonging to the loop.

Before we present the algorithm, we �rst describe a bounded depth-�rst search

(bDFS) method, which is used several times in this paper.
The bDFS is shown in Fig.2. Like the standard DFS, a bDFS does a depth

�rst search on a graph (V;E), where V is the set of vertices and E is the set of
edges in the graph. It uses three help functions to change its behavior during the
search. These three functions (i.e., fbound(), ffailed(), and fproc()) are de�ned
before the search starts. fbound() is a V ! (true; false) function. Suppose the
current node is n0 during the search. If fbound(n0) is true, then bDFS does not
search the nodes adjacent to the current node n0. The nodes whose fbound() val-
ues are true are the boundaries of the search. ffailed() also is a V ! (true; false)
function. If, for the current node n0, ffailed(n0) is true, then the whole bDFS
terminates with a return value of failed. The nodes whose ffailed() values are
true cause an early termination of the bDFS. fproc() does not have a return
value; it does prede�ned computations for the current node.

Now we can show the algorithm to detect consecutively written arrays,

{ Input: a loop L with header h and a set of exit nodes (t1; t2; :::; tn), a single-
indexed array x() in the loop, and the index variable p of x().

{ Output: answer to the question whether x() is consecutively written in L.
And if the answer is YES, the section where x() is written in L.

{ Steps:



bDFS(u)
1 visited[u] := true ;
2 fproc(u) ;
3 if (fbound(u) = false) then
4 for each adjacent node v of u
5 if (ffailed(v) = true) then return failed ;
6 if (visited[v] = false) then
7 result := bDFS(v) ;
8 if (result = failed) then return failed ;
9 return succeeded ;

Before the search starts, visited[] is set to false for all nodes.

Fig. 2. Bounded depth-�rst search

1. Find all the de�nition statements of p in the loop. If any are not of
the form \p = p + 1", then return NO. Otherwise, put the de�nition
statements in a list lst.

2. For each statement n in lst, do a bDFS on the control ow graph from
n using the following help functions:

fbound(n) =

�
true if n is an assignment statement for x()
false otherwise

ffailed(n) =

�
true if n is \p = p+ 1"
false otherwise

fproc(n) = NULL

If any of the bDFSs returns a failed, then return NO.
3. Using the following help functions, do a bDFS on the control ow graph

from the loop header h, where the value of tag1 is initially set to 0:

fbound(n) =

8<
:
true if n is an assignment statement for x() and tag1 is 1
true if n is \p = p+ 1" and tag1 is 2
false otherwise

ffailed(n) =

8<
:
true if n is an assignment statement for x() and tag1 is 2
true if n is \p = p+ 1" and tag1 is 1
false otherwise

fproc(n) =

8<
:

set tag1 to 1 if n is an assignment statement for x() and tag1 is 0
set tag1 to 2 if n is \p = p+ 1" and tag1 is 0
do nothing, otherwise

If the bDFS returns a failed, then return NO.
4. Using the same help functions as in the previous step, do a bDFS on the

reversed control ow graph from each of the exit nodes, with tag1 being
replaced with tag2. If any of the bDFSs returns a failed, then set tag2
to 0, and go to step 5.



5. Now, we know x() is consecutively written in the loop. The lower bound
of the region is p0 if tag1 is 1, or p0+1 if tag1 is 2, where p0 is the value
of p before entering the loop. The upper bound of the region is p if tag2
is 1, or p� 1 if tag2 is 2, or unknown if tag2 is 0. Return Y ES.

The algorithm starts by checking whether the index variable is ever de�ned
in any way other than being increased by 1. If so, we assume the array is not
consecutively written. Step 2 checks whether in the control ow graph there
exists a path from one \p = p+1" statement to another \p = p+1" statement1

and the array x() is not written on the path. If such a path exists, then there
may be \holes" in the section where the array is de�ned and, therefore, the array
is not consecutively written in the section. Note that the algorithm allows an
array element to be written multiple times in one loop iteration before the index
variable is increased by 1. Steps 3, 4 and 5 compute the section of array elements
being written in the loop. For example, in Fig.1, the section where x() is written
after the repeat-until loop is [1; p]; and, in Fig.3 (a), the section where x() is
written after loop do i is [1; p�1]. The section in Fig.3 (b) is [1; unknown]. Step
3 also ensures that an array element is not written in two di�erent iterations of
the loop. For example, the algorithm accepts the array x() in Fig.3 (a) and (b)
as consecutively written, but rejects the array y() in Fig.3 (c).

p = 1

do i=1, n

if (..) then

x(p) = ..

if (..) then

x(p) = ..

end if

p = p + 1

end if

end do

(a)

p = 1

do i=1, n

if (..) then

y(p) = ..

p = p + 1

if (..) then

y(p) = ..

goto 10

end if

end if

end do

10 ...

(b)

do i=1, n

if (..) then

p = p+1

z(p) = ..

else

z(p) = ..

end if

end do

(c)

Fig. 3. Consecutively written or not?

The algorithm is conservative in the sense that it may fail to report a con-
secutively written array, but never report one that is not in fact.

2.2 Applications

Dependence Test and Parallelization If a single-indexed array is consec-
utively written in a loop and is write-only in this loop, then the array does
1 These two statements can be the same statement, in which case the path is a circle.



not cause any data dependences. Flow data dependence does exist for the index
variable. However, if the index variable is not used in anywhere other than in
the array subscript and the increment by 1 statements, then the array splitting-

and-merging method[14] can be used to eliminate the dependence in order to
parallelize the enclosing loop.

Array splitting and merging has three phases. First, a private copy of the con-
secutively written array is allocated on each processor. Then, all the processors
work on their private copies from position 1 in parallel. After the computation,
each processor knows the length of its private copy of the array; hence, the
starting position in the original array for each processor can be easily calcu-
lated. Finally, the private copies are copied back (merged) to the original array.
Figure 4 shows an example when two processors are used.

Sequential version:

k = k0

do i = 1, n

while (..) do

a(k) = ..

k = k+1

end while

end do

(a)

54  44   23   ..           89   23   1831   45  62   78   ..            ..   12   43

31   45  62   78   ..            ..   12   43

54  44   23   ..           89   23   18

Private Copy for Processor 1 - pa1()

Original Array  a()

Private Copy for Processor 2 - pa2()

(b)

Parallel version:

pk(1) = 1

pk(2) = 1

parallel do i = 1, n

// pid is the processor id

while (..) do

pa(pk(pid), pid) = ..

pk(pid) = pk(pid) + 1

end while

end do

parallel section

do i = 1, pk(1)-1

a(k0+i-1) = pa(i,1)

end do

//

do i = 1, pk(2)-1

a(k0+pk(1)+i-2) = pa(i,2)

end do

end parallel section

k = k0+pk(1)+pk(2)-2

(c)

Fig. 4. An Example of Array Splitting and Merging

Privatization Test Consecutively written array analysis can �nd the array
element section where a consecutively written array is written in a natural loop.
Traditional array privatization techniques can handle only do loops and require
a closed-form expression of the array subscripts in order to compute the section
of array elements read or written in the loop. As we have illustrated at the
beginning of this paper, with consecutively-written array analysis, we can easily



extend the privatization test to process irregular single-indexed arrays and more
general loops.

Index Array Property Analysis The indirectly accessed array is another kind
of irregular array. An array is indirectly accessed in a statement if the subscript of
the array is another array, such as the array x() in statement \x(ind(i)) = y(i)".
x() is called the host array, and ind() is called the index array. It is easy to see
that traditional techniques cannot handle indirectly accessed arrays. However,
recent studies[4, 14] have shown that index arrays often have simple properties,
which can be used to produce more accurate analysis of host arrays. An array

property analysis method has been developed to check whether an index array
has any of these key properties[15].

Consecutively written array analysis can be used to help �nd the properties
an array can have in the array property analysis. For example, two of the key
properties that index arrays may have are injectivity and closed-form bounds.
An array section is injective if none of any two di�erent array elements in the
section have the same value. An array section has closed-form bounds if the
lower bound and upper bound of the values of array elements in the section can
be expressed by a closed-form expression. Detecting whether an array section
has any of the two properties is diÆcult in general. However, in many cases, we
only need to check whether the array section is de�ned in an index gathering

loop, such as the loop do i in Fig.5.

do k = 1, n

q = 0

do i = 1, p

if ( x(i) > 0 ) then

q = q + 1

ind(q) = i

end if

end do

do j = 1, q

jj = ind(j)

z(k,jj) = x(jj) * y(jj)

end do

end do

Fig. 5. An example of a loop with an inner index gathering loop

In Fig.5, the indices of the positive elements of array x() are gathered in
array ind(). After the gathering loop is executed,



{ all the array elements in section x[1 : q] are de�ned,
{ the values of the array elements in array section x[1 : q] are injective, and
{ the lower bound of the values of the array elements in section x[1 : q] is 1,
and the upper bound is q.

With this information available at compile-time, the compiler is now able to
determine that:

1. there is no data dependence in loop do j, and
2. array ind() can be privatized in loop do k.

Thus, the compiler can choose either to parallelize loop do k only, parallelize
loop do j only, parallelize both, or parallelize loop do k and vectorize loop do j,
depending upon the architecture for which the code is generated.

An index gathering loop for an index array can be characterized as:

1. the loop is a do loop,
2. the index array is single-indexed in the loop,
3. the index array is consecutively written in the loop,
4. the right-hand-side of any assignment of the index array is the loop index,

and
5. one assignment of the index array cannot reach another assignment of the

index array without �rst reaching the do loop header.

The fourth condition above ensures that the same loop index value is not assigned
twice to the elements of the index array. This condition can be veri�ed by using
a bDFS.

After an index gathering loop, the values assigned to the index array in the
loop are injective, and the range of the values assigned is bounded by the range
of the do loop bound.

3 Array Stack

The stack is a very basic data structure. Many programs implement stacks using
arrays, because it is both simple and eÆcient. We call stacks implemented in
arrays array stacks. Figure 6 illustrates an array stack. In the body of loop do i,
array t() is used as a stack, and variable p is used as the stack pointer which
always points to the top of the stack. In Sect.3.1, we show how to detect array
stacks, and in Sect.3.2 we demonstrate how to enhance compiler optimizations
in programs where array stacks are detected.

3.1 Algorithm for Detecting Array Stacks

In this section, we present an algorithm that checks whether a single-indexed
array is used as a stack in a program region. A region[1] is a subset of the
control ow graph that includes a header, which dominates all the other nodes
in the region.

To be concise, we consider program regions in which the single index variable
p is de�ned only in one of the following three ways:



do i = 1, n

p = 1

t(p) = ...

loop

p = p + 1

t(p) = ...

if (...) then

loop

if (p>=1) then

... = t(p)

p = p - 1

end if

end loop

end if

end loop

end do

Fig. 6. An example of an array stack

1. p := p+ 1,
2. p := p� 1, or
3. p := Cbottom, where Cbottom is a constant in the program region.

We check whether a single-indexed array is used as a stack in a region by
checking whether the statements involved in the array operations appear in some
particular orders. These orders are shown in Table 1.

p = p+ 1 p = p� 1 x(p) = :: :: = x(p) p = Cbottom

p = p+ 1 x(p) = :: :: = x(p) - x(p) = :: -

p = p� 1 - :: = x(p) p = p+1 G -

x(p) = :: - :: = x(p) p = p+ 1 - -

:: = x(p) p = p� 1 - p = p+ 1 p = p+ 1 -

Table 1. Order for Access of Array Stacks

The left column and the top row in Table 1 give the statements to be checked.
If there is a path in the control ow graph from a statement of the form shown
in the left column of the table to a statement of the form shown in the top
row, then the statement in the corresponding central entry of the table must
be on the path. For example, if there is a path from a statement \x(p) = ::" to
another statement \x(p) = ::", then before the control ow researches the second
\x(p) = ::" statement, it must �rst reach a \p = p + 1" statement. A `-' in a
table entry means there is no restriction on what of kind of statement must be
on the path. The `G' represents an if statement that is \if (p � Cbottom) then".



Intuitively, the order in Table 1 ensures that for an array stack x() with index
p,

1. p is �rst set to Cbottom before it is modi�ed or used in the subscript of x(),
2. the value of p never goes below Cbottom, and
3. the access of elements of x() follows the \last-written-�rst-read" pattern.

Table 1 can be simpli�ed to Table 2. Any path originating from a node n of
the forms in the left column of Table 2 must �rst reach any node of the forms
in Sbound(n) before it reaches any node of the forms in Sfailed(n).

n Sbound(n) Sfailed(n)

p = p+ 1 fx(p) = ::, p = Cbottomg fp = p+ 1, p = p� 1,:: = x(p)g

p = p� 1 fp = p+ 1, G, p = Cbottomg fp = p� 1, x(p) = ::, :: = x(p)g

x(p) = :: fp = p+ 1, :: = x(p), p = Cbottomg fp = p� 1, x(p) = ::g

:: = x(p) fp = p� 1, p = Cbottomg fp = p+ 1, x(p) = ::, :: = x(p)g

Table 2. Simpli�ed Order for Array Stacks

Next, we present the algorithm to detect array stacks.

{ Input: a program region R with header h, a single-indexed array x() in the
region, and the index variable p of x().

{ Output: answer to the question whether x() is used as a stack in R. And,
if the answer is Y ES, the minimun value Cbottom the index variable p can
have in the region.

{ Steps:

1. Find all the de�nition statements of p in R. If any are not of the forms
in the set fp = p + 1, p = p � 1, p = Cbottomg (if there are multiple
\p = Cbottom" statements, the Cbottom must be the same), then return
NO. Otherwise, put the de�nition statements in a list lst.

2. Find all the \x(p) = ::" and \:: = x(p)" statements in R, and add them
to lst.

3. For each statement m in lst, do a bDFS on the control ow graph from
this statement using the following help functions:

fbound(n) =

�
true n 2 Sbound(m)
false otherwise

ffailed(n) =

�
true n 2 Sfailed(m)
false otherwise

fproc(n) = NULL

If any of the bDFSs returns a failed, then return NO. Otherwise, return
Y ES and Cbottom.



3.2 Applications

Run-time Array Bounds-checking Elimination Run-time array bounds-
checking is used to detect array bound violations. The compiler inserts bound
checking codes for array references. At run-time, an error is reported if an array
subscript expression equals to a value that is not within the declared bounds of
the array. Some languages, such as Pascal, Ada and Java, mandate array bound
checking. Array bounds-checking is also desirable for programs written in other
languages since it helps with program tests and debugging. Since most references
in computationally intense loops are to arrays, these checks cause a signi�cant
amount of overhead.

When an array is used as a stack in a program region, the amount of array
bound checking for the stack array can be reduced by 50%. Only the upper bound
checkings are preserved. The lower bound checking is performed only once before
the header of the program region. Elimination of unnecessary array bounds-
checking also has been studied by Markstein et al[16], Gupta[11], and Kolte and
Wolfe[12]. Gupta and Spezialetti[18] proposed a method to �nd monotonically
increasing/decreasing index variables, which also can be used to eliminate the
checking by half. But their method cannot handle array stacks, which are more
irregular.

Privatization Test Array stack analysis also can improve the precision of the
array privatization tests. Here, we consider the loop body as a program region.
When an array is used as a stack in the body of a loop, the array elements are
always de�ned (\pushed") before being used (\popped") in the region. Di�erent
iterations of the loop will reuse the same array elements, but the value of the
array elements never ow from one iteration to the other. Therefore, array stacks
in a loop body can be privatized. For example, the array stack t() in Fig.6 can
be privatized in the outermost loop loop do i.

Loop Interchanging Loop interchanging[2, 20] is the single most important
loop restructuring transformation. It has been used to �nd vectorizable loops, to
change the granularity of parallelism, and to improve memory locality, among
many other optimizations. Loop interchanging changes the nest order of nested
loops. It is not always legal to perform loop interchanging since data depen-
dence cannot be violated. Data dependence tests must be performed before loop
interchanging.

Traditionally, loop interchanging is not possible when array stacks are present,
because current data dependence tests cannot handle irregular arrays. However,
as in the privatization test, array stacks cause no loop carried dependences. If
the index variables of array stacks are not used in any statements other than
stack access statements, then the data dependence test can safely assume no de-
pendence between the stack access statements. The loop interchanging test then
can just ignore the presence of array stacks and use traditional methods to test
other arrays. By using array stack analysis, we have extended the application
domain of loop interchanging.



4 Related Work

There are two closely related studies done by two groups of researchers. M. Wolfe
[21, 10], M. Gerlek and E. Stoltz [10] have presented an algorithm to recognize
and classify sequence variables in a loop. Di�erent kinds of sequence variables
are linear induction variables, periodic, polynomial, geometric, monotonic, and
wrap-around variables. Their algorithm is based on a demand-driven represen-
tation of the Static Single Assignment form[6, 5]. The sequence variables can be
detected and classi�ed in a uni�ed way by �nding strongly connected compo-
nents of the associated SSA graph.

R. Gupta and M. Spezialetti [18] have extended the traditional data-ow
approach to detect \monotonic" statements. A statement is monotonic in a loop
if, during the execution of the loop, the statement assigns a monotonically in-
creasing or decreasing sequence of values to a variable. They also show the appli-
cation of their analysis in run-time array bound checking, dependence analysis,
and run-time detection of access anomalies.

The major di�erence between their work and ours is that we focus on arrays
while they focus on index variables. While both of their methods can recognize
the index variable for a consecutively written array as a monotonic variable, if
the array is de�ned in more than one statements, then none of them can de-
tect whether the array itself is consecutively written. For example, Wolfe et al's
method can �nd that the two instances of variable k in statements (1) and (2)
in Fig.7 have a strictly increasing sequence of values. Gupta and Spezialetti's
method can classify statements (1) and (2) as monotonic. However, neither can
determine whether the access pattern of the array x() is consecutively written.
As for array stack analysis, as the index variable does not have a distinguish-
able sequence of values, both Wolfe et al's method and Gupta and Spezialetti's
method treat the index variable as a generally irregular variable. Without taking
the arrays into the account in their analysis, they can do little in detecting array
stacks.

do i = 1, n

if ( .. ) then

x(k) = ..

k = k + 1 (1)

else if ( .. ) then

x(k) = ..

k = k + 1 (2)

end if

end do

Fig. 7. Both array x() and index k should be analyzed to know that x() is consecutively
written.



The authors believe it is often important to consider both index variables
and arrays in loop analysis. While both of the two other methods can recognize
a wide class of scalar variables beyond the variable used as the subscript of
single-indexed arrays in our method, they are not necessarily more powerful in
analyzing the access pattern of the arrays.

5 Case Studies

In this section, we show how the consecutively written array analysis and array
stack analysis can be used to enhance the automatic parallelism detection in
three real-world programs.

These three programs are summarized in Table 3. Column three in Table 3
shows the loops that can be parallelized only after the techniques presented in
this paper have been used to analyze the arrays shown in column four. Figure 8
shows the di�erence in speedups when these loops are parallelized. We compare
the speedups of the programs generated by our Polaris parallelizing compiler,
with and without single-indexed array analysis, and the programs compiled us-
ing the automatic parallelizer provided by SGI. The experiments were performed
on an SGI Origin2000 machine with 56 195MHz R10000 processors (32KB in-
struction case, 32KB data cache, 4MB secondary uni�ed level cache) and 14GB
memory running IRIX64 6.5. One to thirty two processors are used for BDNA
and TREE. One to eight processors are used for P3M. \APO" means using
the \-apo" option when compiling the programs. This option invokes the SGI
automatic parallelizer. \Polaris without SIA" means using the Polaris compiler
without the single-indexed array analysis. \Polaris with SIA" means using the
Polaris compiler with the single-indexed array analysis. As we have not yet im-
plemented the array stack analysis in our Polaris compiler, so for TREE, we show
the result of manual parallelization. For all of the three codes, the speedups of
the versions in which the single-index array analysis had been used are much
better than those of the other versions.

Program Name Lines of Codes Major Loops Single-indexed Arrays % of Exe. Time

BDNA 4000 actfor do 240 xdt() 31%

P3M 2500 pp do 100 ind0(), jpr() 74%
subpp do 100 ind0(), jpr() 14%

TREE 1600 accel do10 stack() 70%

Table 3. Three Real-world Programs

5.1 BDNA

BDNA is a molecular dynamics simulation code from the PERFECT bench-
mark suite[8].



1 2 4 8 16 32
0

0.5

1

1.5

2

2.5

3

3.5

Number of Processors
S

pe
ed

up
s

BDNA

APO                
Polaris without SIA
Polaris with SIA   

1 2 4 8
0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Processors

S
pe

ed
up

s

P3M

APO                
Polaris without SIA
Polaris with SIA   

1 2 4 8 16 32
0

1

2

3

4

5

6

7

Number of Processors

S
pe

ed
up

s

TREE

APO                
Polaris without SIA
Manual             

Fig. 8. Comparison of Speedups

Loop loop do 240 in subroutine ACTFOR is a loop that computes the in-
teraction of biomolecules in water. It occupies about 31% of total computation
time. The main structure of this loop is outlined in Fig.9

Consecutively written array analysis is used in loop do j to �nd that elements
in [1; l] of ind() are written in this loop. Furthermore, this loop is recognized as
an index gathering loop; thus, the values of the elements in ind[1; l] de�ned in
this loop are bounded by [1; i � 1]. This information is used to privatize array
ind() and xdt() in loop do i, which is then determined to be parallel.

5.2 P3M

P3M is an N-body code that uses the particle-mesh method. This code is from
NCSA.

Most of the computation time (about 88% after using vendor provided FFT
libraray) is spent in subroutine pp and subpp. The structure of pp and subpp are
very similar. The major part is a three-perfect-loop nest, which can be paral-
lelized. However, before parallelization, several single-indexed arrays in the loop
must be privatized. These single-indexed arrays are used in a way that is a mix
of the ways the arrays are used in the loop body in Fig.1 and Fig.5.



do i = 2, nsp

do j = 1, i - 1

xdt(j) = .. (1)

ind(j) = .. (2)

end do

l = 0

do j = 1, i - 1

if (ind(j) .eq. 0) then

l = l + 1

ind(l) = j (3)

end if

end do

do k = 1, l

.. = xdt(ind(k)) (4)

end do

end do

Fig. 9. Outline of actfor loop do 240 in BDNA

5.3 Barnes & Hut TREE code

The TREE code[7] is a program that implements the hierarchical N-body
method for simulating the evolution of collisionless systems[3].

The major body of the program is a time-centered leap-frog loop which is
inherently sequential. At each time step, it computes the force on each body and
updates the velocities and positions. About 70% of the program execution time
is spent in the force calculation loop. Each iteration of the force calculation loop
computes the gravitational force on a single body p using a tree walk method
that is illustrated in Fig.10.

In the tree walk code, single-indexed array stack is used as a stack to store
tree nodes yet to be visited. Variable sptr is used as the stack pointer. As dis-
cussed in Sect.3.2, array stack can be privatized for the force calculation loop.
As there is no other data dependence in the loop, the loop can be parallelized
(i.e., the force calculation of the n bodies can be performed in parallel).

6 Conclusion

In this paper, we introduced the notion of irregular single-indexed arrays. We
described two common access patterns of irregular single-indexed arrays (i.e.,
consecutively written and stack access) and presented simple and intuitive al-
gorithms to detect these two patterns. More importantly, we showed that ar-
rays following these two access patterns exhibit very important properties. We
demonstrated how to use these properties to enhance a variety of compiler anal-
ysis and optimization techniques, such as the dependence test, privatization test,
array property analysis, loop interchanging, and array bounds-checking. In the
case study, we showed that, for three real-life programs, the speedups of the



sptr = 1

stack(sptr) = root

while (sptr .gt. 0) do

q = stack(sptr)

if ( q is a body ) then

process body-body interaction

else if ( q is far enough from p ) then

process body-cell interaction

else

do k = 1, nsubc

if ( subp(q,k) .ne. null ) then

sptr = sptr + 1

stack(sptr) = subp(q,k)

end if

end do

end if

end while

Fig. 10. Treewalk kernel[3] in the TREE code

parallelized versions generated by the Polaris compiler with single-index array
analysis are much better than those of other versions.
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