
Code Study: Automatic Parallelism Detection in Dyfesm

Yuan Lin and David Padua

Department of Computer Science

University of Illinois at Urbana-Champaign

fyuanlin,paduag@uiuc.edu

1 Introduction

This paper reports the results of our study on the Perfect Benchmarks code DYFESM in order to determine how
e�ective automatic parallelism detection techniques are on this code.

So far, researchers in the area of automatic parallelization have not reported any speedups for DYFESM.
In fact, it is diÆcult to automatically �nd the parallelism in this code. The main reason is that indirectly
accessed arrays are used extensively in DYFESM and, currently no compiler techniques can e�ectively detect
the parallelism in many loops with indirectly accessed arrays. Our objective in studying this code is to evaluate
the e�ectiveness of the parallelism detection techniques for sparse/irregular programs recently proposed by the
authors[3].

To our knowledge, no work of this kind on DYFESM has been reported. There are, however, some important
studies of this code. For more information about DYFESM, the reader is referred to [5], which presents a high-level
description of the problem solved in this code. Reference [6] discusses the e�ectiveness of algorithm replacement
and the mapping of two computation primitives that are key to the Cedar architecture. A detailed description
of the structure of this code also is available in [6]. Reference [2] considers the code from the point of view of a
parallelizing compiler. It does not, however, discuss how to detect the parallelism automatically by a compiler.

2 Program Structure

DYFESM \is a two-dimensional �nite element code for the analysis of symmetric anisotropic structures"[5]. The
code contains 7,600 lines of Fortran 77 codes in 113 subroutines. About 99.93% of total execution time is spent
in a leap-frog method (subroutine LEAP) which is used to solve for the displacements and stresses, as well as
velocities and accelerations at each time step. Each iteration of loop LEAP/do10, which corresponds to one
time-step, is processed as follows[5]:

1. prepare the xt+�t for this time-step by copying it to xt, (subroutine COPYV)

2. prepare the _xt+�t

2
for this time-step by copying it to _xt��t

2
, (subroutine COPYV)

3. solve for stresses ht via Fht = Sxt +
1

2
Mnlx

2
t , (subroutine SOLH)

4. solve for accelerations �xt via M �xt = pt � Sht �Mnlhtxt, (subroutine SOLXDD)

5. compute velocities _xt+�t

2
via _xt+�t

2
= _xt��t

2
+�t�xt, or via _xt+�t

2
= _xt=0 +

�t
2
�xt=0 for the �rst time-step,

(subroutine HOP)

6. compute displacements xt+�t via xt+�t = xt +�t _xt+�t

2
, (subroutine HOP)

7. compute _xt
_x
t+�t

2

+ _x
t�

�t

2

2
(subroutine DRPOST)

Due to the nature of time-step methods, loop LEAP/do10 is sequential. Each step in this loop, however, can be
parallelized. Steps 1, 2, 5, 6 and 7 are simple vector operations, which are fully parallel. Steps 3 and 4 solve two
linear equation systems whose parallelization methods are well studied in the literature.

1

the labels of the displacement nodesdisplacement nodestress node

substructure 2

substructure 4

 1 2 23 6 5

 3 4 24 8 7

17 18 25 20 19

11 12 22 16 15

 9 10 21 14 13

substructure 1

substructure 3

(a) (b)

Figure 1: The Grid in the Test Problem

Though it seems trivial to �nd the parallelism in these steps by hand, to do so (except for the loops in COPYV)
automatically is diÆcult because of the complicated data structure used in this code. In fact, DYFESM shows
a characteristic typical to most sparse/irregular programs: although the sparse implementation has the same
parallel loops as its dense counterpart, the parallelism is diÆcult to detect in the sparse version.

3 Data Structure

The test problem in the Perfect Benchmarks works on the grid shown in Figure 1.(a)[6]. Each of the four
substructures consists of one element1 with nine nodes for displacements and four nodes for stresses. Each
displacement has �ve degrees of freedom and each stress has eight degrees of freedom[5]. To save space, we
discuss only the data structure for the displacements here. The data structure for stresses is similar.

Figure 1.(b) shows how the twenty �ve displacements are labeled. Since the displacement has �ve degrees of
freedom, each of the twenty �ve nodes uses a vector of �ve to store its value. Six arrays are used to represent
this �ve by �ve grid of displacements. These arrays and their relations are illustrated in Figure 2. The value of
all displacement vectors are stored in a one-dimensional array X(), from node 1 to node 25. Thus, X() has 5 � 25
array elements, one for each degree of freedom of each displacement. This array is conceptually divided into �ve
blocks. The �rst four blocks contain the nodes that only belong to one substructure. The �fth block contains the
boundary nodes (i.e., node 17 through node 25). Because each node uses a vector of �ve, each of the �rst four
blocks has 5�4 array elements, and the last block has 5�9 array elements. The starting positions and the lengths
of the blocks are given by arrays PPTR() and IBLEN(), respectively. The values in array IWHERD(�; 2)
give the starting position for each displacement node within a block. And, the values in array IWHERD(�; 1)
indicate to which block each displacement node belongs. Array ICOND(1::9; i) records which displacement nodes
are contained in substructure i. Among the six arrays, X() stores the results of the computation and its value
changes along the execution of the program. The other �ve arrays are glacial, that is, once de�ned, their value
never changes. IBLEN(), PPTR(), and IWHERD() are de�ned in the program, while the value of ICON()
is read in from the input �le. It is not diÆcult to see that the main data structure employed in DYFESM is a
variant of the Compress Column/Row Storage format, which is commonly used in sparse/irregular programs.

As we can see, indirectly accessed arrays are used extensively in DYFESM. This is also true for most
sparse/irregular programs written in FORTRAN 77, which has only one compound data structure (array) and
requires the programmers to handle the memory management.

4 Code Analysis and Parallelization

We studied all the major loops (> 8% of total sequential execution time each) in DYFESM and found that
all of them, except for SOLVHE/do202, can be parallelized at compile time3. All the major kernel loops can

1The code is capable of handling multiple elements per substructure.
2Run-time information is needed to parallelize SOLVHE/do20, which accounts for 12.33% of the total sequential execution time.

Run-time methods, such as the one presented in [4], can be used to parallelize this loop.
3A detailed description of each of the major loops will appear in the full version of this paper.

2

01 21 41 61 81

01 06 11 16 01 06 11 16 01 06 11 16 01 06 11 16 01 06 36 41

4520202020IBLEN()

 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5IWHERD(*,1)

ICOND(1..9, 2) = { 23, 6, 5, 7, 19, 20, 25, 14, 8 }

ICOND(1..9, 3) = { 17, 18, 25, 22, 21, 10, 9, 11, 12 }

ICOND(1..9, 1) = { 1, 2, 23, 24, 25, 18, 17, 3, 4 }

ICOND(1..9, 4) = { 25, 20, 19, 15, 13, 14, 21, 22, 16 }

IWHERD(*,2)

PPTR()

block 5block 4block 1

five degrees of freedom

block 2

 1 25

X()

Figure 2: Displacement Nodes

 DO 10 IBLOCK = 1, NBLOCK

 NRB = IBLEN(IBLOCK)

10 CONTINUE

 DO 20 I = 1, NRB

 ILOC = PPTR(IBLOCK)

 ... = X(ILOC+I-1)
 X(ILOC+I-1) = ...
20 CONTINUE

 DO 50 I = 1, NBLOCK
 PPTR(I) = IPTR
 IPTR = IPTR + IBLEN(I)
50 CONTINUE

 IPTR = 1

(a) (b)

Figure 3: O�set/length Pattern

be parallelized by using traditional techniques. To parallelize the high-level loops, subscript array analysis for
o�set/length pattern and transformation of histogram reductions are required. This result is consistent with what
we found in our previous study[3] of other sparse/irregular programs.

4.1 Parallelizing Loops with O�set/length Pattern

A large number of loops in DYFESM have a similar program pattern, which can be called o�set/length[3]. As
discussed in Section 3, the displacement solution is stored in a one-dimensional array X(), which is conceptually
divided into �ve blocks. The starting position and length of each block inX() are given by PPTR() and IBLEN(),
respectively, as illustrated in Figure 2. The program uses the pattern in Figure 3.(a), where NBLOCK is the
number of blocks, to process the displacement data in each block.

Because di�erent iterations of loop DO 10 in Figure 3.(a) work on di�erent blocks, loop DO 10 can be executed
in parallel. In some more complicated cases, the body of loop DO 10 involves subroutine calls and loop DO 20
appears in the called subroutines. However, the program pattern is the same. We call this pattern the o�set/length
pattern.

The key to ensuring that do10 is parallel is that the following equation is always satis�ed PPTR(i + 1) =
PPTR(i) + IBLEN(i); (i = 1; ::nblock � 1). In the program, this equation can be checked at compile-time,
because array PPTR() is de�ned in loop SETHM/do50 in the way shown in Figure 3.(b).

Subscript analysis is the method to get the property of an array from where the array is de�ned and to use this
property in the analysis of loops where the array is used. This method has been proposed to solve the problem of
detecting parallelism in loop with indirectly accessed arrays[1][3] and will be described in the full version of this
paper.

We found this method e�ective in �nding parallel loops in DYFESM. The operations in DYFESM that have
this o�set/length pattern are vector additions, SAXPY operations, mixed SAXPY and vector inner product
operations, and preconditioning in a preconditioned conjugate gradient algorithm. These operations account for
about 16% of total sequential execution time.

3

R5
~0

do i=1, 4

Ri
~0 (1)

extract S00

i from S (2)
T M 00

i � S
00

i (3)
Ri Ri + corresponding part(T; i) (4)
R5 R5 + corresponding part(T; 5) (5)

end do

Figure 4: MXMULT

4.2 Parallelization of Histogram Reduction in Matrix-vector Multiplication

About 63% of total sequential execution time is spent in loop MXMULT/do10, which performs a matrix-vector
multiplication between a matrix M by a vector S. M and S have the following block structure:

M =

0
BBB@

M11 M15

M22 M25

. . .
...

M51 M52 : : : M55

1
CCCA ; and S =

0
BBB@

S1
S2
...
S5

1
CCCA

EachMij is a sub-matrix and each Si is a sub-vector. In DYFESM, however, this multiplication is accomplished
by performing four small matrix-vector multiplications between M 00

i and S00i (i = 1; ::; 4), where

M 00

i = Pi �M
0

i � P
T
i ; S

00

i = Pi � S
0

i;whereM
0

i =

�
Mii Mi5

M5i M55

�
; S0i =

�
Si

S5

�
; and Pi is a permutation matrix

For example, for substructure one, S001 = (s1; s2; s23; s24; s25; s18; s17; s3; s4), where s1; s2; s3 and s4 belong to
block one, and s23; s24; s25; s18 and s17 belong to block �ve. The program is coded in this way because the data
for M is stored in the format of M 00

i (i = 1; ::; 4).
The high-level structure of MXMULT is illustrated in Figure 44, where the product of multiplication M � S

is stored in R = (R1; R2; :::; R5)
T . The loop body involves nested subroutine calls.

It can be derived from this high-level structure that loop MXMULT/do10 can be parallelized. Current
parallelizing compilers are able to detect the parallelism by recognizing statements (4) and (5) as a histogram
reduction. However, in fact, only statement (5) performs reductions across the iterations. Although statement
(4) has the form of a reduction in the implementation, it actually has no loop carried dependences. We are
currently investigating how to detect this by using our subscript array analysis methods. This is important when
the privatized/expansion method is used to transform the loops into a parallel reduction. When both statements
(4) and (5) are treated as reductions, the overhead cost of the privatized/expansion method is O(n2), where n2 is
the number of displacement nodes. The cost is reduced to O(n) when only statement (5) is treated as a reduction.

This loop also can be parallelized by putting statement (5) into a critical section. As we pointed out in our
previous study[3], selecting an appropriate method to parallelize loops with histogram reduction still remains a
challenge for parallelizing compilers, which is a topic we are also working on now.

4.3 Speedups

Traditional compiler techniques can only detect the kernel-level loop parallelism in DYFESM. Using the new
techniques, another high-level loop parallelism can be found. We get the breakdown of sequential execution time
by running the code on an SGI Power Challenge (195MHz R1000 processor) using one processor. We assume the
target architecture can exploit nested levels of parallelism and ignore the cache interference. We calculated the
perfect speedups that can be achieved with and without parallelizing the high-level loops and found that exploiting
both levels of parallelism can generate a speedup seven times as large as that produced by only exploiting only
the kernel-level parallelism.

4In order to be precise here, we ignore the codes that handle the case of multiple elements per substructure.

4

5 Summary

DYFESM is a program with many implicit parallel loops. Automatically detecting the parallelism in these loops
is diÆcult because of the complicated data structure and the extensive number of indirectly accessed arrays used
in this program. It is not impossible, however. This report reveals that two of the techniques we discussed in our
previous study[3] (i.e., subscript array analysis for o�set/ pattern and histogram reduction transformation) can
be used to detect the parallelism in high-level loops that account for 78% of the total sequential execution time.
This result strengthens our belief that compiler techniques can be applied to automatically detect the parallelism
in sparse/irregular programs.

References

[1] W. Blume and R. Eigenmann. An overview of symbolic analysis techniques needed for the e�ective parallelization of
the perfect benchmarks. In K. C. Tai, editor, Proceedings of the 23rd International Conference on Parallel Processing.
Volume 2: Software, pages 233{238, Boca Raton, FL, USA, August 1994. CRC Press.

[2] Rudolf Eigenmann. Automatic parallelization and manual improvements of the perfect club program dyfesm on alliant
fx/80, fx8, and cedar. Technical report, University of Illinois at Urbana-Champaign, Center for Supercomputing
Research and Development, November 1991.

[3] Y. Lin and D. Padua. On the automatic parallelization of sparse and irregular fortran programs. In Proc. of 4th
Workshop on Languages, Compilers, and Run-time Systems for Scalable Computers (LCR98), volume 1511 of Lecture
Notes in Computer Science, pages 41{56. Springer-Verlag, Pittsburgh, PA, 1998.

[4] D. Patel and L. Rauchwerger. Principles of compiler integration of speculative run-time parallelization. In Proceedings
of the 11th International Workshop on Languages and Compilers for Parallel Computing, pages 330{348, August 1998.

[5] Lynn Pointer. Perfect: performance evaluation for cost-e�ective transformations, report 2. Technical Report CSRD
964, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL
61801, USA, March 1990.

[6] U. Meier Yang and K. A. Gallivan. An analysis of a cedar implementation of dyfesm. Technical Report CSRD 1284,
University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801,
USA.

5

